JP2023519517A - 半導体試料の試験 - Google Patents
半導体試料の試験 Download PDFInfo
- Publication number
- JP2023519517A JP2023519517A JP2022554197A JP2022554197A JP2023519517A JP 2023519517 A JP2023519517 A JP 2023519517A JP 2022554197 A JP2022554197 A JP 2022554197A JP 2022554197 A JP2022554197 A JP 2022554197A JP 2023519517 A JP2023519517 A JP 2023519517A
- Authority
- JP
- Japan
- Prior art keywords
- image
- design
- structural element
- based structural
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 205
- 239000004065 semiconductor Substances 0.000 title claims abstract description 32
- 238000013461 design Methods 0.000 claims abstract description 303
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000012549 training Methods 0.000 claims description 73
- 238000003860 storage Methods 0.000 claims description 30
- 238000012552 review Methods 0.000 claims description 16
- 238000000926 separation method Methods 0.000 claims description 12
- 238000004088 simulation Methods 0.000 claims description 10
- 238000000528 statistical test Methods 0.000 claims description 10
- 238000012986 modification Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000010998 test method Methods 0.000 claims description 5
- 230000007547 defect Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 19
- 235000012431 wafers Nutrition 0.000 description 17
- 238000007689 inspection Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000011218 segmentation Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009659 non-destructive testing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000004138 cluster model Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
- G01N21/9503—Wafer edge inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/32—Circuit design at the digital level
- G06F30/33—Design verification, e.g. functional simulation or model checking
- G06F30/3308—Design verification, e.g. functional simulation or model checking using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/398—Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0006—Industrial image inspection using a design-rule based approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Analytical Chemistry (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
(i)第1の画像は、レビューツールによって捕捉された高分解能画像とすることができる。
(ii)第2の画像は、設計データ上でシミュレーションを実行することによって生成することができる。
