JP2023526430A - 広視野を伴う二重プロジェクタ導波管ディスプレイのための方法およびシステム - Google Patents

広視野を伴う二重プロジェクタ導波管ディスプレイのための方法およびシステム Download PDF

Info

Publication number
JP2023526430A
JP2023526430A JP2022570536A JP2022570536A JP2023526430A JP 2023526430 A JP2023526430 A JP 2023526430A JP 2022570536 A JP2022570536 A JP 2022570536A JP 2022570536 A JP2022570536 A JP 2022570536A JP 2023526430 A JP2023526430 A JP 2023526430A
Authority
JP
Japan
Prior art keywords
region
waveguide
light
diffractive
icg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022570536A
Other languages
English (en)
Inventor
ブライアン ティー. ショーウェンガート,
マシュー ディー. ワトソン,
ブランドン マイケル-ジェイムズ ボーン,
ビクター カイ リウ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2023526430A publication Critical patent/JP2023526430A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

拡張現実ディスプレイシステムのための接眼レンズ導波管は、第1の表面および第2の表面を有する、基板と、回折入力結合要素とを含む。回折入力結合要素は、光の入力ビームを受光し、入力ビームを基板の中に誘導ビームとして結合するように構成される。接眼レンズ導波管はまた、基板の第1の表面または第2の表面上または内部に形成される、回折組み合わせ瞳エクスパンダ-抽出器(CPE)要素を含む。回折CPE要素は、軸によって分割される、第1の部分および第2の部分を含む。回折光学要素の第1のセットは、第1の部分内に配置され、軸に対して正の角度に配向され、回折光学要素の第2のセットは、第2の部分内に配置され、軸に対して負の角度に配向される。

