JP2023516230A - Method for monitoring and supporting mining tunnel host rock - Google Patents

Method for monitoring and supporting mining tunnel host rock Download PDF

Info

Publication number
JP2023516230A
JP2023516230A JP2022567429A JP2022567429A JP2023516230A JP 2023516230 A JP2023516230 A JP 2023516230A JP 2022567429 A JP2022567429 A JP 2022567429A JP 2022567429 A JP2022567429 A JP 2022567429A JP 2023516230 A JP2023516230 A JP 2023516230A
Authority
JP
Japan
Prior art keywords
host rock
tunnel
strain
host
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022567429A
Other languages
Japanese (ja)
Other versions
JP7337420B2 (en
Inventor
▲許▼文松
▲趙▼光明
孟祥瑞
李世▲鋼▼
李�浩
▲劉▼崇岩
戚敏▲傑▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Publication of JP2023516230A publication Critical patent/JP2023516230A/en
Application granted granted Critical
Publication of JP7337420B2 publication Critical patent/JP7337420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

【課題】 採掘坑道母岩の監視及び支保方法を提供することを課題とする。【解決手段】 採掘坑道母岩の監視及び支保方法であって、該方法は、分散型光ファイバー(29)の監視周波数に応じて、母岩の歪みを持続的に監視し、母岩歪み監視データを得るステップと、母岩歪み監視データを補間して得られた母岩歪みデータに基づいて、坑道(1)に対して領域分割を行い、坑道の異なる位置での荷重負担領域と坑道の異なる区画における破砕領域の大きさを得るステップと、母岩応力と歪みの関係に応じて、母岩歪みデータ、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさに基づいて、母岩の一次支保、二次支保及び補強処理のタイミングと処理方式を確定するステップと、を含む。該方法は、掘削過程での様々な安定状態の母岩をそれぞれ支保処理し、採掘過程で破砕度が明らかに増加する領域に対して補強支保を行うことにより、坑道(1)の後期変形問題が解消され、坑道(1)の安定性及び安全性が顕著に向上する。【選択図】 図1A method for monitoring and supporting mining tunnel host rock. A method for monitoring and supporting a mining tunnel host rock, the method continuously monitoring host rock strain in response to a distributed optical fiber (29) monitoring frequency, and generating host rock strain monitoring data. and the host rock strain data obtained by interpolating the host rock strain monitoring data, the tunnel (1) is divided into regions, and the load bearing regions at different positions of the tunnel and the different obtaining the size of the fracture area in the section and depending on the relationship between host rock stress and strain, based on the host rock strain data, the load-bearing area at different locations in the gallery and the size of the fracture area in different sections of the gallery; and determining the timing and method of primary shoring, secondary shoring and reinforcement of host rock. The method is to support the host rocks in various stable states during the excavation process, respectively, and provide reinforcement support to the areas where the degree of fracturing increases obviously during the mining process, thereby avoiding the late deformation problem of the tunnel (1). is eliminated, and the stability and safety of the tunnel (1) are significantly improved. [Selection diagram] Fig. 1

Description

本願は、坑道母岩の監視・支保の技術分野に関し、特に採掘坑道母岩の監視及び支保方法に関する。 The present application relates to the technical field of tunnel host rock monitoring and support, and more particularly to mining tunnel host rock monitoring and supporting methods.

中国では、鉱井坑道の多くは中程度の、大きな緩んだ領域を有する坑道に属し、ここで、中程度の緩んだ領域を有する坑道では、母岩のバルキングフォースが明らかであり、母岩の変形が大きく且つ亀裂又は他の破壊現象が生じ、深部坑道における母岩の岩質が異なり、地応力の分布が複雑で、且つ従来の岩の弾塑性の力学的理論が分かるように分析しにくく、このため、深部坑道の構造的不安定性メカリズムを研究する難易度が向上する。 In China, most of the well shafts belong to the shafts with medium and large loose areas, where the bulking force of the host rock is obvious in the shafts with medium loose areas, and the bulking force of the host rock is The deformation is large and cracks or other fracture phenomena occur, the lithology of the host rock in the deep tunnel is different, the distribution of the geological stress is complicated, and it is difficult to analyze the conventional rock elastoplastic mechanics theory. , which increases the difficulty of studying structural instability mechanisms in deep tunnels.

経験に応じて設計された支保手段によって、破砕領域の範囲を正確に位置決めすることができず、深部坑道の安定性を管理しにくく、これにより、深部坑道の保養が非常に困難になる。また、トンネル支保系に作用する母岩の荷重を明確にすることは、各支保部層を設計、施工する前提であり、難点でもある。実際に施工するとき、経験に頼って関連する支保領域層のパラメータを確定する方法では、管理指標は通常変形であり、それは、実質的には、母岩自体の複雑性と施工過程の時空間欠性により、母岩の荷重を直接取得しにくいが、変形を相対的に正確に監視するためである。現在、深部岩坑道の支保設計に対して、従来の方法は、「アンカリング-被覆-噴射-締結-注入」という結合支保方式を採用し、且つアンカーロッド、アンカーケーブル支保のための間隔・行間隔を短縮し、該支保は母岩の接線応力の集中による影響のみを考慮し、掘削後、母岩の強度劣化、せん断応力分布等の要素を考慮せず、初期支保効果が明らかであるが、後期変形が深刻であり、断面収縮率が大きく、このため、深部坑道の構造的不安定性の問題を解決しにくい。深部坑道の構造的不安定性メカリズム、設計が合理的な構造的支保手段を把握するため、深部坑道の初期支保効果は往々して好ましくなく、ある鉱区では、深部坑道の支保コストが高く、且つ再修理率が高く、長時間使用できないまでなり、深部採掘に対して巨大な経済的損失及び安全生産上の隠れた危険性をもたらす。 Due to empirically designed support means, it is not possible to precisely position the extent of the fracture zone and the stability of the deep tunnel is difficult to manage, which makes maintenance of the deep tunnel very difficult. In addition, clarifying the host rock load acting on the tunnel support system is a prerequisite for designing and constructing each support layer, and is also a difficult point. In the method of determining the parameters of the relevant shoring zone layers by experience during actual construction, the control index is usually the deformation, which substantially depends on the complexity of the host rock itself and the spatio-temporal lack of the construction process. It is difficult to obtain host rock loads directly due to its nature, but to monitor deformation relatively accurately. At present, for the support design of deep rock tunnels, the conventional method adopts the combined support method of “anchoring-coating-injection-fastening-injection”, and the spacing and row for anchor rods, anchor cable supports. The interval is shortened, and the shoring only considers the effect of concentration of tangential stress on the host rock. After excavation, the strength deterioration of the host rock, the shear stress distribution, etc. are not taken into account. , the late deformation is serious and the cross-sectional shrinkage is large, so it is difficult to solve the problem of structural instability of deep tunnels. In order to grasp the structural instability mechanism of deep tunnels, the structural support means with reasonable design, the initial support effect of deep tunnels is often unfavorable. The repair rate is high, and it becomes unusable for a long time, which brings huge economic loss and hidden dangers to safety production for deep mining.

本願の目的は、上記従来技術に存在する問題を解決し又は軽減するための採掘坑道母岩の監視及び支保方法を提供することである。 SUMMARY OF THE INVENTION It is an object of the present application to provide a method for monitoring and supporting mining driveway host rocks to overcome or mitigate the problems present in the above-described prior art.

上記目的を実現するために、本願は下記技術的解決手段を提供する。 To achieve the above objectives, the present application provides the following technical solutions.

本願は、以下のステップを含む採掘坑道母岩の監視及び支保方法を提供する。 The present application provides a method of monitoring and supporting a mining tunnel host rock including the following steps.

ステップS10、分散型光ファイバーの監視周波数に応じて、母岩の歪みを持続的に監視し、母岩歪み監視データを得るステップであって、具体的には、予め設定された時間帯において、前記分散型光ファイバーは前記母岩歪みを継続的に監視し、前記分散型光ファイバーの監視周波数を確定し、
前記分散型光ファイバーは、前記監視周波数に応じて、前記母岩歪みを周期的且つ持続的に監視し、前記母岩歪み監視データを得るステップ。
Step S10, a step of continuously monitoring the strain of the mother rock according to the monitoring frequency of the distributed optical fiber to obtain the mother rock strain monitoring data, specifically, in a preset time period, the the distributed optical fiber continuously monitors the host rock distortion, determines a monitoring frequency of the distributed optical fiber,
The distributed optical fiber periodically and continuously monitors the host rock strain according to the monitoring frequency to obtain the host rock strain monitoring data.

ステップS20、前記母岩歪み監視データを補間して得られた母岩歪みデータに基づいて、坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域と坑道の異なる区画における破砕領域の大きさを得るステップであって、具体的には、
前記坑道の径方向、走行方向に沿ってそれぞれ前記母岩歪み監視データを補間し、対応して坑道の径方向、走行方向に沿った母岩歪みデータを得て、
前記坑道の径方向、走行方向に沿った母岩歪みデータに基づいて、対応して前記坑道の異なる位置での荷重負担領域及び前記坑道の異なる区画における破砕領域の大きさを確定するステップ。
Step S20: Based on the host rock distortion data obtained by interpolating the host rock distortion monitoring data, the tunnel is divided into areas, and the load bearing areas at different positions of the tunnel and the crushing areas at different sections of the tunnel. Obtaining the magnitude of, specifically:
Interpolating the host rock strain monitoring data along the radial direction and running direction of the tunnel, respectively, and correspondingly obtaining the host rock strain data along the radial direction and running direction of the tunnel,
Based on the host rock strain data along the radial direction and the direction of travel of the gallery, correspondingly determining the size of the load-bearing areas at different locations of the gallery and the fracture areas at different sections of the gallery.

ステップS30、母岩応力と歪みの関係に応じて、前記母岩歪みデータ、前記坑道の異なる位置での荷重負担領域及び前記坑道の異なる区画における破砕領域の大きさに基づいて、前記母岩の一次支保、二次支保及び補強処理のタイミングと処理方式を確定する。 Step S30, according to the relationship between host rock stress and strain, according to the host rock strain data, the load-bearing areas at different positions of the tunnel and the size of fractured areas at different sections of the tunnel; Determine the timing and method of primary support, secondary support and reinforcement.

(有益な効果) (beneficial effect)

本願では、分散型光ファイバーの監視周波数に応じて、母岩の歪みを持続的に監視し、母岩歪み監視データを得て、母岩歪み監視データを補間して得られた母岩歪みデータに基づいて、坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域と坑道の異なる区画における破砕領域の大きさを得て、そして、母岩応力と歪みの関係に応じて、母岩歪みデータ、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさに基づいて、母岩の一次支保、二次支保及び補強処理のタイミングと処理方式を確定する。 In the present application, host rock strain is continuously monitored according to the monitoring frequency of the distributed optical fiber, host rock strain monitoring data is obtained, and the host rock strain monitoring data is interpolated to obtain host rock strain data. Based on this, the tunnel is divided into areas to obtain the size of the load-bearing area at different positions of the tunnel and the fracture area in different sections of the tunnel, and according to the relationship between host rock stress and strain, the host Based on the rock strain data, the size of the load-bearing areas at different positions in the tunnel and the fracture areas in different sections of the tunnel, the timing and treatment methods of the primary support, secondary support and reinforcement treatment of the host rock are determined.