(iii)PMCは、所与の層に関連付けられた各設計ベース構造要素に対して、第1の画像のうち第2の画像内の設計ベース構造要素の箇所に対応する箇所において、1つまたは複数の特有の方向に沿って、1つまたは複数のグレーレベルプロファイルを計算し、設計ベース構造要素に関連付けられており、それぞれのグレーレベルプロファイルと試験レシピに含まれるそれぞれの基線グレーレベルプロファイルとの間の差を各々示す1つまたは複数のプロファイル属性を計算するようにさらに構成することができ、それぞれの基線グレーレベルプロファイルは、設計ベース構造要素が属する設計ベース構造要素のファミリに対して、それぞれの特有の方向に沿って計算され、訓練された分類器を使用してクラスを判定することは、それに関連付けられたエッジ属性および1つまたは複数のプロファイル属性に基づいて行われる。
(iv)PMCは、第1の画像内の設計ベース構造要素のエッジの両側から2つの画素母集団間に統計試験を適用し、統計試験の結果に基づいて、2つの画素母集団間の離隔距離を判定することによって、エッジ属性を計算するように構成することができる。
(v)層スコアは、設計ベース構造要素のうち、有効に重ね合わされていると分類されたものの百分率とすることができる。
(vi)第2の画像は、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与えることができ、複数の層の各々に対して計算、使用、および生成を実行して、複数の層スコアを生じさせ、PMCは、試験レシピに所定の複数の層スコアおよび複数の層閾値に基づいて、重ね合わされた画像ペアの有効性を判定するようにさらに構成されている。
(i)第1の画像ペアにおける第1の画像の内容を修正することによって、少なくとも1つの第2の画像ペアを生成することができる。
(ii)第1の画像ペアにおける第1の画像と第2の画像との間の相対位置を修正することによって、少なくとも1つの第2の画像ペアを生成することができる。
(iii)PMCは、対応する画像ペアの重ね合わせの有効性、および対応する画像ペアが第2の画像ペアである場合の修正のうちの少なくとも1つに基づいて、関連付けを実行するように構成することができる。
(iv)PMCは、各設計ベース構造要素に対して、第1の画像のうち第2の画像内の設計ベース構造要素の箇所に対応する箇所において、特有の方向に沿って、グレーレベルプロファイルを計算し、有効に重ね合わされた設計ベース構造要素のうち、設計ベース構造要素の各ファミリに対する基線グレーレベルプロファイルを、ファミリ内の各設計ベース構造要素のグレーレベルプロファイルに基づいて、特有の方向に沿って計算し、各設計ベース構造要素に対して、それに関連付けられており、そのグレーレベルプロファイルと基線グレーレベルプロファイルとの間の差を示すプロファイル属性を計算するようにさらに構成することができ、分類器の訓練および訓練された分類器の使用は、それに関連付けられたエッジ属性およびプロファイル属性に基づいて行われる。試験レシピは、基線グレーレベルプロファイルをさらに含むことができる。
(v)各ファミリに対して、複数の特有の方向に沿って、複数の基線グレーレベルプロファイルを計算することができ、試験レシピに含まれる。
(vi)各画像ペアにおける第2の画像は、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与えることができ、複数の層の各々に対して関連付け、計算、訓練、使用、および包含を実行して、複数の層に対応する複数の試験レシピを生じさせることができる。
Claims (29)
- 試験レシピを使用した半導体試料のコンピュータ化された試験システムであって、プロセッサおよびメモリ回路(PMC)を備えており、前記プロセッサおよびメモリ回路(PMC)が、
試験ツールによって捕捉され、前記半導体試料の少なくとも一部分を表す第1の画像、ならびに前記試料の前記少なくとも一部分を描写する設計データに基づいて生成され、前記設計データ内に提示された1つまたは複数の設計ベース構造要素、および各設計ベース構造要素に関連付けられたそれぞれの層の情報を与える第2の画像を含む重ね合わされた画像ペアを取得し、
所与の層に関連付けられた各設計ベース構造要素に対して、
前記設計ベース構造要素に関連付けられており、前記第2の画像内の設計ベース構造要素のエッジの箇所における前記第1の画像内の画像ベース構造要素のエッジの推定される存在を示すエッジ属性を計算し、
前記試験レシピに含まれる訓練された分類器を使用して、それに関連付けられた前記エッジ属性に基づいて、前記設計ベース構造要素の前記箇所における前記第1の画像と前記第2の画像との間の重ね合わせの有効性を示す前記設計ベース構造要素のクラスを判定し、
前記所与の層に関連付けられた各設計ベース構造要素の前記クラスに基づいて、前記試験レシピに所定の層閾値に基づいて前記重ね合わされた画像ペアの有効性を判定するために使用可能な前記所与の層に対する層スコアを生成するように構成されている、コンピュータ化された試験システム。 - 前記第1の画像が、レビューツールによって捕捉された高分解能画像である、請求項1に記載のコンピュータ化されたシステム。
- 前記第2の画像が、前記設計データ上でシミュレーションを実行することによって生成されたものである、請求項1に記載のコンピュータ化されたシステム。
- 前記PMCが、前記所与の層に関連付けられた各設計ベース構造要素に対して、
前記第1の画像のうち前記第2の画像内の前記設計ベース構造要素の箇所に対応する箇所において、1つまたは複数の特有の方向に沿って、1つまたは複数のグレーレベルプロファイルを計算し、