Description

本願は、その全内容が、あらゆる目的のために、参照することによってその全体として本明細書に組み込まれる、2020年5月22日に出願され、「METHOD AND SYSTEM FOR DUAL PROJECTOR WAVEGUIDE DISPLAYS WITH WIDE FIELD OF VIEW」と題された、米国仮特許出願第63/029,312号の優先権の利益を主張する。
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しおり、デジタル的に再現された画像またはその一部が、それらが、現実のように見える、またはそのように知覚され得るような様式において、視認者に提示される。仮想現実、すなわち、「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実、すなわち、「AR」シナリオは、典型的には、視認者の周囲の実際の世界の可視化に対する拡張として、デジタルまたは仮想画像情報の提示を伴う。
これらのディスプレイ技術において成された進歩にもかかわらず、当技術分野において、拡張現実システム、特に、ディスプレイシステムに関連する、改良された方法、システム、およびデバイスの必要性が存在する。
本発明は、概して、ウェアラブルディスプレイを含む、投影ディスプレイシステムに関連する、方法およびシステムに関する。より具体的には、本発明の実施形態は、従来のシステムと比較して、拡張された視野を提供する、方法およびシステムを提供する。本発明は、コンピュータビジョンおよび画像ディスプレイシステムにおける、種々の用途に適用可能である。
本明細書に説明されるように、接眼レンズとも称される、接眼レンズ導波管の視野が、複数のプロジェクタを使用して、組み合わせられた視野を形成する、サブディスプレイを作成することによって、従来の設計に対して増加される。
本発明の実施形態によると、拡張現実ディスプレイシステムのための接眼レンズ導波管が、提供される。接眼レンズ導波管は、第1の表面および第2の表面を有する、基板を含む。接眼レンズ導波管はまた、基板の第1の表面または第2の表面上または内部に形成される、回折入力結合要素を含む。回折入力結合要素は、光の入力ビームを受光し、光の入力ビームを基板の中に誘導ビームとして結合するように構成される。接眼レンズ導波管はさらに、基板の第1の表面または第2の表面上または内部に形成される、回折組み合わせ瞳エクスパンダ-抽出器(CPE)要素を含む。回折CPE要素は、軸によって分割される、第1の部分および第2の部分を含む。回折光学要素の第1のセットは、第1の部分内に配置され、軸に対して正の角度に配向され、回折光学要素の第2のセットは、第2の部分内に配置され、軸に対して負の角度に配向される。
本発明の別の実施形態によると、拡張現実ディスプレイシステムのための接眼レンズ導波管が、提供される。接眼レンズ導波管は、第1の表面および第2の表面を有する、基板を含む。接眼レンズ導波管はまた、基板の第1の表面または第2の表面上または内部に形成される、第1の回折入力結合要素を含む。第1の回折入力結合要素は、第1の光の入力ビームを受光し、第1の光の入力ビームを基板の中に第1の誘導ビームとして結合するように構成される。接眼レンズ導波管はさらに、基板の第1の表面または第2の表面上または内部に形成される、第2の回折入力結合要素を含む。第2の回折入力結合要素は、第2の光の入力ビームを受光し、第2の光の入力ビームを基板の中に第2の誘導ビームとして結合するように構成される。
加えて、接眼レンズ導波管は、基板の第1の表面または第2の表面上または内部に形成される、回折組み合わせ瞳エクスパンダ-抽出器(CPE)要素を含む。回折CPE要素は、第1の誘導ビームを第1の回折入力結合要素から受光し、第2の誘導ビームを第2の回折入力結合要素から受光し、第1の誘導ビームの少なくとも一部を第1の角度の範囲にわたって外部結合し、組み合わせられた視野の第1の視野を形成し、第2の誘導ビームの少なくとも一部を第2の角度の範囲にわたって外部結合し、組み合わせられた視野の第2の視野を形成するように位置付けられる。
本発明の具体的実施形態によると、眼鏡内に配置される、導波管ディスプレイが、提供される。導波管ディスプレイは、第1のプロジェクタと、第2のプロジェクタと、第1のプロジェクタに光学的に結合される、第1の内部結合格子(ICG)と、第2のプロジェクタに光学的に結合される、第2のICGとを含む。軸が、第1のICGおよび第2のICGを通して通過する。導波管ディスプレイはまた、第1のICGに光学的に結合され、軸に対して正の角度に配向される、格子の第1のセットを備える、第1の部分と、軸に対して負の角度に配向される、格子の第2のセットを備える、第2の部分とを含む、第1の回折領域を含む。導波管ディスプレイはさらに、第2のICGに光学的に結合される、軸に対して180°-正の角度に配向される、格子の第3のセットを備える、第1の部分と、軸に対して-180°-負の角度に配向される、格子の第4のセットを備える、第2の部分とを含む、第2の回折領域を含む。
本発明の特定の実施形態によると、第1の領域および第2の領域によって画定される、接眼レンズ導波管を動作させる方法が、提供される。本方法は、第1のプロジェクタからの光を第1の内部結合格子(ICG)上に衝突するように指向するステップを含む。本方法はまた、第1のプロジェクタからの光のある割合を、接眼レンズ導波管の第1の領域の第1の部分の中に、第2の領域の第1の部分の中に、第2の領域の第2の部分の中に、および接眼レンズ導波管から外に回折するステップを含む。本方法はさらに、第1のプロジェクタからの光の別の割合を、接眼レンズ導波管の第1の領域の第2の部分の中に、第2の領域の第2の部分の中に、第2の領域の第1の部分の中に、および接眼レンズ導波管から外に回折するステップを含む。加えて、本方法は、第2のプロジェクタからの光を第2のICG上に衝突するように指向するステップを含む。本方法はまた、第2のプロジェクタからの光のある割合を、接眼レンズ導波管の第2の領域の第1の部分の中に、第1の領域の第1の部分の中に、第1の領域の第2の部分の中に、および接眼レンズ導波管から外に回折するステップを含む。本方法はさらに、第2のプロジェクタからの光の別の割合を、接眼レンズ導波管の第2の領域の第2の部分の中に、第1の領域の第2の部分の中に、第1の領域の第1の部分の中に、および接眼レンズ導波管から外に回折するステップを含む。
従来の技法に優る多数の利益が、本発明の方法によって達成される。例えば、本発明の実施形態は、ディスプレイの視野を増加させ、ユーザ体験を改良するために使用され得る、方法およびシステムを提供する。ある実施形態では、格子周期は、タイル状にされ、または部分的に重複し、組み合わせられた視野を生産する、個々の視野を生産すように選択される。本発明のこれらおよび他の実施形態は、その利点および特徴の多くとともに、下記の文章および添付の図と併せて、さらに詳細に説明される。
図1は、本発明の実施形態による、接眼レンズ導波管を図示する、簡略化された平面図である。
図2Aは、本発明の実施形態による、減少された格子周期を伴う、接眼レンズ導波管を図示する、簡略化された断面図である。
図2Bは、本発明の実施形態による、増加された格子周期を伴う、接眼レンズ導波管を図示する、簡略化された断面図である。
図3Aは、本発明の実施形態による、増加された格子周期および組み合わせられた視野を伴う、接眼レンズ導波管の要素を図示する、簡略化された平面図である。
図3Bは、視野の第1の部分を形成する光線の第1のセットに関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図3Cは、視野の第2の部分を形成する光線の第2のセットに関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図3Dは、視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図3Eは、代替視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図3Fは、本発明の実施形態による、例示的光線とともに、図3Aに示される接眼レンズ導波管を図示する、簡略化された平面図である。
図3Gは、組み合わせられた視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図4Aは、本発明の実施形態による、増加された格子周期を伴う接眼レンズ導波管を利用する、マルチプロジェクタ導波管ディスプレイを図示する、簡略化された平面図である。
図4Bは、図4Aに図示されるマルチプロジェクタ導波管ディスプレイ内の第2のプロジェクタからの光線の伝搬を図示する、簡略化された平面図である。
図4Cは、図4Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図4Dは、本発明の実施形態による、第1の領域および第2の領域によって画定される、接眼レンズ導波管を動作させる方法を図示する、簡略化されたフローチャートである。
図5Aは、本発明の実施形態による、減少された格子周期を伴う接眼レンズ導波管を利用する、マルチプロジェクタ導波管ディスプレイを図示する、簡略化された平面図である。
図5Bは、図5Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図6Aは、本発明の実施形態による、マルチプロジェクタ導波管ディスプレイの要素を図示する、簡略化された平面図である。
図6Bは、本発明の実施形態による、マルチプロジェクタ導波管ディスプレイ内の光線の伝搬を図示する、簡略化された平面図である。
図7Aは、本発明の実施形態による、6プロジェクタ導波管ディスプレイを図示する、簡略化された平面図である。
図7Bは、図7Aに図示される、6プロジェクタ導波管ディスプレイの単一プロジェクタ要素を図示する、簡略化された平面図である。
図7Cは、図7Bに図示される、単一プロジェクタ要素の動作を図示する、簡略化されたk-空間図である。
図7Dは、図7Aに図示される、6プロジェクタ導波管ディスプレイの動作を図示する、簡略化されたk-空間図である。
図8は、本発明の実施形態による、眼鏡と1つまたはそれを上回る接眼レンズ導波管の統合を図示する、簡略化された概略図である。
具体的実施形態の詳細な説明
本発明は、概して、ウェアラブルディスプレイを含む、投影ディスプレイシステムに関連する、方法およびシステムに関する。より具体的には、本発明の実施形態は、従来のシステムと比較して、拡張された視野を有する、方法およびシステムを提供する。本発明は、立体視システム、光のビームレットをユーザの網膜に送達する、システム、または同等物を含む、コンピュータビジョンおよび画像ディスプレイシステムおよびライトフィールド投影システムにおける種々の用途に適用可能である。
図1は、本発明の実施形態による、接眼レンズ導波管を図示する、簡略化された平面図である。図1に図示されるように、接眼レンズ導波管100が、第1の内部結合格子(ICG)110と、第2のICG120とを含む。組み合わせ瞳エクスパンダ-抽出器(CPE)要素130が、第1のICG110と第2のICG120との間に配置される。接眼レンズ導波管100は、導波管の厚さ方向に誘導される伝搬モードでサポートされ得る、伝搬角度の範囲より大きくあり得る、拡張された視野を達成することができる。図2Aおよび2Bに図示されるように、接眼レンズ導波管100は、第1の表面132と、第2の表面134とを有する。下記にさらに議論されるように、異なる回折特徴が、接眼レンズ導波管100の対向表面132および134上または内部に形成されることができる。
第1のICG110は、入力ビーム112のセットを第1のプロジェクタ150(図2Aに図示される)から受光し、第2のICG120は、入力ビーム122のセットを第2のプロジェクタ160(同様に、図2Aに図示される)から受光する。いくつかの実施形態では、入力ビームは、それらがICGのうちの1つ上に入射するまで、プロジェクタから自由空間を通して伝搬することができる。図1に図示されるように、ICG110上に入射する入力ビーム112のセットおよびICG120上に入射する入力ビーム122のセットは、z-軸に対して角度付けられる、または傾斜される。ICG110およびICG120は、入力ビームの一部(全部であり得る)が、接眼レンズ導波管100内で誘導伝搬モードに入るように、入力ビームを回折する。ICG110およびICG120の格子線は、回折されたビームを、x-軸に沿って、CPE130に向かって指向するように配向されることができる。
CPE130は、複数の軸に沿って周期を呈する、複数の回折特徴を含むことができる。したがって、CPE130は、2D格子模様に配列される、散乱特徴のアレイから成ってもよい。個々の散乱特徴は、例えば、任意の形状のくぼみまたは突出部であることができる。散乱特徴の2Dアレイは、関連付けられる格子ベクトルを有し、これは、その2D格子模様の逆格子模様から導出される。一実施例として、CPE130は、周期の2つまたはそれを上回る方向に沿って繰り返される、格子線を伴う、交差格子から成る、2D回折格子であり得る。CPE130を構成する、回折特徴は、比較的に低回折効率(例えば、10%またはそれ未満)を有することができる。故に、本低回折効率は、光のビームが、それらがCPE130を通して伝搬するにつれて、複数の方向に空間的に分散される様式で複製されることを可能にする。
図2Aは、本発明の実施形態による、減少された格子周期を伴う、接眼レンズ導波管を図示する、簡略化された断面図である。図2Aに図示される設計は、接眼レンズ導波管の片側上に入射する光が、優先的に、接眼レンズ導波管の同一側上で外部結合され、それによって、光が接眼レンズ導波管を横断した伝搬の間に喪失されないが、短伝搬経路後、外部結合されるため、高効率を提供する結果をもたらす。さらに、画像鮮明度は、伝搬距離およびTIR反射の数が低減されるため、維持される。図2Aに図示されるように、格子歯間で測定される格子ピッチに反比例する、格子周期は、ゼロを上回る角度で(すなわち、z-軸に対して正の角度で傾斜される)ICG120上に入射する所与の波長の入力ビーム122のセットの光線が、負のx-軸上に中心合わせされる方向に沿って内部結合されるように選択される。減少された格子周期および増加された格子ピッチを伴う、本格子に関して、所与の波長における光が、法線入射で入射する場合、光は、負のx-軸に対してある正の角度で上方に傾斜された方向に沿って内部結合されるであろう。したがって、減少された格子周期は、従来の設計より弱い、内部結合格子を利用する。換言すると、導波管内角度の範囲が、法線入射上に中心合わせされる角度の範囲の内部結合と関連付けられる場合、格子周期は、z-軸に対してある正の角度で傾斜される角度の範囲が、導波管内角度の同一範囲の中に内部結合されるであろうように減少されるであろう。
故に、z-軸に対して0°~+50°に及ぶ角度で傾斜された光線122によって画定された角度の円錐は、その角度の円錐が導波管を辿って伝搬するにつれて、接眼レンズ導波管101の中に内部結合され、TIRを被る。非法線角度で入射する、光を投影するために、プロジェクタ160が、接眼レンズ導波管に対して傾斜されることができる、光学系が、非法線入射角を接眼レンズ導波管に対して法線方向に配向されるプロジェクタから導入するために利用されることができる、または同等物であることができる。
図2Aに図示される実施形態では、外部結合格子136は、ICG120の格子周期に合致する、格子周期を有する。故に、z-軸に対して0°~50°に及ぶ、角度の円錐123は、接眼レンズ導波管101から外部結合される。換言すると、ある導波管内角度の範囲が、接眼レンズ導波管101内を伝搬している場合、外部結合格子136の格子周期は、正の角度でz-軸に対して傾斜されたある角度の範囲が、導波管内角度の同一範囲から外部結合されるであろうように、減少されるであろう。内部結合および外部結合は、接眼レンズ導波管101の対向表面上に図示されるが、これは、本発明によって要求されず、内部結合および外部結合は、同一表面から生じることもできる。
同様に、内部結合格子110の格子周期は、ゼロ未満の角度の範囲で(すなわち、z-軸に対して負の角度で傾斜される)ICG110上に入射する所与の波長の入力ビーム112の光線が、正のx-軸上に中心合わせされる方向に沿って内部結合されるように選択される。減少された格子周期および増加された格子ピッチを伴う、本格子に関して、所与の波長における光が、法線入射で入射する場合、光は、x-軸に対してある正の角度で上方に傾斜された方向に沿って内部結合されるであろう。故に、z-軸に対して0°~-50°に及ぶ角度で傾斜された光線112によって画定された角度の円錐は、その角度の円錐が導波管を辿って伝搬するにつれて、接眼レンズ導波管101の中に内部結合され、TIRを被る。非法線角度で入射する、光を投影するために、プロジェクタ150が、接眼レンズ導波管に対して傾斜されることができる、光学系が、非法線入射角を接眼レンズ導波管に対して法線方向に配向されるプロジェクタから導入するために利用されることができる、または同等物であることができる。
図2Aに図示される実施形態では、外部結合格子138は、内部結合格子110の格子周期に合致する、格子周期を有する。故に、z-軸に対して0°~-50°に及ぶ、角度の円錐113は、接眼レンズ導波管101から外部結合される。内部結合および外部結合は、接眼レンズ導波管101の対向表面上に図示されるが、これは、本発明によって要求されず、内部結合および外部結合は、同一表面から生じることもできる。