本願では、分散型光ファイバーの監視周波数に応じて、母岩の歪みを持続的に監視し、各時期の母岩の変形及び力受け状況を適時に把握し、且つ監視するデータに基づいて坑道の一次支保、二次支保及び補強処理タイミングを確定し、異なる安定状態にある母岩をそれぞれ支保処理し、及び採掘過程で破砕度が明らかに増加する領域に対して補強支保を行うことにより、坑道の後期変形問題が解消され、坑道の安定性及び安全性が顕著に向上する。 According to the monitoring frequency of the distributed optical fiber, the present application continuously monitors the distortion of the host rock, timely grasps the deformation of the host rock and the state of receiving force at each time, and the tunnel tunnel based on the monitored data. By determining the timing of primary support, secondary support and reinforcement treatment, supporting the host rocks in different stable states, and reinforcing the areas where the degree of crushing obviously increases during the mining process, The late deformation problem is eliminated, and the stability and safety of the tunnel are significantly improved.

本願によって提供される採掘坑道母岩の監視及び支保方法は、分散型光ファイバーセンシング技術を採用し、分散型光ファイバーのブリルアン周波数シフトと歪みの関係に応じて、坑道の異なる位置及び母岩の異なる深さでの歪みを持続的に監視することにより、データがより正確かつ容易に取得され、且つ光ファイバーセンシングは過酷又は極端な条件下で正常に動作可能であり、採掘坑道の環境による影響が小さい。 The mining tunnel host rock monitoring and supporting method provided by the present application employs distributed optical fiber sensing technology to monitor different locations in the gallery and different depths of the host rock according to the Brillouin frequency shift and strain relationship of the distributed optical fiber. By continuously monitoring strain at depth, data is more accurately and easily obtained, and fiber optic sensing can operate successfully under harsh or extreme conditions and is less affected by the mine shaft environment.

本願によって提供される採掘坑道母岩の監視及び支保方法では、分散型光ファイバーが監視して得られた母岩歪みデータを補間処理し、且つ補間処理した後の母岩歪みデータに基づいて坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを得る。従来のデータ処理方法に比べて、本方法はより簡便で、正確であり、且つ可視化して得られた画像が坑道の各領域の母岩の破砕状況を直感的、迅速に観察することができる。 A method for monitoring and supporting a mining tunnel host rock provided by the present application comprises: interpolating host rock distortion data obtained by monitoring distributed optical fibers; A region segmentation is performed on it to obtain the size of the load-bearing regions at different locations in the gallery and the fracture regions in different sections of the gallery. Compared to conventional data processing methods, this method is simpler and more accurate, and the visualized images can be used to intuitively and quickly observe the state of rock fragmentation in each area of the tunnel. .

本願によって提供される採掘坑道母岩の監視及び支保方法では、分散型光ファイバーが持続的に監視して得られた母岩歪みデータに基づいて、一次支保と二次支保の最適な支保のための具体的なタイミングを確定し、確定された支保タイミングに応じて支保を行い、破砕領域の変形状況及び塑性領域の応力緩和状況を合理的、効果的に制御し、支保系の荷重負担能力が向上する。 A mining tunnel host rock monitoring and supporting method provided by the present application provides optimal support for primary and secondary support based on host rock strain data obtained from continuous distributed fiber optic monitoring. Specific timing is determined, support is provided according to the determined support timing, and the deformation state of the crushing area and the stress relaxation state of the plastic area are controlled rationally and effectively, and the load-bearing capacity of the support system is improved. do.

本願は、分散型光ファイバーセンシング技術によって、支保が完了した坑道母岩の歪み及び応力を周期的且つ持続的に監視し、採掘の影響による坑道における破砕領域の変化状況及び力受けて変化する母岩の状況を正確に把握し、且つ破砕領域の拡張が大きな領域に対して対応する補強支保を行い、及び応力が大きすぎる領域を減圧処理し、採掘応力によって事故が多発する坑道に大きな安全保障を提供する。 The present application uses distributed optical fiber sensing technology to periodically and continuously monitor the strain and stress of the tunnel host rock that has been supported, and to monitor the changes in the fractured area in the tunnel due to the impact of mining and the force that changes the host rock. Accurately grasp the situation, provide reinforcement support for areas with large expansion of the crushing area, and depressurize areas with excessive stress, providing great security for tunnels where accidents occur frequently due to mining stress. offer.

本願によって提供される採掘坑道母岩の監視及び支保方法は、深部坑道母岩の破砕状況に応じてそれぞれ支保を行い、これにより、小破砕領域が低強度で支保され、大破砕領域が高強度で支保されることを実現し、設定された監視周波数に応じて母岩の歪み、応力を持続的に監視することにより、掘削又は採掘過程において母岩の破砕拡張が大きな領域を補強支保し、且つ破砕領域の拡張が大きな領域を対応して補強支保し、且つ母岩応力が大きすぎる領域を減圧処理し、これにより、坑道の後期変形が回避され、採掘応力によって事故が多発する坑道に大きな安全保障を提供する。従来の経験に応じて設計された支保手段と比較して、本願によって提供される采坑道母岩の監視及び支保方法は、より科学的で、正確であり、坑道全体の支保効果が高まり、鉱区の深部坑道の支保コストが削減され、支保再修理率が低下し、安全性が向上し、良好な社会効果及び経済的利益を有する。 The mining tunnel host rock monitoring and supporting method provided by the present application provides respective support according to the crushing condition of the deep tunnel host rock, whereby the small crushing areas are supported with low strength and the large crushing areas are supported with high strength. By continuously monitoring the strain and stress of the mother rock according to the set monitoring frequency, the area where the crushing expansion of the mother rock is large during the excavation or mining process is reinforced and supported, In addition, the area where the expansion of the crushed area is large is correspondingly reinforced and supported, and the area where the host rock stress is too large is depressurized, so as to avoid the later deformation of the tunnel, and the tunnel where the mining stress frequently causes accidents. provide security. Compared with the conventional empirically designed support means, the method of monitoring and supporting the host rock of the tunnel wall provided by the present application is more scientific and accurate, the effect of supporting the entire tunnel is enhanced, and the mining area is It reduces the support cost of deep tunnels, lowers the support repair rate, improves safety, and has good social and economic benefits.

本願のフロー概略図である。1 is a flow schematic diagram of the present application; FIG. 本願の技術論理図である。1 is a technical logic diagram of the present application; 本願の分散型光ファイバーの坑道での配置方式の断面図である。FIG. 2 is a cross-sectional view of the dispersive optical fiber of the present application in a tunnel arrangement scheme; 本願の坑道の一具体的な位置での深さに伴う母岩歪みの分布図である。FIG. 4 is a distribution map of host rock strain with depth at one specific position of the tunnel of the present application. 本願の岩層の深さに伴う母岩応力の変化曲線の概略図である。1 is a schematic diagram of a change curve of host rock stress with depth of a rock formation of the present application; FIG. 本願の二次支保のタイミングを確定する概略図である。FIG. 4 is a schematic diagram of determining the timing of the secondary shoring of the present application; 本願の坑道の異なる区画における破砕領域の大きさの分布上面図である。FIG. 4 is a top view of the size distribution of fractured areas in different sections of the gallery of the present application; 本願の一次支保と二次支保を行った母岩の概略図である。It is the schematic of the host rock which performed the primary shoring and the secondary shoring of this application. 本願の採掘過程における分散型光ファイバーの概略図である。1 is a schematic diagram of a distributed optical fiber in the mining process of the present application; FIG.

図1は本願のいくつかの実施例によって提供される採掘坑道母岩の監視及び支保方法のフロー概略図である。図2は本願のいくつかの実施例によって提供される採掘坑道母岩の監視及び支保方法の詳しいフローチャートである。図1、2に示すように、該方法は下記ステップを含む。 FIG. 1 is a flow schematic diagram of a mining driveway host rock monitoring and supporting method provided by some embodiments of the present application. FIG. 2 is a detailed flowchart of a mining driveway host rock monitoring and supporting method provided by some embodiments of the present application. As shown in FIGS. 1 and 2, the method includes the following steps.

ステップS10、分散型光ファイバーの監視周波数に応じて、母岩の歪みを持続的に監視し、母岩歪み監視データを得る。 Step S10: continuously monitor the strain of the host rock according to the monitoring frequency of the distributed optical fiber to obtain the strain monitoring data of the host rock;

本願の実施例では、採掘坑道の掘削又は採掘過程で、分散型光ファイバー29を配置することは、具体的には以下のとおりである。 In the embodiments of the present application, the distributive optical fiber 29 is deployed during the excavation or mining process of the mine shaft, specifically as follows.

図3に示すように、坑道1の幅、高さ及び形状に応じて、分散型光ファイバー29の間隔・行間隔を設定し、設定された間隔・行間隔に応じて分散型光ファイバー29を配置する。分散型光ファイバー29の間隔・行間隔は以下のとおりである。 As shown in FIG. 3, according to the width, height and shape of the tunnel 1, the spacing and row spacing of the dispersed optical fibers 29 are set, and the dispersed optical fibers 29 are arranged according to the set spacing and row spacing. . The intervals and row intervals of the distributed optical fibers 29 are as follows.

1)隣接する分散型光ファイバー29の坑道1の径方向に沿った間隔が20-50mであり、1つの坑道1において、地質生産条件の差異が明らかな区間の長さが20mより大きい場合、該区間における坑道1において、少なくとも1つの分散型光ファイバー29を追加して配置する必要がある。 1) If the distance along the radial direction of the tunnel 1 between adjacent distributed optical fibers 29 is 20-50 m, and the length of the section where the difference in geological production conditions is obvious in one tunnel 1 is greater than 20 m, At least one distributed optical fiber 29 has to be additionally arranged in the tunnel 1 in the section.

2)坑道1の頂部での分散型光ファイバー29の配置数が3つ以上であり、断面の両側と底板の配置数が2つ以上である。 2) The number of dispersive optical fibers 29 arranged at the top of tunnel 1 is 3 or more, and the number of arrangements on both sides of the cross section and on the bottom plate is 2 or more.