前記設計ベース構造要素に関連付けられており、それぞれのグレーレベルプロファイルと前記試験レシピに含まれるそれぞれの基線グレーレベルプロファイルとの間の差を各々示す1つまたは複数のプロファイル属性を計算するようにさらに構成されており、前記それぞれの基線グレーレベルプロファイルが、前記設計ベース構造要素が属する設計ベース構造要素のファミリに対して、それぞれの特有の方向に沿って計算され、
訓練された分類器を使用してクラスを判定することが、それに関連付けられた前記エッジ属性および前記1つまたは複数のプロファイル属性に基づいて行われる、請求項1に記載のコンピュータ化されたシステム。 - 前記PMCが、前記第1の画像内の前記設計ベース構造要素の前記エッジの両側から2つの画素母集団間に統計試験を適用し、前記統計試験の結果に基づいて、前記2つの画素母集団間の離隔距離を判定することによって、前記エッジ属性を計算するように構成されている、請求項1に記載のコンピュータ化されたシステム。
- 前記層スコアが、前記設計ベース構造要素のうち有効に重ね合わされていると分類されたものの百分率である、請求項1に記載のコンピュータ化されたシステム。
- 前記第2の画像が、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与え、前記複数の層の各々に対して前記計算、使用、および生成を実行して、複数の層スコアを生じさせ、前記PMCが、前記試験レシピに所定の前記複数の層スコアおよび複数の層閾値に基づいて、前記重ね合わされた画像ペアの有効性を判定するようにさらに構成されている、請求項1に記載のコンピュータ化されたシステム。
- 試験レシピを使用した半導体試料のコンピュータ化された試験方法であって、プロセッサおよびメモリ回路(PMC)によって実行され、前記方法が、
試験ツールによって捕捉され、前記半導体試料の少なくとも一部分を表す第1の画像、ならびに前記試料の前記少なくとも一部分を描写する設計データに基づいて生成され、前記設計データ内に提示された1つまたは複数の設計ベース構造要素、および各設計ベース構造要素に関連付けられたそれぞれの層の情報を与える第2の画像を含む重ね合わされた画像ペアを取得することと、
所与の層に関連付けられた各設計ベース構造要素に対して、
前記設計ベース構造要素に関連付けられており、前記第2の画像内の設計ベース構造要素のエッジの箇所における前記第1の画像内の画像ベース構造要素のエッジの推定される存在を示すエッジ属性を計算することと、
前記試験レシピに含まれる訓練された分類器を使用して、それに関連付けられた前記エッジ属性に基づいて、前記設計ベース構造要素の前記箇所における前記第1の画像と前記第2の画像との間の重ね合わせの有効性を示す前記設計ベース構造要素のクラスを判定することと、
前記所与の層に関連付けられた各設計ベース構造要素の前記クラスに基づいて、前記試験レシピに所定の層閾値に基づいて前記重ね合わされた画像ペアの有効性を判定するために使用可能な前記所与の層に対する層スコアを生成することとを含む、コンピュータ化された試験方法。 - 前記第1の画像が、レビューツールによって捕捉された高分解能画像である、請求項8に記載のコンピュータ化された方法。
- 前記第2の画像が、前記設計データ上でシミュレーションを実行することによって生成されたものである、請求項8に記載のコンピュータ化された方法。
- 前記所与の層に関連付けられた各設計ベース構造要素に対して、
前記第1の画像のうち前記第2の画像内の前記設計ベース構造要素の箇所に対応する箇所において、1つまたは複数の特有の方向に沿って、1つまたは複数のグレーレベルプロファイルを計算することと、
前記設計ベース構造要素に関連付けられており、それぞれのグレーレベルプロファイルと前記試験レシピに含まれるそれぞれの基線グレーレベルプロファイルとの間の差を各々示す1つまたは複数のプロファイル属性を計算することとをさらに含み、前記それぞれの基線グレーレベルプロファイルが、前記設計ベース構造要素が属する設計ベース構造要素のファミリに対して、それぞれの特有の方向に沿って計算され、
訓練された分類器を使用してクラスを判定することが、それに関連付けられた前記エッジ属性および前記1つまたは複数のプロファイル属性に基づいて行われる、請求項8に記載のコンピュータ化された方法。 - 前記エッジ属性が、前記第1の画像内の前記設計ベース構造要素の前記エッジの両側から2つの画素母集団間に統計試験を適用し、前記統計試験の結果に基づいて、前記2つの画素母集団間の離隔距離を判定することによって計算される、請求項8に記載のコンピュータ化された方法。
- 前記層スコアが、前記設計ベース構造要素のうち有効に重ね合わされていると分類されたものの百分率である、請求項8に記載のコンピュータ化された方法。
- 前記第2の画像が、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与え、前記複数の層の各々に対して前記計算、使用、および生成を実行して、複数の層スコアを生じさせ、前記方法が、前記試験レシピに所定の前記複数の層スコアおよび複数の層閾値に基づいて、前記重ね合わされた画像ペアの有効性を判定することをさらに含む、請求項8に記載のコンピュータ化された方法。
- 命令のプログラムを有形に具現化する非一時的コンピュータ可読記憶媒体であって、前記命令が、コンピュータによって実行されたとき、試験レシピを使用した半導体試料の試験方法を前記コンピュータに実行させ、前記方法が、