したがって、図2Aに図示されるように、2つのプロジェクタを利用することで、プロジェクタ150およびプロジェクタ160によって生産された2つの視野が、したがって、接眼レンズ導波管に対する法線に対して所定の角度でバイアスされ、図示されるタイル状にされた視野、すなわち、組み合わせられた視野102をもたらす。したがって、本発明の実施形態は、その中で導波管の搬送容量(すなわち、TIR角度に基づく)が、非法線入射光および従来の設計からの格子周期の修正と併せて完全に利用され、タイル状にされた視野を生産する、導波管を利用する。
したがって、減少された格子周期によって特徴付けられる、設計を使用して、接眼レンズ導波管の片側上に位置付けられる、ICGにおいて投入される光は、優先的に、接眼レンズ導波管の同一側上で外部結合され、組み合わせられた視野のサブディスプレイを形成する。図2Aに図示されるように、z-軸に対して0°~50°に及ぶ角度で傾斜された角度の円錐を画定する、光線122は、接眼レンズ導波管101の中に内部結合され、角度の円錐123内の光線として外部結合され、z-軸に対して0°~50°の角度範囲を被覆する、第1のサブディスプレイを形成する。並行して、z-軸に対して0°~-50°に及ぶ角度で傾斜された角度の円錐を画定する、光線112は、接眼レンズ導波管101の中に内部結合され、角度の円錐113内の光線として外部結合され、z-軸に対して0°~-50°の角度範囲を被覆する、第2のサブディスプレイを形成する。組み合わせられた視野102は、第1のサブディスプレイおよび第2のサブディスプレイのタイル化によって形成され、-50°~50°の角度範囲を被覆する、100°に等しい組み合わせられた視野102を形成する。
屈折率約1.75を伴う、ポリマーを含む、ポリマー接眼レンズ導波管材料を利用することで、従来の接眼レンズ導波管設計は、約50°の視野を達成することができる。図2Aに図示される、増加された格子周期を伴う、接眼レンズ導波管を利用することによって、最大100°の組み合わせられた視野が、対称プロジェクタ傾斜を使用して、入射角における傾斜および内部結合および外部結合格子のための格子周期の合致する増加を生産する、タイル状にされた構成において達成され、出力光の対称傾斜およびタイル状にされた視野をもたらすことができる。代替として、50°~100°に及ぶ、組み合わせられた視野も、部分的に重複される構成において達成されることができる。
図2Aは、所与の角度において接眼レンズ導波管の中に内部結合され、所与の角度において接眼レンズ導波管から外部結合される、光を図示するが、これは、本発明によって要求されない。他の実施形態では、内部結合格子および外部結合格子の格子周期は、修正され、第1の角度に中心合わせされる、第1の角度の円錐の内部結合と、第1の角度と異なる第2の角度に中心合わせされる、第2の角度の円錐の外部結合とを可能にする。当業者は、多くの変形例、修正、および代替を認識するであろう。
図2Aに図示される実施形態において利用される格子の構造は、接眼レンズ導波管の異なる領域において変動されることができる。減少された格子周期を伴う、本設計では、ブレーズド格子が、外部結合効率を増加させるために使用されることができる。実施例として、格子136は、ブレーズドされ、プロジェクタ160から受光された光のためのその効率を増加させることができ、格子138は、ブレーズドされ、プロジェクタ150から受光された光のためのその効率を増加させることができる。本ブレーズド格子設計は、プロジェクタ150からの光が格子136によって殆ど外部結合されず、プロジェクタ160からの光が格子138によって殆ど外部結合されない結果をもたらすであろう。格子136と格子138との間の中心領域では、格子構造は、あるブレーズド格子プロファイルから開始し、バイナリ格子を中心領域に伴って、他のブレーズド格子プロファイルで終了するように段階的であることができる。ブレーズド格子に加え、他の回折表面、特に、メタ表面およびメタ材料、体積位相ホログラム、段状格子、および同等物を含む、入射光の方向に応じて、異なる回折効率によって特徴付けられる、表面も、利用されることができる。当業者は、多くの変形例、修正、および代替を認識するであろう。
図2Bは、本発明の実施形態による、増加された格子周期を伴う、接眼レンズ導波管を図示する、簡略化された断面図である。図2Bに図示される設計は、接眼レンズ導波管の片側上に入射する光が、優先的に、接眼レンズ導波管の対向側上に外部結合される結果をもたらす。増加された格子周期を伴う、設計を使用して、内部結合格子と外部結合格子との間の空間分離は、減少され、画像サイズが拡張するための余地を提供し、接眼レンズ導波管のサイズを低減させることができる。図2Bに図示されるように、格子歯間で測定される格子ピッチに反比例する、格子周期は、ゼロを上回る角度で(すなわち、z-軸に対して正の角度で傾斜される)ICG154上に入射する所与の波長の光線122が、正のx-軸上に中心合わせされる方向に沿って内部結合されるように選択される。増加された格子周期および減少された格子ピッチを伴う、本格子に関して、所与の波長における光が、法線入射で入射する場合、光は、正のx-軸に対してある正の角度で上方に傾斜された方向に沿って内部結合されるであろう。したがって、増加された格子周期は、従来の設計より強い、内部結合格子を利用する。故に、z-軸に対して0°~+50°に及ぶ角度で傾斜された光線122によって画定された角度の円錐は、その角度の円錐が導波管を辿って伝搬するにつれて、接眼レンズ導波管104の中に内部結合され、TIRを被る。非法線角度で入射する、光を投影するために、プロジェクタ160が、接眼レンズ導波管に対して傾斜されることができる、光学系が、非法線入射角を接眼レンズ導波管に対して法線方向に配向されるプロジェクタから導入するために利用されることができる、または同等物であることができる。
図2Bに図示される実施形態では、外部結合格子156は、ICG154の格子周期に合致する、格子周期を有する。故に、z-軸に対して0°~50°に及ぶ、角度の円錐123は、接眼レンズ導波管104から外部結合される。内部結合および外部結合は、接眼レンズ導波管104の対向表面上に図示されるが、これは、本発明によって要求されず、内部結合および外部結合は、同一表面から生じることもできる。
同様に、内部結合格子(ICG)164の格子周期は、ゼロ未満の角度の範囲で(すなわち、z-軸に対して負の角度で傾斜される)ICG164上に入射する所与の波長の光線112が、負のx-軸上に中心合わせされる方向に沿って内部結合されるように選択される。増加された格子周期および減少された格子ピッチを伴う、本格子に関して、所与の波長における光が、法線入射で入射する場合、負のx-軸に対してある正の角度で上方に傾斜された方向に沿って内部結合されるであろう。故に、z-軸に対して0°~-50°に及ぶ角度で傾斜された光線112によって画定された角度の円錐は、その角度の円錐が導波管を辿って伝搬するにつれて、接眼レンズ導波管104の中に内部結合され、TIRを被る。非法線角度で入射する、光を投影するために、プロジェクタ150が、接眼レンズ導波管に対して傾斜されることができる、光学系が、非法線入射角を接眼レンズ導波管に対して法線方向に配向されるプロジェクタから導入するために利用されることができる、または同等物であることができる。
図2Bに図示される実施形態では、外部結合格子166は、内部結合格子164の格子周期に合致する、格子周期を有する。故に、z-軸に対して0°~-50°に及ぶ、角度の円錐113は、接眼レンズ導波管104から外部結合される。内部結合および外部結合は、接眼レンズ導波管104の対向表面上に図示されるが、これは、本発明によって要求されず、内部結合および外部結合は、同一表面から生じることもできる。
したがって、図2Bに図示されるように、2つのプロジェクタを利用することで、プロジェクタ150およびプロジェクタ160によって生産された2つの視野が、したがって、接眼レンズ導波管に対する法線に対して所定の角度でバイアスされ、図示されるタイル状にされた視野、すなわち、組み合わせられた視野105をもたらす。したがって、本発明の実施形態は、その中で導波管の搬送容量(すなわち、TIR角度に基づく)が、非法線入射光および従来の設計からの格子周期の修正と併せて完全に利用され、タイル状にされた視野を生産する、導波管を利用する。
したがって、増加された格子周期によって特徴付けられる、設計を使用して、接眼レンズ導波管の片側上に位置付けられる、ICGにおいて投入される光は、接眼レンズ導波管の他側に伝搬し、そこで、外部結合され、組み合わせられた視野のサブディスプレイを形成する。図2Bに図示されるように、z-軸に対して0°~50°に及ぶ角度で傾斜された角度の円錐を画定する、光線122は、接眼レンズ導波管104の中に内部結合され、光線123として外部結合され、z-軸に対して0°~50°の角度範囲を被覆する、第1のサブディスプレイを形成する。並行して、z-軸に対して0°~-50°に及ぶ角度で傾斜された角度の円錐を画定する、光線112は、接眼レンズ導波管104の中に内部結合され、光線113として外部結合され、z-軸に対して0°~-50°の角度範囲を被覆する、第2のサブディスプレイを形成する。組み合わせられた視野105は、第1のサブディスプレイおよび第2のサブディスプレイのタイル化によって形成され、-50°~50°の角度範囲を被覆する、100°に等しい組み合わせられた視野105を形成する。
屈折率約1.75を伴う、ポリマーを含む、ポリマー接眼レンズ導波管材料を利用することで、従来の接眼レンズ導波管設計は、約50°の視野を達成することができる。図2Bに図示される、増加された格子周期を伴う、接眼レンズ導波管を利用することによって、最大100°の組み合わせられた視野が、対称プロジェクタ傾斜を使用して、入射角における傾斜および内部結合および外部結合格子のための格子周期の合致する増加を生産する、タイル状にされた構成において達成され、出力光の対称傾斜およびタイル状にされた視野をもたらすことができる。代替として、50°~100°に及ぶ、組み合わせられた視野も、部分的に重複される構成において達成されることができる。
図2Bは、所与の角度において接眼レンズ導波管の中に内部結合され、所与の角度において接眼レンズ導波管から外部結合される、光を図示するが、これは、本発明によって要求されない。他の実施形態では、内部結合格子および外部結合格子の格子周期は、修正され、第1の角度に中心合わせされる、第1の角度の円錐の内部結合と、第1の角度と異なる第2の角度に中心合わせされる、第2の角度の円錐の外部結合とを可能にする。当業者は、多くの変形例、修正、および代替を認識するであろう。
図2Bに図示される実施形態において利用される格子の構造は、接眼レンズ導波管の異なる領域において変動されることができる。増加された格子周期を伴う、本設計では、ブレーズド格子が、外部結合効率を増加させるために使用されることができる。実施例として、格子156は、ブレーズドされ、プロジェクタ160から受光された光のためのその効率を増加させることができる、格子166は、ブレーズドされ、プロジェクタ150から受光された光のためのその効率を増加させることができる。本ブレーズド格子設計は、プロジェクタ150からの光が格子156によって殆ど外部結合されず、プロジェクタ160からの光が格子166によって殆ど外部結合されない結果をもたらすであろう。格子156と格子166との間の中心領域では、格子構造は、あるブレーズド格子プロファイルから開始し、バイナリ格子を中心領域に伴って、他のブレーズド格子プロファイルで終了するように段階的であることができる。当業者は、多くの変形例、修正、および代替を認識するであろう。
図3Aは、本発明の実施形態による、増加された格子周期および組み合わせられた視野を伴う、接眼レンズ導波管の要素を図示する、簡略化された平面図である。図3Aでは、導波管ディスプレイ内の光線の伝搬および回折が、結果として生じる視野とともに図示される。図3Aに図示されるように、ICG305による入力光の回折は、光線311および315によって図示されるように、光が導波管の平面の中に回折され、その中で伝搬する結果をもたらす。説明されるであろうように、光線311によって表される光線および光線315によって表される光線は、第1の部分310aと、第2の部分310bとを含む、視野310(図3Dに図示される)の生成をもたらすであろう。
光線311は、ICG305からの回折後、上方かつ右に伝搬し、導波管の上部部分内の格子から回折し、光線312を生産し、これは、下方かつ右に伝搬する。本OPE回折イベントは、図3Bにおける矢印322によって表される。光線312は、導波管内で伝搬し、導波管の下側部分内の格子から回折し、外部結合イベント313を生産する。外部結合された光線314は、導波管の下側部分からユーザに向かって上方に伝搬するように図示され、それによって、視野310の第1の部分310aを生産し、これは、ユーザの視野の下側部分と関連付けられる。
並行して、光線315は、軸301の近くで、下方かつ右に伝搬し、軸301の近くで、導波管の下側部分内の格子から回折し、光線316を生産し、これは、上方かつ右に伝搬する。本OPE回折イベントは、図3Cにおける矢印332によって表される。光線316は、導波管内で伝搬し、軸301の近くで、導波管の上側部分内の格子から回折し、外部結合イベント317を生産する。外部結合された光線318は、軸301の近くで、導波管の上側部分からユーザに向かって下方に伝搬するように図示され、それによって、視野310の下側部分310bを生産する。
したがって、視野310は、光線311と関連付けられる、第1の部分310aと、光線315と関連付けられる、第2の部分310bとを含む。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野310を埋めるであろう。
図3Bは、視野の第1の部分を形成する光線の第1のセットに関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図3Bに図示されるように、視野310の第1の部分310aは、導波管内角度に対応する、n=1.0に位置付けられる円形と、n=1.75に位置付けられる円形とによって画定された環の境界によって制限されないように、位置326および328によって表されるように、k-空間図を通して進行する。接眼レンズ導波管の平面内の回折および接眼レンズ導波管の平面から外への回折は、したがって、接眼レンズ導波管の内側を伝搬する領域を通して、k-空間図内を進行する結果をもたらす。
図3Bを参照すると、ICG305からの回折は、位置326によって図示されるように、視野の第1の部分310aをk-空間図の導波管内領域に平行移動させる格子ベクトルを表す、矢印320によって表される。図3Aに図示されるような光線312を生産するように回折する、光線311から生じるOPE回折イベントは、視野の第1の部分310aを、k-空間図の導波管内領域内の位置326から、同様にk-空間図の導波管内領域内にある、位置328まで平行移動させる、図3Bにおける矢印322によって表される。外部結合された光線314を生産するように回折する、光線312から生じるEPE外部結合イベント313は、視野の第1の部分310aを、k-空間図の導波管内領域内の位置328から、視野の第1の部分310aと関連付けられる、k-空間図の眼空間領域まで平行移動させる、図3Bにおける矢印324によって表される。
したがって、図3Bに図示される、k-空間図によって示されるように、ユーザの視野の下側部分内の光は、導波管の下側部分からユーザに向かって上方に伝搬する光線によって形成され、それによって、視野310の第1の部分310aを生産する。
図3Bにおけるk-空間図は、図3Aに図示される接眼レンズ導波管設計が、視野310aの中心が、原点から、位置328に表される視野の中心が位置する、軸302に沿った位置までの距離を上回る、軸302に沿って測定された距離にわたって、OPEおよびEPE回折イベントの結果として平行移動されるため、軸302に沿って、増加された格子周期によって特徴付けられる、格子間隔を有することを実証する。換言すると、図3Bを参照すると、軸302に沿って測定された距離Lは、距離Dを上回る。比較として、軸301に沿った平行移動の大きさを検討すると、原点から点303までの距離は、軸301に沿った格子間隔が増加された格子周期または減少された格子周期によって特徴付けられないため、視野310aの中心が軸301に沿って平行移動される距離に等しい。
したがって、相互に対して約60°に配向される格子線を含む、接眼レンズ導波管設計を使用して、光は、3つの異なる格子ベクトル、すなわち、接眼レンズ導波管の平面の中へのICGによる回折を表し、視野310aを位置326に平行移動させる、軸301と整合される格子ベクトルを表す、矢印320と、軸301に対して約-120°に配向される、格子ベクトルを表し、位置326における視野を位置328に平行移動させる、矢印322と、軸301に対して約60°に配向され、位置328における視野を視野310aに平行移動させる、格子ベクトルを表す、矢印324とに沿って、k-空間図内を流動することができる。位置326および328は、導波管内角度の環内にあるため、これらの3つの異なる格子ベクトルに沿って回折される、光は、接眼レンズ導波管内で維持されるであろう。