本願の実施例では、坑道1の断面天板での分散型光ファイバー29の配置数が3つであり、断面の両側と底板での分散型光ファイバー29の配置数が2つであり、坑道1の径方向に沿って隣接する分散型光ファイバー29の間隔が50mである。 In the embodiment of the present application, the number of distributed optical fibers 29 arranged on the cross-sectional top plate of the tunnel 1 is three, and the number of distributed optical fibers 29 arranged on both sides of the cross section and on the bottom plate is two. The interval between the radially adjacent distributed optical fibers 29 is 50 m.

分散型光ファイバー29の配置方法は、確定された分散型光ファイバー29の間隔・行間隔に応じて、監視範囲内に坑道削孔を設け、坑道削孔内に分散型光ファイバー29を配置し、且つ削孔に対してグラウト注入と孔封止処理を行うことである。 The method of arranging the distributed optical fibers 29 is as follows. It is to perform grouting and hole sealing treatment on the hole.

前記坑道削孔の設計及び施工の技術要求は以下のとおりである。 The technical requirements for the design and construction of the tunnel are as follows.

1)地下坑道削孔の孔径を50mm未満にせず、坑道1の径方向と90°をなし、その固定焦点の傾斜を1°を超えないようにする。 1) The hole diameter of underground tunnel drilling should not be less than 50 mm, the radial direction of tunnel 1 should be 90°, and the inclination of the fixed focus should not exceed 1°.

2)削孔を形成した後、地下圧縮空気を利用して削孔を一回パージ処理し、且つ清水で孔洗浄処理を行う。 2) After drilling, use underground compressed air to purge the drilled hole once, and clean the hole with fresh water.

3)分散型光ファイバー29を取り付けた後に、孔封止及びグラウト注入を適時に行い、孔封止長さを1mより大きくし、グラウト注入が終了した後、グラウト注入管を孔内に保持する。 3) After installing the distributed optical fiber 29, perform hole sealing and grouting in time, make the hole sealing length greater than 1 m, and hold the grouting pipe in the hole after grouting is completed.

分散型光ファイバー29を配置するとき、分散型光ファイバー29に対してグラウト注入処理を行うことにより、分散型光ファイバー29と母岩を一体に貼り合わせ、分散型光ファイバー29が生じる歪みを母岩の歪みに一致させ、即ち、分散型光ファイバー29の歪み値は所在位置での母岩の歪み値に等同する。 When the dispersive optical fiber 29 is arranged, grouting is applied to the dispersive optical fiber 29, so that the dispersive optical fiber 29 and the mother rock are bonded together, and the distortion caused by the dispersed optical fiber 29 is converted into the distortion of the mother rock. Match, ie, the strain value of the dispersive optical fiber 29 equals the strain value of the host rock at the location.

採掘坑道を掘削するとき、分散型光ファイバー29は掘削作業面から150m離れる前の位置に配置され、採掘中に、作業面での採掘摂動の影響を受ける坑道に分散型光ファイバー29が配置されない場合、分散型光ファイバー29は、採掘作業面14の前に300mから離れる位置に配置され、且つ全ての分散型光ファイバー29は坑道が採掘応力の影響を受ける前に配置されるべきであり、また、作業面の採掘摂動の影響を受ける坑道には、掘削中に分散型光ファイバー29が配置される場合、掘削時に配置される分散型光ファイバー29を使用して坑道母岩15を継続的に監視する。 When drilling a mine shaft, the distributed optical fiber 29 is placed at a position before 150 m away from the drilling work surface, and if during mining the distributed optical fiber 29 is not placed in a shaft subject to mining perturbations in the work surface, Distributed optical fibers 29 should be placed at a distance of 300 m in front of the mining work surface 14, and all distributed optical fibers 29 should be placed before the tunnel is subjected to mining stress, and the work surface If distributed optical fibers 29 are deployed during drilling in a shaft subject to mining perturbations, the shaft host rock 15 is continuously monitored using the distributed optical fibers 29 deployed during drilling.

分散型光ファイバー29を配置するとき、分散型光ファイバー29を坑道側部の原岩応力領域に貫入すべきであり、監視深さが一般的に5hより大きく、ここで、hは坑道の高さを示す。監視結果によると、分散型光ファイバー29が母岩塑性領域6に進まない又は母岩弾性領域7に深入する長さが5メートル未満である場合、該領域での分散型光ファイバー29の深さを大きくする。 When deploying the distributed optical fiber 29, the distributed optical fiber 29 should penetrate into the source rock stress area on the side of the tunnel, and the monitoring depth is generally greater than 5h, where h is the height of the tunnel. show. According to the monitoring results, if the dispersive optical fiber 29 does not enter the host rock plastic region 6 or the depth of penetration into the host rock elastic region 7 is less than 5 meters, the depth of the dispersed optical fiber 29 in this region should be increased. do.

いくつかの任意選択的な実施例では、分散型光ファイバー29を配置した後、坑道母岩15を周期的且つ持続的に監視するために、分散型光ファイバー29の監視周波数を確定する必要がある。具体的には、予め設定された時間帯において、分散型光ファイバー29は、母岩歪みを継続的に監視し、分散型光ファイバー29の監視周波数を確定し、分散型光ファイバー29は、監視周波数に応じて、母岩歪みを周期的且つ持続的に監視し、前記母岩歪み監視データを得る。 In some optional embodiments, after the distributed optical fibers 29 are deployed, the monitoring frequency of the distributed optical fibers 29 needs to be established in order to periodically and continuously monitor the tunnel host rock 15 . Specifically, during a preset time period, the distributed optical fiber 29 continuously monitors the host rock distortion, determines the monitoring frequency of the distributed optical fiber 29, and the distributed optical fiber 29 operates according to the monitoring frequency. to periodically and continuously monitor the host rock strain to obtain the host rock strain monitoring data.

本願の実施例では、分散型光ファイバー29の監視周波数とは、分散型光ファイバー29の監視周期を指し、即ち、二回の母岩歪みデータの収集時間間隔であり、分散型光ファイバー29の監視周波数は、母岩歪み値の大きさに応じて確定され、詳しく説明すると、分散型光ファイバー29を配置した後、予め設定された時間帯において、分散型光ファイバー29は母岩歪み値を継続的に監視し、母岩歪み値が大きく、母岩の運動が活躍する領域に対して、分散型光ファイバー29の監視周波数を増加させ、設定された監視周波数に応じて母岩歪みを周期的且つ持続的に監視する。 In the embodiment of the present application, the monitoring frequency of the distributed optical fiber 29 refers to the monitoring period of the distributed optical fiber 29, that is, the time interval for collecting two host rock distortion data, and the monitoring frequency of the distributed optical fiber 29 is , is determined according to the magnitude of the host rock strain value. More specifically, after the distributed optical fiber 29 is installed, the dispersed optical fiber 29 continuously monitors the host rock strain value during a preset time period. , the host rock strain value is large and the host rock movement is active, the monitoring frequency of the distributed optical fiber 29 is increased, and the host rock strain is periodically and continuously monitored according to the set monitoring frequency. do.

具体的な一例において、母岩歪みの経時性を考慮すると、分散型光ファイバー29が監視した1日内の母岩歪み値に基づいて、分散型光ファイバー29の監視周波数を確定し、つまり、1日内の母岩歪み値が500μεより大きい場合、分散型光ファイバー29の監視周波数は1回/d(毎日1回)であり、1日内の母岩歪み値が100με-500μεである場合、分散型光ファイバー29の監視周波数は1回/2d(2日ごとに1回)であり、1日内の母岩歪み値が100με未満である場合、分散型光ファイバー29の監視周波数は(1-2)回/14d(14日ごとに1回か2回監視する)であり、下記表に示すとおりである。 In a specific example, considering the time course of host rock strain, the monitoring frequency of the dispersed optical fiber 29 is determined based on the host rock strain value monitored by the dispersed optical fiber 29 within a day. When the host rock strain value is greater than 500 με, the monitoring frequency of the dispersed optical fiber 29 is once/d (once a day), and when the host rock strain value within a day is 100 με-500 με, The monitoring frequency is 1/2d (once every 2 days), and when the host rock distortion value within a day is less than 100 με, the monitoring frequency of the distributed optical fiber 29 is (1-2) times/14d (14 monitoring once or twice per day), as shown in the table below.

Figure 2023516230000002
Figure 2023516230000002

設定された監視周波数に応じて、坑道の異なる位置での母岩破砕状況を持続的に監視する。 According to the set monitoring frequency, the host rock crushing condition is continuously monitored at different positions in the tunnel.

本願の実施例では、分散型光ファイバー29は、ブリルアン効果を有するセンシング分散型光ファイバー29を採用し、該分散型光ファイバー29は、環境温度及び自体の歪みの変化を反映することができ、採鉱坑道母岩15の温度が一定に傾向するため、本願では、温度の影響を無視し、デフォルトとして、ブリルアン周波数シフトの変更量は分散型光ファイバー29の歪みによって引き起こされる。 In the embodiment of the present application, the distributed optical fiber 29 adopts a sensing distributed optical fiber 29 with Brillouin effect, which can reflect the change of environmental temperature and its own strain, Since the temperature of the rock 15 tends to be constant, we ignore temperature effects and, as a default, the amount of change in Brillouin frequency shift is caused by the strain of the dispersive optical fiber 29 .

分散型光ファイバー29のセンシング技術に基づき、ブリルアン周波数シフトと歪みの関係に応じて、 Based on distributed optical fiber 29 sensing technology, depending on the relationship between Brillouin frequency shift and distortion,

Figure 2023516230000003
上記式で母岩歪み監視データを算出する。
Figure 2023516230000003
The host rock strain monitoring data is calculated using the above formula.

式中において、vB(ε)は、歪みがεである時のブリルアン周波数の周波数シフト量を示し、vB(0)は歪みが0である時のブリルアン周波数の周波数シフト量を示し、

Figure 2023516230000004
は比例係数を示し、値が約493MHzを取り、εは光ファイバー/母岩の歪み値を示し、即ち、母岩歪み監視データである。 In the formula, vB(ε) indicates the frequency shift amount of the Brillouin frequency when the strain is ε, vB(0) indicates the frequency shift amount of the Brillouin frequency when the strain is 0,
Figure 2023516230000004
denotes a proportionality coefficient and takes a value of about 493 MHz, and ε denotes an optical fiber/host rock strain value, ie, host rock strain monitoring data.

本願の実施例では、分散型光ファイバーセンシング技術を採用し、分散型光ファイバーのブリルアン周波数シフトと歪みの関係に応じて、坑道の異なる位置及び母岩の異なる深さでの歪みを持続的に監視することにより、データがより正確かつ容易に取得され、且つ光ファイバーセンシングは過酷又は極端な条件下で正常に動作可能であり、採掘坑道の環境による影響が小さい。 Embodiments of the present application employ distributed optical fiber sensing technology to continuously monitor the strain at different locations in the tunnel and at different depths in the host rock according to the relationship between the Brillouin frequency shift and the strain of the distributed optical fiber. Thereby, data is obtained more accurately and easily, and fiber optic sensing can operate normally under harsh or extreme conditions and is less affected by the mine shaft environment.