試験ツールによって捕捉され、前記半導体試料の少なくとも一部分を表す第1の画像、ならびに前記試料の前記少なくとも一部分を描写する設計データに基づいて生成され、前記設計データ内に提示された1つまたは複数の設計ベース構造要素、および各設計ベース構造要素に関連付けられたそれぞれの層の情報を与える第2の画像を含む重ね合わされた画像ペアを取得することと、
所与の層に関連付けられた各設計ベース構造要素に対して、
前記設計ベース構造要素に関連付けられており、前記第2の画像内の設計ベース構造要素のエッジの箇所における前記第1の画像内の画像ベース構造要素のエッジの推定される存在を示すエッジ属性を計算することと、
前記試験レシピに含まれる訓練された分類器を使用して、それに関連付けられた前記エッジ属性に基づいて、前記設計ベース構造要素の前記箇所における前記第1の画像と前記第2の画像との間の重ね合わせの有効性を示す前記設計ベース構造要素のクラスを判定することと、
前記所与の層に関連付けられた各設計ベース構造要素の前記クラスに基づいて、前記試験レシピに所定の層閾値に基づいて前記重ね合わされた画像ペアの有効性を判定するために使用可能な前記所与の層に対する層スコアを生成することとを含む、非一時的コンピュータ可読記憶媒体。 - 半導体試料の試験に使用可能な試験レシピを生成するコンピュータ化されたシステムであって、プロセッサおよびメモリ回路(PMC)を備えており、前記プロセッサおよびメモリ回路(PMC)が、
i)1つまたは複数の第1の画像ペアを含む第1のサブセットであり、各第1の画像ペアが、試験ツールによって捕捉され、試料の少なくとも一部分を表す第1の画像、および前記試料の前記少なくとも一部分を描写する設計データに基づいて生成された第2の画像を含み、前記第1の画像および前記第2の画像が、有効に重ね合わされており、前記第2の画像が、前記設計データ内に提示された1つまたは複数の設計ベース構造要素、および各設計ベース構造要素に関連付けられたそれぞれの層の情報を与える、第1のサブセット、ならびにii)1つまたは複数の第2の画像ペアを含む第2のサブセットであり、各第2の画像ペアが、前記第1のサブセット内のそれぞれの第1の画像ペアにおける前記第1の画像および前記第2の画像のうちの少なくとも1つを修正することによって生成され、それにより前記生成された第2の画像ペアが無効に重ね合わされる、第2のサブセットを含む訓練セットを取得し、
前記訓練セットの各画像ペアの第2の画像内の1つまたは複数の設計ベース構造要素の各々を、重ね合わせの有効性を示すラベルに関連付け、
各設計ベース構造要素に対して、前記設計ベース構造要素に関連付けられており、前記第2の画像内の設計ベース構造要素のエッジの箇所における前記第1の画像内の画像ベース構造要素のエッジの推定される存在を示すエッジ属性を計算し、
所与の層に関連付けられた各設計ベース構造要素に関連付けられた前記エッジ属性およびその前記ラベルを使用して、前記設計ベース構造要素の前記箇所における前記第1の画像と前記第2の画像との間の重ね合わせの有効性を判定するように、分類器を訓練し、
前記訓練された分類器を使用して、それに関連付けられたエッジ属性に基づいて、各画像ペアの前記所与の層に関連付けられた各設計ベース構造要素に対するクラスを判定し、各設計ベース構造要素に対して前記判定されたクラスに基づいて、前記所与の層に対する層スコアを生成し、
前記訓練セットの各画像ペアの前記所与の層の前記層スコアに基づいて層閾値を生成し、
前記訓練された分類器および前記所与の層に関連付けられた前記層閾値を前記試験レシピに含むように構成されている、コンピュータ化されたシステム。 - 少なくとも1つの第2の画像ペアが、第1の画像ペアにおける前記第1の画像の内容を修正することによって生成されたものである、請求項16に記載のコンピュータ化されたシステム。
- 少なくとも1つの第2の画像ペアが、第1の画像ペアにおける前記第1の画像と前記第2の画像との間の相対位置を修正することによって生成されたものである、請求項16に記載のコンピュータ化されたシステム。
- 前記PMCが、対応する画像ペアの前記重ね合わせの有効性、および前記対応する画像ペアが第2の画像ペアである場合の前記修正のうちの少なくとも1つに基づいて、前記関連付けを実行するように構成されている、請求項16に記載のコンピュータ化されたシステム。
- 前記PMCが、
各設計ベース構造要素に対して、前記第1の画像のうち前記第2の画像内の前記設計ベース構造要素の箇所に対応する箇所において、特有の方向に沿って、グレーレベルプロファイルを計算し、
有効に重ね合わされた設計ベース構造要素のうち、設計ベース構造要素の各ファミリに対する基線グレーレベルプロファイルを、前記ファミリ内の各設計ベース構造要素の前記グレーレベルプロファイルに基づいて、前記特有の方向に沿って計算し、
各設計ベース構造要素に対して、それに関連付けられており、その前記グレーレベルプロファイルと前記基線グレーレベルプロファイルとの間の差を示すプロファイル属性を計算するようにさらに構成されており、前記分類器の訓練および前記訓練された分類器の使用が、それに関連付けられた前記エッジ属性および前記プロファイル属性に基づいて行われ、
前記試験レシピが、前記基線グレーレベルプロファイルをさらに含む、請求項16に記載のコンピュータ化されたシステム。 - 複数の基線グレーレベルプロファイルが、各ファミリに対して、複数の特有の方向に沿って計算されたものであり、前記試験レシピに含まれている、請求項20に記載のコンピュータ化されたシステム。
- 各画像ペアにおける前記第2の画像が、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与え、前記複数の層の各々に対して前記関連付け、計算、訓練、使用、および包含を実行して、前記複数の層に対応する複数の試験レシピを生じさせる、請求項16に記載のコンピュータ化されたシステム。