図3Cは、視野の第2の部分を形成する光線の第2のセットに関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図3Aを参照すると、光線315は、ICG305からの回折後、軸301の近くで、下方かつ右に伝搬し、最終的に、外部結合された光線318の生成をもたらす。図3Cに図示されるように、ICG305からの回折は、位置336によって図示されるように、視野の第2の部分310bをk-空間図の導波管内領域に平行移動させる、矢印330によって表される。図3Aに図示されるような光線315を生産するように回折する、光線315から生じるOPE回折イベントは、視野の第2の部分310bを、k-空間図の導波管内領域内の位置336から、同様にk-空間図の導波管内領域内にある、位置338に平行移動させる、図3Cにおける矢印332によって表される。外部結合された光線318を生産するように回折する、光線316から生じるEPE外部結合イベント317は、視野の第2の部分310bを、k-空間図の導波管内領域内の位置338から、視野の第2の部分310bと関連付けられる、k-空間図の眼空間領域に平行移動させる、図3Cにおける矢印334によって表される。
図3Bに示される第1の部分310に関連して議論されるように、視野310の第2の部分310bは、導波管内角度に対応する、n=1.0に位置付けられる円形と、n=1.75に位置付けられる円形とによって画定された環の境界によって制限されないように、位置336および338によって表されるように、k-空間図を通して進行する。接眼レンズ導波管の平面内の回折および接眼レンズ導波管の平面から外への回折は、したがって、接眼レンズ導波管の内側を伝搬する領域を通して、k-空間図内を進行する結果をもたらす。
図3Dは、視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図3Dに図示されるk-空間図では、視野310の第1の部分310aおよび第2の部分310bが、示される。図3A-3Cに関連して議論されるように、ICGによって導波管の中に回折され、軸301に対して小角度で、右、かつ概して、上方および下方に伝搬する、光線は、導波管内の伝搬を表す、視野310の位置326および336への平行移動によって、k-空間内に表されることができる。矢印322および332によって表されるOPE相互作用は、それぞれ、導波管の上側部分から導波管の下側部分への伝搬と、導波管の下側部分から導波管の上側部分への伝搬とを表す。最後に、EPE相互作用は、眼空間領域内の角度における視野310によって表される、外部結合によって表される。
したがって、視野310は、光線311と関連付けられる、第1の部分310aと、光線315と関連付けられる、第2の部分310bとを含む。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野310を埋めるであろう。
図3Eは、代替視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図3Eでは、ユーザの視野の下側部分と関連付けられる、視野340は、導波管の上側部分からユーザに向かって下方に伝搬する光として形成される。したがって、視野340は、軸301に対する視野310の鏡像である。
図3Eを参照すると、視野340の第1の部分340aおよび第2の部分340bが、示される。図3A-3Dに関連して示される動作と同様の様式で、かつ鏡像方式で、ICGによって導波管の中に回折され、軸301に対して小角度で、右、かつ概して、下方および上方に伝搬する、光線は、導波管内の伝搬を表す、視野340の位置346および356への平行移動によって、k-空間内に表されることができる。OPE相互作用は、これらの導波管内伝搬角度が導波管によってサポートされるため、それぞれ、第1の部分の位置348への平行移動と、第2の部分の位置358への平行移動をもたらす。最後に、EPE相互作用は、眼空間領域内の角度における視野340によって表される、外部結合によって表される。
したがって、視野310の鏡像として、視野340は、図3Aにおける下方かつ右に伝搬する光線と関連付けられる、第1の部分340aと、図3Aにおける上方かつ右に伝搬する光線と関連付けられる、第2の部分340bとを含む。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野340を埋めるであろう。
図3Fは、本発明の実施形態による、例示的光線とともに、図3Aに示される接眼レンズ導波管を図示する、簡略化された平面図である。図3Fでは、視野310および340の第1および第2の部分の両方と関連付けられる、代表的光線が、図示される。図3Aに関連して議論されるように、光線311は、ICG305からの回折後、上方かつ右に伝搬し、導波管の上部部分内の格子から回折し、下方かつ右に伝搬する光線を生産する(OPE相互作用)。本光線が、導波管の下側部分内の格子と相互作用すると、EPEイベントが、生じ、導波管の下側部分からユーザに向かって上方に伝搬し、それによって、視野310の第1の部分310aを生産するように、光線314の外部結合をもたらす。並行して、光線315は、軸301の近くで、下方かつ右に伝搬し、軸301の近くで、導波管の下側部分内の格子から回折し、上方かつ右に伝搬する光線を生産する(OPE相互作用)。本光線が、導波管の上部部分内の格子と相互作用すると、EPEイベントが、生じ、導波管の上部部分からユーザに向かって下方に伝搬し、それによって、視野310の第2の部分310bを生産するように、光線318の外部結合をもたらす。
鏡像方式では、光線381は、下方かつ右に伝搬し、OPE回折イベントとして、導波管の下側部分内の格子から回折し、光線382を生産し、これは、上方かつ右に伝搬する。光線382は、導波管内で伝搬し、導波管の上側部分内の格子から回折し、外部結合イベント383を生産する。外部結合された光線384は、導波管の上側部分からユーザに向かって下方に伝搬するように図示され、それによって、視野340の第1の部分340aを生産し、これは、ユーザの視野の上側部分と関連付けられる。並行して、光線385は、軸301の近くで、上方かつ右に伝搬し、OPE回折イベントとして、軸301の近くで、導波管の上側部分内の格子から回折し、光線386を生産し、これは、下方かつ右に伝搬する。光線386は、導波管内で伝搬し、軸301の近くで、導波管の下側部分内の格子から回折し、外部結合イベント387を生産する。外部結合された光線388は、軸301の近くで、導波管の下側部分からユーザに向かって上方に伝搬するように図示され、それによって、視野340の第2の部分340bを生産する。
したがって、視野340は、光線381と関連付けられる、第1の部分340aと、光線385と関連付けられる、第2の部分340bとを含む。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野340を埋めるであろう。
また、4つのOPE相互作用および4つのEPE相互作用のみが、明確性の目的のために、図示されるが、光線311/385および315/381は、それぞれ、導波管の上部部分および底部部分全体を通して、OPE相互作用を被るであろうことを理解されたい。同様に、光線312/386および316/382は、それぞれ、導波管の底部部分および上部部分を通して、EPE相互作用を被るであろう。故に、外部結合イベントは、導波管全体を通して生じ、外部結合するイベント313/387および317/383は、単に、例示的である。結果として、導波管を横断して分散される、外部結合された光線は、視野310および340の生成に寄与するであろう。
導波管の上部および底部部分内の格子は、図3Fに図示される実施形態では、重複を伴わずに、軸301において交差することに留意されたい。しかしながら、これは、本発明によって要求されず、いくつかの他の実施形態では、格子は、軸301の上方および/または下方の所定の距離において、軸302に沿った位置で重複する。本重複領域は、導波管の上部部分の中に伝搬している光線が、導波管の底部部分内で生じる、格子とのOPE相互作用を被り、重複領域内において、導波管の上部部分の中に延在することを可能にするであろう。本実施例を継続すると、導波管の上部部分の中に伝搬し、重複領域内でOPE相互作用を被る、光線は、上部部分の中に上方に回折し、視野340と関連付けられる出力を向上させるであろう、外部結合イベントをもたらすであろう、EPE相互作用を被ることができる。同様に、導波管の底部部分の中に伝搬している、光線は、導波管の上部部分内で生じる、格子とのOPE相互作用を被り、重複領域内において、導波管の底部部分の中に延在することができる。導波管の底部部分の中に伝搬し、重複領域内でOPE相互作用を被る、これらの光線は、底部部分の中に下方に回折し、視野310と関連付けられる出力を向上させるであろう、外部結合イベントをもたらすであろう、EPE相互作用を被ることができる。
図3Gに関連して説明されるように、図3Aおよび3Fに図示される導波管設計を利用することで、組み合わせられた視野が、視野310および視野340の重複によって形成される。したがって、各視野は、個々に、約50°×約40°(すなわち、垂直×水平)の視野を提供するが、重複された視野は、約80°×約40°の組み合わせられた視野を提供し、それによって、ユーザ体験を有意に改良する。
図3Gは、組み合わせられた視野に関する、図3Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図3Gを参照すると、組み合わせられた視野350が、視野310と視野340との間の重複によって形成される。視野310の位置360および361への平行移動が、明確性の目的のために図示されるが、本視野の一部は、k-空間内で、位置366を通して平行移動することを理解されたい。同様に、視野340の位置365および366への平行移動が、明確性の目的のために図示されるが、本視野の一部は、k-空間内で、位置361を通して平行移動することを理解されたい。図3Gに図示されるように、視野310は、約50°垂直×約40°水平の空間範囲を有する。同様に、視野340は、類似空間範囲を有する。これらの視野間の重複に起因して、約80°×約40°のはるかに大きい拡大された視野によって特徴付けられる、組み合わせられた視野が、形成される。したがって、単一プロジェクタと、1つの寸法において増加された格子周期によって特徴付けられる、格子とを利用する、本発明の実施形態を使用して、増加された視野を伴う、導波管ディスプレイが、可能にされる。
図4Aは、本発明の実施形態による、増加された格子周期を伴う、接眼レンズ導波管を利用する、マルチプロジェクタ導波管ディスプレイ400を図示する、簡略化された平面図である。図2Bに関連して議論されるものに類似する様式において、ICG405による入力光の回折は、光線411および415によって図示されるように、導波管の平面の中に回折され、その中を伝搬する光をもたらす。説明されるであろうように、光線411によって表される光線および光線415によって表される光線は、それぞれ、最初に、それぞれ、接眼レンズ導波管の上側半分のおよび接眼レンズ導波管の下側半分の中に伝搬する、光線と関連付けられる、2つの部分を含む、視野の生成をもたらすであろう。
マルチプロジェクタ導波管ディスプレイ400は、本実施形態では円形である、第1の領域403と、同様に本実施形態では円形である、第2の領域404とを含む。第1の領域403および第2の領域404は、重複し、重複領域406を形成する。図4Aでは、重複領域406は、ICG405とICG425との間の中点に配置される。第1の領域403は、第1の領域403の上側半円によって画定された第1の部分と、第1の領域403の下側半円によって画定された第2の部分とを含む。同様に、第2の領域404は、第2の領域404の上側半円によって画定された第1の部分と第2の領域404の下側半円によって画定された第2の部分とを含む。重複領域406は、第1の領域の第1の部分および第2の領域の第1の部分の重複と、第1の領域の第2の部分および第2の領域の第2の部分の重複とによって形成される。マルチプロジェクタ導波管ディスプレイの接眼レンズ導波管に関連する付加的説明は、図6Aに関連して提供される。
光線411は、ICG405からの回折後、上方かつ右に伝搬し、導波管の上部部分内の格子から回折し、光線412を生産し、これは、下方かつ右に伝搬する。光線412は、導波管内で伝搬し、導波管の下側部分内の格子から回折し、外部結合イベント413を生産する。外部結合された光線414は、導波管の下側部分からユーザに向かって上方に伝搬するように図示され、それによって、ユーザの視野の下側部分と関連付けられる、視野の一部を生産する。
並行して、光線415は、軸401の近くで、下方かつ右に伝搬し、軸401の近くで、導波管の下側部分内の格子から回折し、光線416を生産し、これは、上方かつ右に伝搬する。光線416は、導波管内で伝搬し、軸401の近くで、導波管の上側部分内の格子から回折し、外部結合イベント417を生産する。外部結合された光線418は、軸401の近くで、導波管の上側部分からユーザに向かって下方に伝搬するように図示され、それによって、視野の下側部分を生産する。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野を埋めるであろう。図4Cを参照すると、視野410は、光線411および415によって図示される光線によって生産される。
図4Bは、図4Aに図示されるマルチプロジェクタ導波管ディスプレイ内の第2のプロジェクタからの光線の伝搬を図示する、簡略化された平面図である。当業者に明白となるであろうように、図4Bに関連して議論される接眼レンズ導波管の動作は、ある程度、図4Aに関連して議論されるような接眼レンズ導波管の動作を鏡映するであろう。すなわち、第2のプロジェクタ(図示せず)を用いて生じる、ICG425による入力光の回折は、光線431および435によって図示されるように、導波管の平面の中に回折され、その中を伝搬する光をもたらす。説明されるであろうように、光線431によって表される光線および光線435によって表される光線は、それぞれ、最初に、それぞれ、接眼レンズ導波管の上側半分のおよび接眼レンズ導波管の下側半分の中に伝搬する、光線と関連付けられる、2つの部分を含む、視野の生成をもたらすであろう。
光線431は、ICG425からの回折後、上方かつおよび左に伝搬し、導波管の上部部分内の格子から回折し、光線432を生産し、これは、下方かつ左に伝搬する。光線432は、導波管内で伝搬し、導波管の下側部分内の格子から回折し、外部結合イベント433を生産する。外部結合された光線434は、導波管の下側部分からユーザに向かって上方に伝搬するように図示され、それによって、ユーザの視野の下側部分と関連付けられる、視野の一部を生産する。
並行して、光線435は、軸401の近くで、下方かつ左に伝搬し、軸401の近くで、導波管の下側部分内の格子から回折し、光線436を生産し、これは、上方かつ左に伝搬する。光線436は、導波管内で伝搬し、軸401の近くで、導波管の上側部分内の格子から回折し、外部結合イベント437を生産する。外部結合された光線438は、軸401の近くで、導波管の上側部分からユーザに向かって下方に伝搬するように図示され、それによって、視野の下側部分を生産する。当業者に明白となるであろうように、中間角度で内部結合され、導波管内で伝搬するように動作可能である、光線は、視野を埋めるであろう。図4Cを参照すると、視野460は、光線431および435によって図示される光線によって生産される。
図4Cは、図4Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。図4Cを参照すると、4つの視野を含む、組み合わせられた視野が、第1のプロジェクタから入射された光によって生産される、視野410および視野430と、第2のプロジェクタから入射された光によって生産される、視野460および視野470との間の重複によって形成される。
図4Cに図示されるように、個々の視野はそれぞれ、約50°垂直×約40°水平の空間範囲を有する。4つの個々の視野を組み合わせられた視野内で組み合わせることによって、これらの視野間の重複は、約80°×約100°のはるかに大きい拡大された視野によって特徴付けられる、組み合わせられた視野をもたらす。したがって、2つのプロジェクタと、2つの寸法において増加された格子周期によって特徴付けられる、格子とを利用する、本発明の実施形態を使用して、増加または拡大された視野を伴う、導波管ディスプレイが、可能にされる。
図4Cを参照すると、本発明の実施形態は、隣接する視野間の重複の有無にかかわらず、複数の個々の視野をタイル化することによって形成される、タイル状にされた視野を伴う、ディスプレイを提供する。当業者に明白となるであろうように、1.75の屈折率を伴うポリマー内に加工される、接眼レンズ導波管の本実施形態では、n=1.0に位置付けられる円形と、n=1.75に位置付けられる円形とによって画定される、環は、導波管内角度に対応する。本発明の実施形態は、サファイアおよびニオブ酸リチウム等の高価かつ特殊な材料を利用する、設計とは対照的に、依然として、組み合わせられた視野設計内に広視野を提供しながら、ポリマー等の、低コストで、軽量、かつロバストな低屈折率材料内に加工され得る、接眼レンズ導波管を提供することを理解されたい。本明細書の議論のうちのいくつかは、ポリマー材料に関連するが、本発明の実施形態は、これらの材料に限定されず、本明細書で議論される概念は、1.75を上回る屈折率を伴う材料にも適用可能である。特に、n=1.75における境界を有する、環は、本発明の範囲を限定することを意図するものではない。当業者は、多くの変形例、修正、および代替を認識するであろう。