ステップS20、前記母岩歪み監視データを補間して得られた母岩歪みデータに基づいて、坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを得る。 Step S20, according to the host rock strain data obtained by interpolating the host rock strain monitoring data, the tunnel is divided into regions, and the load-bearing regions at different positions of the tunnel and the crushing regions at different sections of the tunnel. get the size of

分散型光ファイバー29が母岩歪み監視データを取得した後に、補間法に基づき、母岩歪み監視データを処理し、母岩歪みデータを取得する。 After the distributed optical fiber 29 acquires the host rock strain monitoring data, the host rock strain monitoring data is processed based on the interpolation method to acquire the host rock strain data.

具体的な一例において、補間法に基づき、母岩歪み監視データを処理し、具体的には、MATLAB(登録商標)プログラミング:vq=griddata(x,y,z,v,xq,yq,zq,method)によって母岩歪み監視データを補間処理し、母岩歪みデータを取得する。補間方式として、‘Linear’、‘Nearest’、‘Natural’、‘Cubic’又は‘V4’のうちのいずれかを選択可能であることを理解可能である。 In one specific example, the host rock strain monitoring data is processed based on an interpolation method, specifically MATLAB programming: vq=griddata(x, y, z, v, xq, yq, zq, method) to interpolate the host rock strain monitoring data to obtain the host rock strain data. It can be understood that one of 'Linear', 'Nearest', 'Natural', 'Cubic' or 'V4' can be selected as the interpolation method.

いくつかの任意選択的な実施例では、母岩歪み監視データを補間処理することは、具体的には、坑道の径方向、走行方向に沿ってそれぞれ母岩歪み監視データを補間し、対応して坑道の径方向、走行方向に沿った母岩歪みデータを取得するということである。 In some optional embodiments, interpolating the host rock strain monitoring data specifically interpolates the host rock strain monitoring data along the radial direction and the running direction of the tunnel, respectively, and correspondingly: It is to acquire the wall rock strain data along the radial direction and the running direction of the tunnel.

坑道の径方向、走行方向に沿った母岩歪みデータに基づいて、対応して坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを確定する。 Based on the host rock strain data along the radial direction of the tunnel, the size of the fracture area in different sections of the tunnel and the load-bearing areas at different locations of the tunnel are correspondingly determined.

具体的な一例において、坑道の走行方向、坑道の径方向に沿った母岩歪みデータに対して画像を可視化処理し、可視化機能によって坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを直感的に取得する。 In a specific example, images are visualized for the host rock distortion data along the running direction of the tunnel and the radial direction of the tunnel. Get the size of a region intuitively.

さらに、坑道の異なる区画における破砕領域の大きさにより、走行方向に沿った坑道は、小破砕領域区画23、中程度破砕領域区画24、大破砕領域区画25の3つの区画に分割され、図7に示すように、その分割標準として、LP≦40cmである場合、小破砕領域区画23とし、40cm<LP≦150cmである場合、中程度破砕領域区画24とし、LP>150cmである場合、大破砕領域区画25とし、ここで、LPは破砕領域の大きさであり、即ち、坑道母岩15の緩んだ領域の厚さである。 Furthermore, according to the size of the crushing area in different sections of the tunnel, the tunnel along the running direction is divided into three sections: a small crushing area section 23, a medium crushing area section 24, and a large crushing area section 25. As shown in , as the division standard, when LP ≤ 40 cm, it is a small crushing region section 23, when 40 cm < LP ≤ 150 cm, it is a medium crushing region section 24, and when LP > 150 cm, large crushing Let area division 25, where LP is the size of the fractured area, ie the thickness of the loosened area of the tunnel host rock 15;

坑道の異なる位置での荷重負担領域に基づいて、径方向に沿った坑道母岩15は、破砕領域、塑性領域6、弾性領域7に分割され、図4に示すとおりである。説明しておきたいのは、本願の実施例では、破砕領域は坑道母岩15の緩んだ領域であり、分散型光ファイバー29が測定した歪み値に応じて確定され、坑道付近の破壊部の岩体は緩んだ領域の厚さを有し、膨張、変形の特性を持ち、緩んだ領域範囲内の破壊岩体は、ヒンジ接続によって荷重を負担し、荷重負担能力が非常に小さいという点である。分散型光ファイバー29が持続的に監視した結果、坑道の表面から深部まで、母岩の歪み変化量にバラツキが存在し、即ち、緩んだ領域部分(破砕領域)は主に伸縮変形を呈し、塑性領域6、主に荷重負担領域は圧縮変形を呈する。 Based on the load-bearing areas at different positions of the gallery, the gallery rock 15 along the radial direction is divided into a fracture zone, a plastic zone 6 and an elastic zone 7, as shown in FIG. It should be noted that in the present embodiment, the fracture area is the loosened area of the tunnel host rock 15, which is determined according to the strain value measured by the distributed optical fiber 29, and the fractured rock near the tunnel. The body has the thickness of the loose area, and has the characteristics of expansion and deformation, and the fractured rock body within the loose area bears the load through the hinge connection, and the load-bearing capacity is very small. . As a result of continuous monitoring by the distributed optical fiber 29, there is variation in the amount of strain change in the host rock from the surface to the deep part of the tunnel. Region 6, mainly the load-bearing region, exhibits compressive deformation.

いくつかの任意選択的な実施例では、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを確定した後に、さらに、坑道の異なる区画における破砕領域の長さ及び位置を自動的にマーキングすることと、破砕領域の外側境界26と塑性領域6の外側境界から坑道までの距離を自動的にマーキングし、且つマーキングされた結果を可視化方式でグラフィックに直感的に表示することと、を含む。 In some optional embodiments, after determining the size of the load-bearing area at different locations in the gallery and the fracture area in different sections of the gallery, the length and location of the fracture area in the different sections of the gallery are further determined. and the distance from the outer boundary 26 of the fracture zone and the outer boundary of the plastic zone 6 to the tunnel, and graphically and intuitively displaying the marked results in a visualization manner. including

分散型光ファイバー29が監視して得られた母岩歪みデータを補間処理し、且つ補間処理した母岩歪みデータに基づいて、坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域及び坑道の異なる区画における破砕領域の大きさを得る。従来のデータ処理方法に比べて、本方法はより簡便で、正確であり、且つ可視化して得られた画像が坑道の各領域の母岩の破砕状況を直感的、迅速に観察することができる。 The host rock distortion data obtained by monitoring by the distributed optical fiber 29 is interpolated, and based on the interpolated host rock distortion data, the tunnel is divided into areas, and the load bearing areas at different positions of the tunnel. and obtain the sizes of fractured areas in different sections of the gallery. Compared to conventional data processing methods, this method is simpler and more accurate, and the visualized images can be used to intuitively and quickly observe the state of rock fragmentation in each area of the tunnel. .

ステップS30、母岩応力と歪みの関係に応じて、前記母岩歪みデータ、前記坑道の異なる位置での荷重負担領域及び前記坑道の異なる区画における破砕領域の大きさに基づいて、前記母岩の一次支保、二次支保及び補強処理のタイミングと処理方式を確定する。 Step S30, according to the relationship between host rock stress and strain, according to the host rock strain data, the load-bearing areas at different positions of the tunnel and the size of fractured areas at different sections of the tunnel; Determine the timing and method of primary support, secondary support and reinforcement.

採掘坑道掘削過程において、母岩の破砕による崩落、崩壊等の事故を防止するために、母岩に対して先導支保処理を行う必要があり、先導支保は、具体的には、坑道母岩15に対して先導小導管を採用してグラウト注入補強を行い、地質条件が過酷で、土質が緩んだ領域に対して、先導小導管と先導管棚の共同支保方法を採用し、母岩の安定性を向上させる。 In the mining tunnel excavation process, it is necessary to perform leading support treatment on the host rock in order to prevent accidents such as collapse and collapse due to crushing of the host rock. For areas with severe geological conditions and loose soil, the joint support method of the leading small conduit and the leading conduit shelf is used to stabilize the host rock. improve sexuality.

いくつかの任意選択的な実施例では、分散型光ファイバー29が持続的に監視して得られた母岩歪みデータに基づいて、一次支保のタイミング及び処理方式を確定する。 In some optional embodiments, host rock distortion data obtained from continuous monitoring of distributed optical fiber 29 is used to determine the timing and treatment of primary shoring.

採掘坑道掘削後、母岩応力が再分布し、採掘坑道での切羽面の移動に伴い、母岩から切羽面まで、母岩の変形速度が上がり、切羽面から一定の距離離れると、母岩が坑道の内部に拡張することなく変形し、破砕領域の変形が安定段階に達することを示す。分散型光ファイバー29が持続的に監視して得られた母岩歪みデータに基づいて、母岩の変形が安定状態になる傾向があるか否かを判断し、具体的には、分散型光ファイバー29が持続的に監視して得られた母岩歪みデータが200με/d時、母岩の変形が安定状態になる傾向があると考えられる。本願の実施例では、母岩の変形が安定状態になる傾向があるタイミングを一次支保に最適な支保タイミングとする。 After the excavation of the tunnel, the host rock stress is redistributed, and along with the movement of the face face in the tunnel, the deformation speed of the host rock increases from the host rock to the face face. deforms without extending into the tunnel, indicating that the deformation of the fractured region reaches a stable stage. Based on the host rock distortion data obtained by continuous monitoring by the distributed optical fiber 29, it is determined whether the deformation of the host rock tends to stabilize. When the host rock strain data obtained by continuous monitoring is 200 με/d, it is considered that the deformation of the host rock tends to reach a stable state. In the embodiments of the present application, the timing at which the deformation of the host rock tends to reach a stable state is the optimum timing for the primary support.

母岩破砕領域の強度が弱いため、母岩の破砕による天板のケービングが発生しやすく、本願の実施例では、確定された一次支保のタイミングに応じて、採用される一次支保処理方式は、図8に示すように、アンカーロッド22を使用して母岩破砕領域を支保し、母岩破砕領域で人工耐圧性アーチを構築するということである。母岩とアンカーロッドの相互作用により、母岩破砕領域で人工耐圧性アーチを構築し、破砕領域層の母岩の安定性及び荷重負担能力を向上させる。 Since the strength of the host rock crushing area is weak, caving of the top plate is likely to occur due to the crushing of the host rock. As shown in FIG. 8, anchor rods 22 are used to support the host rock fracture area to construct an artificial pressure-resistant arch in the host rock fracture area. The interaction of the host rock and the anchor rod builds an artificial pressure-resistant arch in the fractured zone of the host rock to improve the stability and load-bearing capacity of the host rock in the fractured zone layer.