- 命令のプログラムを有形に具現化する非一時的コンピュータ可読記憶媒体であって、前記命令が、コンピュータによって実行されたとき、半導体試料の試験に使用可能な試験レシピを生成する方法を前記コンピュータに実行させ、前記方法が、
i)1つまたは複数の第1の画像ペアを含む第1のサブセットであり、各第1の画像ペアが、試験ツールによって捕捉され、試料の少なくとも一部分を表す第1の画像、および前記試料の前記少なくとも一部分を描写する設計データに基づいて生成された第2の画像を含み、前記第1の画像および前記第2の画像が、有効に重ね合わされており、前記第2の画像が、前記設計データ内に提示された1つまたは複数の設計ベース構造要素、および各設計ベース構造要素に関連付けられたそれぞれの層の情報を与える、第1のサブセット、ならびにii)1つまたは複数の第2の画像ペアを含む第2のサブセットであり、各第2の画像ペアが、前記第1のサブセット内のそれぞれの第1の画像ペアにおける前記第1の画像および前記第2の画像のうちの少なくとも1つを修正することによって生成され、それにより前記生成された第2の画像ペアが無効に重ね合わされる、第2のサブセットを含む訓練セットを取得することと、
前記訓練セットの各画像ペアの第2の画像内の1つまたは複数の設計ベース構造要素の各々を、重ね合わせの有効性を示すラベルに関連付けることと、
各設計ベース構造要素に対して、前記設計ベース構造要素に関連付けられており、前記第2の画像内の設計ベース構造要素のエッジの箇所における前記第1の画像内の画像ベース構造要素のエッジの推定される存在を示すエッジ属性を計算することと、
所与の層に関連付けられた各設計ベース構造要素に関連付けられた前記エッジ属性およびその前記ラベルを使用して、前記設計ベース構造要素の前記箇所における前記第1の画像と前記第2の画像との間の重ね合わせの有効性を判定するように、分類器を訓練することと、
前記訓練された分類器を使用して、それに関連付けられた前記エッジ属性に基づいて、各画像ペアの前記所与の層に関連付けられた各設計ベース構造要素に対するクラスを判定し、各設計ベース構造要素に対して前記判定されたクラスに基づいて、前記所与の層に対する層スコアを生成することと、
前記訓練セットの各画像ペアの前記所与の層の前記層スコアに基づいて層閾値を生成することと、
前記訓練された分類器および前記所与の層に関連付けられた前記層閾値を前記試験レシピに含むこととを含む、非一時的コンピュータ可読記憶媒体。 - 少なくとも1つの第2の画像ペアが、第1の画像ペアにおける前記第1の画像の内容を修正することによって生成されたものである、請求項23に記載の非一時的コンピュータ可読記憶媒体。
- 少なくとも1つの第2の画像ペアが、第1の画像ペアにおける前記第1の画像と前記第2の画像との間の相対位置を修正することによって生成されたものである、請求項23に記載の非一時的コンピュータ可読記憶媒体。
- 前記関連付けが、対応する画像ペアの前記重ね合わせの有効性、および前記対応する画像ペアが第2の画像ペアである場合の前記修正のうちの少なくとも1つに基づいて実行される、請求項23に記載の非一時的コンピュータ可読記憶媒体。
- 前記方法が、
各設計ベース構造要素に対して、前記第1の画像のうち前記第2の画像内の前記設計ベース構造要素の箇所に対応する箇所において、特有の方向に沿って、グレーレベルプロファイルを計算することと、
有効に重ね合わされた設計ベース構造要素のうち、設計ベース構造要素の各ファミリに対する基線グレーレベルプロファイルを、前記ファミリ内の各設計ベース構造要素の前記グレーレベルプロファイルに基づいて、前記特有の方向に沿って計算することと、
各設計ベース構造要素に対して、それに関連付けられており、その前記グレーレベルプロファイルと前記基線グレーレベルプロファイルとの間の差を示すプロファイル属性を計算することとをさらに含み、前記分類器の訓練および前記訓練された分類器の使用が、それに関連付けられた前記エッジ属性および前記プロファイル属性に基づいて行われ、
前記試験レシピが、前記基線グレーレベルプロファイルをさらに含む、請求項23に記載の非一時的コンピュータ可読記憶媒体。 - 複数の基線グレーレベルプロファイルが、各ファミリに対して、複数の特有の方向に沿って計算されたものであり、前記試験レシピに含まれている、請求項27に記載の非一時的コンピュータ可読記憶媒体。
- 各画像ペアにおける前記第2の画像が、複数の層に関連付けられた1つまたは複数の設計ベース構造要素の情報を与え、前記複数の層の各々に対して前記関連付け、計算、訓練、使用、および包含を実行して、前記複数の層に対応する複数の試験レシピを生じさせる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/836,606 US11022566B1 (en) | 2020-03-31 | 2020-03-31 | Examination of a semiconductor specimen |
US16/836,606 | 2020-03-31 | ||
PCT/IL2020/051145 WO2021199018A1 (en) | 2020-03-31 | 2020-11-04 | Examination of a semiconductor specimen |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2023519517A true JP2023519517A (ja) | 2023-05-11 |