図4Cにおけるk-空間図は、図4Aおよび4Bに図示される接眼レンズ導波管設計が、視野410の中心が、原点から位置419および原点から位置409までの距離を上回る、軸401および軸402に沿った距離にわたって平行移動されるため、軸401および軸402の両方に沿って、増加された格子周期によって特徴付けられることを実証する。したがって、図4Aおよび4Bに図示され、図4Cにおけるk-空間図によって説明される、接眼レンズ導波管設計では、ICGによる回折に対応する、k-空間内の平行移動は、原点から導波管内角度の環の中心までの距離を上回る。すなわち、位置407から位置409までのk-空間内の距離(軸401に沿って測定される)は、原点から位置409までのk-空間内の距離(軸401に沿って測定される)を上回り(すなわち、軸401に沿って増加された格子周期)、位置407から位置419までのk-空間内の距離(軸402に沿って測定される)は、原点から位置419までのk-空間内の距離を上回る(軸402に沿って測定される)(すなわち、軸402に沿って増加された格子周期)。
図3Gに関連してより完全に説明され、図4Cに図示されるように、接眼レンズ導波管の中およびそこから外への光の回折および接眼レンズ導波管内の光の伝搬は、視野410、視野430、視野460、および視野470のいくつかの異なる平行移動をk-空間内にもたらす。図4Aおよび4Cに図示されるように、ICG405から回折される光は、視野410および視野430を導波管内角度の環の右部分に平行移動させるであろう。OPE回折イベントは、これらの視野を、それぞれ、導波管内角度の環の右下および右上部分の中に平行移動させるであろう。EPEイベントとして動作する、格子線から回折される光は、これらの視野をk-空間図の眼空間領域内の視野410および視野430に関して図示される位置に平行移動させるであろう。
図4Bおよび4Cに図示されるように、ICG425から回折される光は、視野460および視野470を導波管内角度の環の左部分に平行移動させるであろう。OPE回折イベントは、これらの視野を、それぞれ、導波管内角度の環の左下および左上部分の中に平行移動させるであろう。EPEイベントとして動作する、格子線から回折される光は、これらの視野をk-空間図の眼空間領域内の視野460および視野470に関して図示される位置に平行移動させるであろう。
図4Cに図示されるように、視野のそれぞれの中心は、k-空間図の原点からオフセットされる。本明細書に議論されるように、両方向に増加された周期を有する、格子の使用は、本垂直および水平オフセットをもたらす。結果として、1つは、画像光を第1のICGに提供し、1つは、画像光を第2のICGに提供する、2つのプロジェクタを使用することによって、拡大された視野が、格子特性によって画定された個々の視野間に重複を伴って、個々の視野のタイル化によって作成されることができる。
図4Aおよび4Bに関連して提供される説明は、投影された画像フレームの中心ピクセルと関連付けられるであろう、中心光線に関することに留意されたい。加えて、画像フレームの縁に形成される、光線は、図4Aおよび4Bに関連して上記で利用される形式論を使用して、分析されることができる。これらの光線は、周辺光線と称され得る。当業者に明白となるであろうように、k-空間図内の伝搬は、画像空間内の伝搬に反比例し、k-空間図の上側部分内の伝搬は、画像空間の下側部分内の伝搬に対応する。図4A-4Cに図示されるように、上向き方向に沿って接眼レンズ導波管の底部部分から外部結合された光線は、接眼レンズ導波管に対して明確に中心合わせされるとき、ユーザの瞳孔に到達するために好適な様式において、アイボックスに向かって指向されるであろう。さらに、下向き方向に沿って接眼レンズ導波管の上部部分から外部結合された光線は、接眼レンズ導波管に対して明確に中心合わせされるとき、ユーザの瞳孔に到達するために好適な様式において、アイボックスに向かって指向されるであろう。故に、本発明の実施形態は、その中で光が、瞳孔がアイボックス内で明確に中心合わせされるとき、優先的にユーザの瞳孔に到達する様式において外部結合される、効率的設計を提供する。
各画像フレームの視野の上部、視野の底部、および視野の側面と関連付けられる、周辺光線を追跡することによって、本発明者らは、視野の底部に対応する、光線が、接眼レンズ導波管の上部における低減されたまたは最小限の外部結合を伴って、接眼レンズ導波管の底部において効率的に外部結合されることを実証している。故に、ユーザの眼のアイボックスおよび瞳孔に到達する際の光効率は、外部結合イベントが、アイボックスに向かって指向される、上向き方向に沿って、接眼レンズ導波管の底部から外部結合される、光をICG405に提供する、プロジェクタからの光のために、増加および/または最大限にされ、外部結合イベントが、アイボックスに向かって指向される、下向き方向に沿って、接眼レンズ導波管の上部から外部結合される、光をICG425に提供する、プロジェクタからの光のために増加および/または最大限にされるため、本発明の実施形態によって増加される。
図4Dは、本発明の実施形態による、第1の領域および第2の領域によって画定される、接眼レンズ導波管を動作させる方法を図示する、簡略化されたフローチャートである。図4Dに図示される方法は、図4Aおよび4Bに図示される接眼レンズ導波管を利用する、マルチプロジェクタ導波管ディスプレイのコンテキストで実装されることができる。方法480は、第1のプロジェクタからの光を第1の内部結合格子(ICG)上に衝突するように指向するステップ(482)を含む。図6Aにおけるプロジェクタ621として図示される第1のプロジェクタは、図4AにおけるICG405または図6AにおけるICG620として図示される、第1のICG上に衝突する光を投影することができる。
第1のICG上に入射する光は、接眼レンズ導波管の平面の中に回折され、第1のプロジェクタからの光のある割合は、接眼レンズ導波管の第1の領域の第1の部分の中に、第2の領域の第1の部分の中に、第2の領域の第2の部分の中に、および接眼レンズ導波管から外に回折される(484)。図4Aを参照すると、接眼レンズ導波管の第1の領域403の第1の部分の中に回折される光は、回折を伴わずに、第2の領域404の第1の部分の中に通過する一方、図6Aでは、接眼レンズ導波管の第1の領域601の第1の部分602の中に回折される光は、第2の領域604の第1の部分605に向かって接眼レンズ導波管の平面内で回折される。したがって、いくつかの実施形態では、接眼レンズ導波管の第1の領域の第1の部分は、回折光学要素の第1のセット、例えば、ブレーズドされ、第1のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、格子の第1のセットを含む。
光が、接眼レンズ導波管の第2の領域の第1の部分内で伝搬するにつれて、回折光学要素、例えば、格子からの回折は、図4Aにおける光線412によって図示される、第2の領域404の第2の部分に向かって光の再指向をもたらす。第2の領域の第1の部分内の格子は、ICG405とICG425との間を通過する軸に対して約150°に配向されることができる。加えて、図4Aに図示される光線412は、導波管内で伝搬し、第2の領域の第2の部分内の格子から回折し、接眼レンズ導波管から外への外部結合を生産する。第2の領域の第2の部分内の格子は、ICG405とICG425との間を通過する軸に対して約-150°に配向されることができる。図4Aに関連して説明されるように、外部結合された光線は、導波管の第2の領域の第2の部分からユーザに向かって上方に伝搬し、それによって、ユーザの視野の下側部分と関連付けられる、視野の一部を生産する。
第1のプロジェクタからの光の別の割合が、接眼レンズ導波管の第1の領域の第2の部分の中に、第2の領域の第2の部分の中に、第2の領域の第1の部分の中に、および接眼レンズ導波管から外に回折される(486)。図4Aを参照すると、接眼レンズ導波管の第1の領域403の第2の部分の中に回折される光は、回折を伴わずに、第2の領域404の第2の部分の中に通過する、一方、他の実施形態では、接眼レンズ導波管の第1の領域の第2の部分の中に回折される光は、第2の領域の第2の部分に向かって接眼レンズ導波管の平面内で回折される。したがって、いくつかの実施形態では、接眼レンズ導波管の第1の領域の第2の部分は、回折光学要素の第2のセット、例えば、ブレーズドされ、第1のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、格子の第2のセットを含む。
光が、接眼レンズ導波管の第2の領域の第2の部分内を伝搬するにつれて、回折光学要素、例えば、格子からの回折は、図4Aにおける光線416によって図示される、第2の領域404の第1の部分に向かって光の再指向をもたらす。第1の領域の第1の部分内の格子は、ICG405とICG425との間を通過する軸に対して約30°に配向されることができる。加えて、図4Aに図示される光線416は、導波管内で伝搬し、第2の領域404の第1の部分内の格子から回折し、接眼レンズ導波管から外への外部結合を生産する。第1の領域の第2の部分内の格子は、ICG405とICG425との間を通過する軸に対して約-30°に配向されることができる。図4Aに関連して説明されるように、外部結合された光線は、導波管の第2の領域の第1の部分からユーザに向かって下方に伝搬し、それによって、ユーザの視野の上側部分と関連付けられる、視野の一部を生産する。
本方法はまた、第2のプロジェクタからの光を第2の内部結合格子(ICG)上に衝突するように指向するステップ(488)を含む。図6Aにおける第2のプロジェクタ626として図示される、第2のプロジェクタは、図4AにおけるICG425または図6AにおけるICG625として図示される、第2のICG上に衝突する光を投影することができる。
第2のICG上に入射する光は、接眼レンズ導波管の平面の中に回折され、第2のプロジェクタからの光のある割合は、接眼レンズ導波管の第2の領域の第1の部分の中に、第1の領域の第1の部分の中に、第1の領域の第2の部分の中に、および接眼レンズ導波管から外に回折される(490)。図4Bを参照すると、接眼レンズ導波管の第2の領域404の第1の部分の中に回折される光は、回折を伴わずに、第1の領域403の第2の部分の中に通過する一方、他の実施形態では、接眼レンズ導波管の第2の領域の第1の部分の中に回折される光は、第1の領域の第1の部分に向かって接眼レンズ導波管の平面内で回折される。したがって、いくつかの実施形態では、接眼レンズ導波管の第2の領域の第1の部分は、回折光学要素の第3のセット、例えば、ブレーズドされ、第2のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、格子の第3のセットを含む。
光が、接眼レンズ導波管の第1の領域の第1の部分内を伝搬するにつれて、回折光学要素、例えば、格子からの回折は、図4Bにおける光線432によって図示される、第1の領域の第2の部分に向かって光の再指向をもたらす。第1の領域の第1の部分内の格子は、ICG405とICG425との間を通過する軸に対して約30°に配向されることができる。加えて、図4Bに図示される光線432は、導波管内で伝搬し、第1の領域の第2の部分内の格子から回折し、接眼レンズ導波管から外への外部結合を生産する。第1の領域の第2の部分内の格子は、ICG405とICG425との間を通過する軸に対して約-30°に配向されることができる。図4Bに関連して説明されるように、外部結合された光線は、導波管の第1の領域の第2の部分からユーザに向かって上方に伝搬し、それによって、ユーザの視野の下側部分と関連付けられる、視野の一部を生産する。
第2のプロジェクタからの光の別の割合が、接眼レンズ導波管の第2の領域の第2の部分の中に、第1の領域の第2の部分の中に、第1の領域の第1の部分の中に、および接眼レンズ導波管から外に回折される(492)。図4Bを参照すると、接眼レンズ導波管の第2の領域の第2の部分の中に回折される光は、回折を伴わずに、第1の領域の第2の部分の中に通過する一方、他の実施形態では、接眼レンズ導波管の第2の領域の第2の部分の中に回折される光は、第1の領域の第2の部分に向かって接眼レンズ導波管の平面内で回折される。したがって、いくつかの実施形態では、接眼レンズ導波管の第2の領域の第2の部分は、回折光学要素の第4のセット、例えば、ブレーズドされ、第2のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、格子の第4のセットを含む。
光が、接眼レンズ導波管の第1の領域の第2の部分内を伝搬するにつれて、回折光学要素、例えば、格子からの回折は、図4Bにおける光線436によって図示される、第1の領域の第1の部分に向かって光の再指向をもたらす。第1の領域の第2の部分内の格子は、ICG405とICG425との間を通過する軸に対して約-30°に配向されることができる。加えて、図4Bに図示される光線436は、導波管内で伝搬し、第1の領域の第1の部分内の格子から回折し、接眼レンズ導波管から外への外部結合を生産する。第1の領域の第1の部分内の格子は、ICG405とICG425との間を通過する軸に対して約30°に配向されることができる。図4Bに関連して説明されるように、外部結合された光線は、導波管の第1の領域の第1の部分からユーザに向かって下方に伝搬し、それによって、ユーザの視野の上側部分と関連付けられる、視野の一部を生産する。
いくつかの実施形態では、第1のプロジェクタからの光は、第1の非ゼロ入射角で第1のICG上に衝突し、第2のプロジェクタからの光は、ゼロ-第1の非ゼロ入射角に等しい、第2の非ゼロ入射角で第2のICG上に衝突する。これらの実施形態では、第2の領域の第1の部分の第1の視野は、非ゼロ入射角に中心合わせされ、第1の領域の第1の部分の第2の視野は、非ゼロ入射角に中心合わせされる。
図4Dに図示される具体的ステップは、本発明の実施形態による、第1の領域および第2の領域によって画定される、接眼レンズ導波管を動作させる特定の方法を提供することを理解されたい。ステップの他のシーケンスもまた、代替実施形態に従って実施されてもよい。例えば、本発明の代替実施形態は、異なる順序において、上記の概略されたステップを実施してもよい。さらに、図4Dに図示される個々のステップは、個々のステップの必要に応じて、種々のシーケンスで実施され得る、複数のサブステップを含んでもよい。さらに、付加的ステップが、特定の用途に応じて、追加または除去されてもよい。当業者は、多くの変形例、修正、および代替を認識するであろう。
図5Aは、本発明の実施形態による、減少された格子周期を伴う、接眼レンズ導波管を利用する、マルチプロジェクタ導波管ディスプレイを図示する、簡略化された平面図である。図4A-4Cに関連して提供される説明は、減少された格子周期を伴う、接眼レンズ導波管を別として、図5A-5Cに適用可能である。
その中で格子周期が、格子ピッチを増加させることによって、減少される、本設計では、光は、接眼レンズ導波管に沿って、低減された距離を伝搬後、外部結合される。図5Aを参照すると、ICG505上に入射する光は、ICG505に隣接する接眼レンズ導波管の視野510内で外部結合される。同様に、ICG525上に入射する光は、ICG525に隣接する接眼レンズ導波管の視野530内で外部結合される。
図5Bは、図5Aに図示される接眼レンズ導波管の動作を図示する、簡略化されたk-空間図である。
図5Bにおけるk-空間図は、図5Aに図示される接眼レンズ導波管設計が、軸501に沿って減少された格子周期と、軸502に沿って増加された格子周期とによって特徴付けられる、設計であることを実証する。軸501に沿って減少された格子周期は、軸501に沿って、原点から導波管内角度の環の中心までの距離未満である、距離にわたって平行移動される、視野510/560の中心によって図示される。同様に、視野530/570の中心も、軸501に沿って、原点から導波管内角度の環の中心までの距離未満である、距離にわたって平行移動される。軸502と整合される垂直方向において、図4Cに関連して上記に議論されるものに類似する挙動が、実証される。故に、視野510/560の中心は、軸502に沿って、原点から導波管内角度の環の中心までの距離を上回る、距離にわたって平行移動される。同様に、視野530/570の中心も、軸501に沿って、原点から導波管内角度の環の中心までの距離を上回る、距離にわたって平行移動される。
図5Bに図示されるように、図5Aに図示される接眼レンズ導波管設計を使用して達成される視野は、第1の方向に沿った約50°~約180°(最遠範囲)×第1の方向に直交する第2の方向における約50°の視野に達することができる。k-空間図の上側部分内の視野510および560とk-空間図内の下側部分内の視野530および570の組み合わせは、領域575内に、特定の用途の必要に応じてマスクされ得る、切り欠きをもたらすことに留意されたい。
図6Aは、本発明の実施形態による、マルチプロジェクタ導波管ディスプレイの要素を図示する、簡略化された平面図である。図6Aに図示され、下記でより完全に説明されるように、導波管ディスプレイコンポーネントとも称され得る、接眼レンズ導波管600は、第1のICGと称され得る、ICG620を含む。ICG620は、第1のプロジェクタ621からの入力光を受光するように動作可能である。図1に関連して議論されるように、ICG620は、z-軸、すなわち、x-y平面にある、接眼レンズ導波管600の入力表面に対する法線と整合される成分を有する方向に沿って伝搬する、入力光を受光し、入力光の少なくとも一部を導波管の中に結合する。
接眼レンズ導波管600はまた、第2のICGと称され得る、ICG625を含む。ICG625は、第2のプロジェクタ626からの入力光を受光するように動作可能である。図1に関連して議論されるように、ICG620は、z-軸、すなわち、x-y平面にある、接眼レンズ導波管600の入力表面に対する法線と整合される成分を有する方向に沿って伝搬する、入力光を受光し、入力光の少なくとも一部を導波管の中に結合する。
ICG620およびICG625は、接眼レンズ導波管の平面にある、x-軸に沿って配置される。図6Aを参照すると、導波管ディスプレイ600はさらに、その中で光が、導波管ディスプレイ内の平面および導波管の平面ディスプレイから外に回折される、複数の領域を含む。これらの複数の領域は、第1の領域601と、第2の領域604とを含む。各領域では、領域の一部内に存在する格子線または他の回折構造は、領域の他の部分内に存在する他の格子線に対して、または他の領域(または複数の領域のその他)内の格子線に対して、所定の角度に配向される。
図6Aおよび6Bに図示される2つのプロジェクタ設計では、領域の一部内の格子は、格子上に入射する光の源に応じて、異なる回折機能を実施することができることに留意されたい。実施例として、ICG620上に入射する光は、第2の領域604の第2の部分606内を伝搬するとき、第2の部分606内の格子と相互作用し、接眼レンズ導波管から外部結合することができる。すなわち、第2の部分606内の格子は、プロジェクタ621からの光のためのEPE格子として機能することができる。対照的に、ICG625上に入射する光は、第2の領域604の第2の部分606内を伝搬するとき、第2の部分606内の格子と相互作用し、接眼レンズ導波管の平面内で第1の部分605に向かって回折することができる。すなわち、第2の部分606内の格子は、第2のプロジェクタ626からの光のためのOPE格子として機能することができる。類似の多様な効果は、他の部分内の他の格子に関しても明白であって、接眼レンズ導波管内を伝搬する光の源に応じて、異なる機能性(すなわち、OPEまたはEPE機能性)をもたらすであろう。当業者は、多くの変形例、修正、および代替を認識するであろう。
格子の単一のセットのみを有する、第2の部分606の面積とは対照的に、第1の領域601と第2の領域604との間の重複領域630は、複数の効果、例えば、EPEおよびOPE効果の両方を生産するであろう。格子の複数のセットが、存在するため、回折効果が、両方のプロジェクタからの光入射のために生産されるであろう。
格子を第1の領域601の第1の部分602および第2の部分603および第2の領域604の第1の部分605および第2の部分606内に提供するために使用される、実際の実装は、変動されることができる。実施例として、第1の領域601の第2の部分603および第2の領域604の第1の部分605内の格子(すなわち、x-軸に対して-30°に配向される格子)は、接眼レンズ導波管を加工するために使用される、基板の第1の表面上に形成されることができ、第1の領域601の第1の部分602および第2の領域604の第2の部分606内の格子(すなわち、x-軸に対して30°に配向される格子)は、第1の表面に対向する、基板の第2の表面上に形成されることができる。したがって、重複領域630は、接眼レンズ導波管の両方の表面上に存在する格子から形成されることができる。
図6Bは、本発明の実施形態による、マルチプロジェクタ導波管ディスプレイ内の光線の伝搬を図示する、簡略化された平面図である。
図6Aおよび6Bを参照すると、第1の領域601は、それに沿ってICG620およびICG625がある、x-軸に対して約30°の角度で配向される格子線616によって特徴付けられる、上側部分または上部部分とも称される、第1の部分602を含む。第1の領域601はまた、x-軸に対して約-30°の角度で配向される格子線618によって特徴付けられる、下側部分または底部部分とも称される、第2の部分603を含む。結果として、格子線616および格子線618は、相互に対して約60°の角度で配向される。当業者に明白となるであろうように、格子線616と618との間の間隔は、明確性の目的のために、正確な縮尺で描かれていない。
第2の領域604は、x-軸に対して約120°の角度で配向される格子線629によって特徴付けられる、上側部分または上部部分とも称される、第1の部分605を含む。第2の領域604はまた、x-軸に対して約-120°の角度で配向される格子線628によって特徴付けられる、下側部分または底部部分とも称される、第2の部分606を含む。結果として、第1の領域601に類似する様式において、第2の領域604内の格子線629および格子線628は、相互に対して約60°の角度で配向される。当業者に明白となるであろうように、格子線629と628との間の間隔は、明確性の目的のために、正確な縮尺で描かれていない。
重複領域630では、格子線616は、格子線629と重複し、格子線618は、格子線628と重複する。したがって、格子線の単一のセットを含む部分に加え、重複領域630は、重複格子線の複数のセットを含み、相互交差領域と称され得る。本重複領域は、設計者が、より大きい射出瞳を伴う設計を実装し、射出瞳サイズの増加に伴って、接眼レンズ導波管の動作の効率を平衡させることを可能にし、これは、ユーザの眼の瞳孔の運動に対してより寛容である。
第1の領域601の第1の部分602内の格子線616および第1の領域601の第2の部分603内の格子線618は、第2の部分603内の格子線616と第1の部分602内の格子線618の重複を伴わずに、x-軸において交差するように図示されるが、これは、本発明の実施形態によって要求されない。いくつかの実施形態では、格子線616は、第2の部分603の中に延在し、格子線618は、第1の部分602の中に延在する。
本明細書でより完全に説明されるように、重複領域630内の格子線の重複を含む、第1の領域601および第2の領域604の異なる部分内の格子線の存在は、格子線が、接眼レンズ導波管の平面内を伝搬する光を新しい伝搬方向に回折し、接眼レンズ導波管内を伝搬する光の側方寸法を拡張させる、直交瞳エクスパンダ(OPE)、および接眼レンズ導波管の平面内を伝搬する光を接眼レンズ導波管の平面から外に回折する、射出瞳エクスパンダ(EPE)として機能することを可能にする。特に着目すべきことは、その中で光が接眼レンズ導波管内を伝搬する、方向に応じて、格子線のセットは、OPEまたはEPEのいずれかとして機能することができることである。実施例として、格子線の所与のセットに関して、第1の方向内を伝搬する光は、接眼レンズ導波管の平面内で回折されることができる(OPE機能性)一方、第1の方向に直交する第2の方向内を伝搬する光は、接眼レンズ導波管の平面から外に回折されることができる(EPE機能性)。
図6Aおよび6Bを参照すると、光が、第1の領域601の第1の部分602を通して伝搬するにつれて、格子線616との相互作用は、ICG間の軸の方向に沿って、接眼レンズ導波管の平面内に回折をもたらす。本回折の結果として、OPE回折と同様に、画像の第1のコピーの複数のコピーが、形成され、本軸と整合される方向に伝搬する。
第1の部分602から重複領域630まで伝搬する、光は、x-軸に対して約30°に配向される格子線およびx-軸に対して約120°に配向される格子線の存在のため、複数の方向において、接眼レンズ導波管の平面内および接眼レンズ導波管の平面から外に回折を被る。x-軸と整合される方向に伝搬する光は、格子線629に遭遇し、接眼レンズ導波管の平面内の矢印627によって図示される方向に沿って、回折するであろう。光が、本方向に沿って伝搬するにつれて、光は、格子線628に遭遇し、接眼レンズ導波管からの外部結合イベントを被るであろう。これらの外部結合イベントは、白丸によって、図6Bに図示される。
第1の部分605を参照すると、x-軸と整合される方向に伝搬する光は、重複領域630を通して通過し、格子線629に遭遇し、接眼レンズ導波管の平面内の矢印627の方向に沿って回折する。これらの回折イベントの間、光のラダリングが、OPE機能性の必要に応じて、生じるであろう。光が、矢印627の方向に沿ってさらに伝搬するにつれて、光は、第2の部分606に進入し、格子線628に遭遇し、接眼レンズ導波管からの付加的外部結合イベントを被るであろう。これらの外部結合イベントは、重複領域630内に生産された外部結合イベントのように、白丸によって、図6Bに図示される。
したがって、ICG620において接眼レンズ導波管に進入し、第1のプロジェクタ621によって生成される、光は、第2の領域604内で外部結合されることができる。図6Aおよび6Bに図示される設計では、ICG620において接眼レンズ導波管の中に結合された光は、好ましくは、外部結合イベントを被らずに、第1の領域601を通して通過し、それによって、外部結合によって、殆どまたは全く光損失をもたらさず、第1の領域601を通した通路のみが、接眼レンズ導波管の平面内の回折をもたらし、OPE機能性を複製する。結果として、第1のプロジェクタからの光に関する全ての外部結合イベントは、好ましくは、第2の領域604内で被られ、これは、組み合わせられたディスプレイのサブディスプレイのうちの1つを形成する、出力を提供する。図2Bに図示されるように、ICGに進入する光線の円錐は、非法線入射角に中心合わせされるため、第2の領域604内で外部結合された光線の円錐もまた、非法線入射角で伝搬し、サブディスプレイ間の空間分離および組み合わせられたディスプレイのタイル化を可能にする。
ICG620に進入する光に加え、ICG625に進入する光は、第2の領域604を通して伝搬するにつれて、類似相互作用を受け、OPE相互作用をもたらし、第1の領域601内でEPE相互作用を被るであろう。当業者は、多くの変形例、修正、および代替を認識するであろう。
図7Aは、本発明の実施形態による、6プロジェクタ導波管ディスプレイを図示する、簡略化された平面図である。図7Aに図示される、6プロジェクタ設計では、6つのプロジェクタは、接眼レンズ導波管の周縁の周囲に、60°角度に配置される。図7Aに図示される、6プロジェクタ導波管ディスプレイは、減少された格子周期を利用する、設計である。
6つのプロジェクタからの光(図示せず)は、ICG710、713、714、716、718、および720を介して、共有接眼レンズ導波管領域の中に結合される。共有接眼レンズ導波管領域は、ICG713および714を接続する線の垂直二等分線とICG718および720を接続する線の垂直二等分線とを通して通過する軸、すなわち、垂直に配向される軸702と整合される、格子ベクトル722と、ICG710および720を接続する線の垂直二等分線とICG714および716を接続する線の垂直二等分線とを通して通過する軸、すなわち、垂直軸702に対して-30°に配向される軸と整合される、格子ベクトル724と、ICG716および718を接続する線の垂直二等分線とICG710および713を接続する線の垂直二等分線を通して通過する軸、すなわち、垂直軸702に対して+30°に配向される軸と整合される、格子ベクトル726とを含む、3つの異なる格子ベクトルを含む。
ICG710を参照すると、ICG710を介して内部結合された光は、軸701と整合される成分を有する方向に沿って、領域712および719内を伝搬する。領域712および719は、図5Aに示されるものに類似する設計、すなわち、その中で領域712内の格子が、水平軸701に対して-120°の角度で傾斜され、領域719内の格子が、水平軸701に対して120°の角度で傾斜される、山形設計を利用する。視野の底部と関連付けられる光は、領域719を通して伝搬し、領域712に向かって回折を被り(例えば、殆どまたは全く外部結合を伴わない)、領域712から外部結合される。同様に、視野の上部と関連付けられる光は、領域712を通して伝搬し、領域719に向かって回折を被り(例えば、殆どまたは全く外部結合を伴わない)、領域719から外部結合される。これらの相互作用に関連する付加的説明は、図7Bに関連して提供される。
6つの内部結合格子と、共有接眼レンズ導波管領域とを含む、図7Aに図示される、6プロジェクタ設計を利用することで、約100°の組み合わせられた円錐形視野が、約1.75の屈折率を有する、ポリマー接眼レンズ内で達成される。
図7Bは、図7Aに図示される、6プロジェクタ導波管ディスプレイの単一プロジェクタ要素を図示する、簡略化された平面図である。図7Cは、図7Bに図示される単一プロジェクタ要素の動作を図示する、簡略化されたk-空間図である。図7Bおよび7Cを参照すると、光回折およびk-空間内の視野の付随の平行移動が、説明されることができる。図7Bに図示されるように、ICG710から回折される光の一部は、光が領域712の中に伝搬するにつれた、光線740によって表され得る。領域712内の格子からの回折は、導波管の上半分、すなわち、領域719に向かって指向される光線741の生成をもたらすであろう。これは、OPEイベントと見なされ得る。
導波管の上半分、すなわち、領域719の中に伝搬するにつれて、領域719内の格子からの回折は、ユーザの視野の上側部分内の光を表す、ユーザに向かって下方に伝搬する、出力光線742の生成をもたらすであろう。
同様に、ユーザの視野の下側部分内の光は、光線750が、ICG710からの回折後、導波管の上半分、すなわち、領域719の中に伝搬するにつれて、生産されるであろう。導波管の上半分、すなわち、領域719の中への格子からの回折は、光線751の生成(OPEイベント)をもたらし、これは、導波管の下半分、すなわち、領域712の中に伝搬する。領域712内のEPEイベントとしての回折は、ユーザに向かって上方に伝搬する、出力光線752の生成をもたらすであろう。
図7Aおよび7Bに図示される共有接眼レンズ導波管領域は、格子線が重複する、中心領域内にのみ、隣接する格子ベクトル間に重複を含むが、他の実施形態では、重複領域は、個別のICGのそれぞれのより近くに延在することができることに留意されたい。増加された重複を伴う、これらの設計は、ユーザの瞳孔が、アイボックス内で、アイボックスの中心からずれた位置に移動する場合、視野の可視性が、ユーザの視線の変化から生じ得る、明確に中心合わせされた瞳孔場所からのユーザの瞳孔の本逸脱により寛容であるという性能を可能にする。
図7Cを参照すると、ICG710からの回折は、視野730の位置732への平行移動に対応する。光線751によって表される、領域719内の格子からの回折(OPEイベント)は、視野の位置734への平行移動をもたらし、領域712内の回折(EPEイベント)は、視野のk-空間図の眼空間領域への平行移動をもたらす。
同様に、光線741によって表される、領域712内の格子からの回折(OPEイベント)は、視野の位置736への平行移動をもたらし、領域719内の回折(EPEイベント)は、視野のk-空間図の眼空間領域への平行移動をもたらす。
図7Cにおけるk-空間図は、図7Bに図示される接眼レンズ導波管設計が、視野730の中心が、原点から導波管内角度の環までの距離未満である、距離にわたって、軸701に沿って平行移動されるため、軸701に沿って減少された格子周期を伴う、格子を利用することを実証する。
図7Dは、図7Aに図示される、6プロジェクタ導波管ディスプレイの動作を図示する、簡略化されたk-空間図である。図7Bに図示される、6プロジェクタ導波管ディスプレイの一部に関して実施される分析が、5つの他のプロジェクタに拡張されるとき、6つの部分的に重複する視野を含む、組み合わせられた視野が、図7Dに示されるように、生産される。本組み合わせられた視野は、円形終端を伴う、略錐体形状の扇である、個々の視野をタイル化し、円形であって、約1.75の屈折率を有するポリマー接眼レンズ内の約100°の組み合わせられた円錐形視野によって特徴付けられる、組み合わせられた視野をもたらすことによって形成される。
図8は、本発明の実施形態による、眼鏡と1つまたはそれを上回る接眼レンズ導波管の統合を図示する、簡略化された斜視図である。図8に図示されるように、接眼レンズ導波管は、一対の眼鏡の右レンズフレーム801および左レンズフレーム802の中に統合されることができる。右レンズフレーム801内の第1の接眼レンズ導波管830と左レンズフレーム802内の第2の接眼レンズ導波管840の統合は、本明細書に説明される接眼レンズ導波管の機能性の結果として、広視野を可能にする。図8に図示されるように、第1の導波管ディスプレイ805は、2つの接眼レンズ導波管830および840を利用し、これはそれぞれ、ICG832/842と、CPE834/844とを含む。
また、本明細書に説明される実施例および実施形態は、例証目的のためだけのものであって、それに照らして、種々の修正または変更が、当業者に示唆され、本願の精神および権限および添付の請求項の範囲内に含まれるべきであることを理解されたい。