一次支保において、使用されるアンカーロッド22の具体的なパラメータは以下のとおりである。 The specific parameters of the anchor rods 22 used in primary support are as follows.

a) アンカーロッド22の長さは以下のとおりである。

Figure 2023516230000005
a) The length of the anchor rod 22 is:
Figure 2023516230000005

式中において、Lはアンカーロッド22の長さ(m)であり、LPは坑道母岩の緩んだ領域の厚さ(m)であり、L1はアンカーロッド22を緩んだ領域以外の安定母岩にアンカーする深さ(m)であり、L2は坑道でのアンカーロッド22の露出長さ(m)である。 In the formula, L is the length (m) of the anchor rod 22, LP is the thickness (m) of the loosened region of the tunnel host rock, and L1 is the stable host rock other than the region where the anchor rod 22 is loosened. L2 is the exposed length (m) of the anchor rod 22 in the tunnel.

b) アンカーロッド22の間隔・行間隔を等しくする場合、アンカーロッド22のアンカー力と間隔・行間隔は以下のとおりである。

Figure 2023516230000006
b) When the spacing and line spacing of the anchor rods 22 are made equal, the anchoring force of the anchor rods 22 and the spacing and line spacing are as follows.
Figure 2023516230000006

式中において、Dはアンカーロッド22の間隔・行間隔(m)であり、Qminはアンカーロッド22の最小アンカー力(kN)であり、γは母岩の重力密度(kN/m3)である。 In the formula, D is the spacing and row spacing (m) of the anchor rods 22, Qmin is the minimum anchoring force (kN) of the anchor rods 22, and γ is the gravitational density of the host rock (kN/m3).

c) アンカーロッド22の直径は以下のとおりである。

Figure 2023516230000007
c) The diameter of the anchor rod 22 is:
Figure 2023516230000007

式中において、dはアンカーロッド22の直径(mm)であり、Qはアンカーロッド22のアンカー力(kN)であり、σtはアンカーロッド22の引張強度である。 In the formula, d is the diameter (mm) of the anchor rod 22, Q is the anchoring force (kN) of the anchor rod 22, and σt is the tensile strength of the anchor rod 22.

いくつかの任意選択的な実施例では、二次支保のタイミングを確定する前に、まず、坑道母岩15の岩質に基づいて、対応する母岩応力-歪み曲線を確定し、種類、岩質の異なる母岩は、歪みが同一の状況で対応する応力値が異なり、母岩応力-歪み曲線も異なることを理解可能である。 In some optional embodiments, prior to determining the timing of secondary support, first determine the corresponding host rock stress-strain curve based on the lithology of the tunnel host rock 15, type, rock It can be understood that host rocks of different quality correspond to different stress values under the same strain conditions, and the host rock stress-strain curves are also different.

母岩歪みデータに基づいて、母岩応力と歪みの関係に応じて、

Figure 2023516230000008
母岩応力を算出する。 Based on host rock strain data, depending on the relationship between host rock stress and strain,
Figure 2023516230000008
Calculate the host rock stress.

式中において、σは母岩応力値(N/m2)であり、εは母岩歪み値であり、Eは弾性模量(Pa)であり、Eは異なる母岩深さの岩層のタイプに応じて確定される。 where σ is the host rock stress value (N/m2), ε is the host rock strain value, E is the elastic modulus (Pa), and E is the type of rock formation at different host rock depths. determined accordingly.

いくつかの任意選択的な実施例では、母岩応力を算出した後に、さらに、母岩応力を可視化し、岩層の深さに伴う母岩応力の変化曲線(即ち、岩層の深さに伴う母岩応力の変化状況)を得ることを含み、図5に示すように、得られた岩層の深さに伴う母岩応力の変化曲線において、1.5倍の母岩原岩応力より大きな母岩応力を有する対応する領域を、母岩重要荷重負担領域8とし、それにより、母岩重要荷重負担領域8の位置及び厚さを確定する。説明しておきたいのは、重要荷重負担領域8は、坑道におけるせん断応力集中領域であり、且つ大部分の鉱山の圧力を負担し、母岩の長期的な安定性に対して重要荷重負担作用を果たす領域でもあり、該領域は、荷重負担構造全体のバランスと関係付けられ、せん断破壊が発生すると、主な母岩荷重負担領域が内向きに移動するという点である。 In some optional embodiments, after calculating the host rock stress, the host rock stress is further visualized and a change curve of the host rock stress with the depth of the rock formation (i.e., the host rock stress with the depth of the rock formation). As shown in FIG. 5, the change curve of the host rock stress with the depth of the rock layer obtained shows that the host rock stress is greater than the host rock source rock stress of 1.5 times is defined as the host rock critical load bearing region 8, thereby determining the location and thickness of the host rock critical load bearing region 8. It should be noted that the critical load-bearing area 8 is the area of shear stress concentration in the tunnel, and bears most of the mine pressure, and has a critical load-bearing effect on the long-term stability of the host rock. , which is related to the balance of the overall load-bearing structure, in that when shear failure occurs, the predominant wall rock load-bearing region shifts inward.

図6は本願のいくつかの実施例によって提供される二次支保のタイミングを確定する概略図である。図6に示すように、母岩応力に応じて、母岩応力-歪み曲線に基づき、二次支保のタイミングを確定し、具体的には、母岩応力-歪み曲線に基づいて、第1ポイント(Bポイント)と第2ポイント(Cポイント)の間の区間が母岩の塑性変形段階であり、母岩の塑性変形段階において、母岩の歪みが第1歪み閾値と第2歪み閾値の間にあることに応答して、坑道掘削過程における二次支保のタイミングを確定する。 FIG. 6 is a schematic diagram of determining the timing of secondary shoring provided by some embodiments of the present application. As shown in FIG. 6, according to the host rock stress, the timing of the secondary support is determined based on the host rock stress-strain curve. Specifically, based on the host rock stress-strain curve, the first point The section between (B point) and the second point (C point) is the plastic deformation stage of the host rock, and the strain of the host rock is between the first strain threshold and the second strain threshold to determine the timing of the secondary support during the tunnel excavation process.

ここで、第1歪み閾値は、母岩の塑性変形段階において、第1ポイント(Bポイント)に対応する歪み値と第2ポイント(Cポイント)に対応する歪み値の差の2分の1である。 Here, the first strain threshold is half the difference between the strain value corresponding to the first point (B point) and the strain value corresponding to the second point (C point) in the plastic deformation stage of the host rock. be.

第2歪み閾値は、母岩の塑性変形段階において、第1ポイント(Bポイント)に対応する歪み値と第2ポイント(Cポイント)に対応する歪み値の差の4分の3である。 The second strain threshold is three quarters of the difference between the strain value corresponding to the first point (B point) and the strain value corresponding to the second point (C point) at the stage of plastic deformation of the host rock.

第1ポイントは、母岩が塑性変形を開始する時のポイントであり、第2ポイントは、母岩が降状極限強度に達する時に対応するポイントである。 The first point is the point when the host rock begins to undergo plastic deformation and the second point is the point corresponding to when the host rock reaches its ultimate yield strength.

坑道掘削過程において、母岩の歪みが第1歪み閾値と第2歪み閾値の間にある時を、二次支保に最適な支保タイミングとすることにより、塑性領域6における母岩応力が緩和するとともに、塑性領域6の母岩が依然として一定の自己支保能力を有し、塑性領域6の母岩の自己支保力と二次支保の共同作用により、支保効果が高まる。 In the tunnel excavation process, by setting the time when the strain of the host rock is between the first strain threshold and the second strain threshold as the optimal support timing for the secondary support, the host rock stress in the plastic region 6 is relaxed and , the host rock in the plastic zone 6 still has a certain self-supporting capacity, and the joint action of the self-supporting capacity of the host rock in the plastic zone 6 and the secondary support enhances the supporting effect.

二次支保のタイミング、坑道の異なる区画における破砕領域の大きさ及び母岩重要荷重負担領域の8域範囲に応じて、異なる領域の母岩に対して異なる二次支保処理を行うことは、具体的には、以下のとおりである。 Depending on the timing of secondary support, the size of the crushed area in different sections of the tunnel, and the eight areas of the host rock critical load bearing area, different secondary support treatments can be applied to the host rock in different areas. Specifically, it is as follows.

1)最適な支保タイミングに達するとき、まず、塑性領域の母岩の岩質を判断し、塑性領域の母岩の弾性と脆性が高い場合、塑性領域を事前に減圧処理することにより、母岩応力が大きすぎ、且つ蓄積したエネルギーが地圧に衝撃を与えることを防止する。 1) When the optimal support timing is reached, first determine the lithology of the host rock in the plastic region. To prevent the stress from being too large and the stored energy from impacting the ground pressure.

具体的な減圧処理方法は以下のとおりであり、即ち、母岩の塑性領域の応力が大きすぎる領域に減圧孔を設け、減圧孔の末端を母岩重要荷重負担領域8に延在し、減圧孔内に高圧水を注入し、母岩重要荷重負担領域8の周囲の母岩に対して水圧破砕を行い、分散型光ファイバー29が持続的に監視して得られた母岩歪み監視データに基づいて、母岩重要荷重負担領域8の外周母岩に破砕亀裂が発生する時、注水を停止する。 A specific decompression treatment method is as follows. Based on the host rock strain monitoring data obtained by injecting high-pressure water into the hole and hydraulically fracturing the host rock around the host rock critical load bearing area 8, and continuously monitoring the host rock distortion by the distributed optical fiber 29. Then, when a crushing crack occurs in the outer peripheral host rock of the host rock important load bearing area 8, water injection is stopped.

2)次に、母岩重要荷重負担領域8の範囲に応じて、重要荷重負担領域8に対してグラウト注入補強処理を行い、グラウト注入した後の重要荷重負担領域9における塑性領域母岩のせん断抵抗能力を向上させる。 2) Next, according to the range of the host rock important load bearing region 8, grout injection reinforcement treatment is performed on the important load bearing region 8, and shearing of the plastic zone host rock in the important load bearing region 9 after grouting is performed. Improve resistance ability.

3)坑道母岩弾性領域7の強度が高く、母岩における大部分の応力が負担され、且つ弾性領域7の深さが大きく、一般的なアンカーロッド22が支保作用を果たしにくく、このため、「アンカーケーブル10による懸吊」の支保方式を採用する。 3) The tunnel wall elastic region 7 has high strength, most of the stress in the wall rock is borne, and the depth of the elastic region 7 is large, so that the general anchor rod 22 is difficult to perform the supporting function, so that A support method of "suspension by anchor cable 10" is adopted.

4)中程度破砕領域区画24と大破砕領域区画25に対してアンカーケーブル10によって塑性領域被覆支保を行い、弾性領域7の母岩の安定性を利用し、それを支持層全体の荷重負担基礎とし、坑道全体の荷重負担能力を高める。 4) Anchor cables 10 cover and support the moderate crushing zone 24 and the large crushing zone 25, and the stability of the host rock in the elastic zone 7 is used to support the load bearing foundation of the entire support layer. and increase the load-bearing capacity of the entire tunnel.