JPWO2021199018A5 JPWO2021199018A5 (ja) | 2023-11-13 |
JP7536881B2 JP7536881B2 (ja) | 2024-08-20 |
Family
ID=73449136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022554197A Active JP7536881B2 (ja) | 2020-03-31 | 2020-11-04 | 半導体試料の試験 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11022566B1 (ja) |
EP (1) | EP4128141A1 (ja) |
JP (1) | JP7536881B2 (ja) |
KR (1) | KR20220162121A (ja) |
CN (1) | CN115023731A (ja) |
TW (1) | TWI844746B (ja) |
WO (1) | WO2021199018A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11307150B2 (en) | 2020-08-17 | 2022-04-19 | Applied Materials Israel Ltd. | Automatic optimization of an examination recipe |
TWI798650B (zh) * | 2021-02-25 | 2023-04-11 | 環球晶圓股份有限公司 | 自動光學檢測方法、自動光學檢測系統及記錄媒體 |
KR102690373B1 (ko) * | 2022-09-05 | 2024-07-31 | 서울대학교산학협력단 | 변환 모델 구축 장치 및 방법과 이를 이용한 이미지 매칭 장치 및 방법 |
WO2024068280A1 (en) * | 2022-09-28 | 2024-04-04 | Asml Netherlands B.V. | Parameterized inspection image simulation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008077100A2 (en) * | 2006-12-19 | 2008-06-26 | Kla-Tencor Corporation | Systems and methods for creating inspection recipes |
WO2011001635A1 (ja) | 2009-06-30 | 2011-01-06 | 株式会社日立ハイテクノロジーズ | 半導体検査装置及びそれを用いた半導体検査方法 |
US10713534B2 (en) * | 2017-09-01 | 2020-07-14 | Kla-Tencor Corp. | Training a learning based defect classifier |
US10290087B2 (en) * | 2017-09-11 | 2019-05-14 | Applied Materials Israel Ltd. | Method of generating an examination recipe and system thereof |
US11199506B2 (en) * | 2018-02-21 | 2021-12-14 | Applied Materials Israel Ltd. | Generating a training set usable for examination of a semiconductor specimen |
US11170255B2 (en) * | 2018-03-21 | 2021-11-09 | Kla-Tencor Corp. | Training a machine learning model with synthetic images |
CN112424826A (zh) | 2018-07-13 | 2021-02-26 | Asml荷兰有限公司 | 基于机器学习的图案分组方法 |
US11379967B2 (en) * | 2019-01-18 | 2022-07-05 | Kla Corporation | Methods and systems for inspection of semiconductor structures with automatically generated defect features |
US10963990B2 (en) * | 2019-01-28 | 2021-03-30 | Applied Materials, Inc. | Automated image measurement for process development and optimization |
US10963753B2 (en) * | 2019-01-28 | 2021-03-30 | Applied Materials, Inc. | Automated image measurement for process development and optimization |
-
2020
- 2020-03-31 US US16/836,606 patent/US11022566B1/en active Active