Claims (32)

  1. 拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
    第1の表面および第2の表面を有する基板と、
    前記基板の前記第1の表面または前記第2の表面上または内部に形成される回折入力結合要素であって、前記回折入力結合要素は、光の入力ビームを受光し、前記光の入力ビームを前記基板の中に誘導ビームとして結合するように構成される、回折入力結合要素と、
    前記基板の前記第1の表面または前記第2の表面上または内部に形成される回折組み合わせ瞳エクスパンダ-抽出器(CPE)要素であって、前記回折CPE要素は、軸によって分割される第1の部分および第2の部分を含む、回折CPE要素と
    を備え、
    回折光学要素の第1のセットは、前記第1の部分内に配置され、前記軸に対して正の角度に配向され、
    回折光学要素の第2のセットは、前記第2の部分内に配置され、前記軸に対して負の角度に配向される、
    接眼レンズ導波管。
  2. 前記正の角度は、約30°であり、前記負の角度は、約-30°である、請求項1に記載の接眼レンズ導波管。
  3. 前記回折光学要素の第1のセットは、格子の第1のセットを備え、前記回折光学要素の第2のセットは、回折格子の第2のセットを備える、請求項1に記載の接眼レンズ導波管。
  4. 前記回折光学要素の第1のセットは、前記第2の部分の中に延在し、前記回折光学要素の第2のセットは、前記第1の部分の中に延在し、重複領域を形成する、請求項1に記載の接眼レンズ導波管。
  5. 前記重複領域は、前記軸上に中心合わせされる、請求項4に記載の接眼レンズ導波管。
  6. 前記軸は、前記回折入力結合要素を通して通過する、請求項5に記載の接眼レンズ導波管。
  7. 前記光の入力ビームは、非ゼロ入射角で前記回折入力結合要素上に衝突する、請求項1に記載の接眼レンズ導波管。
  8. 前記回折入力結合要素は、前記回折入力結合要素によって内部結合された光線の円錐が前記基板と平行な軸上に中心合わせされるような格子周期によって特徴付けられる、請求項7に記載の接眼レンズ導波管。
  9. 拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
    第1の表面および第2の表面を有する基板と、
    前記基板の前記第1の表面または前記第2の表面上または内部に形成される第1の回折入力結合要素であって、前記第1の回折入力結合要素は、第1の光の入力ビームを受光し、前記第1の光の入力ビームを前記基板の中に第1の誘導ビームとして結合するように構成される、第1の回折入力結合要素と、
    前記基板の前記第1の表面または前記第2の表面上または内部に形成される第2の回折入力結合要素であって、前記第2の回折入力結合要素は、第2の光の入力ビームを受光し、前記第2の光の入力ビームを前記基板の中に第2の誘導ビームとして結合するように構成される、第2の回折入力結合要素と、
    前記基板の前記第1の表面または前記第2の表面上または内部に形成される回折組み合わせ瞳エクスパンダ-抽出器(CPE)要素であって、前記回折CPE要素は、
    前記第1の誘導ビームを前記第1の回折入力結合要素から受光することと、
    前記第2の誘導ビームを前記第2の回折入力結合要素から受光することと、
    前記第1の誘導ビームの少なくとも一部を第1の角度の範囲にわたって外部結合し、組み合わせられた視野の第1の視野を形成することと、
    前記第2の誘導ビームの少なくとも一部を第2の角度の範囲にわたって外部結合し、前記組み合わせられた視野の第2の視野を形成することと
    を行うように位置付けられる、回折CPE要素と
    を備える、接眼レンズ導波管。
  10. 前記回折CPE要素は、軸に対して約30°に配向される第1の領域の第1の部分内に配置される格子の第1のセットと、前記軸に対して約-30°に配向される前記第1の領域の第2の部分内に配置される格子の第2のセットとを備える、請求項9に記載の接眼レンズ導波管。
  11. 前記回折CPE要素は、前記軸に対して約150°に配向される第2の領域の第1の部分内に配置される格子の第3のセットと、前記軸に対して約-150°に配向される前記第2の領域の第2の部分内に配置される格子の第4のセットとを備える、請求項10に記載の接眼レンズ導波管。
  12. 前記第1の光の入力ビームは、非法線入射角で前記基板上に入射し、前記組み合わせられた視野の第1の視野は、前記非法線入射角に中心合わせされる、請求項9に記載の接眼レンズ導波管。
  13. 前記第2の光の入力ビームは、ゼロ-前記非法線入射角で前記基板上に入射し、前記組み合わせられた視野の第2の視野は、ゼロ-前記非法線入射角に中心合わせされる、請求項12に記載の接眼レンズ導波管。
  14. 前記第1の視野および前記第2の視野は、タイル状にされている、請求項9に記載の接眼レンズ導波管。
  15. 前記第1の視野の一部は、前記第2の視野の一部と重複する、請求項14に記載の接眼レンズ導波管。
  16. 眼鏡内に配置される導波管ディスプレイであって、前記導波管ディスプレイは、
    第1のプロジェクタと、
    第2のプロジェクタと、
    前記第1のプロジェクタに光学的に結合される第1の内部結合格子(ICG)と、
    前記第2のプロジェクタに光学的に結合される第2のICGであって、軸が、前記第1のICGおよび前記第2のICGを通して通過する、第2のICGと、
    前記第1のICGに光学的に結合された第1の回折領域であって、
    前記軸に対して正の角度に配向される格子の第1のセットを備える第1の部分と、
    前記軸に対して負の角度に配向される格子の第2のセットを備える第2の部分と
    を含む、第1の回折領域と、
    前記第2のICGに光学的に結合された第2の回折領域であって、
    前記軸に対して180°-前記正の角度に配向される格子の第3のセットを備える第1の部分と、
    前記軸に対して-180°-前記負の角度に配向される格子の第4のセットを備える第2の部分と
    を含む、第2の回折領域と
    を備える、導波管ディスプレイ。
  17. 前記第1の回折領域および前記第2の回折領域は、重複し、重複領域を形成する、請求項16に記載の導波管ディスプレイ。
  18. 前記重複領域は、前記第1のICGと前記第2のICGとの間の中点に配置される、請求項17に記載の導波管ディスプレイ。
  19. 前記第1のプロジェクタからの第1のディスプレイ光は、非ゼロ入射角で前記第1のICG上に衝突する、請求項16に記載の導波管ディスプレイ。
  20. 前記第1のICGは、前記第1のICGによって内部結合された光線の円錐が前記第1のICGおよび前記第2のICGを通して通過する軸上に中心合わせされるような格子周期によって特徴付けられる、請求項19に記載の導波管ディスプレイ。
  21. 前記第2のICGは、前記格子周期によって特徴付けられる、請求項20に記載の導波管ディスプレイ。
  22. 前記格子の第1のセットおよび前記格子の第2のセットは、ブレーズドされ、前記第1のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、請求項16に記載の導波管ディスプレイ。
  23. 前記格子の第3のセットおよび前記格子の第4のセットは、ブレーズドされ、前記第2のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、請求項16に記載の導波管ディスプレイ。
  24. 第1の領域および第2の領域によって画定された接眼レンズ導波管を動作させる方法であって、前記方法は、
    第1のプロジェクタからの光を第1の内部結合格子(ICG)上に衝突するように指向することと、
    前記第1のプロジェクタからの光のある割合を、前記接眼レンズ導波管の第1の領域の第1の部分の中に、前記第2の領域の第1の部分の中に、前記第2の領域の第2の部分の中に、および前記接眼レンズ導波管から外に回折することと、
    前記第1のプロジェクタからの光の別の割合を、前記接眼レンズ導波管の第1の領域の第2の部分の中に、前記第2の領域の第2の部分の中に、前記第2の領域の第1の部分の中に、および前記接眼レンズ導波管から外に回折することと、
    第2のプロジェクタからの光を第2のICG上に衝突するように指向することと、
    前記第2のプロジェクタからの光のある割合を、前記接眼レンズ導波管の第2の領域の第1の部分の中に、前記第1の領域の第1の部分の中に、前記第1の領域の第2の部分の中に、および前記接眼レンズ導波管から外に回折することと、
    前記第2のプロジェクタからの光の別の割合を、前記接眼レンズ導波管の第2の領域の第2の部分の中に、前記第1の領域の第2の部分の中に、前記第1の領域の第1の部分の中に、および前記接眼レンズ導波管から外に回折することと
    を含む、方法。
  25. 前記第1の領域は、
    前記第1の領域の第1の部分内に配置され、軸に対して正の角度に配向される回折光学要素の第1のセットと、
    前記第1の領域の第2の部分内に配置され、前記軸に対して負の角度に配向される回折光学要素の第2のセットと
    を含み、
    前記第2の領域は、
    前記第2の領域の第1の部分内に配置され、前記軸に対して180°+前記負の角度に配向される回折光学要素の第3のセットと、
    前記第2の領域の第2の部分内に配置され、前記軸に対して180°-前記正の角度に配向される回折光学要素の第4のセットと
    を含む、請求項24に記載の方法。
  26. 前記回折光学要素の第1のセットは、格子の第1のセットを備え、前記回折光学要素の第2のセットは、格子の第2のセットを備え、前記格子の第1のセットおよび前記格子の第2のセットは、ブレーズドされ、前記第1のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、請求項25に記載の方法。
  27. 前記回折光学要素の第3のセットは、格子の第3のセットを備え、前記回折光学要素の第4のセットは、格子の第4のセットを備え、前記格子の第3のセットおよび前記格子の第4のセットは、ブレーズドされ、前記第2のプロジェクタからの光のための減少された外部結合効率によって特徴付けられる、請求項25に記載の方法。
  28. 前記正の角度は、約30°であり、前記負の角度は、約-30°である、請求項25に記載の方法。
  29. 前記第1の領域および前記第2の領域は、重複領域を形成する、請求項24に記載の方法。
  30. 前記重複領域は、第1のICGと前記第2のICGとの間の中点に配置される、請求項29に記載の方法。
  31. 前記第1のプロジェクタからの光は、第1の非ゼロ入射角で前記第1のICG上に衝突し、
    前記第2のプロジェクタからの光は、ゼロ-前記第1の非ゼロ入射角に等しい第2の非ゼロ入射角で前記第2のICG上に衝突する、
    請求項24に記載の方法。
  32. 前記第2の領域の第1の部分の第1の視野は、前記第1の非ゼロ入射角に中心合わせされ、
    前記第1の領域の第1の部分の第2の視野は、前記第2の非ゼロ入射角に中心合わせされる、
    請求項31に記載の方法。
JP2022570536A 2020-05-22 2021-05-21 広視野を伴う二重プロジェクタ導波管ディスプレイのための方法およびシステム Pending JP2023526430A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063029312P 2020-05-22 2020-05-22
US63/029,312 2020-05-22
PCT/US2021/033768 WO2021237168A1 (en) 2020-05-22 2021-05-21 Method and system for dual projector waveguide displays with wide field of view

Publications (1)

Publication Number Publication Date
JP2023526430A true JP2023526430A (ja) 2023-06-21

Family

ID=78608879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022570536A Pending JP2023526430A (ja) 2020-05-22 2021-05-21 広視野を伴う二重プロジェクタ導波管ディスプレイのための方法およびシステム

Country Status (5)

Country Link
US (3) US11536972B2 (ja)
EP (1) EP4154051A4 (ja)
JP (1) JP2023526430A (ja)
CN (1) CN115668033A (ja)
WO (1) WO2021237168A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3542213A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
US20220283377A1 (en) * 2019-02-15 2022-09-08 Digilens Inc. Wide Angle Waveguide Display
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
WO2020257469A1 (en) * 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
EP4022370A4 (en) 2019-08-29 2023-08-30 Digilens Inc. VACUUM BRAGG GRATINGS AND METHODS OF MANUFACTURING
WO2021237168A1 (en) * 2020-05-22 2021-11-25 Magic Leap, Inc. Method and system for dual projector waveguide displays with wide field of view
EP4020058A1 (en) * 2020-12-23 2022-06-29 TriLite Technologies GmbH Augmented reality display
CN114200571B (zh) * 2022-02-15 2022-07-26 北京亮亮视野科技有限公司 具有两种超表面光栅的光波导和头戴式设备
WO2023215339A1 (en) * 2022-05-06 2023-11-09 Google Llc Waveguide input coupler multiplexing to reduce exit pupil expansion ray footprint
WO2023220029A1 (en) * 2022-05-12 2023-11-16 Google Llc Waveguide for eyewear display having an expanded field of view area

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466953B2 (en) 2006-06-02 2013-06-18 Nokia Corporation Stereoscopic exit pupil expander display
US8160411B2 (en) 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
CN107329259B (zh) 2013-11-27 2019-10-11 奇跃公司 虚拟和增强现实系统与方法
GB2529003B (en) 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
DE102015122055B4 (de) 2015-12-17 2018-08-30 Carl Zeiss Ag Optisches System sowie Verfahren zum Übertragen eines Quellbildes
US10061124B2 (en) * 2016-04-29 2018-08-28 Microsoft Technology Licensing, Llc Robust architecture for large field of view components
WO2018039277A1 (en) * 2016-08-22 2018-03-01 Magic Leap, Inc. Diffractive eyepiece
EP3532879B1 (en) 2016-10-26 2022-11-23 Magic Leap, Inc. Outcoupling grating for augmented reality system
CN110168419B (zh) * 2016-10-28 2021-11-12 奇跃公司 用于具有扫描反射器的大视场显示器的方法和系统
WO2018111895A1 (en) 2016-12-13 2018-06-21 Magic Leap, Inc. 3d object rendering using detected features
US10185151B2 (en) 2016-12-20 2019-01-22 Facebook Technologies, Llc Waveguide display with a small form factor, a large field of view, and a large eyebox
CN115586652A (zh) 2017-01-23 2023-01-10 奇跃公司 用于虚拟、增强或混合现实系统的目镜
KR102707404B1 (ko) 2017-02-15 2024-09-19 매직 립, 인코포레이티드 아티팩트 완화를 통합한 투사기 아키텍처
CA3056247C (en) * 2017-03-21 2024-01-30 Magic Leap, Inc. Method and system for waveguide projector with wide field of view
CA3057109A1 (en) * 2017-03-22 2018-09-27 Magic Leap, Inc. Depth based foveated rendering for display systems
US11474362B2 (en) 2017-03-22 2022-10-18 Magic Leap, Inc. Wearable display device utilizing a composite field of view
WO2018231754A1 (en) 2017-06-13 2018-12-20 Vuzix Corporation Image light guide with expanded light distribution overlapping gratings
US20230004005A1 (en) * 2017-12-11 2023-01-05 Magic Leap, Inc. Illumination layout for compact projection system
CA3084011C (en) * 2017-12-15 2024-06-11 Magic Leap, Inc. Eyepieces for augmented reality display system
CN112136094A (zh) * 2018-03-16 2020-12-25 奇跃公司 用于显示系统的基于深度的凹式渲染
CN110297331A (zh) * 2018-03-23 2019-10-01 京东方科技集团股份有限公司 显示装置及显示方法
KR102255150B1 (ko) * 2018-08-22 2021-05-24 주식회사 엘지화학 회절 도광판 및 이를 포함하는 디스플레이 장치
EP3857274B1 (en) * 2018-09-28 2023-11-08 Magic Leap, Inc. Projector integrated with a scanning mirror
WO2020102759A1 (en) 2018-11-16 2020-05-22 Magic Leap, Inc. Superimposed diffraction gratings for eyepieces
JP2022509083A (ja) 2018-11-20 2022-01-20 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
EP3924759A4 (en) * 2019-02-15 2022-12-28 Digilens Inc. METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS
WO2020257469A1 (en) * 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
JP7297548B2 (ja) 2019-06-21 2023-06-26 株式会社日立エルジーデータストレージ 導光板の製造方法、導光板モジュールの製造方法、および画像表示装置の製造方法
US11656480B2 (en) * 2019-07-12 2023-05-23 Magic Leap, Inc. Methods and systems for augmented reality display with dynamic field of view
US20210365836A1 (en) * 2020-05-14 2021-11-25 Ian Jeffrey Wilkins Methods and systems for pre-optimizing input data for an ocr engine or other computer-implemented analysis process
WO2021237168A1 (en) * 2020-05-22 2021-11-25 Magic Leap, Inc. Method and system for dual projector waveguide displays with wide field of view
JP2023541447A (ja) * 2020-09-16 2023-10-02 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
US20220214503A1 (en) * 2021-01-07 2022-07-07 Digilens Inc. Grating Structures for Color Waveguides

Also Published As

Publication number Publication date
EP4154051A4 (en) 2024-08-14
US20210364803A1 (en) 2021-11-25
US20230096079A1 (en) 2023-03-30
US11536972B2 (en) 2022-12-27
US11774765B2 (en) 2023-10-03
US20230393401A1 (en) 2023-12-07
EP4154051A1 (en) 2023-03-29
CN115668033A (zh) 2023-01-31
WO2021237168A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP2023526430A (ja) 広視野を伴う二重プロジェクタ導波管ディスプレイのための方法およびシステム
US11237393B2 (en) Eyepieces for augmented reality display system
KR102350385B1 (ko) 출사동 확장 회절 광학 웨이브가이딩 장치
US20240302660A1 (en) Eyepieces for augmented reality display system
CN110431471B (zh) 用于具有宽视野的波导投影仪的方法和系统
JP7149350B2 (ja) 最適効率のための導波路の回転格子の設計
JP7216219B2 (ja) 光拡大カプラを備える光学システム
EP4293414A2 (en) Eyepieces for augmented reality display system
JP7190447B2 (ja) ゾーン分割された回折格子を備えた固定焦点画像光ガイド
JP2018534597A (ja) 反射型転換アレイを有する結像光ガイド
US11994684B2 (en) Image light guide with zoned diffractive optic
TWI797370B (zh) 用於擴增實境或虛擬實境顯示之裝置
US20230341597A1 (en) Eyepieces for augmented reality display system
US20230417974A1 (en) Image light guide with zoned diffractive optic
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
CN113325505A (zh) 一种光波导镜片及三维显示装置
CN211928226U (zh) 一种光波导镜片及三维显示装置
JP7524460B2 (ja) デュアル入力画像光ガイド
CN115494578B (zh) 一种光波导器件和ar设备
WO2024006638A1 (en) Multiplexing image light guide with split input and optical power
CN112180593A (zh) 用于呈现图像的装置和用于实现增强现实显示的系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240627