アンカーケーブル10の具体的なパラメータは下記方法で確定することができる。 Specific parameters of the anchor cable 10 can be determined by the following method.

アンカーケーブル10の長さ:

Figure 2023516230000009
式中において、L5はアンカーケーブル10の長さ(m)であり、LSは坑道から弾性領域7の境界までの垂直距離(m)であり、
Figure 2023516230000010
はアンカーケーブル10が弾性領域7の内部にアンカーした深さ(m)であり、L2は坑道でのアンカーロッド22の露出長さ(m)であり、
アンカーケーブル10の間隔・行間隔:
Figure 2023516230000011
式中において、Saはアンカーケーブル10の間隔・行間隔(m)であり、[σa]は単一のアンカーケーブル10の限界破断力(kN)であり、γは母岩の重力密度(kN/m3)である。 Anchor cable 10 length:
Figure 2023516230000009
where L5 is the length (m) of the anchor cable 10, LS is the vertical distance (m) from the tunnel to the boundary of the elastic region 7,
Figure 2023516230000010
is the depth (m) to which the anchor cable 10 is anchored inside the elastic region 7, L2 is the exposed length (m) of the anchor rod 22 in the tunnel,
Anchor cable 10 spacing/line spacing:
Figure 2023516230000011
In the formula, Sa is the spacing and row spacing (m) of the anchor cables 10, [σa] is the critical breaking force (kN) of a single anchor cable 10, and γ is the gravitational density of the host rock (kN/ m3).

5)図8に示すように、大破砕領域区画25に鋼製アーチフレーム支保を行うとともに、中程度破砕領域区画24と大破砕領域区画25に対してコンクリート11噴射処理を行い、前記コンクリートを鋼製アーチフレームに被覆し、コンクリートハウジング12を形成することにより、中程度破砕領域区画24でアンカーロッド22とアンカーケーブル10のアンカー系を形成し、大破砕領域区画25の表層で一層のアーチフレームとコンクリート噴射柱ハウジングを形成し、中程度破砕領域区画24のアンカーロッドケーブルとコンクリートハウジング12の共同支保系、大破砕領域区画25のアンカーロッドケーブルと鋼製アーチフレームコンクリートハウジング12の共同支保系を構築する。 5) As shown in FIG. 8, a steel arch frame support is provided in the large crushing zone section 25, and the medium crushing zone section 24 and the large crushing zone section 25 are subjected to concrete 11 injection treatment, and the concrete is made into steel. By forming the concrete housing 12 by covering the arch frame made of steel and forming the anchor system of the anchor rod 22 and the anchor cable 10 in the moderate crushing area section 24, the surface layer of the large crushing area section 25 forms a single arch frame and Form a concrete injection column housing, build a joint shoring system of anchor rod cables and concrete housing 12 in medium crushing area section 24, and a joint shoring system of anchor rod cables and steel arch frame concrete housing 12 in large crushing area section 25. do.

分散型光ファイバー29が持続的に監視して得られた母岩歪みデータに基づいて、一次支保と二次支保に最適な支保の具体的なタイミングを確定し、確定された支保タイミングに応じて支保を行い、破砕領域の変形状況及び塑性領域の応力緩和状況を合理的、効果的に制御し、支保系の荷重負担能力が向上する。 Based on the host rock distortion data obtained by continuous monitoring of the distributed optical fiber 29, the specific timing of the optimal support for the primary support and the secondary support is determined, and the support is provided according to the determined support timing. to rationally and effectively control the deformation state of the crushing area and the stress relaxation state of the plastic area, and improve the load-bearing capacity of the support system.

本願の実施例では、二次支保の後に、初回支保、一次支保及び二次支保の共同作用により、母岩が迅速に安定状態になる傾向にあり、この時、母岩をライニング処理し、ライニング層を坑道の安全ストックとし、ライニング層によって、掘削摂動又はバースト荷重等の後続の荷重による坑道への影響が解消される。前記ライニング処理は従来のライニング方法で完了され、具体的には、一次支持面清掃-防水板ジオテキスタイルの被覆-鉄筋の結束-二次ライニングトロリーの固定-コンクリートの流し込み-脱型-養生。 In the examples of the present application, after the secondary shoring, the host rock tends to reach a stable state quickly due to the combined action of the initial shoring, the primary shoring, and the secondary shoring. The layer provides the safety stock for the gallery, and the lining layer counteracts the impact of subsequent loads, such as drilling perturbations or burst loads, on the gallery. The lining process is completed by conventional lining methods, specifically: cleaning the primary supporting surface--covering the waterproof plate geotextile--tying the rebars--fixing the secondary lining trolley--concrete pouring--demolding--curing.

図9は、本願のいくつかの実施例によって提供される採掘過程における分散型光ファイバー29の概略図であり、図9に示すように、坑道採掘過程において、補強処理のタイミングと処理方式を確定する。 FIG. 9 is a schematic diagram of the distributed optical fiber 29 in the mining process provided by some embodiments of the present application, as shown in FIG. .

採掘過程において、分散型光ファイバー29が坑道母岩15を持続的に監視して得られた母岩歪みデータに基づいて、採掘摂動で母岩の緩慢破砕状況、又は、採掘跡領域4の母岩は崩落、崩壊等の運動が発生した時、周辺の坑道母岩15のバースト破砕が激しくなった後の各荷重負担領域の拡張状況を把握する。 In the mining process, based on the host rock distortion data obtained by continuously monitoring the tunnel host rock 15 by the distributed optical fiber 29, the slow crushing state of the host rock due to the mining perturbation or the host rock in the excavation site area 4 can be determined. 2 grasps the expansion condition of each load-bearing area after the burst crushing of the tunnel host rock 15 in the vicinity becomes severe when a movement such as a collapse or collapse occurs.

坑道採掘過程において、母岩歪みデータが臨界区間にあることに応答し、塑性領域の母岩を減圧処理し、ここで、臨界区間は母岩応力-歪み曲線に基づいて確定され、具体的には、採掘過程において、母岩は採掘摂動又は採掘跡領域4の母岩の活動により破砕が激しくなる。母岩応力が臨界区間にあるか否かを判断し、母岩応力が臨界区間にあり、且つ該塑性領域の母岩の弾性と脆性が高い場合、坑道の塑性領域の母岩を減圧処理し、減圧処理方法及び坑道掘削過程において、二次支保を行う時の減圧処理方式が同様である。ここで、臨界区間は、母岩応力-歪み曲線に応じて、母岩歪みデータに基づいて確定され、確定方式として、母岩応力-歪み曲線において、臨界区間は塑性変形段階の2分の1から4分の3の区間である。 In the tunnel mining process, in response to the host rock strain data being in the critical interval, the host rock in the plastic region is decompressed, where the critical interval is determined according to the host rock stress-strain curve, specifically In the mining process, the host rock is severely crushed by mining perturbation or the activity of the host rock in the mining site area 4 . Judging whether the host rock stress is in the critical interval, and if the host rock stress is in the critical interval and the elasticity and brittleness of the host rock in the plastic region are high, the host rock in the plastic region of the tunnel is subjected to decompression treatment. , the depressurizing method and the tunnel excavation process, the depressurizing method for secondary support is the same. Here, the critical interval is determined based on the host rock strain data according to the host rock stress-strain curve. It is an interval of 3/4 from .

いくつかの任意選択的な実施例では、採掘過程において、補強処理はさらに、坑道の異なる区画における破砕領域の大きさに応じて、破砕領域の母岩を補強支保することを含み、具体的には、採掘過程において、採掘摂動の影響を受け、坑道母岩15の緩んだ領域の厚さが大きくなり、小破砕領域が緩慢に中程度破砕領域として拡張され、中程度破砕領域が大破砕領域として拡張される。分散型光ファイバー29は坑道母岩15を持続的に監視し、母岩歪みデータを得て、且つ補間及び可視化処理を行い、採掘過程における坑道の異なる位置の荷重負担領域の拡張状況を確定する。 In some optional embodiments, during the mining process, the reinforcement process further comprises reinforcing the host rock of the fractured area according to the size of the fractured area in different sections of the gallery, specifically is affected by mining perturbations in the mining process, the thickness of the loose region of the tunnel host rock 15 increases, the small crushing region slowly expands as a medium crushing region, and the medium crushing region becomes a large crushing region. is extended as Distributed optical fiber 29 continuously monitors the tunnel host rock 15, obtains the host rock distortion data, and performs interpolation and visualization processing to determine the extension of the load-bearing area at different positions of the tunnel during the mining process.

坑道採掘過程における坑道母岩15の緩んだ領域の厚さ(拡張された破砕領域の大きさ)に応じて、補強支保方式として、具体的には、小破砕領域が中程度破砕領域として拡張される時、即ち、LP≦40cmから40cm<LP≦150cmに拡張される時、アンカーケーブル10で補強支保を行い、中程度破砕領域が大破砕領域として拡張される時、即ち、40cm<LP≦150cmからLP>150cmに拡張される時、鋼製アーチフレームで補強支保を行い、鋼製アーチフレームコンクリートハウジング12を構築し、大破砕領域区画25の破砕領域の拡大範囲が100cmを超える時、該領域を長いアンカーケーブル10で補強し、ここで、LPは坑道採掘過程における坑道母岩15の緩んだ領域の厚さである。補強支保するアンカーケーブル10のパラメータ、及び、坑道掘削過程において、二次支保に用いられるアンカーケーブル10のパラメータ確定方法は同様である。 According to the thickness of the loosened region of the tunnel host rock 15 (the size of the expanded crushed region) in the tunnel mining process, specifically, the small crushed region is expanded as a medium crushed region as a reinforcing support method. When expanded from LP ≤ 40 cm to 40 cm < LP ≤ 150 cm, the anchor cable 10 is used for reinforcement support, and when the moderately crushed region is expanded as a large crushed region, that is, 40 cm < LP ≤ 150 cm When extended from LP>150 cm, the steel arch frame is used for reinforcement support, the steel arch frame concrete housing 12 is constructed, and when the extension of the crushing area of the major crushing area section 25 exceeds 100 cm, the area is reinforced with long anchor cables 10, where LP is the thickness of the loosened area of the tunnel wall 15 during the tunnel mining process. The parameters of the anchor cables 10 for reinforcement support and the method of determining the parameters of the anchor cables 10 used for secondary support in the tunnel excavation process are the same.

採掘過程において、減圧処理及び補強支保によって、坑道の後期変形が効果的に回避され、事故の発生が低下し、坑道の安定性が高まる。 In the mining process, decompression treatment and reinforcement support can effectively avoid the late deformation of the tunnel, reduce the occurrence of accidents, and increase the stability of the tunnel.

先導支保、二次支保及び補強処理によって、坑道支保過程が完了される。この時、分散型光ファイバー29は、設定された監視周波数に応じて坑道母岩15を持続的に監視し、即ち、地下坑道を掘削した後に、母岩応力は再分布し、坑道の周辺に接線応力が集中され、また、緩んだ領域の経時性により、小さな緩んだ領域は時間の経過に伴って中程度・大きな緩んだ領域となり、適時且つ効果的に支保しなければ、坑道母岩15が容易に大きく変形して不安定になる。このため、坑道支保を完了した後に、分散型光ファイバー29は依然として確定された監視周波数に応じて持続的に監視し、坑道の安定性及び安全性を確保する。 Leading support, secondary support and reinforcement treatments complete the tunnel support process. At this time, the distributed optical fiber 29 continuously monitors the tunnel host rock 15 according to the set monitoring frequency. Due to the concentration of stress and the aging of the loosened area, the small loosened area will become a moderately large loosened area over time, and if not timely and effectively supported, the tunnel host rock 15 will be damaged. It deforms easily and becomes unstable. Therefore, after completing the tunnel support, the distributed optical fiber 29 will still continuously monitor according to the determined monitoring frequency to ensure the stability and safety of the tunnel.

1 坑道
2 一次支保方式
3 二次支保方式
4 採掘跡領域
5 破砕領域
6 塑性領域
7 弾性領域
8 重要荷重負担領域
9 グラウト注入した後の重要荷重負担領域
10 アンカーケーブル
11 コンクリート層
12 鋼製アーチフレームコンクリートハウジング
14 採掘作業面
15 坑道母岩
22 アンカーロッド
23 小破砕領域区画
24 中程度破砕領域区画
25 大破砕領域区画
26 破砕領域外側境界
29 分散型光ファイバー
1 Tunnel 2 Primary support system 3 Secondary support system 4 Excavation area 5 Crushing area 6 Plastic area 7 Elastic area 8 Important load bearing area 9 Important load bearing area after grouting 10 Anchor cable 11 Concrete layer 12 Steel arch frame Concrete housing 14 Mining work surface 15 Tunnel host rock 22 Anchor rods 23 Small fracture area section 24 Medium fracture area section 25 Large fracture area section 26 Fracture area outer boundary 29 Distributed optical fiber

Claims (8)

採掘坑道母岩の監視及び支保方法であって、
分散型光ファイバーの監視周波数に応じて、母岩の歪みを持続的に監視し、母岩歪み監視データを得るステップS10であって、具体的には、予め設定された時間帯において、前記分散型光ファイバーは前記母岩の歪みを継続的に監視し、前記分散型光ファイバーの監視周波数を確定し、前記分散型光ファイバーは、前記監視周波数に応じて、前記母岩の歪みを周期的且つ持続的に監視し、前記母岩歪み監視データを得るステップS10と、
前記母岩歪み監視データを補間して得られた母岩歪みデータに基づいて、坑道に対して領域分割を行い、坑道の異なる位置での荷重負担領域と、坑道の異なる区画における破砕領域の大きさとを得るステップS20であって、具体的には、前記坑道の径方向と走行方向のそれぞれに沿って前記母岩歪み監視データを補間し、対応して坑道の径方向と走行方向に沿った母岩歪みデータを得て、前記坑道の径方向と走行方向に沿った母岩歪みデータに基づいて、対応して前記坑道の異なる位置での荷重負担領域と、前記坑道の異なる区画における破砕領域の大きさと、を確定するステップ20と、
母岩応力と歪みの関係に応じて、前記母岩歪みデータ、前記坑道の異なる位置での荷重負担領域及び前記坑道の異なる区画における破砕領域の大きさに基づいて、前記母岩の一次支保、二次支保及び補強処理のタイミングと処理方式を確定するステップS30と、を含むことを特徴とする、採掘坑道母岩の監視及び支保方法。
A method of monitoring and supporting a mining tunnel host rock, comprising:
step S10 of continuously monitoring the strain of host rock according to the monitoring frequency of the distributed optical fiber to obtain host rock strain monitoring data; The optical fiber continuously monitors the strain of the host rock, determines the monitoring frequency of the distributed optical fiber, and the distributed optical fiber periodically and continuously adjusts the strain of the host rock according to the monitoring frequency. a step S10 of monitoring and obtaining said host rock strain monitoring data;
Based on the host rock distortion data obtained by interpolating the host rock distortion monitoring data, the tunnel is divided into areas, and the load bearing areas at different positions in the tunnel and the size of the crushing area in different sections of the tunnel. Specifically, the host rock distortion monitoring data is interpolated along the radial direction and the running direction of the tunnel, and correspondingly, the strain along the radial direction and the running direction of the tunnel Obtaining host rock strain data and correspondingly load-bearing regions at different locations of the gallery and fracture regions at different sections of the gallery based on the host rock strain data along the radial direction and the running direction of the gallery. determining 20 the magnitude of and
primary support of the host rock based on the host rock strain data, the size of the load-bearing areas at different locations of the gallery and the fracture zones at different sections of the gallery, depending on the relationship between host rock stress and strain; A method for monitoring and supporting a mining tunnel host rock, characterized in that it includes a step S30 of determining the timing and treatment method of secondary support and reinforcement treatment.
前記坑道の異なる区画における破砕領域の大きさに応じて、前記坑道母岩は、走行方向に沿って、小破砕領域区画、中程度破砕領域区画及び大破砕領域区画に分割され、
前記小破砕領域区画は、LP≦40cmであり、前記中程度破砕領域区画は、40cm<LP≦150cmであり、前記大破砕領域区画は、LP>150cmであり、ここで、LPは坑道母岩の緩んだ領域の厚さであり、
前記坑道の異なる位置での荷重負担領域に応じて、前記坑道母岩は、破砕領域、塑性領域、弾性領域に分割される、ことを特徴とする、請求項1に記載の採掘坑道母岩の監視及び支保方法。
According to the size of the fractured areas in different sections of the tunnel, the tunnel host rock is divided along the running direction into small fractured area sections, medium fractured area sections and large fractured area sections,
The small fracture area section is LP≦40 cm, the medium fracture area section is 40 cm<LP≦150 cm, and the large fracture area section is LP>150 cm, where LP is the tunnel bedrock. is the thickness of the loose region of
Mining tunnel host rock according to claim 1, characterized in that the tunnel host rock is divided into a fracture zone, a plastic zone and an elastic zone according to the load-bearing areas at different positions of the tunnel. Surveillance and support methods.
ステップS30では、前記坑道母岩の岩質に基づいて、対応する母岩応力-歪み曲線を確定し、
前記母岩歪みデータに基づいて、母岩応力と歪みの関係に応じて、母岩応力を算出し、
前記母岩応力に応じて、前記母岩応力-歪み曲線に基づいて、前記二次支保のタイミングを確定することを特徴とする、請求項2に記載の採掘坑道母岩の監視及び支保方法。
In step S30, determining a corresponding host rock stress-strain curve based on the lithology of the tunnel host rock;
Based on the host rock strain data, host rock stress is calculated according to the relationship between host rock stress and strain,
3. A method of monitoring and supporting a mining tunnel host rock according to claim 2, characterized by determining the timing of the secondary support based on the host rock stress-strain curve in response to the host rock stress.
前記母岩応力に応じて、前記母岩応力-歪み曲線に基づいて、前記二次支保のタイミングを確定することは、具体的には、
前記母岩の塑性変形段階において、前記母岩歪みデータが第1歪み閾値と第2歪み閾値の間にあることに応答し、坑道掘削過程での前記二次支保のタイミングを確定し、
ここで、前記第1歪み閾値は、前記母岩の塑性変形段階において、第1ポイントに対応する歪み値と第2ポイントに対応する歪み値との差の2分の1であり、
前記第2歪み閾値は、前記母岩の塑性変形段階において、第1ポイントに対応する歪み値と第2ポイントに対応する歪み値との差の4分の3であり、
第1ポイントは、母岩が塑性変形を開始する時のポイントであり、第2ポイントは、母岩が降状極限に達する時に対応するポイントであることを特徴とする、請求項3に記載の採掘坑道母岩の監視及び支保方法。
Determining the timing of the secondary support based on the host rock stress-strain curve in response to the host rock stress specifically includes:
determining the timing of the secondary support during tunnel excavation in response to the host rock strain data being between a first strain threshold and a second strain threshold during the stage of plastic deformation of the host rock;
wherein the first strain threshold is half the difference between the strain value corresponding to the first point and the strain value corresponding to the second point in the stage of plastic deformation of the host rock;
the second strain threshold is three quarters of the difference between the strain value corresponding to the first point and the strain value corresponding to the second point in the stage of plastic deformation of the host rock;
4. The method according to claim 3, characterized in that the first point is the point when the host rock starts to undergo plastic deformation and the second point is the point corresponding to when the host rock reaches the precipitation limit. Methods for monitoring and supporting mining tunnel host rocks.
前記母岩応力に応じて、前記母岩応力-歪み曲線に基づいて、前記二次支保のタイミングを確定した後、
前記二次支保のタイミング、前記坑道の異なる区画における破砕領域の大きさ及び母岩重要荷重負担領域に基づいて、異なる領域における前記母岩に対して異なる二次支保処理を行い、ここで、前記母岩重要荷重負担領域は、前記坑道母岩において、1.5倍の母岩原岩応力より大きな母岩応力を有する対応する領域であり、前記母岩応力は、母岩応力と歪みの関係に応じて、前記母岩歪みデータに基づいて算出されることを特徴とする、請求項4に記載の採掘坑道母岩の監視及び支保方法。
After determining the timing of the secondary support based on the host rock stress-strain curve in response to the host rock stress,
providing different secondary support treatments to the host rock in different regions based on the timing of the secondary support, the size of the fractured regions in different sections of the gallery, and critical load bearing regions of the host rock; A host rock critical load-bearing region is a corresponding region in the tunnel host rock that has a host rock stress greater than 1.5 times the host rock source rock stress, and the host rock stress is related to the relationship between host rock stress and strain. 5. A method for monitoring and supporting a mining tunnel host rock according to claim 4, wherein said host rock strain data is accordingly calculated based on said host rock strain data.
前記異なる領域における前記母岩に対して異なる二次支保処理を行うことは、具体的には、
前記塑性領域における前記母岩の岩質に応じて、前記塑性領域を減圧処理し、
及び/又は、
前記母岩重要荷重負担領域に対して、グラウト注入補強処理を行い、
及び/又は、
前記坑道母岩の弾性領域に対して、アンカーケーブルで懸吊支保を行い、
及び/又は、
前記中程度破砕領域区画及び前記大破砕領域区画に対して、アンカーケーブルで被覆塑性領域の支保を行い、
及び/又は、
前記大破砕領域区画に対して鋼製アーチフレームで支保を行うとともに、前記中程度破砕領域区画及び前記大破砕領域区画に対してコンクリート噴射処理を行い、前記コンクリートを鋼製アーチフレームに被覆することを特徴とする、請求項5に記載の採掘坑道母岩の監視及び支保方法。
Specifically, performing different secondary shoring treatments on the host rock in the different regions includes:
depressurizing the plastic region according to the lithology of the host rock in the plastic region;
and/or
grout injection reinforcement treatment is performed on the host rock important load bearing area,
and/or
Suspension support is provided with anchor cables for the elastic region of the tunnel host rock,
and/or
For the medium crushing area section and the large crushing area section, anchor cables support the covered plastic area,
and/or
Supporting the large crushing zone with a steel arch frame, performing concrete injection treatment on the medium crushing zone and the large crushing zone, and coating the steel arch frame with the concrete. A method for monitoring and supporting a mining tunnel host rock according to claim 5, characterized in that:
ステップS30では、前記補強処理のタイミングと処理方式として、具体的には、
坑道採掘過程において、前記母岩歪みデータが臨界区間にあることに応答し、前記塑性領域の母岩を減圧処理し、ここで、前記臨界区間は母岩応力-歪み曲線に基づいて確定され、
及び/又は、
坑道採掘過程において、前記坑道の異なる区画における破砕領域の大きさに基づいて、前記坑道における破砕領域を補強支保するということを特徴とする、請求項1に記載の採掘坑道母岩の監視及び支保方法。
In step S30, as the timing and processing method of the reinforcing process, specifically,
depressurizing the host rock in the plastic region in response to the host rock strain data being in the critical interval during the tunnel mining process, wherein the critical interval is determined based on the host rock stress-strain curve;
and/or
Monitoring and supporting the mining tunnel host rock according to claim 1, characterized in that during the tunnel mining process, the fractured areas in the tunnel are reinforced and supported according to the size of the fractured areas in different sections of the tunnel. Method.
ステップS30では、前記一次支保のタイミングは、坑道掘削過程において、前記母岩歪みが200με/d以下であることに応答し、前記坑道母岩を一次支保することであることを特徴とする、請求項1に記載の採掘坑道母岩の監視及び支保方法。 In step S30, the timing of the primary support is to provide the primary support to the tunnel host rock in response to the fact that the host rock strain is 200 με/d or less during the tunnel excavation process. Item 2. A method of monitoring and supporting mining tunnel host rock according to item 1.
JP2022567429A 2021-11-26 2022-05-11 Method for monitoring and supporting mining tunnel host rock Active JP7337420B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111424291.3A CN114233394B (en) 2021-11-26 2021-11-26 Surrounding rock monitoring and supporting method for stoping roadway
CN202111424291.3 2021-11-26
PCT/CN2022/092307 WO2022199714A1 (en) 2021-11-26 2022-05-11 Method for monitoring and supporting surrounding rock of stoping roadway

Publications (2)

Publication Number Publication Date
JP2023516230A true JP2023516230A (en) 2023-04-18
JP7337420B2 JP7337420B2 (en) 2023-09-04

Family

ID=80751467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022567429A Active JP7337420B2 (en) 2021-11-26 2022-05-11 Method for monitoring and supporting mining tunnel host rock

Country Status (3)

Country Link
JP (1) JP7337420B2 (en)
CN (1) CN114233394B (en)
WO (1) WO2022199714A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233394B (en) * 2021-11-26 2023-10-31 安徽理工大学 Surrounding rock monitoring and supporting method for stoping roadway
CN115182362A (en) * 2022-07-20 2022-10-14 清华大学 Slope time-sharing partition accurate target protection method and device, electronic equipment and medium
CN115508548B (en) * 2022-11-22 2023-04-07 山东科技大学 Method and system for determining supporting structure combining stress environment and surrounding rock structure
CN116029620B (en) * 2023-03-29 2023-07-04 中国矿业大学(北京) Intelligent monitoring and evaluating method and system for coal pillar-free self-forming roadway
CN116733511A (en) * 2023-06-15 2023-09-12 安徽理工大学 Three-cascade control surrounding rock stability control method for high-stress broken and degraded surrounding rock

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713691A (en) * 2009-12-22 2010-05-26 浙江大学 Health-monitoring system of distributed sensing fiber tunnel
JP2010210317A (en) * 2009-03-09 2010-09-24 Japan Atomic Energy Agency Optical fiber type base rock inside displacement gage system
JP2011252370A (en) * 2010-06-04 2011-12-15 Okumura Corp Installation method of strain-measuring pipe in face front natural ground
CN107063107A (en) * 2017-03-30 2017-08-18 云南大永高速公路建设指挥部 Tunnel wall rock deformation distributed optical fiber sensing system and construction, monitoring method
CN107478370A (en) * 2017-08-23 2017-12-15 铜陵市力凡自动化设备有限责任公司 The monitoring device and method of a kind of overall roadway displacement, strain stress
JP2019167704A (en) * 2018-03-22 2019-10-03 鹿島建設株式会社 Grout material injection device and injection method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294039A (en) * 2008-06-04 2009-12-17 Mie Univ Structure deformation monitoring method using distribution type optical-fiber sensing system, and device thereof
CN102102537B (en) * 2010-12-20 2013-01-23 中铁隧道集团有限公司 Tunnel surrounding rock radial stress strain distributed monitoring technology
CN103726872B (en) * 2013-12-30 2016-01-13 北京科技大学 A kind of high mine pressure roadway of coal mine oriented solution danger method
CN104018847B (en) * 2014-06-21 2016-02-03 西安科技大学 Based on distension prevention and controls at the bottom of the rectangular shaped roadways squeezing flow of beam on elastic foundation
CN205025504U (en) * 2015-10-15 2016-02-10 王新丰 Displacement is met an emergency stock and is synthesized early warning system
CN105973285A (en) * 2016-07-15 2016-09-28 东南大学 Multifunctional intelligent anchor pole and installation arrangement method thereof
CN106401645B (en) * 2016-11-03 2018-03-13 河南理工大学 A kind of deep high stress tunnel pressure relief support control method for coordinating based on drilling release
CN107024183B (en) * 2017-06-01 2023-09-26 安徽理工大学 Roadway surrounding rock loose coil range test method and system
CN207620820U (en) * 2017-12-20 2018-07-17 贵州大学 A kind of breaking surrounding rock and soft-rock tunnel U-shaped steel cover canopy supporting construction
CN109145356B (en) * 2018-06-20 2020-04-03 河海大学 Method for determining broken area range of rock mass tunnel excavation
CN109854298B (en) * 2018-12-11 2020-06-26 河南理工大学 Method for determining time and range of secondary support of roadway
CN110219687B (en) * 2019-06-21 2020-08-21 安徽理工大学 Method for monitoring stress distribution of full-length anchoring bolt body
CN112903480B (en) * 2021-01-15 2024-01-26 安徽理工大学 Deep roadway anchor rod or anchor cable impact tensile failure judgment and control method thereof
CN112800530B (en) * 2021-03-29 2021-07-27 中国科学院武汉岩土力学研究所 Digital data processing method for reinforcing stress strain of broken soft surrounding rock face
CN114233394B (en) * 2021-11-26 2023-10-31 安徽理工大学 Surrounding rock monitoring and supporting method for stoping roadway

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210317A (en) * 2009-03-09 2010-09-24 Japan Atomic Energy Agency Optical fiber type base rock inside displacement gage system
CN101713691A (en) * 2009-12-22 2010-05-26 浙江大学 Health-monitoring system of distributed sensing fiber tunnel
JP2011252370A (en) * 2010-06-04 2011-12-15 Okumura Corp Installation method of strain-measuring pipe in face front natural ground
CN107063107A (en) * 2017-03-30 2017-08-18 云南大永高速公路建设指挥部 Tunnel wall rock deformation distributed optical fiber sensing system and construction, monitoring method
CN107478370A (en) * 2017-08-23 2017-12-15 铜陵市力凡自动化设备有限责任公司 The monitoring device and method of a kind of overall roadway displacement, strain stress
JP2019167704A (en) * 2018-03-22 2019-10-03 鹿島建設株式会社 Grout material injection device and injection method

Also Published As

Publication number Publication date
CN114233394A (en) 2022-03-25
JP7337420B2 (en) 2023-09-04
WO2022199714A1 (en) 2022-09-29
CN114233394B (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP7337420B2 (en) Method for monitoring and supporting mining tunnel host rock
Xie et al. Investigation on the evolution and control of surrounding rock fracture under different supporting conditions in deep roadway during excavation period
Kang et al. Application of a combined support system to the weak floor reinforcement in deep underground coal mine
Chen et al. Bolt-grouting combined support technology in deep soft rock roadway
Xu et al. Research on mechanism and control of asymmetric deformation of gob side coal roadway with fully mechanized caving mining
Xie et al. A case study on control technology of surrounding rock of a large section chamber under a 1200-m deep goaf in Xingdong coal mine, China
Zhang et al. An innovative non-pillar coal-mining technology with automatically formed entry: a case study
Mu et al. Long-term deformation and control structure of rheological tunnels based on numerical simulation and on-site monitoring
CN107609241B (en) Optimal design method for secondary lining structure rigidity and construction time of weak rheological surrounding rock tunnel
Su et al. Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application
CN110617067B (en) Low-risk construction method for full-section boundary advanced pipe shed of extremely-soft surrounding rock tunnel
Xie et al. Failure analysis and control mechanism of gob-side entry retention with a 1.7-m flexible-formwork concrete wall: A case study
Jiang et al. Failure mechanism analysis and support design for deep composite soft rock roadway: a case study of the Yangcheng coal mine in China
Cao et al. A kind of control technology for squeezing failure in deep roadways: a case study
Shi et al. Research on key technologies of floor heave control in soft rock roadway
Wu et al. Research on plastic zone evolution law of surrounding rock of gob-side entry retaining under typical roof conditions in deep mine
Chen et al. Characteristics and treatment measures of tunnel collapse in fault fracture zone during rainfall: A case study
Wang et al. Study on surrounding rock failure mechanism and rational coal pillar width of the gob‐side coal roadway under influence of intense dynamic pressure
Chen et al. Failure mechanism and divisional differentiated control of surrounding rock in mining roadway under remaining coal pillar in close‐distance coal seam
Chen et al. Study on stability mechanism and control techniques of surrounding rock in gob-side entry retaining with flexible formwork concrete wall
Yin et al. Cable-truss supporting system for gob-side entry driving in deep mine and its application
Wu et al. Research on failure characteristics and zoning control technology of thick-soft surrounding rock for deep gob-side entry retaining
Chen et al. Evolution law and engineering application on main stress difference for a novel stress relief technology in two ribs on deep coal roadway
CN113653506B (en) Control method for high-stress soft rock tunnel bottom plate
He et al. Instability mechanism and control of roadway subjected to severe mining dynamic load with double roadway layout mining face

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7337420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150