- 2020-11-04 KR KR1020227025803A patent/KR20220162121A/ko active IP Right Grant
- 2020-11-04 WO PCT/IL2020/051145 patent/WO2021199018A1/en unknown
- 2020-11-04 JP JP2022554197A patent/JP7536881B2/ja active Active
- 2020-11-04 CN CN202080094814.XA patent/CN115023731A/zh active Pending
- 2020-11-04 EP EP20807522.6A patent/EP4128141A1/en active Pending
- 2020-11-09 TW TW109138966A patent/TWI844746B/zh active
Also Published As
Publication number | Publication date |
---|---|
WO2021199018A1 (en) | 2021-10-07 |
EP4128141A1 (en) | 2023-02-08 |
US11022566B1 (en) | 2021-06-01 |
KR20220162121A (ko) | 2022-12-07 |
CN115023731A (zh) | 2022-09-06 |
TWI844746B (zh) | 2024-06-11 |
JP7536881B2 (ja) | 2024-08-20 |
TW202139133A (zh) | 2021-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI767108B (zh) | 用於檢查半導體試樣的方法與系統及在其上紀錄相關指令的電腦可讀取媒體 | |
US20220067523A1 (en) | Method of deep learining-based examination of a semiconductor specimen and system thereof | |
JP7536881B2 (ja) | 半導体試料の試験 | |
TWI755613B (zh) | 基於機器學習之圖案分組方法 | |
CN108463875B (zh) | 使用具有晶片图像数据的设计数据改进半导体晶片检验器的缺陷敏感度 | |
KR20200014927A (ko) | 반도체 시편의 시험을 위해 사용 가능한 훈련 세트를 생성하는 방법 및 그 시스템 | |
KR102324677B1 (ko) | 결함 검출을 위한 동적 케어 영역 | |
CN113763312B (zh) | 使用弱标记检测半导体试样中的缺陷 | |
IL259969A (en) | Feature selection and automated processing window monitoring by detecting anomalies | |
US11686689B2 (en) | Automatic optimization of an examination recipe | |
KR20220014805A (ko) | 반도체 시편의 검사에 사용가능한 훈련 데이터의 생성 | |
KR20220012217A (ko) | 반도체 시편에서의 결함들의 기계 학습 기반 분류 | |
KR20180088485A (ko) | 형상 기반 그루핑 | |
JP7169393B2 (ja) | 半導体試料の検査に使用可能な訓練セットの生成 | |
CN113269709A (zh) | 探测半导体晶片中缺陷的方法及半导体晶片缺陷探测系统 | |
KR20230140394A (ko) | 반도체 시편의 기계 학습 기반 검사 및 그의 훈련 | |
US11854184B2 (en) | Determination of defects and/or edge roughness in a specimen based on a reference image | |
JP7530330B2 (ja) | 半導体試料の画像のセグメンテーション | |
TW202425166A (zh) | 用於晶圓的成像資料集中缺陷偵測的電腦實施方法、相應的電腦可讀媒介、電腦程式產品以及利用此方法的系統 | |
WO2024160623A1 (en) | Computer implemented method for the detection of defects in an imaging dataset of an object comprising integrated circuit patterns, computer-readable medium, computer program product and a system making use of such methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231102 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231102 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7536881 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |