JP2023515270A - Tcr/bcrプロファイリング - Google Patents

Tcr/bcrプロファイリング Download PDF

Info

Publication number
JP2023515270A
JP2023515270A JP2022564450A JP2022564450A JP2023515270A JP 2023515270 A JP2023515270 A JP 2023515270A JP 2022564450 A JP2022564450 A JP 2022564450A JP 2022564450 A JP2022564450 A JP 2022564450A JP 2023515270 A JP2023515270 A JP 2023515270A
Authority
JP
Japan
Prior art keywords
tcr
bcr
layer
probes
sequencing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022564450A
Other languages
English (en)
Inventor
ジェイソン・ペレラ
テイラー・ハーディング
ブリタニー・ミネオ
アリー・エー・カーン
リチャード・ブリドナー
ジェンナ・エル・マリナウスカス
Original Assignee
テンパス・ラボズ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テンパス・ラボズ・インコーポレイテッド filed Critical テンパス・ラボズ・インコーポレイテッド
Publication of JP2023515270A publication Critical patent/JP2023515270A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1114T cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Amplifiers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本開示は、次世代シークエンシング(NGS)法を使用してT細胞受容体(TCR)及びB細胞受容体(BCR)レパートリーをプロファイリングするのに有用なシステム、方法及び組成物に関する。本開示は、感染、疾患、医学的状態又は治療結果若しくは効果の診断、処置又は予測を、それを必要とする被検体のTCR/BCRプロファイルデータに基づいて行うためのシステム及び方法にも関する。

Description

関連特許出願の相互参照
本出願は、2020年4月21日に出願された米国仮出願第63/013,130号、2020年9月27日に出願された米国仮出願第63/084,459号、及び2021年4月8日に出願された米国仮出願第63/201,020号の米国特許法第119条(e)に基づく優先権の有益性を主張するものである。各仮出願の内容は、その全体が参照により本明細書に組み込まれている。
本開示は、次世代シークエンシング(NGS)法を使用してT細胞受容体(TCR)及びB細胞受容体(BCR)レパートリーをプロファイリングするのに有用なシステム、方法及び組成物に関する。本開示は、感染、疾患、状態又は治療結果若しくは効果の診断、処置又は予測を、それを必要とする被検体のTCR/BCRプロファイルデータに基づいて行うためのシステム及び方法にも関する。いくつかの実施形態において、該方法は、SARS-CoV-2接触を検出することを含む。
脊椎動物の免疫系は、2つの主要部分、即ち先天的部分及び適応的部分からなる。免疫系の先天的部分は、外来抗原又は危険信号に迅速且つ効果的に反応するように発達してきた。しかし、多くの場合、先天性免疫反応は、殺菌免疫を提供するのに十分でない。また、免疫系の適応的部分は、「記憶」能力がなく、病原体に対する更なる効果的な反応を、後の同一又は同様の病原体による負荷を受けた際に生じることができない。したがって、免疫系の先天的部分(及び/又は非免疫細胞、例えば感染細胞)は、適応免疫系に抗原を提供し、それが次に、抗原特異的免疫細胞、Tリンパ球(T細胞)及びBリンパ球(B細胞)の選択のプロセスを開始することができる。このプロセスは、極めて多様な抗原特異的細胞の存在により促進されて抗原負荷に反応しやすくなる。
米国特許出願第16/657,804号 米国特許出願第17/112,877号 公開特許出願第16/533,676号 米国特許出願第16/927,976号 米国特許出願第16/789,288号 米国特許出願第15/930,234号 米国特許出願第17/706,704号 米国特許出願第16/581,706号 米国特許出願第16/732,229号 PCT/US19/69161号 米国特許出願第17/074,984号 米国特許出願第16/789,413号 米国特許出願第16/888,357号 米国特許出願第16/830,186号 米国特許出願第16/789,363号 PCT US20/18002号 米国特許出願第16/994,315号 米国特許出願第16/533,676号 米国特許出願第62/804,509号 米国特許出願第16/653,868号 米国特許出願第16/945,588号 米国特許出願第16/732,168号 PCT/US19/69149号 米国特許出願第16/693,117号 PCT/US20/56930号 米国特許出願第17/114,386号 米国仮特許出願第62/924,515号 米国仮特許出願第16/802,126号 PCT/US21/18619
BMC Medical Genomics 12、195頁(2019年) Kalendarら、2009年、Genes, Genomes, and Genomics、第3号(特別号1)、1~14頁 Kiviojaら、2011年、Nat. Methods 9(1)、72~74頁 Islamら、2014年、Nat. Methods 11(2)、163~66頁 http://www.imgt.org 「Landscape of tumor-infiltrating T cell repertoire of human cancers」(Liら、2016年、Nat. Genet.、48(7)、725~732頁) 「Landscape of B cell immunity and related immune evasion in human cancers」(Huら、2019年、Nat. Genet.、51(3)、560~567頁) 「基礎:単一細胞からのBCR組立て(BASIC: BCR assembly from single cells)」(Canzarら、2017年、Bioinformatics、33(3)、425~427頁) 「Simultaneously inferring T cell fate and clonality from single cell transcriptomes」(Stubbingtonら、2015年、BioRxiv https://doi.org/10.1101/025676) 「Antigen receptor repertoire profiling from RNA-seq data」(Bolotinら、2017年、Nat. Biotech.、35(10)、908~911頁) Nicolas L Bray、Harold Pimentel、Pall Melsted及びLior Pachter、「Near-optimal probabilistic RNA-seq quantification」、Nature Biotechnology、34、525~527頁(2016年)、doi:10.1038/nbt.3519 https://pachterlab.github.io/kallisto/ (カリフォルニア州技術研究所(カリフォルニア州Pasadena)) Dobinら、「STAR: ultrafast universal RNA-seq aligner」、Bioinformatics、2013年Jan月、29(1)、15~21頁 Bolotinら、Nat Biotechnol 35、908~911頁(2017年)、https://doi.org/10.1038/nbt.3979 Glanvilleら、Nature 547、94~98頁(2017年)、https://doi.org/10.1038/nature22976 nih.gov/pmc/ articles/PMC5178827/ IJSpeertら、J Immunol、2017年、198:4156~4165頁、doi:10.4049/jimmunol.1601921 Ni Q、Zhang J、Zheng Z、Chen G、Christian L、Gronholm J、Yu H、Zhou D、Zhuang Y、Li Q-J及びWan Y、(2020年)、「VisTCR: An Interactive Software for T Cell Repertoire Sequencing Data Analysis」、Front. Genet. 11:771、doi: 10.3389/fgene.2020.00771 Le Bert, N.、Tan, A.T.、Kunasegaran, K.ら、「SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls」、Nature 584、457~462頁(2020年)、https://doi.org/10.1038/s41586-020-2550-z Mateusら、DOI: 10.1126/science.abd3871 Sekineら、「Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19」、Cell (2020年)、doi: https://doi.org/10.1016/j.cell.2020.08.017 Dijkstra JM及びHashimoto K.、「Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population [第2版、査読審査2承認済み]」、F1000Research 2020、9:285、https://doi.org/10.12688/f1000research.23458.2 Pengら、「Broad and strong memory CD4 +and CD8 + T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients」、bioRxiv2020.06.05.134551、(2020年)、Pmid:32577665 Self WHら、MMWR Morb Mortal Wkly Rep 2020、69:1762~1766頁 SchultheiBら、2020年、Immunity、https://doi.org/10.1016/j.immuni.2020.06.024 Gallaisら、2020年、MedRxiv、https://doi.org/10.1101/2020.06.21.20132449 Robbianiら、doi: https://doi.org/10.1101/2020.05.13.092619 Weiskopfら、「Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome」、Sci. Immunol. 5、eabd2071 (2020年)、doi:10.1126/sciimmunol.abd2071pmid:32591408 iReceptorデータベース(https://gateway.ireceptor.org/login) Nolanら、DOI: 10.21203/rs.3.rs-51964/v1 Emerson, R.、DeWitt, W.、Vignali, M.ら、「Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire」、Nat Genet 49、659~665頁(2017年)、https://doi.org/10.1038/ng.3822 https://onlinelibrary.wiley.com/doi/10.1111/bjh.17116 「Global analysis of shared T cell specificities inhuman non-small cell lung cancer enables HLA inference and antigen discovery」、Chiouら、https://www.sciencedirect.com/science/article/pii/S1074761321000 807 Mathewら、Science、2020年9月4日、第369巻、第6508号 Sekineら、Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19、Cell、(2020年)、doi:https://doi.org/10.1016/j.cell.2020.08.017 https://www.worldscientific.com/doi/abs/10.1142/9789813279827_0026
患者のTCR/BCRプロファイルを決定する方法を本明細書に開示する。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びe)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含む。いくつかの実施形態において、TCR/BCRハイブリッド捕捉プローブの集合は、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、TCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。
いくつかの実施形態において、工程(d)は、サンプル中の複数のTCR/BCRクローンを特定すること、及び/又はサンプル中の最も存在度の高いTCR/BCRクローンを特定すること、及び/又はサンプル中の最も存在度の高い非定常領域配列を特定することを含む。
いくつかの実施形態において、工程(c)は、全トランスクリプトームシークエンシング又はショートリードシークエンシングを含む。
いくつかの実施形態において、患者のBCR/TCRプロファイルが対照TCR/BCRプロファイルと比較され、その比較に基づいて、患者が疾患又は医学的状態を有するものと特定される。いくつかの実施形態において、疾患又は状態は、感染性疾患、がん、自己免疫疾患又はアレルギーである。いくつかの実施形態において、がん又は感染性疾患は、実施形態114におけるリストに示されている1つ以上のものである。いくつかの実施形態において、感染性疾患は、SARS-CoV-2との接触を含む。いくつかの実施形態において、被検体は、COVID-19と診断された疑いがある。いくつかの実施形態において、疾患はがんである。いくつかの実施形態において、解析は、腫瘍のリンパ球浸潤の存在又は程度を測定することを含む。いくつかの実施形態において、該方法は、患者を治療薬で処置することを含む。いくつかの実施形態において、治療薬は、免疫療法薬を含む。いくつかの実施形態において、免疫療法薬はワクチンである。いくつかの実施形態において、免疫療法薬はキメラ抗原受容体(CAR)T細胞である。
いくつかの実施形態において、患者の疾患又は状態を処置する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びd)シークエンシングデータを解析することであって、解析が、サンプル中の最も存在度の高いTCR/BCRクローンを決定し、場合により患者のTCR/BCRプロファイルを決定することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、TCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む、こと、並びにe)患者を処置することを含む。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。
いくつかの実施形態において、処置は、インビトロで最も存在度の高いTCR/BCRクローンを増加させ、増加したクローンを患者に投与することを含む。いくつかの実施形態において、単一の最も存在度の高いクローンを増加させる。いくつかの実施形態において、2、3、4、5、6、7、8、9、10、15、20、30又は50種の最も存在度の高いクローンを増加させる。
いくつかの実施形態において、工程(d)は、サンプル中の最も存在度の高いTCR非定常領域の配列を特定することを含み、工程(e)で施される処置は、CAR-T細胞治療薬を投与することを含み、CAR-T細胞は、最も存在度の高いTCR非定常領域配列の少なくとも1つを含む。
いくつかの実施形態において、患者のTCR/BCRプロファイルに対する治療の効果を特徴づける方法が提供される。いくつかの実施形態において、該方法は、a)第1の時点において、i)患者のサンプルからRNAを単離すること、ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、iii)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びiv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、b)第2の時点において、i)患者のサンプルからRNAを単離すること、ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、iii)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びiv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びc)工程(a)で決定されたTCR/BCRプロファイルを、工程(b)で決定されたTCR/BCRプロファイルと比較して、患者のTCR/BCRプロファイルに対する治療の効果を特徴づけることを含み、ハイブリッド捕捉プローブの集合は、TCR定常領域プローブを含む第1の層、TCR非定常領域プローブを含む第2の層、BCR定常領域プローブを含む第3の層、BCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む。
いくつかの実施形態において、第1の時点は、治療薬が投与される前であり、第2の時点は、治療薬が投与された後である。いくつかの実施形態において、第1の時点は、治療の第1の過程における第1の時間を含み、第2の時点は、第1の治療による処置における第2の時間、又は第1の治療による処置の過程が終了した後である。いくつかの実施形態において、第3、第4、第5又は第Nの時点が解析される。第Nの時点の1つ以上が、縦方向試験中、例えば治療の過程、臨床試験の過程、又は複数の治療の前、途中若しくは後に使用される時点であってもよい。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。
上記方法のいずれかのいくつかの実施形態において、サンプルは、血液サンプル又は固形腫瘍サンプルを含む。上記方法のいずれかのいくつかの実施形態において、工程(c)は、全トランスクリプトームシークエンシング又はショートリードシークエンシングを含む。
いくつかの実施形態において、COVID-19又は別の疾患を有する患者のTCR/BCRプロファイルを決定する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、全トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びd)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブを含む第1の層、TCR非定常領域プローブを含む第2の層、BCR定常領域プローブを含む第3の層、BCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。いくつかの実施形態において、患者のTCR/BCRプロファイルが、SARS-CoV-2TCR/BCR陽性対照プロファイルと比較され、いくつかの実施形態において、患者がSARS CoV-2と接触したかどうかが判断される。いくつかの実施形態において、その判断によりSARS-CoV-2との接触が示唆されると被検体が処置される。
いくつかの実施形態において、患者におけるSARS CoV-2の接触を判断する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルを陽性対照と比較して、SARS-CoV-2接触を判断することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブを含む第1の層、TCR非定常領域プローブを含む第2の層、BCR定常領域プローブを含む第3の層、及びBCR非定常領域プローブを含む第4の層、並びにトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。いくつかの実施形態において、患者は、SARS-CoV-2と接触した、又は接触したことが疑われる。いくつかの実施形態において、患者は、インフルエンザ様症状、又は呼吸器疾患に伴う症状を経験している。いくつかの実施形態において、該方法は、患者がSARS-CoV-2に接触したと判断されると、SARS-CoV-2接触に対して患者を処置することを含む。
上記方法のいずれかのいくつかの実施形態において、工程(c)は、全トランスクリプトームシークエンシング又はショートリードシークエンシングを含む。
いくつかの実施形態において、SARS-CoV-2の患者のコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定する方法が提供される。いくつかの実施形態において、該方法は、a)コホートにおける各患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、コホートにおける患者のTCR/BCRプロファイルを決定すること、及びe)疾患又は状態を有さない対照群と比較してコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定することを含み、ハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層、並びにトランスクリプトームハイブリッド捕捉プローブの第5の層を含む。
いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。いくつかの実施形態において、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。いくつかの実施形態において、サンプルは血液サンプルである。
医師による調査のための追加的又は代替的なフィールドを示す例示的なTCR/BCR免疫レパートリー表示(報告)を示す図である。 この場合はBCRクローン性に関連する、新奇のハイブリッド捕捉手法による解析後の患者のクローン性を示すTCR/BCR免疫レパートリー表示(報告)例を示す図である。 免疫プロファイリングに対する新奇のハイブリッド捕捉手法の概略を示す図である。1)腫瘍サンプリングRNAが、ホルマリン固定されたパラフィン包埋一次腫瘍サンプルから単離される。サンプルは、サンプル組織の起源に大きく依存する広範囲のリンパ球浸潤を示す。2)TCR/BCR転写産物の濃縮 - 特別に設計及び最適化されたハイブリッド捕捉プローブは、下流のトランスクリプトーム解析を損なわずにRNA-seq出力における免疫受容体を濃縮するための7つのリンパ球受容体(TCR-α、TCR-β、TCR-γ、TCR-δ、Ig-重鎖、Ig-κ及びIg-λ)に対する標的遺伝子をプールする。3)RNAシークエンシング - 最先端のRNA-seqプラットフォーム(RNA-seqプラットフォームの例については、2019年10月18日に出願された「データに基づくがんの研究、並びに治療システム及び方法(Data Based Cancer research and Treatment Systems and Methods)」というタイトルの米国特許出願第16/657,804号、並びに2020年12月4日に出願された「がん予測パイプラインにおけるRNA発現呼出の自動化システム及び方法(Systems and Methods for Automating RNA Expression Calls in a Cancer Prediction Pipeline)」というタイトルの米国特許出願第17/112,877号参照)により腫瘍サンプルのトランスクリプトーム解析が行われる。rep-seqプローブの適用により濃縮されたTCR/BCRリードは、RNA-seq実行の95%に対して全リードが2%を超えない。4)レパートリーシークエンシング解析 - RNA-seqデータが、rep-seqバイオインフォマティクスパイプラインを使用して処理される(一例において、rep-seqバイオインフォマティクスパイプラインは、オープンソースrep-seqソフトウェアTRUST4を含む、https://github.com/liulab-dfci/TRUST4参照)。候補TCR/BCRリードが、IMGT参考アレル配列及び超可変相補性決定領域3(CDR3)配列クローン型に対してアライメントされる。CDR3遺伝子の割当及び相対的存在度が定量される。 一般的標的(左欄)当たりの個々のプローブ(右欄)の数による免疫プロファイリングの新奇のハイブリッド捕捉手法の例示的な実施形態を示す表である。 免疫プロファイリングの新奇のハイブリッド捕捉手法におけるTCR及びBCR配列を濃縮するためのプローブ敷設手法を示す概略図である。 免疫プロファイリングの新奇のハイブリッド捕捉手法を使用することによるシークエンシング実行における全未濾過リードの比率としてのTCR/BCRリードの頻度の分布を示すヒストグラムである。 濃縮されたRNAに基づくrep-seq及び高感度TCR-β受容体DNAシークエンシングアッセイが行われたサンプルを示す図である。TCR-β CDR3ヌクレオチド配列のみが定量され、この基準での流れ同士で比較される。 個別のRNAに基づくrep-seq流を示す図である。x軸は、RNAに基づくrep-seqアッセイの1つの流れのデータにおける各CDR3ヌクレオチド配列の存在度を示す。y軸は、高感度TCR-β受容体DNAシークエンシングアッセイ(A)又はRNAに基づくrep-seqアッセイ(B)の第2の流れのデータにおける各CDR3ヌクレオチド配列の存在度を示す。それぞれの例において、濃縮RNAに基づくrep-seqは、独立型のDNAに基づくアッセイより感度が低いと考えられるが、RNAに基づくrep-seq法は、図6に示される比較的小さなTCR-βレパートリーにおいても、最も高頻度のクローン型の相対的存在度を検出及び再現する。アッセイ間試験における存在度の高いクローン型についての一貫性も高い。 新奇のハイブリッド捕捉免疫プロファイリング手法を用いて解析された501のヒトがんサンプルの生産的クローン型とCDR3支持リード断片との関係を示す散布図である。各データ点は、1つのサンプルのデータを表しており、サンプルに関連するがん型が、特定の色/形状の組合せで表されている(凡例参照)。x軸は、各サンプルにおいて検出された生産的クローン型の数を表し、y軸は、検出されたCDR3支持配列リード断片(CDR3座にマッピングされる部分を有する配列リード断片)の数を表す。 501の腫瘍トランスクリプトームから生成されたレパートリーは、クローン型豊富度の分布が広いことを証明する図である。BCR(Ig重鎖、Ig-κ及びIg-λ)並びにTCR(TCR-α、TCR-β、TCR-γ及びTCR-δ)に対する全生産的クローン型(部分的アライメント、フレームシフト及び内部終止コドンを有するCDR3配列は除外する)。 501の腫瘍トランスクリプトームから生成されたレパートリーは、クローン型豊富度の分布が広いことを証明する図である。B細胞についての遺伝子発現に基づく推定値(参照により本明細書に組み込まれている公開特許出願第16/533,676号、及びPMID:30864330)(y軸)は、それぞれの受容体についてのクローン型収率(生産的CDR3を支持するリード、x軸)(片側ピアソン-95%CI)に相関している。浸潤度推定値が0.001以下のサンプルは、その値で示される。 501の腫瘍トランスクリプトームから生成されたレパートリーは、クローン型豊富度の分布が広いことを証明する図である。CD4/CD8T細胞についての遺伝子発現に基づく推定値(参照により本明細書に組み込まれている公開特許出願第16/533,676、及びPMID:30864330)(y軸)は、それぞれの受容体についてのクローン型収率(生産的CDR3を支持するリード、x軸)(片側ピアソン-95%CI)に相関している。浸潤度推定値が0.001以下のサンプルは、その値で示される。 本明細書に開示する新奇のハイブリッド捕捉手法を使用してシークエンシングされた501のヒトがんサンプルの各免疫プロファイル内のTCRベータ生産的クローン型の数と正規化シャノンエントロピーとの関係を示す散布図(左)である。正規化シャノンエントロピーの上昇は、サンプル内のクローン型の多様性の増大と相関される。9例のレパートリーが選択された(サンプルのがん型別に色分けされた星印で示されている。星印は、下から順に、赤色が急性リンパ球性白血病、オレンジ色がT細胞リンパ腫、黄色がT細胞リンパ腫、青緑色が透明細胞腎細胞がん、藍色が膵臓がん、紫色が卵巣がん、明緑色が非小細胞肺がん、緑色が非小細胞肺がん、黒色が乳がんである)。選択されたTRBレパートリーにおける上位10のクローン型の拡大図(右)。上位10のクローン型についての生産的受容体頻度が示される(各色は上位10のクローン型の1つを表し、残りのレパートリーは灰色で示されている)。 既に抗CD19CARで処置されたB細胞リンパ腫の個体における上位10のクローン型の頻度を示す棒グラフである。黄色の星印は、キメラ抗原受容体の重鎖に合わせてアライメントされたリードを表すクローン型を示す。 SARS-CoV-2に感染した個体から新奇のハイブリッド捕捉手法を使用して分析された上位10のクローン型についての生産的頻度を示す棒グラフである。次いで、データを推定的SARS-CoV-2反応性TCR Bクローン型のデータベースと照合した。黄色及び紫色の星印は、MIRAアッセイデータと一致したクローン型を示し、これらのクローン型がSARS-CoV-2に特異的であることを示唆している。 1、2、3、4又は5+アレルを有するIG(BCR)又はTCR遺伝子の各類における遺伝子の数を示し、これらの遺伝子のアレル変異を示す図である。 アライメントされたTCR参考配列の例を示す図である。 ミスマッチ塩基対(bp)の数の累積分布、及びミスマッチbpの割合(遺伝子長に対するミスマッチ数)を示す図である。 IG及びTCRアレル配列の完全集合(上限)を使用した場合(Table 1)(表1)と遺伝子レベルの共通配列を使用した場合(Table 2)(表2)との(塩基対における)全所望カバレッジ長さの差を示す図である。
次に、主題の開示の様々な態様を、いくつかの図の全体を通じて同様の参照番号が同様の要素に対応する図面を参照しながら説明する。しかし、これらの図面、及びそれらに関する以下の詳細な説明は、クレームされている主題を、開示されている特定の形態に限定することを意図するものではない。むしろ、クレームされている主題の趣旨及び範囲内のすべての変更、同等物及び代替を対象とすることを意図するものである。
以下の詳細な説明において、その一部を形成し、本開示を実施できる具体的な実施形態が、例示を目的として示される添付の図面が参照される。これらの実施形態は、当業者が本開示を実施できるように十分に詳細に説明される。しかし、その詳細な説明及び具体的な例は、本開示の実施形態の例を示しながら、例示のみを目的とし、限定することを意図するものではないことが理解されるべきである。本開示から、本開示の範囲内で、様々な代替、変更、追加、再構成又はそれらの組合せを加えることができ、それらは当業者に明らかである。
慣例に従って、図面に示される様々な特徴は、実寸で描かれていない場合もある。本明細書に示されている図は、特定の方法、デバイス又はシステムの実際の光景であることを意味するものではなく、本開示の様々な実施形態を説明するために採用される単に理想化された表現である。したがって、様々な特徴の寸法は、わかりやすいように任意に拡大又は縮小されている場合もある。また、図面のいくつかは、わかりやすいように簡略化されている場合もある。そのため、図面は、所定の装置(例えばデバイス)又は方法の構成要素のすべてを描いていない場合もある。また、明細書及び図面全体を通じて、同様の参照番号が同様の特徴を表すように用いられていることもある。
本明細書に記載の情報及び信号は、様々な異なる技術及び技巧のいずれかを使用して表されていることもある。例えば、上記記載全体で参照され得るデータ、命令、コマンド、情報、信号、ビット、記号及びチップは、電圧、電流、電磁波、磁界若しくは粒子、光場若しくは粒子、又はそれらの任意の組合せによって表現されていることもある。いくつかの図面は、表現及び説明をわかりやすくするために、信号を単一信号として示す場合もある。信号は、信号のバスを表すこともあり、バスは、様々なビット幅を有することができ、単一データ信号を含む任意の数のデータ信号に対して本開示を実施できることを当業者は理解する。
本明細書に開示されている実施形態に関連する様々な例示的なロジカルブロック、モジュール、回路及びアルゴリズム作用が、電子ハードウェア、コンピュータソフトウェア、又はそれらの組合せとして実装される場合もある。ハードウェア及びソフトウェアの互換性をわかりやすく説明するために、一般には、様々な例示的構成要素、ブロック、モジュール、回路及び作用が、それらの機能の観点で記載される。当該機能がハードウェアで実装されるか、ソフトウェアで実装されるかは、具体的な用途、及びシステム全体に課される設計上の制限に左右される。当業者は開示されている機能を、各々の具体的な用途に応じて様々に実装できるが、当該実装判断は、本明細書に記載の開示内容の実施形態の範囲からの逸脱を生じさせると解釈されるべきではない。
また、実施形態は、フローチャート、流れ図、構造図又は構成図として描かれるプロセスの観点で記載されてもよいことに留意する。フローチャートは、連続プロセスとしての動作作用を記載し得るが、これらの作用の多くは、別のプロセスで、並行して、又は実質的に同時に実施できる。また、作用の順序は、再構成されてもよい。プロセスは、方法、機能、手順、サブルーチン、サブプログラム等に対応し得る。また、本明細書に開示されている方法は、ハードウェア、ソフトウェア、又はその両方で実装されてもよい。ソフトウェアで実装される場合は、それらの機能が、1つ以上の命令又はコードとしてコンピュータ可読媒体上で記憶又は送信されてもよい。コンピュータ可読媒体は、コンピュータ記憶媒体、及びコンピュータプログラムをある場所から別の場所へ転送することを容易にする任意の媒体を含む通信媒体を含む。
「第1の」及び「第2の」等の表現を用いた本明細書の要素への言及は、それらの要素の量又は順序を限定することが明記されていない限り限定するものではないことが理解されるべきである。むしろ、これらの表現は、2つ以上の要素、又は1つの要素の事例の間を区別する便利な方法として本明細書で用いられていることもある。したがって、第1及び第2の要素への言及は、要素を2つしか採用できないこと、又は第1の要素が第2の要素に先行しなければならないことを意味するものではない。また、別段の記載がなければ、要素の集合は、1つ以上の要素を含んでいてもよい。
定義
本明細書及び特許請求の範囲に用いられている単数形、「a」、「an」及び「the」は、文脈上明白に他の意味を示唆しない場合は、複数形を含む。例えば、「ポリペプチド断片」という用語は、文脈上明白に他の意味を示唆しない場合は、「1つ以上のポリペプチド断片」を意味するものと解釈されるべきである。本明細書に用いられている「複数」という用語は、「2つ以上」を意味する。
本明細書に用いられている「約」、「およそ」、「実質的に」及び「有意に」は、当業者に理解され、それらが用いられている文脈に応じてある程度異なる。当業者に明白でない用語が用いられている場合は、それが用いられている文脈を考慮しながら、「約」及び「およそ」は、具体的な用語のプラス又はマイナス10%までを意味し、「実質的に」及び「有意に」は、具体的な用語のプラス又はマイナス10%を超えることを意味する。
本明細書に用いられている「含む(include)」及び「含んでいる(including)」という用語は、「含む(comprise)」及び「含んでいる(comprising)」という用語と同様の意味を有する。「含む(comprise)」及び「含んでいる(comprising)」という用語は、特許請求の範囲に記載の構成要素に対する更なる追加的構成要素を含めることを許容する「開放的な」過渡的用語であると解釈されるべきである。「からなる(consist及びconsisting of)」という用語は、特許請求の範囲に記載の構成要素以外の追加的構成要素の包含を許容しない「閉鎖的な」過渡的用語であると解釈されるべきである。「から実質的になる」という用語は、部分的に閉鎖的であり、クレームされている主題の性質を根本的に変化させない追加的な構成要素のみを含むことを許容するものと解釈されるべきである。
本明細書に用いられている「被検体」という用語は、「患者」又は「個体」と区別なく用いられてもよく、「動物」、及び特に「哺乳動物」を含んでいてもよい。哺乳動物の被検体としては、ヒト及び他の霊長類、並びに犬、猫、モルモット、ウサギ、ラット、マウス、馬、畜牛及び乳牛等のような飼育動物、家畜及びペットを挙げることができる。
本明細書に用いられている「被検体サンプル」又は被検体の「生体サンプル」は、限定することなく、組織サンプル(例えば、脂肪、筋肉、皮膚、神経、腫瘍、生検試料(例えば固形腫瘍生検試料)、リンパ節等)、若しくは流体サンプル(例えば、唾液、粘液、血液、血清、血漿、リンパ液、尿、便、脳脊髄液等)、及び/又は細胞、培養細胞(例えばオルガノイド)、若しくはベシクル及びエクソソームのような細胞内構造体のような被検体から採取されるサンプルを指す。
「BCR」又は「B細胞受容体」とは、それが本明細書で用いられている文脈に応じて、「B細胞」として公知のリンパ球型の外表面に通常位置する受容体タンパク質を形成する免疫グロブリン分子を指す。文脈によっては、BCR又はb細胞受容体という用語は、B細胞受容体の発生に関与するゲノムの領域の少なくとも一部を指す。
本明細書に用いられている「包括的ゲノムプロファイリングパネル」とは、10を超える遺伝子を含むゲノムプロファイリングパネルを指す。
「コンティグ」とは、共にDNAの共通領域を表す重複DNAセグメントの集合を指す。
「IgM」とは、免疫グロブリンM抗体及びそのアイソタイプを指す。
「IgD」とは、免疫グロブリンD抗体及びそのアイソタイプを指す。
「IgG」とは、免疫グロブリンG抗体及びそのアイソタイプを指す。
「IgA」とは、免疫グロブリA抗体及びそのアイソタイプを指す。
「IgE」とは、免疫グロブリE抗体及びそのアイソタイプを指す。
「NGS」とは、次世代シークエンシング技術を指す。
「プロファイリング」とは、人間又は具体的な細胞型における遺伝子について学習するのに使用できる様々な方法のいずれか1つ、及び/又はそれらの遺伝子が互いに、且つ/又は環境と相互作用する様式を指す。
本明細書に用いられている「RNAseq」又は「rna-seq」は、「RNAシークエンシング」の略語を指し、NGSを使用して生体サンプルにおけるRNAの存在及び量を明らかにするシークエンシング技術を指す。RNA-seqを全トランスクリプトーム、全エクソームの解析、標的化パネル解析、及びそれらの組合せに使用できる。
本明細書に用いられている「クローナル」とは、単一細胞から得られる細胞の集団を指す。例えば、単一T細胞は、いくつかの連続的な有糸分裂を行い、同一のT細胞受容体とともに多くのT細胞を生成する。このT細胞の集団がクローナルであると考えられる。
本明細書に用いられている「オリゴクローナル」とは、2つ以上の細胞であって多くの単一細胞より少ない数の細胞から得られる細胞の集団を指す。例えば、2、3、4、5、6、7、8、9又は10の異なるT細胞クローンの有糸分裂による増加により得られるT細胞の集団がオリゴクローナルであると考えられる。
本明細書に用いられている「ポリクローナル」とは、多くの単一クローンから得られる細胞の集団を指す。例えば、11、20、50又は100以上の異なるT細胞クローンの有糸分裂による増加により得られるT細胞の集団がポリクローナルであると考えられる。
「TCR」又は「t細胞受容体」とは、本明細書でそれが用いられている文脈に応じて、抗原の断片を、主たる組織適合性複合体(MHC)分子に結合したペプチドと認識することに関与する、T細胞又はTリンパ球の表面に見られるタンパク質複合体を指す。文脈によっては、TCR又はt細胞受容体という用語は、t細胞受容体の発生に関与するゲノムの領域の少なくとも一部を指す。
本明細書に用いられている「レパートリー」という用語は、受容体、例えばB細胞受容体及び/又はT細胞受容体のような特定の分子類、又はB細胞受容体情報、T細胞受容体情報、及びMHC遺伝子のような他の免疫関連遺伝子に関する情報を含むと考えられる免疫レパートリーのような系内の分子の集合体に関連するNGS法のような核酸シークエンシングにより得られる(限定することなく、存在、不在、発現量、変異体を含む)情報全体を指す。
本明細書に用いられている「TCR/BCRレパートリー」という用語は、TCR/BCRプローブ集合(プローブパネル)を単独で、又は標的化エクソームパネルと組み合わせて含むハイブリッド捕捉プローブを使用する、被検体から単離されたサンプルの(NGS法等による)核酸シークエンシングにより得られる情報全体を指す。標的化全トランスクリプトーム又は標的化全エクソームパネルが使用される場合は、TCR/BCRレパートリーは、残りの(非TCR/BCR)トランスクリプトームデータを含まない。TCR/BCRレパートリーは、TCR/BCRパネルにおける遺伝子標的に関する、例えば配列データの形態の情報を含む。当該情報を、当該技術分野で公知の方法により解析して、受容体型(例えば、TCR型α:β又はγ:δ、BCR型IgD、IgM、IgA、IgG又はIgE)、(例えば非定常領域配列に基づく)受容体の識別情報、及び具体的な受容体の存在度を決定して、TCR/BCRプロファイルを得ることができる。
本明細書に用いられている「TCR/BCRプロファイル」とは、被検体又はコホートの医学的状態、疾患、治療効果、腫瘍浸潤度等の状況又は状態の観察についての予測又は特定を可能にするTCR/BCRレパートリーの情報の部分集合を指す。いくつかの実施形態において、TCR/BCRプロファイルは、臨床的に実用的な観察を含む。例として、TCR/BCR患者のプロファイルは、通常、(例えばTCR/BCRレパートリー又は免疫レパートリーの)NGSシークエンシングデータの統計的解析のような解析により得られ、当該解析の結果は、レポート又は他の視覚的表現、要約、一覧表、表示等のような任意の形態で提示又は出力されてもよい。TCR/BCRプロファイルの例示的な情報としては、複数のTCR/BCR受容体配列(クローン)の1つ以上、(例えばクローン存在度を示す)受容体の存在度、最も存在度の高い受容体、1つ又は複数の具体的な受容体の存在度、受容体の多様性の程度(クローン性)、受容体型、非定常領域の存在度、及び上記の任意の組合せが挙げられるが、それらに限定されない。単なる例として、TCR/BCRプロファイルには、最も存在度の高い上位10の受容体の(例えば、実施例3参照)、様々ながんにおけるレパートリー内のクローン性(例えば、実施例7参照)、コホートデータベースに共通の受容体の特定(例えば、実施例9参照)が含まれてもよい。
「TCR/BCRプロファイリング」とは、T細胞受容体又はB細胞受容体の発生に関与するゲノムの領域の少なくとも一部のプロファイリングを指す。
「V(D)J組換え」とは、細菌、ウイルス、真菌、寄生虫及び蠕虫並びにある種のがん細胞を含む病原体の抗原の認識を可能にする免疫グロブリン及びTCRの抗原結合領域における多種多様なアミノ酸配列をもたらす、バリアブル(V)、ジョイニング(J)、及び場合によっては多様性(D)遺伝子セグメントのほぼランダムな再構成を指す。
「V領域」とは、BCR又はTCRバリアブル遺伝子セグメント、又はその遺伝子生成物を指す。
「D領域」とは、BCR又はTCR多様性遺伝子セグメント、又はその遺伝子生成物を指す。
「J領域」とは、BCR又はTCRジョイニング遺伝子セグメント、又はその遺伝子生成物を指す。
「C領域」とは、BCR又はTCR定常遺伝子セグメント、又はその遺伝子生成物を指す。
本明細書に用いられている「トランスクリプトーム」とは、有機体、特定の組織又は特定の細胞によって発現されるメッセンジャーRNA分子の全範囲を指す。トランスクリプトームは、特定の時点、例えば特定の発達段階、特定の疾患段階等で定義できる。
「全トランスクリプトーム」とは、細胞、組織、臓器及び/又は全身に発現されるコーディング及びノンコーディングRNAを指す。
「全トランスクリプトームシークエンシング」又は「全トランスクリプトームプロファイル」とは、所定の時間におけるサンプル中の転写物の完全相補の測定を指す。全トランスクリプトームシークエンシングにより、コーディング転写物(mRNA)及びノンコーディング転写物(rRNが対象となる場合はmiRNA、tRNA、rRNA等)の両方が捕捉され、発現量、エクソン、イントロン及び変異体の「スナップショット」が得られる。いくつかの実施形態において、全トランスクリプトームシークエンシングは、サンプルからrRNAを除去することにより開始される(rRNAは、通常、シークエンシングリードの大半を占める)。いくつかの実施形態において、特定のRNA配列に対する濃縮、及び/又は(例えば、種特異的rRNAプローブを使用して存在度の高いRNA種を除去することによる)他の配列の存在の除去若しくは低減のために標的化パネルを使用するトランスクリプトーム濃縮工程を含む全トランスクリプトームシークエンシングが実施される。例として、特定のRNA配列について濃縮を行うための全トランスクリプトーム標的化パネルは、5,000、10,000又は20,000以上のRNA標的を濃縮するプローブを含むことができる。いくつかの実施形態において、トランスクリプトームハイブリッド捕捉プローブを含む全トランスクリプトーム標的化パネルは、全エクソームパネル、例えば統合DNA技術xGenエクソームリサーチパネルv2(Integrated DNA Technologies xGen Exome Research Panel v2)を含むことができる。
本明細書に用いられている「エクソーム」とは、エクソンから構成されるゲノムの部分、即ち、転写されると、イントロンがRNAスプライシングにより除去された後で成熟RNA内に残留し、その遺伝子によってコードされた最終タンパク質生成物に寄与する配列を指す。
本明細書に用いられている「全エクソームシークエンシング」とは、通常はNGSシークエンシング法を使用してゲノムのタンパク質コーディング領域をシークエンシングすることを指す。ヒトエクソームは、ゲノムの2%未満であるが、公知の疾患関連変異体を85%程度まで含むため、この方法は、全ゲノムシークエンシングに代わるコスト効率の高い方法である。いくつかの実施形態において、エクソーム配列に対する濃縮(及び例えば、ノンコーディング配列の削除)のためにエクソーム標的化パネルを使用するエクソーム濃縮工程を含む全エクソームシークエンシングが実施される。当該パネルは市販されており、通常、5,000、10,000又は20,000以上の遺伝子を濃縮するプローブを含む。例として、非限定的なエクソームパネルは、統合DNA技術xGenエクソームリサーチパネルv2である。
本明細書において、「標的化パネル」及び「標的化遺伝子シークエンシングパネル」又は「標的化パネル」は区別なく用いられて、対象となる遺伝子又は遺伝子領域の選定集合に向けられるプローブ集合を指す。標的化パネルは、所定のサンプルにおける特定の配列の集合を検出するための有用なツールである。いくつかの実施形態において、標的化パネルは、全ゲノムシークエンシングのようなより一般的な手法と比較して、より小さくより扱いやすいデータ集合(例えばTCR/BCRプロファイル)を生成する。いくつかの実施形態において、標的化パネルは、全エクソームパネル又は全トランスクリプトームパネルを含み、5,000、10,000又は20,000以上の標的を網羅する。いくつかの実施形態において、標的化パネルは、ハイブリッド捕捉プローブを含む。
本明細書に用いられている「ハイブリダイゼーション捕捉プローブ」又は「ハイブリッド捕捉プローブ」とは、対象となる核酸配列に結合し(核酸配列にハイブリダイズし)、固体支持構造体、例えばビーズに結合したストレプタビジン結合捕捉部分を使用してそれらを濃縮するための手段を提供するのに十分である、対象となる核酸配列に相補的な領域を含むビオチン化オリゴヌクレオチドを指す。様々な実施形態において、ストレプタビジン及びビオチン化の代わりに他の捕捉部分が使用されてもよい。結合部分の例としては、ビオチン:ストレプタビジン、ビオチン:アビジン、ビオチン:ハバ:ストレプタビジン、抗体:抗原、抗体:抗体、共有化学結合(例えばクリック化学)が挙げられるが、それらに限定されない。
本明細書に用いられている「プローブ層」又は「プローブ集合」及び「パネル」という用語は、シークエンシングに先立つ核酸標的の濃縮に有用なプローブの集合体を指す。いくつかの実施形態において、プローブ集合及びプローブパネルは、区別なく使用される。いくつかの実施形態において、パネルは、プローブ層の集合体を含むプローブ集合として表記されてもよい。いくつかの実施形態において、対象となる更なる標的遺伝子又は配列について濃縮を行うために、TCR/BCRパネルと組み合わせて更なるプローブ層が提供される。例として、がん特異的配列(例えば、診断、予後及び/又は治療バイオマーカーとして機能する配列)に向けられるプローブ層が、全トランスクリプトームパネル若しくは全エクソームパネルに代えて、又は全トランスクリプトーム若しくは全エクソームパネルに加えて、BCR/TCRパネルとともに含められてもよい。
「ポリヌクレオチド」、「核酸」及び「核酸分子」という用語は、区別なく用いられ、1つのヌクレオチドのペントースの3'位が、リン酸ジエステル基により次のヌクレオチドのペントースの5'位に結合されたヌクレオチドの共有結合配列(即ち、RNAのリボヌクレオチド及びDNAのデオキシリボヌクレオチド)を指す。シークエンシングされたヌクレオチドは、限定することなくRNA、DNA及びcfDNA分子を含む、任意の形態の核酸のヌクレオチドであってもよい。これらの用語は、また、逆転写酵素によって触媒される反応で単一鎖RNA(例えば、メッセンジャーRNA(mRNA)又はミクロRNA(miRNA))テンプレートから合成されるDNAである相補的DNA(cDNA)を指す。「ポリヌクレオチド」という用語は、限定することなく、一本鎖及び二本鎖ポリヌクレオチドを含む。
本明細書に用いられている「遺伝子」という用語は、ポリペプチド又は機能的RNA分子である遺伝子生成物をコードする核酸配列を指す。「遺伝子」という用語は、本明細書では広義に解釈され、遺伝子のゲノムDNA形態(即ち、特定の染色体の特定の部分)と、それから生成される遺伝子のmRNA及びcDNA形態との両方を包含する。ゲノムDNAは、遺伝子発現時に、RNAに転写され、それがすぐに機能化され得る、又は機能を発揮するポリペプチドに翻訳され得る。遺伝子は、コーディング領域(即ち、遺伝子生成物をコードする配列)に加えて、「ノンコーディング領域」を含む。ノンコーディング領域は、コーディング領域と直接隣接していてもよい(例えば、コーディング領域の側面に位置する5'及び3'ノンコーディング領域)、又はコーディング領域から(例えば、多キロベース上流若しくは下流に)離れていてもよい。「イントロン」(即ち、翻訳前にRNAスプライシングにより除去される領域)及び翻訳調節要素(例えば、リボソーム結合部位、ターミネーター、並びに開始及び終止コドン)を含むいくつかのノンコーディング領域がRNAに転写されるが翻訳はされない。基本的な転写調節領域を含む他のノンコーディング領域は転写されない。遺伝子は、RNAポリメラーゼをリクルートし、その結合及び転写の開始を促進するタンパク質(即ち転写因子)が認識及び結合する配列である「プロモーター」を必要とする。遺伝子は、2つ以上のプロモーターを有して、5'末端までの範囲の大きさが異なるメッセンジャーRNA(mRNA)を得ることが可能である。本明細書に用いられている遺伝子は、プロモーターに近接させてループし、遠隔調節部位に結合したタンパク質(即ち「転写因子」)が転写に影響できるようにすることが可能であるより遠隔に位置する転写調節要素(即ち、「エンハンサー」及び「サイレンサー」をも含んでいてもよい。例えば、「エンハンサー」は、RNAポリメラーゼのリクルート又は転写の開始を促進する活性化タンパク質に結合することによって転写を増強させる。逆に、「サイレンサー」は、DNAがRNAポリメラーゼに接触しにくくする、又は転写を阻害する抑制タンパク質に結合する。遺伝子は、不適切な調節からプロモーターを保護する「インシュレータ」要素をも含んでいてもよい。インシュレータは、エンハンサー若しくはサイレンサーとの相互作用を阻止すること、又は凝縮クロマチンの拡散を防止するバリアとして作用することによって機能できる。エンハンサー及びサイレンサーは、一般には、(単一のエンハンサー又はサイレンサーが複数の遺伝子の発現を調節し得るため)それ自体が遺伝子の一部であると考えられていないが、本明細書に用いられている遺伝子という用語は、その発現に影響を及ぼす遠隔要素を包含する。
本明細書に用いられている「プロモーター」という用語は、コーディング配列又は機能的RNAの発現を制御することが可能なDNA配列を指す。概して、コーディング配列は、プロモーター配列に対して3'位に位置する。プロモーターは、その全体が在来の遺伝子から得られてもよく、天然に存在する異なるプロモーターから得られる異なる要素で構成されてもよく、更には合成DNAセグメントを含んでいてもよい。異なるプロモーターは、異なる組織若しくは細胞型で、又は異なる発達段階で、又は異なる環境条件に反応して遺伝子の発現を生じさせることができることを当業者は理解する。多くの時点で多くの細胞型に遺伝子を発現させる人工的プロモーターは、一般に、「構成的プロモーター」と称する。多くの細胞型での遺伝子の選択的発現を可能にする人工的プロモーターは、「誘導性プロモーター」と称する。
「遺伝子配列(gene sequence or sequence)」という用語は、DNA、RNA又はcDNA分子に存在する一連のヌクレオチドを指す。本発明に関して、配列は、生体試料に存在する核酸をシークエンシングすることによって決定される。
「リード」という用語は、より大きな配列又は領域を、それを染色体、例えばゲノム領域又は遺伝子とアライメントさせることによって特定するのに使用できる十分な長さ(例えば約30bp)のDNA配列を指す。リードは、ペアードエンドであってもシングルエンドであってもよい。
本明細書に用いられている「参考ゲノム」という用語は、部分的であるか完全であるかに関わらず、被検体からの識別配列を参照するのに使用できる任意の有機体又はウイルスの任意の特定の公知のゲノム配列を指す。アメリカ国立生物工学情報センターのウェブサイト(www.ncbi.nlm.nih.gov.)には多くの参考ゲノムが示されている。「ゲノム」は、核酸配列に発現する有機体又はウイルスの完全遺伝子情報を指す。
本明細書に用いられている「アライメントされた(aligned)」、「アライメント(alignment)」又は「アライメントしている(aligning)」という用語は、類似の領域を特定するのに使用されるプロセスを指す。本発明に関して、アライメントとは、配列を、これらの配列におけるヌクレオチドの順序に基づいて参考ゲノムにおける位置とマッチさせることを指す。アライメントは、手動で、又はコンピュータアルゴリズム、例えば、イルミナゲノミクス解析パイプラインの一部として販売されているエフィシエント・ローカル・アラインメント・オブ・ヌクレオチド・データ(Efficient Local Alignment of Nucleotide Data)(ELAND)コンピュータプログラムにより実施できる。アライメントは、100%の配列マッチ、又は100%未満のマッチ(不完全マッチ)を指すことができる。様々な例において、アライメントは、偽アライメントを含む。
「ライブラリ」及び「シークエンシングライブラリ」という用語は、本明細書において、アダプタが結合されたDNA断片の層を指すように用いられている。アダプタは、一般には、特定のシークエンシングプラットフォーム、例えばフローセル(Illumina)又はビーズ(Ion Torrent)の表面と相互作用してシークエンシング反応を容易にするように設計されている。
「シークエンシングプローブ」又は「シークエンシングプライマー」という用語は、本明細書において、核酸(即ちcDNA又はDNA)をシークエンシングするのに使用される短鎖オリゴヌクレオチドを指すように用いられている。シークエンシングプローブは、核酸内で標的配列とハイブリダイズしてもよいし、非特異的増幅及びシークエンシングに対応するように核酸に結合されたアダプタ配列とハイブリダイズしてもよい。
「RNAリードカウント」という用語は、本明細書において、遺伝子解析装置により生成されたシークエンシングリードの数を指すように用いられている。「RNAリードカウント」という用語は、所定の特徴(例えば遺伝子又は染色体)と重なるリードの数を指すように用いられることが多い。
「遺伝子プロファイル」という用語は、本明細書において、個体又は特定の種類の組織における特定の遺伝子に関する情報を指すように用いられている。この情報には、例えば次世代シークエンシングデータの解析によって決定された遺伝子変異(例えば単一ヌクレオチド多型)、遺伝子発現データ、他の遺伝子特性又はエピジェネティック特性(例えばDNAメチル化パターン)が含まれていてもよい。
「変異体」という用語は、参考ゲノム又は参考遺伝子プロファイルと比較した遺伝子配列又は遺伝子プロファイルの差を意味するように用いられている。
「発現量」という用語は、本明細書において、遺伝子、又は染色体位置若しくは他の遺伝子マッピング指標によって画定できる他の遺伝子調節領域(長鎖ノンコーディングRNA、エンハンサー)により生成される、標準的な方法(例えば、100万当たりの数、本来のリードカウントの常用対数を求める)を使用して正規化されてもされなくてもよい特定のRNA又はタンパク質分子のコピーの数を表記するように用いられている。
「遺伝子生成物」という用語は、遺伝子又は他の遺伝子調節領域の発現(即ち、転写、翻訳、翻訳後修飾等)により生成されるタンパク質又はRNA分子を意味するように本明細書では用いられている。
「抽出された」、「回復された」、「単離された」及び「分離された」という用語は、それが自然に結合し、天然に存在する少なくとも1つの成分から除去された化合物(例えば、タンパク質、細胞、核酸又はアミノ酸)を指す。
例えばNGSシークエンシング法について核酸サンプル調製と併せて本明細書に用いられている「濃縮された」又は「濃縮」という用語は、サンプルにおける1つ以上の核酸種の量を増大させるプロセスを指す。例示的な濃縮方法としては、化学的及び/又は機械的手段を挙げることができ、サンプルに含まれる核酸を増幅させることも挙げることができる。例として、濃縮は、ハイブリッド捕捉プローブの使用、及びポリメラーゼ連鎖反応(PCR)を含んでいてもよい。濃縮は、配列特異的(例えばハイブリッド捕捉プローブ若しくは標的特異的PCRプライマーの使用)又は非特異的(即ちサンプルに存在する核酸のいずれかを含む)であることができる。サンプル中の1つ以上の生体分子の濃度若しくは量に関連して本明細書に用いられている「濃縮された」とは、対照濃度、又はサンプル中の他の生体分子と比較して(相対量として)、核酸又はタンパク質のような1つ以上の生体分子の濃度又は量の増加を指す。データ科学に関して、「濃縮」とは統計的濃縮を指す。
本明細書に用いられている「がん」という用語は、例えばリンパ系及び/又は血流を介してヒト若しくは動物又はその一部侵襲的増殖及び転移が可能なものを含む広範な良性又は悪性腫瘍のいずれか1つ以上を指す。本明細書に用いられている「腫瘍」は、良性及び悪性腫瘍の両方、並びに充実性増殖を含む。典型的ながんとしては、例えば卵巣がん、結腸がん、乳がん、膵臓がん、肺がん、前立腺がん、尿道がん、子宮がん、急性リンパ性白血病、ホジキン病、肺の小細胞がん腫、黒色腫、神経芽腫、膠芽腫及びヒトの軟部組織の肉腫のようながん腫、リンパ腫又は肉腫が挙げられるが、それらに限定されない。
本開示に関して、バイオマーカーという用語は、対象となる特性、例えば、感染、医学的状態、若しくはがんのような疾患、又は患者の感染、状態若しくは疾患に罹りやすさの存在、感染、医学的状態若しくは疾患が何らかのサブタイプである確率、患者が特定の治療若しくは治療類に反応する、若しくはしない可能性、患者が治療に反応するかどうかに関わらず、治療若しくは治療群に期待されるポジティブな反応(例えば、時間間隔として定量化できる生存及び/又は進行のない生存)の程度、又は感染、医学的状態若しくは疾患が進行した、若しくは進行する、又はその原発部位を超えて進行した、若しくは進行する(転移する)確率の指標となる又はそれらと相関づけられる、何らかの遺伝的変異体又は分子又は分子集合、或いは分子の特徴(例えば位置、発現量等)を意味すると解釈されるものとする。いくつかの実施形態において、バイオマーカーは、TCR/BCRプロファイルを含む。
「処置」及び「処置している」等の用語は、本明細書において、一般には所望の薬理学的及び/又は生理学的効果を得ることを意味するように用いられている。その効果は、疾患若しくはその症状を完全若しくは部分的に予防するという観点で予防的であってもよく、且つ/又は疾患及び/又は該疾患に起因する有害効果の部分的若しくは完全な治癒の観点で治療的であってもよい。本明細書に用いられている「処置」は、哺乳動物における疾患の任意の処置を包含し、(a)疾患に罹りやすいと考えられるがその疾患を有しているとまだ診断されていない被検体における疾患の発症を予防すること、(b)疾患を抑制すること、即ちその発症を阻止すること、又は(c)疾患を軽減すること、即ち疾患を退行させることを含む。治療薬は、疾患又は傷害の発症前、発症時又は発症後に投与されてもよい。処置が患者の望ましくない臨床的症状を安定化又は軽減する進行中の疾患の処置は、特に関心度が高い。被検体への治療薬の投与は、望ましくは、疾患の症候段階、場合によっては疾患の症候段階の後に投与される。
「有効量」という用語は、本開示の方法により使用された場合に合理的な利益-リスク比に合致する、過度の有害副作用(毒性、刺激及びアレルギー反応等)を伴わない検出可能な治療効果を発揮するのに十分な活性薬剤の量を指す。患者に対する有効量は、患者の種類、患者の大きさ及び健康状態、処置すべき状態の性質及び重度、投与方法、処置期間、(行われる場合は)併用療法の性質、並びに採用される具体的な配合物等に依存する。したがって、正確な有効量を予め特定することは不可能である。しかし、所定の状況に対する有効量は、当該技術分野の知識及び本明細書に提示される情報に基づいて通常の実験を行うことにより当業者が決定できるものである。最適な投与方式は、過度な実験を行うことなく当業者が決定できる。
概要
リンパ球受容体(T細胞受容体、「TCR」及びB細胞受容体、「BCR」)の多様性は、組換え、即ち約1018の固有の受容体の理論的多様性を生み出すことによって達成される。したがって、先天性免疫細胞による抗原負荷及び抗原提示を受けると、抗原、又は主たる組織適合性複合体I若しくはII(MHCI若しくはII)に結合した抗原に対する親和性の高い受容体を有するリンパ球は活性化され、クローン的に増加する。重要なことに、既に活性化され、分化して「エフェクタ」細胞となったリンパ球は、個体内でしばらくの間、持続する。また、感染の解消後又は病原体の消失後も、「記憶」細胞が宿主の生涯にわたり持続する場合がある。個別の被検体に存在する特定種類のリンパ球受容体を、「レパートリー」と称する。したがって、個別の被検体におけるリンパ球受容体のレパートリーは、がん等の疾患を含む、抗原負荷に対するそれらの反応の痕跡を含み、それらが遭遇した病原体の記録を提供する。例として、血液がんの場合にはレパートリーを監視して「腫瘍」又はがん細胞を確かめることができ、固形がんの場合にはレパートリーを使用して、免疫系ががん細胞を非自己細胞として認識/排除していない理由を調査することができる。少なくともこれらの理由により、個別の被検体のリンパ球受容体のプロファイルに対する関心は大きい。
免疫プロファイリング分野では、次世代シークエンシング(NGS)として知られる技術を活用して、個別の被検体における免疫受容体レパートリーを正確にシークエンシングする。NGSは、個体のゲノム又はサンプルのトランスクリプトームの比較的完全な全体像を得るために後で参考ゲノム又はトランスクリプトームに対してアライメントされる、数百万のシークエンシング「リード」を生成することが可能である。しかし、T及びB細胞受容体を検出及び評価するためにリードをアセンブルして分析する際の技術上及び計算上の難題が顕著である。上質のシークエンシングデータは、シークエンシングの幅及び深度として知られる2つの要因に依存する。シークエンシングの幅とは、シークエンシングによってカバーされるゲノムベースの数又は全体に占める割合を指す一方、シークエンシングの深度とは、特定のベース又は領域がシークエンシング実行によってカバーされるおおよその回数を指す。しかし、任意のサンプルにおいて、リンパ球受容体、又は場合によりリンパ球全体をコードする特定の転写物の存在は、非常に限定的となり得る。したがって、個別の被検体のT及びB細胞レパートリーを、TCR及びBCRの非定常領域について直接濃縮又は選択することなく、正確に表す深いシークエンシング結果を得ることは、困難を伴うと考えられる。
T及びB細胞受容体は、再構成されて個体に存在する大きなレパートリーを形成する離散的遺伝子からなる。したがって、T及びB細胞受容体転写物を選択的に濃縮するための如何なる戦略も、リンパ球受容体をコードする低存在度の転写物、及び組換え抗原受容体をコードするようにアセンブルされる多様な遺伝子に対処できるよう、適応させなければならない。加えて、TCR及びBCRに対するシークエンシングリードのマッピングのバランスが取れず、それが原因で、或るサンプルにおいてTCR又はBCRいずれかのクローンの検出に偏る場合もある。また、免疫プロファイリングにおいて最も重要な情報は、定常領域ではなく、超可変(非定常)領域に存在する。したがって、超可変領域向けの配列は、濃縮が必要となる場合がある。場合によっては、サンプルが生検又は他の希少サンプルに由来することから、サンプルの量及び/又は質が制限的となることがある。したがって、当該技術分野において、単一のサンプル又はシークエンシング実行から、上質なRNAシークエンシングを抽出するだけでなく、深く正確な免疫プロファイリングを大規模に提供することもできる方法が必要とされている。本開示の方法及びシステムは、当該技術分野におけるこの必要性に対処するものである。
T細胞及びB細胞の標的化シークエンシングは、がん、並びに自己免疫疾患、感染性疾患及び移植等他の状態における免疫系のマッピング(「イミュノーム」)向けの強力なツールになり得る。個々の非クローナルT細胞及びB細胞はDNAレベルで固有であり、細胞が反応する病原体又は抗原を決定するT細胞受容体(TCR)遺伝子又はB細胞受容体(BCR)遺伝子においては異なる。本明細書で開示されるように、TCR及びBCR遺伝子の配列をRNAseqを介してアセンブルする(決定する)ことにより、免疫系をより正確にマッピングすることができ、新たな区分の免疫特異的な特徴を生成して、例えば、免疫反応を予測する、疾患、状態又は病原体接触を診断又は確認する、疾患重篤度を判定する、治療の効果及び効能を測定又は確認する、最小残存病変(MRD)を判定する、並びにキメラ抗原受容体(CAR)T細胞(CAR-T細胞)、NK細胞(CAR-NK細胞)、マクロファージ(CAR-M細胞)、若しくはCARを発現するように操作された別の種類の細胞、対がん免疫動員モノクローナルT細胞受容体(ImmTAC)、別の養子細胞療養、及びワクチン等特定の治療法を生み出すために必要な情報を提供することができる。
TCR/BCRプロファイルの決定
被検体のTCR/BCRプロファイルを決定するための方法、システム、及び組成物を本明細書に開示する。いくつかの実施形態において、該方法は、(a)患者のサンプルからRNAを単離すること、(b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、(c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び(d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含む。いくつかの実施形態において、ハイブリッド捕捉プローブの集合は、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、及びTCR非定常領域プローブを含む第4の層を含む。いくつかの実施形態において、実施例1の方法に従って得られるTCR/BCRプローブ集合が使用される。
いくつかの実施形態において、TCR/BCRプロファイリングは、単独のアッセイとして実施してもよい。いくつかの実施形態において、本明細書に開示されているTCR/BCRプロファイリングの方法及びシステムは、より広範囲に及ぶRNAseq全トランスクリプトーム又は全エクソームRNAパネルに関する範囲内で使用するように構成されることにより、希少な患者サンプルを保全し、診断又は治療法の推奨に至るまでの時間を短縮し、並びに遺伝子発現データ及び関連する遺伝的データ(代替的なスプライシング事象、融合及び遺伝的変異体等、ただしそれらに限定されない)に加えて被検体の免疫プロファイルに関する特定の情報を得るのための新奇の有益な方法を提供するものであってもよい。RNAseqプラットフォームに組み込まれると、TCR/BCRプロファイリングは利便性が拡大し、見識を生成するための一層独特で有益なリソースを有すると考えられる。例として、ただし限定することなく、TCR/BCRプロファイリングを、がん、感染性疾患、移植、アレルギー性疾患(気道、食物又は他のアレルゲンによって誘発されるもの)、及び自己免疫を含む、多様な疾患状態及び関連する免疫反応のプロファイリング及び追跡に用いることができる。アレルギー性疾患としては、接触皮膚炎、喘息、アナフィラキシー、アトピー性皮膚炎に関連非IgE媒介食物アレルギー等が挙げられる。自己免疫疾患としては、1型糖尿病、リウマチ性関節炎、狼瘡、セリアック病、シェーグレン症候群、多発性硬化症、リウマチ性多発性筋痛、強直性脊椎炎、円形脱毛症、血管炎、側頭動脈炎等が挙げられる。TCR/BCRプロファイリングは、アレルタイピングを含んでいてもよく、免疫反応、健康転帰、及び/又は疾患重篤度を予測するためのバイオマーカー発見に用いることができる。
したがって、いくつかの実施形態において、本明細書に開示されているTCR/BCRプロファイリング方法は、次世代シークエンシング等のシークエンシング技法を用いて実施される。いくつかの実施形態において、ショートリードRNAシークエンシングを用いるバルク(多細胞)シークエンシングを用いることができる。その場合、結果的なリードを、例えば、TCR/BCR遺伝子領域からのコンティグの組立てに用いることができる。いくつかの実施形態において、例えばエクソン標的化パネルを含むプローブの第5の層が提供される。
上述の通り、本発明の方法、組成物及びシステムの1つの例示的便益は、より広範囲に及ぶRNAseq全トランスクリプトームパネルに関する範囲内にTCR/BCRプロファイリングを含めることができるということである。腫瘍学又はより一般的なプロファイリング環境において、TCR/BCRプロファイリングを、トランスクリプトームの他の部分、例えばサイトカイン発現、免疫細胞組成、潜在的ウイルス/細菌シグナル、及び炎症性シグネチャに関する他の解析に加えてもよい。全トランスクリプトーム解析により、そのデータを捕捉する一方でTCR/BCRスナップショットも提供することが可能になる。
TCR/BCRプロファイリング、NGS及び関連する方法に対して有用な、例示的サンプル調製方法を以下に記す。本発明の技術は、サンプル調製方法に限定されることを意図するものではなく、当業者は、置換、代替的試薬、及び代替的処理工程を用いてもよいことを理解する。
RNA抽出
トランスクリプトーム解析、即ち、細胞によって生成されるRNA転写物の完全集合(即ちトランスクリプトーム)の研究、及びエクソーム解析、即ち、タンパク質生成物をコードするRNAの研究は、疾患状態及び疾患進行と相関関係にある遺伝的変異体を特定するための有望な手段をもたらす。例えば、がんに関連する遺伝的変異体を特定するために、トランスクリプトーム及び/又はエクソームの解析を、がん細胞を有する患者から採取されたサンプルに対して実施することができる。好適な患者サンプルとしては、組織サンプル、腫瘍(例えば固形腫瘍)、生検、リンパ節、及び体液(例えば血液、血清、血漿、リンパ液、痰、洗浄液、脳脊髄液、尿、精液、汗、涙、唾液)が挙げられる。或いは、トランスクリプトーム及び/又はエクソーム解析を、ヒトがん標本から生成されたオルガノイド(即ち「腫瘍オルガノイド」)に対して実施してもよい。シークエンシングは、単細胞標本に対して実施してもよいし、又は多細胞標本に対して実施してもよい。
RNAシークエンシング(RNA-seq)は、RNAを有するどの患者サンプルに対しても実施できる一方、当業者は、シークエンシングプロトコルを、使用する特定のサンプルに適応させるべきであることを理解する。例えば、RNAは、組織学向けに既に処理された組織サンプル(例えばホルマリン固定したパラフィン包埋(FFPE)組織切片)中ではかなり劣化する傾向にある。したがって、研究者は、RNA-seqプロトコルにおけるいくつかの主要工程を修正して、シークエンシングの人為的要素を軽減することになる(例えばBMC Medical Genomics 12、195頁(2019年)を参照のこと)。
現在、トランスクリプトーム及びエクソームの解析は、圧倒的に、次世代シークエンサを使用してサンプル中のRNA転写物を検出する、高スループットRNAシークエンシング(RNA-Seq)を用いて実施される。RNA-seqを実施する際の第一歩は、サンプルからRNAを抽出することである。
細胞溶解
サンプルからのRNA抽出の第一歩は、多くの場合、そのサンプル中に存在する細胞を溶解することである。例えば、機械的破壊(例えば混合装置又は組織均質化装置の使用)、液体均質化(例えばダウンス又はフレンチプレスの使用)、高周波音波(例えば超音波破砕装置の使用)、凍結融解サイクル、加熱、手動切削(例えばすり鉢とすりこぎの使用)、及びビーズ破砕(例えばBioSpec社製Mini-beadbeater-96を使用)を含む、いくつかの物理的破壊方法を用いて細胞を溶解させるのが一般的である。細胞は、また、多くが市販されている、洗浄剤を含む試薬(例えば、QIAGEN製のQIAzol溶解試薬、Promega社製FastBreak(商標)細胞溶解試薬)を使用して溶解させるのが一般的である。多くの場合、物理的破壊方法は、例えば、溶解効率を高める洗浄剤又はプロテアーゼ(例えばプロテイナーゼK)等の溶解試薬を含む「均質化バッファー」中で実施される。均質化バッファーは、また、RNAを劣化から保護するための発泡防止剤及び/又はRNase阻害剤を含んでいてもよい。当業者は、異なる組織から最大限可能な収率を得るために異なる細胞溶解技法が必要になる場合があることを理解する。放出されたRNAの劣化を最小限に抑える技法、及び核クロマチンの放出を回避する技法が好適である。
RNA単離
細胞が溶解された後、RNAを他の細胞成分から分離することができる。全RNAは一般的に、グアニジンチオシアネート-フェノール-クロロホルム抽出物を使用して(例えばTRIzolを使用して)、又はトリクロロ酢酸/アセトン沈殿及びそれに続くフェノール抽出の実施によって単離される。しかし、RNA抽出用のカラム系システム(例えば、Invitrogen社製のPureLink RNAミニキット及びZymo Research社製のDirect-zol Miniprepキット)も多数市販されている。
理想的には、単離されたRNAは、DNA及び酵素汚染をほとんど含まない。この目的のために、単離方法では、DNAを排除する薬剤(例えばTURBO DNase-I)及び/又は酵素的タンパク質をサンプルから除去する薬剤(例えばBeckman Coulter製のAgencourt(登録商標)RNAClean(登録商標)XPビーズ)を活用してもよい。
場合によっては、全トランスクリプトームシークエンシングを用いて、メッセンジャーRNA(mRNA)及びすべての非ノンコーディングRNAを含む、細胞に存在するすべての転写物を解析する。全トランスクリプトームに着目することにより、研究者は、エクソン及びイントロンをマッピングし、スプライシング変異体を特定することができる。特に、全トランスクリプトームライブラリ調製プロトコルはほとんどが、他の状況ではシークエンシングリードの大部分を取り込むと予想されるリボソームRNA(rRNA)を除去する工程を含む。rRNAの枯渇は、一般的に、例えばIllumina社製のRibo-Zero Plus rRNA枯渇キット及びZymo社製のSeq RiboFree全RNAライブラリキット等のキットを使用して達成される。
他の例では、より標的を絞ったRNA-Seqプロトコルを用いて、特定種類のRNAに着目する。例えば、mRNA-seqは一般的に、トランスクリプトーム全体に占める割合が1~2%しかない、ゲノムの「コーディング」部分を選択的に研究するために用いられる。mRNA向けのサンプルを濃縮すると、遺伝子のコーディング向けに達成されるシークエンシング深度が増加し、希な転写物及び変異体の特定が可能になる。ポリアデニル化mRNAは一般的に、オリゴdTビーズ(例えばInvitrogen社製のDynabeads(商標))を使用する場合に濃縮される。この濃縮工程は、単離全RNA又は未処理の細胞溶解物のいずれかに対して実施できる。
標的化アプローチは、ミクロRNA(miRNA)及び小型干渉RNA(siRNA)の分析向けにも開発されてきた。これらのRNAは、一般的に、小型RNAを効率的に回復するために設計されたキット(例えばInvitrogen社製のmirVana(商標)miRNA単離キット)を使用して単離される。
ライブラリ調製
RNAがサンプルから抽出された後、次の主要工程は、RNAを次世代シークエンシング(NGS)に好適な形態へと転換することである。一連の工程を通じ、RNAは、「シークエンシングライブラリ」として知られるDNA断片の集合へと転換される。ライブラリがシークエンシングされた後、結果的なシークエンシング「リード」は参考ゲノム又はトランスクリプトームに対してアライメントされて、解析対象細胞の発現プロファイルを決定づける。
いくつかの実施形態において、ライブラリ調製は自動化される結果、より高いサンプルスループットが可能となり、エラーが最小限で済み、作業時間が短縮される。例えば、液体取扱いロボット(例えばPerkinElmer社製のSciClone(登録商標)NGSx)を使用して、完全自動化ライブラリ調製を実施できる。
逆転写/cDNA調製
RNAがサンプルから抽出された後、次の主要工程は、RNAを次世代シークエンシング(NGS)に好適な形態へと転換することである。一連の工程を通じ、RNAは、「シークエンシングライブラリ」として知られるDNA断片の集合へと転換される。ライブラリがシークエンシングされた後、結果的なシークエンシング「リード」は参考ゲノム又はトランスクリプトームに対してアライメントされて、解析対象細胞の発現プロファイルを決定づける。
場合によっては、ライブラリ調製は自動化される結果、より高いサンプルスループットが可能となり、エラーが最小限で済み、作業時間が短縮される。例えば、液体取扱いロボット(例えばPerkinElmer社製のSciClone(登録商標)NGSx)を使用して、完全自動化ライブラリ調製を実施できる。
シークエンシング向けに、RNAは、逆転写(RT)を用いて、より安定性の高い、二本鎖相補DNA(cDNA)へと転換される。場合によっては、逆転写は、RNA単離に先立ってサンプル溶解物に対して直接実施される。他の例では、逆転写は単離RNAに対して実施される。
逆転写は、RNAテンプレート及びRNAの3'末端に対して相補的な短プライマーを使用してcDNAの相補鎖を合成する酵素である逆転写酵素によって触媒される。このcDNAの第1の鎖を、次いで、それをPCRの対象とすること、又はDNAポリメラーゼI及びDNAリガーゼの組合せの使用のいずれかによって、二本鎖にする。後者の方法では、RNase(例えばRNase H)を一般的に使用してRNA鎖を消化させることにより、第1のcDNA鎖が第2のcDNA鎖を合成するためのテンプレートの役割を果たすことが可能になる。
家禽骨髄芽球症ウイルス(AMV)逆転写酵素(例えばNew England BioLabs社製のAMV逆転写酵素)及びモロニーマウス白血病ウイルス(M-MuLV、MMLV)逆転写酵素(例えばClontech社製のSMARTscribe(商標)、Life Technologies社製のSuperScript II(商標)及びThermo Scientific社製のMaxima H Minus(商標))を含む、多数の逆転写酵素が市販されている。特に、入手可能な逆転写酵素の多くは、熱的安定性又は効率性を改善するよう操作されている(例えば、3'→5'エクソヌクレアーゼ活性の排除又はRNase H活性の低減による)。
新しい鎖を合成するための出発点の役割を果たすプライマーは、ランダムプライマー(即ち任意のRNAのRT向け)、オリゴdTプライマー(即ちmRNAのRT向け)、又は遺伝子特異的プライマー(即ち特定の標的RNAのRT向け)であってもよい。
逆転写に続いて、エクソヌクレアーゼ(例えばエクソヌクレアーゼI)をサンプルに添加して、反応後に残存するプライマーを劣化させ、それらが後続の増幅工程に干渉するのを防止することができる。
濃縮
用途によっては、サンプルのトランスクリプトーム全体のシークエンシングは不要である。代わりに、「標的化シークエンシング」を用いて、遺伝子又は特定のゲノム要素の選択された集合を研究することができる。標的配列向けに濃縮されるライブラリは、一般的に、ハイブリダイゼーションに基づく方法(即ちハイブリダイゼーション捕捉に基づく標的濃縮)を用いて調製される。ハイブリダイゼーションは、固体表面(マイクロアレイ)上又は溶液中で実施できる。溶液ベースの方法では、対象となる遺伝子又はゲノム要素とともに特異的にハイブリダイズするビオチン化オリゴヌクレオチドプローブ層をライブラリに添加する。次いでプローブを捕捉し、ストレプタビジン被覆磁性ビーズを使用して精製した後、これらのプローブへとハイブリダイズした配列を増幅し、シークエンシングする。IDT社製(例えばxGenエクソームリサーチパネルv1.0及びv2.0プローブ)及びRoche社製(例えばSeqCap(登録商標)プローブ)のものを含め、ライブラリ濃縮用のプローブパネルが多数市販されている。多数の入手可能なプローブパネルがカスタマイズ可能であることにより、研究者は、特定の用途に対して精密に適応させた捕捉プローブの集合を設計することができる。また、標的濃縮を円滑化する多数のキット(例えばRoche社製のSeqCap EZ MedExome標的エクソーム濃縮キット)やハイブリダイゼーションミックス(例えばIDT社製のxGen Lockdown)も市販されている。
場合によっては、標的濃縮を実施する前に、標的外捕捉を低減する試薬でライブラリを処置するのが有利なこともある。例えば、ライブラリは一般的に、アダプタ配列(例えばxGen遮断オリゴ)又は反復配列(例えばヒトCot DNA)に結合して捕捉プローブへの非特異的結合を低減するオリゴヌクレオチドで処置される。
濃縮に関する詳細な議論、及びTCR/BCR遺伝子領域向けの例示的濃縮スキームを以下に記す。
ライブラリの増幅
シークエンシング用途によっては必要でない場合もある一方、ライブラリ調製は典型的に、シークエンシング適合DNA断片(即ちアダプタ連結末端を有する断片)向けに濃縮し、下流の処理向けに十分な量のライブラリ材料を生成する、少なくとも1つの増幅工程を含む。増幅は、標準のポリメラーゼ連鎖反応(PCR)技法を用いて実施してもよい。しかし、可能であれば、増幅バイアスを最小限に抑え、シークエンシングの人為的要素の導入を制限するよう配慮すべきである。これは適切な酵素及びプロトコルパラメータの選択を通じて達成される。この目的のために、いくつかの企業が、より正確なシークエンシングデータを生成することが示されている高忠実度DNAポリメラーゼ(例えばRoche社製のKAPA HiFi DNAポリメラーゼ)を発売している。多くの場合、これらのDNAポリメラーゼは、PCRマスタミックスの一部として(例えばNew England BioLabs社製のNEBNext(登録商標)高忠実度2X PCRマスタミックス)として、又はキットの一部(例えばRoche社製のKAPA HiFiライブラリ増幅キット)として購入される。
当業者は、高度に最適化されたPCRプロトコルを用いる場合であっても、シークエンシング実験の度にPCR条件を微調整しなければならないことを理解する。例えば、ライブラリにおけるDNAの初期濃度及び使用するシークエンサの要件次第では、PCRの4~14サイクルのどこかでライブラリを対象にするのが望ましいと考えられる。
場合によっては、ライブラリ調製プロトコルは、複数回のライブラリ増幅を含む。例えば、場合によっては、ライブラリが蓄積された後で追加の増幅が実施され、続いてPCRクリーンアップが実施される。
スパイクイン対照
異なる実験条件からの細胞からは同一量のRNAを得られない場合があることから、様々な実験条件にまたがる変化を正確に特定するためにシークエンシングデータを正規化してもよい。正規化は、例えば、異なる実験条件間での大域的な転写変化への対処に有用であると考えられる。正規化向けに、「スパイクイン対照」をシークエンシングライブラリに追加してもよい。いくつかの実施形態において、スパイクイン対照は、例えば、標本に対する既知の比率で追加されるDNA配列を構成する。対照DNAは、データ分析過程で実験用cDNAと容易に区別できる任意のDNAとすることができる。例えば、対照ライブラリは一般的に、合成DNA又は対象となる生物以外の生物からのDNAを含む(例えば、PhiXスパイクイン対照を、ヒト由来ライブラリに追加してもよい)。
断片化及びサイズ選択
長いDNA鎖を容易に解析できないシークエンシング技術の場合、DNAは一般的に、シークエンシングに先立って均一な断片へと断片化される。最適な断片長は、サンプルの種類及び使用するシークエンシングプラットフォームの両方に左右される。例えば、全ゲノムシークエンシングは、通常、長さ350bp以下のDNAの断片の場合に最も上手く機能する一方、ハイブリダイゼーション捕捉を使用する標的化シークエンシング(セクション2G参照)は、長さ200bp以下のDNAの断片の場合に最良に機能する。
場合によっては、断片化は、逆転写の後に(即ちcDNAに対して)実施される。好適なDNA断片化方法としては、物理的方法(例えば、超音波破砕、音響、噴霧、遠心分離力、針、又は流体力学の使用)、酵素的方法(例えば、New England BioLabs社製のNEBNext dsDNA Fragmentaseの使用)、及びタグメンテーション(例えば、Illumina社製のNextera(商標)システムの使用)が挙げられる。
他の例では、断片化は、逆転写の前に(即ちRNAに対して)実施される。DNAに好適な断片化方法に加え、熱及びマグネシウムを使用して(例えば、Roche社製のKAPA Hyper Prepキットを使用)、RNAを断片化してもよい。
続いて、最適な長さ又は長さ範囲の断片についてライブラリを濃縮するために、サイズ選択工程を実施してもよい。従来、サイズ選択は、アガロースゲル電気泳動法を用いてサイズの異なる断片を分離し、所望のサイズの断片を切り出し、ゲル抽出を実施する(例えば、Qiagen社製のMinElute Gel Extraction Kit(商標)を使用)ことによって達成されていた。しかし、サイズ選択は現在、一般的に、磁気ビーズに基づくシステム(例えば、Beckman Coulter社製のAMPure XP(商標)、Promega社製のProNex(登録商標)サイズ選択的精製システム)を使用して達成される。
シークエンシングアダプタ連結
シークエンシングに先立って、cDNA断片をシークエンシングアダプタに連結する。シークエンシングアダプタは、(1)シークエンシング反応過程でcDNA断片を増幅するために必要な配列、及び(2)NGSプラットフォームと相互作用する配列(例えば、Illuminaフローセル又はIon Torrentビーズの表面)を含む、短DNAオリゴヌクレオチドである。したがって、アダプタは、使用するシークエンシングプラットフォームに基づいて選択されなければならない。
複数のサンプルからのライブラリは、一般的に、1回のシークエンシング実行の際に蓄積され解析される(下記の「蓄積」参照)。蓄積されたサンプルにおける各cDNAの源泉を追跡するために、各ライブラリにおいてcDNA断片に連結されるアダプタに、固有の分子バーコード(又は複数のバーコードの組合せ)が含まれる。シークエンシング反応過程で、シークエンサが、cDNAの生物学的塩基配列に加え、このバーコード配列を読み取る。その後、バーコードは、「脱多重化」と呼ばれる工程であるデータ解析過程で、各cDNAをその元来のサンプルに割り当てるために使用される。
シークエンシング反応に使用するインデックス化戦略は、蓄積されたサンプルの数及び所望の正確性レベルに基づいて選択されるべきである。例えば、ライブラリが高い正確度で脱多重化されることを確保するために、一般的に、cDNAの両端に固有識別子を追加する固有二重インデックス化が用いられる。アダプタは、また、任意のサンプルライブラリ内で一意のバーコードを各分子に組み込む、縮重塩基を伴うことが多い短い配列である固有分子識別子(UMI)を含んでいてもよい。UMIは、ライブラリ調製、標的濃縮、又はシークエンシングの過程でもたらされるエラーから真の変異体が区別されることを可能にすることにより、擬陽性変異体コールを低減し、変異体検出感度を高める。例えば、Roche社製のSeqCap二重末端アダプタ、IDT社製のxGen二重インデックスUMIアダプタ、及びIllumina社製のTruSeq UDインデックスを含む、多数のインデックス配列及びアダプタのセットが市販されている。
ライブラリクリーンアップ
PCRに続いて、典型的には、増幅されたDNAが精製されて、反応後の残存する酵素、ヌクレオチド、プライマー及びバッファー成分を除去する。精製は一般的に、フェノール-クロロホルム抽出及びそれに続くエタノール沈殿を使用して、又はカオトロピック塩の存在下でDNAが選択的に結合するシリカマトリックスを含むスピンカラムを使用して達成される。例えば、Qiagen社製のもの(例えばMinElute PCR精製キット)、Zymo Research(商標)社製のもの(DNA Clean & Concentrator(商標)-5)、及びInvitrogen社製のもの(例えばPureLink(商標)PCR精製キット)を含む、多数のカラムベースのPCRクリーンアップキットが市販されている。或いは、常磁性ビーズ(例えばAxygen(商標) AxyPrep Mag(商標)PCRクリーンアップキット)を使用して精製を達成してもよい。
蓄積
シークエンシングを費用効果的に継続するために、臨床試験所の技術者又は研究者は、多様なライブラリをひとまとめに蓄積し、各々に固有のバーコード(上記の「シークエンシングアダプタ連結」参照)を付与し、一括してシークエンシングできるようにすることが多い。使用するシークエンサ及び所望のシークエンシング深度が、蓄積されるサンプルの数を決定づけるはずである。例えば、用途によっては、より大きいシークエンシング深度を達成するには蓄積するライブラリを12未満にするのが有利である一方、他の用途では100を超えるライブラリを蓄積するのが賢明と言える場合もある。
複数のライブラリを1回の実行でシークエンシングする場合、ライブラリごとにシークエンシングカバレッジがおおよそ均等であることを確保するよう配慮すべきである。この目的のために、各ライブラリを(モル濃度に基づいて)等量ずつ蓄積すべきである。また、蓄積されるライブラリの総モル濃度はシークエンサに適合しなければならない。したがって、ライブラリで(例えば下記の「品質管理」に記載の方法を用いて)DNAを正確に定量することと、ライブラリを蓄積する前に必要な計算を行うことが重要である。場合によっては、好適な総モル濃度を達成するために、例えば真空濃縮器を使用して、蓄積したライブラリを濃縮することが必要になる場合がある。
様々な実施例において、蓄積は2回実施される。いくつかの実施例において、濃縮/ライブラリ増幅の前に、シークエンサアダプタ連結及び蓄積(例えば、約5~10のサンプルの蓄積)を実施し、第2の蓄積工程をライブラリクリーンアップの後に実施する。
品質管理(cDNAライブラリの完全性、断片サイズ)
シークエンシングに先立って、有用なシークエンシング結果を生み出すために十分な量と質のDNAをライブラリが含むことを確保するために、ライブラリを評価してもよい。シークエンサにロードするのにライブラリの濃度が十分であることを検証するために、DNAを定量してもよい。一般的に用いられるDNA定量方法としては、ゲル電気泳動法、UV分光測光法(例えばNanoDrop(登録商標))、蛍光光度法(例えばQubit(商標)、Picofluor(商標))、実時間PCR(定量的PCRとしても知られる)、又は液滴デジタルエマルションPCR(ddPCR)が挙げられる。DNA定量化は、拡大的な品揃えで市販されている色素及び染料(例えば臭化エチジウム、SYBRグリーン、RiboGreen(登録商標))の助けを借りることが多い。特に、NGSについては推奨入力範囲が非常に狭いことを踏まえ、高精度の定量化方法を用いて、最終ライブラリの濃度が好適であることを検証するのが好ましい。
また、最終ライブラリの断片サイズ分布を評価して、断片の長さがシークエンシングに好適であることを検証すべきである。従来、断片サイズ分布は、アガロースゲル上でサンプルを広げることによって判定されていた。しかし、現在、必要なサンプル投入量がより少なく済む、より先進的な毛管電気泳動法(例えば、すべてAgilent社製のBioanalyzer(登録商標)、TapeStation(登録商標)、Fragment Analyzer(商標))がより一般的に採用されている。便利なことに、これらの方法を用いて、DNAの断片サイズと濃度の両方を解析できる。
クローン増幅
ライブラリをシークエンシングする際、シークエンシング化学反応が発生する装置、典型的にはフローセル(Illumina)又はチップ(Ion Torrent)に対してライブラリが適用される。これらの装置を、アダプタ配列に対して相補的な短オリゴヌクレオチドでデコレートすることにより、ライブラリ内のcDNAを装置に取り付けることができる。シークエンシングに先立って、装置の表面に各cDNAの多数の複製からなるクラスタを生成するクローン増幅を受ける(例えば、クラスタ生成(Illumina)又はミクロエマルションPCR(Ion Torrent)による)結果、シークエンシング反応過程で各cDNAによって生成されるシグナルを増幅する。多くの場合、クローン増幅は、市販のキット(例えばIllumina製のペアードエンドクラスタキット)を使用して実施される。クローン増幅後、ライブラリはシークエンシングの準備が整う。
TCR/BCR遺伝子領域の例示的濃縮
いくつかの実施形態において、複数の核酸プローブ(例えばハイブリッド捕捉プローブ集合)を使用して、例えば、1つ以上の標的配列がTCR/BCRプロファイリングの参考になる場合に、核酸サンプル(例えば、単離核酸サンプル又は核酸シークエンシングライブラリ)における1つ以上の標的配列を濃縮する。プローブは、当該技術分野において公知の方法に従って設計及び作成されてもよい。いくつかの実施形態において、TCR/BCRプローブ集合は、実施例1の方法に従って得られる。いくつかの実施形態において、プローブ集合は、1つ以上の遺伝子座、例えばエクソン又はイントロンの遺伝子座を標的とするプローブを含む。いくつかの実施形態において、プローブ集合は、タンパク質をコードしない1つ以上の遺伝子座、例えば調節遺伝子座、miRNA遺伝子座、及び他のノンコーディング遺伝子座、例えば1つ以上の特定の疾患又は医学的状態(例えばがん)に関連すると認められている遺伝子座を標的とするプローブを含む。いくつかの実施形態において、複数の遺伝子座は、少なくとも25、50、100、150、200、250、300、350、400、500、750、1000、2500、又は5000以上のヒトゲノム遺伝子座を含む。
一般には、核酸(例えば、抽出又は単離されたRNAを含む、生体標本から抽出又は単離された核酸から生成された、相補DNA、cDNA)を濃縮するためのプローブは、対象となる遺伝子座に対して相補的である塩基配列を有する、DNA、RNA、又は修飾核酸構造を含む。例えば、cDNA分子内の遺伝子座にハイブリダイズするように設計されたプローブは、cDNA分子が二本鎖である場合があることから、いずれの鎖に対しても相補的である配列を含み得る。いくつかの実施形態において、複数のプローブにおける各プローブは、対象となる遺伝子座の少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、又は少なくとも15の連続的塩基に対して同一又は相補的である核酸配列を含む。いくつかの実施形態において、複数のプローブにおける各プローブは、対象となる遺伝子座の少なくとも20、25、30、40、50、75、100、150、又は200以上の連続的塩基に対して同一又は相補的である核酸配列を含む。
例として、ただし限定することなく、プローブ配列は、参照により本明細書に組み込まれている、PCRプライマー並びにプローブ設計及び反復検索用FastPCRソフトウェア(Kalendarら、2009年、Genes, Genomes, and Genomics、第3号(特別号1)、1~14頁)に記載の方法に従って選択されてもよい。
標的化パネルは、核酸シークエンシング向けにいくつかの便益をもたらす。一例において、個別の被検体、ヒト、更には被検体又はヒトの体内の細胞において高い変動性を有する遺伝子(TCR及びBCR遺伝子を含む)を標的とするパネルは、それらの遺伝子の配列を決定するバイオインフォマティクス処理を円滑化するものであってもよい。例えば、「全エクソーム」又は標的化シークエンシングパネルが、高可変遺伝子に対する十分な数のシークエンシングリードマッピングを生成していない場合、高可変遺伝子を標的とするプローブを、全エクソーム又は標的化配列パネルプローブに追加して、高可変遺伝子に対するリードマッピングの数を増加させてもよい。
いくつかの実施形態において、遺伝子パネルは、生体サンプルのエクソームを解析する全エクソームパネルである。いくつかの実施形態において、遺伝子パネルは、標本のゲノムを解析する全ゲノムパネルである。いくつかの実施形態において、遺伝子パネルは、標本のトランスクリプトームを解析する全トランスクリプトームパネルである。いくつかの実施形態において、遺伝子パネルは、標本のトランスクリプトームを解析する標的化全トランスクリプトームパネルである。いくつかの実施形態において、遺伝子パネルは(例えば、免疫学的プロファイル又はイミュノームに関連する臨床的判断の支援材料とするために)TCR/BCR遺伝子パネルと併用される。
いくつかの実施形態において、パネルのプローブは、対象となる遺伝子座に対する相同性を共有しない追加的な核酸配列を含む。例えば、いくつかの実施形態において、プローブは、例えば特定のサンプル又は被検体に固有である、固有分子識別子(UMI)等の識別子配列を含む核酸配列をも含む。識別子配列の例は、例えば、参照により本明細書に組み込まれている、Kiviojaら、2011年、Nat. Methods 9(1)、72~74頁、及びIslamら、2014年、Nat. Methods 11(2)、163~66頁に記載されている。同様に、いくつかの実施形態において、プローブは、例えばポリメラーゼ連鎖反応(PCR)を用いて対象となる核酸分子を増幅する場合に有用な、プライマー核酸配列をも含む。いくつかの実施形態において、プローブは、対象となる核酸分子をサンプルから回復するために抗捕捉配列に対してハイブリダイズするように設計された捕捉配列をも含む。
同様に、いくつかの実施形態において、プローブは各々、対象となる核酸分子を回復するために、対象となる遺伝子座に対して相補的である核酸分子に共有結合された非核酸親和性部分を含む。非核酸親和性部分の非限定的な例としては、ビオチン、ジゴキシゲニン及びジニトロフェノールが挙げられる。いくつかの実施形態において、プローブは、対象となる核酸を回復するために、ディップスティック又は磁気ビーズ等の固体表面又は粒子に取り付けられる。いくつかの実施形態において、本明細書に記載の方法は、シークエンシング等更なる解析に先立って、プローブ集合に結合する核酸を増幅することを含む。PCR等による核酸増幅方法は、当該技術分野において公知である。
TCR/BCR遺伝子領域(TCR/BCR遺伝子パネル)向けの濃縮プローブ集合は、TCR及び/又はBCR遺伝子若しくは遺伝子領域の1つ以上を標的とするプローブを含んでいてもよい。プローブは、V、D、J及び定常領域に位置するTCR及びBCR遺伝子セグメントを標的としてもよい。プローブは、TCRアルファ、ベータ、ガンマ、及びデルタ鎖を受け持つ遺伝子セグメントを標的としてもよい。プローブは、BCRカッパ、ラムダ、及び重鎖、並びに多様なB細胞受容体定常領域アイソタイプ変異体(IgM、IgG、IgA、IgD及びIgE等)を受け持つ遺伝子セグメントを標的としてもよい。
定常領域における標的は、V/D/J組換え部位に隣接していてもよい。例えば、標的は、VDJ領域の下流の1200bp領域を除外してもよい。例えば、定常領域のそれぞれをカバーする最近位プローブを除くすべて、例えば2つ、3つ、4つ又は5つの最近位プローブを除くすべてを排除できるように、プローブ設計を構成してもよい。いくつかの実施形態において、プローブ設計は、3つの最近位プローブを除くすべてが排除されるように構成される。この構成は、VDJ分岐を含むRNA断片を捕捉すること、並びに異なる定常領域を特定し相互に区別して、その領域がIgG、IgM又はIgAに付随するか否かを判断することを目的に、十分なシグナルを提供する。注釈付き配列は当該技術分野において公知である。例えば、http://www.imgt.orgに掲載されているIGMTデータベースを参照のこと。
いくつかの実施形態において、TCR/BCR遺伝子パネル(例えば、1つ以上のTCR遺伝子及び1つ以上のBCR遺伝子の一部に向けられるハイブリッド捕捉プローブの層を含むパネル)を介してTCR/BCRを濃縮するための標的遺伝子は、IGKV1OR1-1、IGKV2-18、IGKV3OR2-268、IGKC、IGKJ5、IGKJ4、IGKJ3、IGKJ2、IGKJ1、IGKV4-1、IGKV5-2、IGKV7-3、IGKV2-4、IGKV1-5、IGKV1-6、IGKV3-7、IGKV1-8、IGKV1-9、IGKV3-11、IGKV1-12、IGKV1-13、IGKV3-15、IGKV1-16、IGKV1-17、IGKV3-20、IGKV6-21、IGKV2-24、IGKV1-27、IGKV2-28、IGKV2-29、IGKV2-30、IGKV1-33、IGKV1-37、IGKV1-39、IGKV2-40、IGKV2D-40、IGKV1D-39、IGKV1D-37、IGKV1D-33、IGKV2D-30、IGKV2D-29、IGKV2D-28、IGKV2D-26、IGKV2D-24、IGKV6D-21、IGKV3D-20、IGKV2D-18、IGKV6D-41、IGKV1D-17、IGKV1D-16、IGKV3D-15、IGKV1D-13、IGKV1D-12、IGKV3D-11、IGKV1D-42、IGKV1D-43、IGKV1D-8、IGKV3D-7、IGKV1OR2-118、IGKV1OR2-1、IGKV1OR2-2、IGKV1OR2-3、IGKV1OR2-9、IGKV2OR2-7D、IGKV1OR2-11、IGKV1OR2-108、TRGC2、TRGJ2、TRGJP2、TRGC1、TRGJP、TRGJP1、TRGV11、TRGV10、TRGV9、TRGVA、TRGV8、TRGV5P、TRGV5、TRGV4、TRGV3、TRGV2、TRGV1、TRBV1、TRBV2、TRBV3-1、TRBV4-1、TRBV5-1、TRBV6-1、TRBV7-1、TRBV4-2、TRBV6-2、TRBV7-2、TRBV6-4、TRBV7-3、TRBV5-3、TRBV9、TRBV10-1、TRBV11-1、TRBV12-1、TRBV10-2、TRBV11-2、TRBV12-2、TRBV6-5、TRBV7-4、TRBV5-4、TRBV6-6、TRBV5-5、TRBV6-7、TRBV7-6、TRBV5-6、TRBV6-8、TRBV7-7、TRBV5-7、TRBV7-9、TRBV13、TRBV10-3、TRBV11-3、TRBV12-3、TRBV12-4、TRBV12-5、TRBV14、TRBV15、TRBV16、TRBV17、TRBV18、TRBV19、TRBV20-1、TRBV21-1、TRBV23-1、TRBV24-1、TRBV25-1、TRBV26、TRBV27、TRBV28、TRBV29-1、TRBD1、TRBJ1-1、TRBJ1-2、TRBJ1-3、TRBJ1-4、TRBJ1-5、TRBJ1-6、TRBC1、TRBJ2-1、TRBJ2-2、TRBJ2-2P、TRBJ2-3、TRBJ2-4、TRBJ2-5、TRBJ2-6、TRBJ2-7、TRBC2、TRBV30、IGLV8OR8-1、TRBV20OR9-2、TRBV21OR9-2、TRBV23OR9-2、TRBV24OR9-2、TRBV26OR9-2、TRBV29OR9-2、IGKV1OR9-2、IGKV1OR-2、IGKV1OR9-1、IGKV1OR-3、IGKV1OR10-1、IGHG2、TRAV1-1、TRAV1-2、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8-1、TRAV9-1、TRAV10、TRAV11、TRAV12-1、TRAV8-2、TRAV8-3、TRAV13-1、TRAV12-2、TRAV8-4、TRAV13-2、TRAV14DV4、TRAV9-2、TRAV12-3、TRAV8-6、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23DV6、TRDV1、TRAV24、TRAV25、TRAV26-1、TRAV8-7、TRAV27、TRAV29DV5、TRAV30、TRAV26-2、TRAV34、TRAV35、TRAV36DV7、TRAV38-1、TRAV38-2DV8、TRAV39、TRAV40、TRAV41、TRDV2、TRDD1、TRDD2、TRDD3、TRDJ1、TRDJ4、TRDJ2、TRDJ3、TRDC、TRDV3、TRAJ61、TRAJ60、TRAJ59、TRAJ58、TRAJ57、TRAJ56、TRAJ55、TRAJ54、TRAJ53、TRAJ52、TRAJ51、TRAJ50、TRAJ49、TRAJ48、TRAJ47、TRAJ46、TRAJ45、TRAJ44、TRAJ43、TRAJ42、TRAJ41、TRAJ40、TRAJ39、TRAJ38、TRAJ37、TRAJ36、TRAJ35、TRAJ34、TRAJ33、TRAJ32、TRAJ31、TRAJ30、TRAJ29、TRAJ28、TRAJ27、TRAJ26、TRAJ25、TRAJ24、TRAJ23、TRAJ22、TRAJ21、TRAJ20、TRAJ19、TRAJ18、TRAJ17、TRAJ16、TRAJ14、TRAJ13、TRAJ12、TRAJ11、TRAJ10、TRAJ9、TRAJ8、TRAJ7、TRAJ6、TRAJ5、TRAJ4、TRAJ3、TRAJ2、TRAJ1、TRAC、IGHA2、IGHE、IGHG4、IGHA1、IGHG1、IGHG2、IGHG3、IGHD、IGHM、IGHJ6、IGHJ3P、IGHJ5、IGHJ4、IGHJ3、IGHJ2P、IGHJ2、IGHJ1、IGHD7-27、IGHJ1P、IGHD1-26、IGHD6-25、IGHD5-24、IGHD4-23、IGHD3-22、IGHD2-21、IGHD1-20、IGHD6-19、IGHD5-18、IGHD4-17、IGHD3-16、IGHD2-15、IGHD1-14、IGHD6-13、IGHD5-12、IGHD4-11、IGHD3-10、IGHD3-9、IGHD2-8、IGHD1-7、IGHD6-6、IGHD4-4、IGHD3-3、IGHD2-2、IGHD1-1、IGHV6-1、IGHV1-2、IGHV1-3、IGHV4-4、IGHV7-4-1、IGHV2-5、IGHV3-7、IGHV3-64D、IGHV5-10-1、IGHV3-11、IGHV3-13、IGHV3-15、IGHV3-16、IGHV1-18、IGHV3-19、IGHV3-20、IGHV3-21、IGHV3-22、IGHV3-23、IGHV1-24、IGHV3-25、IGHV2-26、IGHV4-28、IGHV3-32、IGHV3-30、IGHV3-30-2、IGHV4-31、IGHV3-29、IGHV3-33、IGHV3-33-2、IGHV4-34、IGHV7-34-1、IGHV3-35、IGHV3-38、IGHV4-39、IGHV7-40、IGHV3-43、IGHV1-45、IGHV1-46、IGHV3-47、IGHV3-48、IGHV3-49、IGHV5-51、IGHV3-52、IGHV3-53、IGHV3-54、IGHV4-55、IGHV1-58、IGHV4-59、IGHV4-61、IGHV3-62、IGHV3-63、IGHV3-64、IGHV3-66、IGHV1-68、IGHV1-69、IGHV2-70D、IGHV3-69-1、IGHV1-69-2、IGHV1-69D、IGHV2-70、IGHV3-71、IGHV3-72、IGHV3-73、IGHV3-74、IGHV5-78、IGHV7-81、IGHV1OR15-9、IGHV1OR15-2、IGHV3OR15-7、IGHV1OR15-1、IGHV1OR15-3、IGHV4OR15-8、IGHV1OR15-4、IGHV3OR16-9、IGHV2OR16-5、IGHV3OR16-15、IGHV3OR16-6、IGHV3OR16-10、IGHV3OR16-8、IGHV3OR16-12、IGHV3OR16-13、IGHV3OR16-16、IGHV1OR21-1、IGKV1OR22-5、IGKV2OR22-4、IGLV4-69、IGLV10-54、IGLV1-62、IGLV8-61、IGLV4-60、IGLV6-57、IGLV11-55、IGLV5-52、IGLV1-51、IGLV1-50、IGLV9-49、IGLV5-48、IGLV1-47、IGLV7-46、IGLV5-45、IGLV1-44、IGLV7-43、IGLV1-41、IGLV1-40、IGLV5-37、IGLV1-36、IGLV2-34、IGLV2-33、IGLV3-32、IGLV3-31、IGLV3-27、IGLV3-25、IGLV2-23、IGLV3-22、IGLV3-21、IGLV3-19、IGLV2-18、IGLV3-16、IGLV2-14、IGLV3-13、IGLV3-12、IGLV2-11、IGLV3-10、IGLV3-9、IGLV2-8、IGLV2-5、IGLV4-3、IGLV3-1、IGLJ1、IGLC1、IGLJ2、IGLC2、IGLJ3、IGLC3、IGLJ4、IGLJ5、IGLJ6、IGLC6、IGLJ7、IGLC7、TRBV3-2、TRBV4-3、TRBV6-9、TRBV7-8、及びTRBV5-8の1つ以上を含んでいてもよい。
各プローブは、TCR及び/又はBCR領域のみカバーする、或いはTCR及び/又はBCR領域並びに非TCR/BCR領域の両方をカバーするように設計されてもよい。
いくつかの実施形態において、遺伝子領域を、遺伝子名又はEnsembl IDによって表すことができる。Ensembl IDは、ENSG又はENSTとして表すことができる。例えば、遺伝子IGKV3OR2-268は、ENSG00000233999-ENSG00000233999又はENST00000421835-ENST00000421835のEnsembl IDに対してマッピングされると考えられる。
いくつかの実施形態において、本明細書に開示されているシステム及び方法によるTCR/BCRプロファイリング向けのプローブ集合は、実施例1の方法に従って得られる。
いくつかの実施形態において、プローブは、様々な層(群)に区分されてもよい。いくつかの実施形態において、層は、1)BCR定常領域群、2)BCR非定常領域群(VDJ)、3)TCR定常領域群、4)TCR非定常領域群(VDJ)である。いくつかの実施形態において、プローブ集合は、各プローブ層からの少なくとも1つのプローブを含む。いくつかの実施形態において、プローブ集合は、各層からの1~5のプローブ、各層からの5~10のプローブ、各層からの10~50のプローブ、又は各層からの100~200のプローブを含む。いくつかの実施形態において、各層におけるプローブ数は異なる。例として、一実施形態において、各群のプローブは下記の通りである:TCR非定常領域群は約100~1000のプローブを含み、TCR定常領域群は約10~50のプローブを含み、BCR非定常領域群は約500~2000のプローブを含み、BCR定常領域群は約20~100のプローブを含む。いくつかの実施形態において、プローブ集合は、約650のプローブを含むTCR非定常領域群、約18のプローブを含むTCR定常領域群、約894のプローブを含むBCR非定常領域群、及び約45のプローブを含むBCR定常領域群を含む。
プローブ濃度
いくつかの実施形態において、TCR/BCRハイブリッド捕捉プローブは、包括的ゲノムプロファイリングパネルの一部として含まれていてもよい。例としては、全エクソーム/全トランスクリプトームRNAseqパネル、標的化濃縮シークエンシングパネル、全エクソームパネル、全ゲノムパネル、全トランスクリプトーム等が挙げられる。いくつかの実施形態において、プローブは、様々な層(群)に区分されてもよい。いくつかの実施形態において、層は、1)BCR定常、2)BCR非定常(VDJ)、3)TCR定常、4)TCR非定常(VDJ)である。いくつかの実施形態において、トランスクリプトーム標的化を含む第5のパネル、又は他のパネルが含まれる。
いくつかの実施形態において、結果的なプローブ集合は、プローブの特定の層又は群における異なるプローブの数によって定義されてもよい。例として、TCR/BCR濃縮及び/又はプロファイリングの場合、プローブを、TCR非定常領域群、TCR定常領域群、BCR非定常領域群、及びBCR定常領域群として群又は層に分けることができる。いくつかの実施形態において、各群のプローブ数は同じで、他の実施形態において、各群のプローブ数は異なる。いくつかの実施形態において、2つ以上の群のプローブ数が同じである。単に例として、一実施形態において、各群のプローブは下記の通りである:TCR非定常領域群は約100~1000のプローブを有し、TCR定常領域群は約10~50のプローブを有し、BCR非定常領域群は約500~2000のプローブを有し、BCR定常領域群は約20~100のプローブを有する。いくつかの実施形態において、TCR非定常領域群は650のプローブを有し、TCR定常領域群は18のプローブを有し、BCR非定常領域群は894のプローブを有し、BCR定常領域群は45のプローブを有する。
いくつかの実施形態において、ゲノムプロファイリングパネルにおいて使用する各プローブ層の量は、比として特徴づけられる。例えば、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、及びTCR非定常領域プローブを含む第4の層は、約0.1~10:0.25~25:10~1000:10~1000、又は約0.5~5:1.25~12.5:50~500:50~500、又は約0.7~1.3:1.7~7.5:75~125:75-125、又は約1:2.5:100:100の比で提供されてもよい。いくつかの実施形態において、エクソーム標的化パネルを含む第5の層が提供される。いくつかの実施形態において、第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、約0.1~10:0.25~25:10~1000:10~1000:1~100、又は約0.5~5:1.25~12.5:50~500:50-500:5~50、又は約0.7~1.3:1.7~7.5:75~125:75~125:7~12、又は約1:2.5:100:100:10である。
いくつかの実施形態において、ゲノムプロファイリングパネルにおけるプローブ層濃度は、アットモル/プローブ/捕捉(即ち1つの反応ウェル)における濃度で特徴づけられる。例として、限定することなく、いくつかの実施形態において、BCR定常プローブは約0.25~25、0.5~12.5、約1~10、1~5、又は約2.5アットモル/プローブ/捕捉、BCR非定常プローブは約0.6~62.5、約1~30、又は約2~20、約5~15又は約6.25アットモル/プローブ/捕捉、TCR定常プローブは約25~500、又は約30~300、又は約100~300、又は約200~300、又は約250アットモル/プローブ/捕捉、TCR非定常プローブは約25~500、約30~300、約100~300、約200~300、250アットモル/プローブ/捕捉である。
例として、限定することなく、いくつかの実施形態において、BCR定常プローブは約2.5アットモル/プローブ/捕捉、BCR非定常プローブは約6.25アットモル/プローブ/捕捉、TCR定常プローブは約250アットモル/プローブ/捕捉、TCR非定常プローブは約250アットモル/プローブ/捕捉である。いくつかの実施形態において、エクソームプローブが追加的に使用される。いくつかの実施形態において、エクソームプローブは25アットモル/プローブ/捕捉の濃度で提供されるため、いくつかの実施形態において、TCR及びBCRプローブ層は、エクソーム層と比較してそれぞれ0.1倍、0.25倍、10倍及び10倍の濃度で使用される。
リードの処理及び解析
シークエンシングされたリードを、更なる解析向けに処理することができる。いくつかの実施形態において、処理は、アライメント工程、組立て工程、注釈づけ工程、及び定量化工程の1つ以上を含んでいてもよい。
一例において、本明細書に開示されているシステム及び方法は、シークエンサによって生成されたすべてのリードのリスト及び各リードに付随する品質情報を含む、NGSシークエンシングパイプラインからの原出力を有するRNA-seq FASTQファイルを受け取る。
任意選択のフィルタリング工程において、該システム及び方法は、増幅重複(例えば、PCR重複、同一のソーステンプレート、又は同一の核酸分子に由来する2つ以上のリード)を除外してもよい。一例において、該システム及び方法は、固有分子識別子(UMI)を活用して増幅重複を除外してもよい。該システム及び方法は、低品質のリード、又は品質スコアが選択された閾値より低いリードを除外してもよい。
TCR/BCR遺伝子配列組立て工程の過程で、該システム及び方法は、レパートリーシークエンシング(rep-seq)専用のアライナ及び/又は遺伝子配列アセンブラ、特に免疫受容体の定量化向け設計された専用アライナへ、RNA-seq FASTQ(順方向リード及び逆方向リードファイル)を提供してもよい。
TCR及び/又はBCR遺伝子配列組立て方法の例は、例えば、参照により本明細書に組み込まれている、Landscape of tumor-infiltrating T cell repertoire of human cancers)(Liら、2016年、Nat. Genet.、48(7)、725~732頁)、Landscape of B cell immunity and related immune evasion in human cancers)(Huら、2019年、Nat. Genet.、51(3)、560~567頁)、BASIC: BCR assembly from single cells)(Canzarら、2017年、Bioinformatics、33(3)、425~427頁)、Simultaneously inferring T cell fate and clonality from single cell transcriptomes)(Stubbingtonら、2015年、BioRxiv https://doi.org/10.1101/025676)、及びAntigen receptor repertoire profiling from RNA-seq data) (Bolotinら、2017年、Nat. Biotech.、35(10)、908~911頁)に記載されている。
例えば、TCR/BCR遺伝子に対してアライメントする第1のペアードエンド及びアライメントしない第2のペアードエンドを有する、特定されたアンカリードを使用して、ペアードエンドリードを、所定の免疫学的受容体遺伝子配列に対してアライメントする、又は全ゲノムに対してアライメントすることができる。STAR又はKallisto等のアライメントツールを使用して、hg19、GRCh37等の参考に対してfastqファイル内のRNA-seqデータをアライメントすることができる。例えば、参照により本明細書に組み込まれているNicolas L Bray、Harold Pimentel、Pall Melsted及びLior Pachter、Near-optimal probabilistic RNA-seq quantification、Nature Biotechnology、34、525~527頁(2016年)、doi:10.1038/nbt.3519を参照のこと。https://pachterlab.github.io/kallisto/ (カリフォルニア州技術研究所(カリフォルニア州Pasadena))も参照のこと。例えば、STARを使用して、免疫CDR3配列のデコンボリューション向けのrna-seqデータを作成できる。参照により本明細書に組み込まれているDobinら、STAR: ultrafast universal RNA-seq aligner、Bioinformatics、2013年1月、29(1)、15~21頁を参照のこと。
リードをフィルタリングして、BCR又はTCR領域にマッピングされたものにしてもよい。一例において、3つのTCR領域が存在し、hg19参考ゲノムの場合、例えば、座標はTCRα(chr. 14:22,090,057~23,021,075)、TCRβ(chr. 7:141,998,851~142,510,972)及びTCRγ(chr. 7:38,279,625~38,407,656)を含んでいてもよい。TCRδ遺伝子領域(chr. 14:22,891,537~22,935,569)はTCRα領域に埋め込まれるため、この領域のリードはTCRαのリードと一緒に得ることができる。TCRα及びTCRβ鎖の各非定常領域においてマッピングされるリードのカウントを使用して、異なる遺伝子及びPCAの使用状況を推定することができる。一例において、3つのBCR領域が存在し、hg19参考ゲノムの場合、例えば、座標はIGH(chr. 14:106,032,614~107,288,051)、IGK(chr. 2:89,890,568~90,274,235)及びIGL(chr. 22:22,380,474~23,265,085)を含んでいてもよい。
上記の工程で抽出されるすべてのマッピングされたリードのうち、CDR3領域から生成された可能性があり、参考ゲノムに対してアライメントできなかった、マッピングされていないメイトを有していたサブセットについて、BAMファイル内のリードをスクリーニングし、TCR領域においてマッピングされたすべてのリードがペアの状態になるまで、各当該リードのメイトを探索することができる。この工程で見つかり、CDR3領域に付随すると考えられる、マッピングされていないリードを、CDR3新規アセンブリ向けに使用してもよい。
別の例として、各リードを、所定の免疫学的受容体遺伝子配列に対してアライメントしてもよい。閾値を超える複数のリードに各ウィンドウが関連づけられる、複数のアンカウィンドウを特定してもよい。アンカウィンドウの或る領域に対してアライメントする、「アンカリード」と称するリードを使用して、そのアンカリードからアンカ配列を生成してもよい。アンカウィンドウ、アンカ配列、及びアライメントされていないリードを組立て工程に提供して、コンティグ配列を生成してもよい。各コンティグ配列に注釈を付ける、又は別段に、V、D、J及びCの1つから選択される少なくとも1つの免疫学的遺伝子領域区分と関連づけてもよい。任意選択で、CDR3領域外に位置する各コンティグ配列の部分を削除してもよい。注釈づけされる及び/又は各区分に関連づけられるコンティグ配列の数を定量してもよい。
いくつかの実施形態において、例えば、1つ以上の抗原の認識を補助するために、所定の免疫学的受容体遺伝子配列に対してアライメントする少なくとも1つのリードは、CDR3領域に対するものであってもよい。所定の免疫学的受容体遺伝子配列に対してアライメントする少なくとも1つのリードは、CDR3隣接領域に対するものであってもよい。
一例において、該システム及び方法は、免疫受容体クローン型を含む、固有受容体配列非定常領域を出力するアセンブラを含む。様々な実施形態において、本明細書に開示されているアセンブラは、CDR3配列のリストをそれらのヌクレオチドレベルで出力するとともに、リード数量(例えば、各CDR3配列に関連づけられるリードの数)も示す。代替的実施形態において、出力される配列は、TCR及び/又はBCR遺伝子のCDR、CDR2、及び/又はCDR3部分の全体又は一部に対応するものであってもよい。様々な実施形態において、アセンブラは、シークエンシングリードからアセンブルされるゼロ~数万の異なるCDR3配列に付随するデータを出力してもよい。一例において、相補性決定領域3(CDR3)は、VDJ組換え過程で免疫遺伝子が組み換わる領域である。
標本は、有する免疫細胞の数量が異なっていてもよい。膠芽細胞腫標本等、一部の標本は免疫浸潤物がほとんど又は全くない場合がある。当該標本の場合、出力されるCDR3配列の数が非常に少ない。他の標本又は腫瘍は、多数の免疫細胞を有する。場合によっては、標本は、感染又は別の区分の疾患状態に対して活性適応免疫反応を有する患者からの免疫細胞がん又は標本を含む。別の例として、非常に多様なCDR3配列の集合体(例えば、5,000、10,000、20,000、30,000等の配列)を有するリンパ節に由来する大型の免疫細胞集団が想定される。
様々な実施形態において、アセンブラの出力は、各行が配列を示す表形式である。各配列は、ヌクレオチトの数が数百、更には100未満の場合もある。各配列について、該システム及び方法は、信頼度又は品質測定基準をも出力することができる。
一例において、各配列を、リード数量に関連づけることができる。様々な実施形態において、数量は、リード数、及び/又は標本において検出された全リードのうち、その配列に対してアライメントするリードの割合を反映するものであってもよい。
該システム及び方法は、CDR3配列を含む遺伝的セグメント識別子、例えば、VDJ組換え過程で組み換わって特定のCDR3配列を形成した可能性が最も高い遺伝的セグメントのリストを返す。一実施形態において、各遺伝的セグメント(Vセグメント、Jセグメント、及び該当する場合はDセグメント)について、該システム及び方法は、可能性のある複数の遺伝的セグメント識別子、例えば、最も可能性が高い上位3つの遺伝的セグメントを表す識別子のリストを返す。
様々な実施形態において、該システム及び方法は、配列をフィルタリングして、非生産的であると予測される配列を除外してもよい。非生産的配列は、検出されたフレームシフト突然変異、早熟終止コドン、又は部分的にアセンブルされたクローン型を有する配列を含んでいてもよい。
該システム及び方法は、出力表又はフィルタリングされた出力表に記載の配列に関連するリード数量に基づく二次的統計を計算することができる。様々な実施形態において、二次的統計カテゴリは、豊富度(例えば、標本において検出される及び/又は表で表される異なるクローン型又は固有配列の数)及び均一度(例えば、すべてのクローン型についてのリード数量がおおよそ均等であるか否か、又は1つ若しくは少数のクローンに対してリード数量の分布がどの程度歪曲しているか)を含んでいてもよい。統計の例としては、シャノンエントロピー、シンプソン指数、GINI指数等が挙げられる。出力表データに適応できる統計手法の例については、参照によりその全体が本明細書に組み込まれている、Bolotinら、Nat Biotechnol 35、908~911頁(2017年)、https://doi.org/10.1038/nbt.3979を参照のこと。
統計計算の選択は、様々な基準に基づくものであってもよい。一例において、基準は、データベースにおいて複数の標本について計算された値の分布、可能な出力値の範囲、及び/又は技術的若しくは生物学的複製に関する統計の再現可能性若しくは類似性を含んでいてもよい。例えば、二次的統計の値において、複数の標本間での分布が小さいと、或る標本を別の標本と区別するのが困難になる場合がある。分布は、様々な統計手法によって測定することができる。可能な値の範囲に関して、シャノンエントロピーは、様々な実施形態において有利と考えられる0~1の範囲に限定されるわけではない。他の実施形態において、或る範囲(例えば0~1)に限定される統計が望ましい場合がある。技術的複製は、同じ標本における複数回のNGS実行であってもよく、生物学的複製は、同じ生検の複数のスライスであってもよく、再現可能性は、各複製について計算された統計の値を比較することによって計算することができる。比較は、標準偏差、平均値の標準誤差等を含んでいてもよい。
該システム及び方法は、各配列に関連づけられるタンパク質構造を決定することもできる。該システム及び方法は、配列をそれらの関連するタンパク質構造の類似性に従ってクラスタ化することができる。該システム及び方法は、タンパク質構造を、TCR又はBCRに結合すると予測される抗原及び/又はヒト白血球抗原(HLA)/主要組織適合性複合体(MHC)分子、特に患者の疾患状態に関連する抗原(例えば、感染中に特定の病原体によって生成される抗原、がん細胞によって生成される新抗原、アレルギー反応を引き起こす抗原若しくはアレルゲン、又は自己免疫疾患を引き起こす抗原)を含め、解析することもできる。解析は、複数の配列を組み合わせること又は2つ以上の配列のペアリングを予測することを含んでいてもよい。配列は、同じヘテロ二量体タンパク質からのペア配列、例えば、重鎖配列と軽鎖配列、アルファ鎖配列とベータ鎖配列、ガンマ鎖配列とデルタ鎖配列等であると予測することができる。様々な実施形態において、2つの配列について、各配列に関連づけられたリード数量がおおよそ同等であれば、同じヘテロ二量体タンパク質に関連づけられると予測することができる。例えば、検出された重鎖リードの30%が配列Aであり、検出された軽鎖リードの28%が配列アルファである場合、配列Aとアルファはペアであると予測することができる。これらの予測されたペアリングは、単細胞シークエンシングの使用或いは他の、TCR又はBCR遺伝子配列及び/又はタンパク質配列を解析する方法によって確認できる。TCR又はBCRタンパク質構造の解析の例については、参照によりその全体が本明細書に組み込まれている、Glanvilleら、Nature 547、94~98頁(2017年)、https://doi.org/10.1038/nature22976を参照のこと。
該システム及び方法は、TCR/BCRシークエンシング結果をデータベースに保存することを含んでいてもよく、TCR及び/又はBCR配列を追加的な分子データ(例えばHLA配列、ゲノム、トランスクリプトーム、エピゲノム、プロテオーム、代謝等のデータ)及び/又は臨床データ(例えば人口統計情報、診断データ、疾患重篤度、免疫反応、表現型、治療反応データ等)に関連づけることができる。該システム及び方法は、類似するデータベースにアクセスして、TCR/BCR配列が特定の分子又は臨床データの特徴(例えば、ゲノムデータにおける変異体の存在、又は或る療法若しくは免疫療法等療法区分に対する特定の反応)に関連づけられるか否かを判断することができる。
該システム及び方法は、抗体、ワクチン、CAR-Ts、CAR-NK、ImmTAC等に基づく療法の開発の参考情報として治療的に有効と考えられる、患者の層から又は個別患者データから、TCR又はBCR配列(個別の配列又は配列群)を発見することを含む場合がある。
該システム及び方法は、検出された1つ以上の配列に関連する治療反応を試験する実験を設計することを含む場合がある。実験は、生化学アッセイ、オルガノイド実験、t細胞及びオルガノイド共培養実験等であってもよい。
該システム及び方法は、差次的遺伝子発現の判定に用いることができる。TCR/BCR濃縮パネルを使用して得られるデータを含む、RNA-seqデータの1つの用途は、2つ以上の実験群間で発現形態が異なる遺伝子を特定することである。例えば、RNAシークエンシングデータを使用して、健常者と比較した場合に、患者(例えば、がん、自己免疫疾患、感染症、アレルギーを有する及び/又は移植を必要とする患者)における発現量が有意に高い又は低い遺伝子を特定することができる。これは、異なる実験群にまたがる各遺伝子の正規化リードカウントを比較する統計解析を実施することによって達成できる。この解析の狙いは、リードカウントの差異が観察された場合にそれが有意であるか否か、即ち、自然な無作為変動に起因する差異と比較した場合に、予想される(濃縮される)差異より大きいか否かを判断することである。
解析向けの原シークエンシングデータを作成するために、いくつかのデータ処理工程を実施してもよい。シークエンシングデータは、通常、各シークエンシングリードが品質スコアに関連づけられるFASTQフォーマットで提供される。まず、データを処理してシークエンシングの人為的要素、例えばアダプタ配列や、あまり複雑でないリードを除外する。リード品質スコアに基づいてシークエンシングエラーが特定され、除外又は補正される。TagDust、SeqTrim及びQuake等公に入手可能なツールを使用して、これらの「データグルーミング」工程を実施することができる。
データ処理の次の段階で、アライメンツールを使用して、リードを参考ゲノムに対してアライメントする。この工程向けに、例えばTopHat、Cufflinks及びScriptureを含む、公に入手可能ないくつかのツールを使用できる。これらのプログラムを使用して、転写物を再構築し、変異体を特定し、各転写物及び遺伝子の発現量を定量することができる。
リードがアライメント及び定量された後、差次的発現解析を行ってもよい。差次的発現解析に一般的に用いられる統計手法としては、負の2項分布に基づくもの(例えばedgeR及びDESeq)、及び負の2項モデルに基づくベイズアプローチ(例えばbaySeq及びEBSeq)が挙げられる。
報告
図1A及び図1Bは、報告の例を示す図である。
TCR/BCRプロファイリングの結果を、依頼した臨床医又は他の個人に提示することができる。結果は、遺伝子単位又はセグメント単位等、多数の形式で提供することができる。結果を集計することもできる。結果は、標本におけるBCR又はTCR配列の推定上のクローン性等、免疫レパートリーのクローン性を含む場合がある。結果の一例が、報告の抜粋の形で図1A及び図1Bに示されている。この抜粋は、がん標本についての報告からの抜粋であるが、他の疾患状態、感染症又は医学的状態についても同様の報告を生成することができる。
要約タブ
このセクションは、TCR/BCRシークエンシングデータに基づく、複数のデータフィールド及び/又はそれらのデータフィールドに関連する結論を含む場合がある。データフィールドとしては、推定腫瘍純度(負担)、推定免疫細胞組成(サンプルにおける、B細胞、マクロファージ、T細胞、CD4 T細胞、CD8 T細胞、CD8 T細胞サブタイプ、NK細胞等の免疫細胞の割合)、推定免疫浸潤率、及び免疫受容体クローン性割合が挙げられる。
免疫レパートリータブ
このセクションは、TCR/BCRシークエンシングデータの活用によって生成される免疫レパートリーのプロファイルを含む。血液系悪性腫瘍について、このプロファイルを使用して支配的クローン型を明らかにし追跡できる潜在性があり、この情報又は関連する結論を報告に含めることができる。CAR療法を受けた患者について、このプロファイルを使用して、そのCAR生成物の存在度を長期的に追跡することもでき、この情報又は関連する結論を報告に含めることができる。
棒グラフ:標本において検出された配列のほとんどがクローナルである又は1つのクローンからのものである場合、それは特定のV(D)J組合せの拡張を示唆し得る。様々な実施形態において、閾値を使用して、各CDR3配列をクローナル、オリゴクローナル又はポリクローナルに分類することができる。例えば、25未満のリードに関連づけられたCDR3配列をポリクローナルとして分類することができ、25~99のリードに関連づけられたCDR3配列をオリゴクローナルとして分類することができ、100以上のリードに関連づけられたCDR3配列をクローナルとして分類することができる。棒グラフでは、各カテゴリに付随するパーセンテージは、各カテゴリに分類されるCDR3配列に関連づけられるリードの割合を意味する。別の例において、或る疾患状態について1つの支配的クローンが予想される場合、そのクローンのCDR3配列が、クローナルとして分類される唯一の配列であると考えられる。CDR3配列表:報告は、最も一般的なVDJ又はVJの組合せを示す表又はリストを含む場合がある(一例において、標本において検出された配列の大部分を占める1つ/少数のV(D)Jの組合せが存在する場合がある)。
この例では、最も一般的な重鎖配列が、検出された重鎖配列の約40%を占め、最も一般的な軽鎖配列が、検出された軽鎖配列の約35%を占める。これら2つの配列は、それぞれの鎖型について全リードに占める割合が同等であり、この同等の割合を基に、同じタンパク質ヘテロ二量体においてペアになると予測できる。
報告は、リード数量から計算される何らかの統計の解釈を含む場合がある。例えば、或る配列において、リードの割合がリード閾値(例えばリードの10%、20%又は50%以上)を超えるほど均一度が歪曲している場合、これは免疫細胞集団が拡張していることを意味すると考えられる。リード閾値を超えるリード数量に関連づけられる配列は、感染性病原体(又は或る病原体に由来する抗原)、アレルゲン、新抗原又はがん細胞を認識する又はそれに結合するTCR又はBCRを示唆すると考えられる。報告は、或るTCR若しくはBCR配列又は配列の組合せに結合すると予測される抗原及び/又はHLA配列を含む場合があり、更に、抗原と、標本に関連するゲノムデータとの間における何らかの関連性を含む場合もある。
報告は、TCR/BCRプロファイルに基づいて患者(又はオルガノイド)に適合する処置及び/又は臨床試験を含む場合がある。例えば、適合する処置及び/又は臨床試験としては、養子細胞療法、がんワクチン、免疫腫瘍学薬物、免疫療法、チェックポイント阻害、免疫チェックポイント阻害薬、化学療法、がん特異的処置、ワクチン、抗ウイルス薬、抗生物質、抗寄生虫薬、抗真菌薬、1つ以上の抗体(モノクローナル、ポリクローナル等であってもよく、感染からの回復後に別の患者から単離されたものであってもよい)、抗ヒスタミン薬、鼻腔噴霧薬、抗ロイコトリエン、ロイコトリエン修飾薬、ロイコトリエン受容体拮抗薬、アレルギー注射又は別の、アレルギー性IgEをより耐容度の高いIgGに切り替えるアイソタイプを誘発する方法、抗炎症処置、ステロイド、経口コルチコステロイド、プレドニゾン、抗リウマチ薬(DMARDS)、共通の抗炎症経路を標的とする生物製剤、TNF経路拮抗薬(レミケードを含む)、B細胞枯渇(リツキサンを含む)、免疫抑制薬、インスリン、骨髄移植、抗炎症食事制限、理学療法、手術、局所投薬、及び/又は局所頭皮投薬が挙げられる。
報告は、検出された配列に基づく、患者におけるCAR-T細胞、CAR-NK細胞、CAR-M細胞、別のCAR細胞又はImmTAC細胞モニタリング(例えば、CAR細胞が多数存在するか否か)に関連する結論を含む場合がある。報告は、患者において検出された拡張免疫細胞に基づく、ヘムがん(例えばリンパ系がん又は骨髄がん、リンパ腫等)及び/又は微小若しくは測定可能残存病変(MRD)の状態に関連する結論を含む場合がある。
報告は、標本において検出されたTCR又はBCR配列との関連で予測される療法反応を含む場合がある。例えば、腫瘍標本に存在すると検出又は予測された浸潤性リンパ球に基づいて予測される免疫療法反応が含まれる。
報告は、様々な理由により配列を除外する場合がある。例えば、或る配列が患者の疾患状態に対して関連性がないと判明した場合、その配列は報告に含まれなくてもよい。
一例において、患者は、文書に記録された抗原又は新抗原であるゲノム変化を有する場合がある。一例において、KRAS P12D変化である結腸がん、及びこの変化したKRASペプチドを示すことが知られているHLA C08.02アレルを有する患者について、TCR/BCRプロファイルを生成することができる。変化したKRASペプチドを認識すると予想されるCDR3配列について、TCR/BCRプロファイルを解析することができる(ワールドワイドウェブ及びNCBI NLMデータベースnih.gov/pmc/ articles/PMC5178827/を参照のこと)。
一例において、複数の骨髄腫及び1つのRAS突然変異を有する患者について、TCR/BCRプロファイルを生成することができる。変化したRASペプチドを認識すると予想されるCDR3配列について、TCR/BCRプロファイルを解析することができる。
一例において、或る患者のTCR/BCRプロファイルは、その患者のレパートリーが歪曲している(例えばシークエンシングリードの90%が最上位のクローンに関連づけられる)ことを示唆する。この患者を長期試験と併せて監視して、クローンが経時的に一貫しているかどうか判断することができる。一例において、最上位クローンはx時点でシークエンシングリードの50%と関連づけられ、後の時点でシークエンシングリードの20%としか関連づけられず、これは患者が現在受けている療法が何らかの効能を有することを意味すると考えられる。クローンが、本明細書に開示されているシステム及び方法の検出限度より少ない場合、患者の報告は、高感度のフォローアップMRDアッセイを示唆すると考えられ、交絡因子に関する情報(生検部位、サンプルにおける変動等を含む)を含む場合がある。
報告は、様々なデータ可視化、特に、レパートリーシークエンシング(rep-seq)データ、免疫学的プロファイリングデータ及び/又はTCR若しくはBCRシークエンシングデータの可視化を含む場合がある。例としては、Circosプロット、ヒートマップ又はヒストグラム/分布図(例えば、各V、D又はJ遺伝子ファミリーに関連づけられるリードの数、TCR又はBCR配列から予測された一次タンパク質構造におけるアミノ酸の例の数、再構成率とCDR3長さの対比、IgG/IgM/等の小区分等)、箱髭図(例えば、様々な標本又は標本群の多様性スコア又は突然変異頻度を示すもの)、可能性のある各塩基(ヌクレオチト)変化の頻度を示す遷移表、突然変異(塩基変化)の遺伝的位置を示す図等が挙げられる。例えば、rep-seqデータに関連するデータ可視化については、あらゆる目的のために参照によりそれぞれの内容全体が本明細書に組み込まれている、IJSpeertら、J Immunol、2017年、198:4156~4165頁、doi:10.4049/jimmunol.1601921、並びにNi Q、Zhang J、Zheng Z、Chen G、Christian L、Gronholm J、Yu H、Zhou D、Zhuang Y、Li Q-J及びWan Y、(2020年)、「VisTCR: An Interactive Software for T Cell Repertoire Sequencing Data Analysis」、Front. Genet. 11:771、doi: 10.3389/fgene.2020.00771を参照のこと。
報告は、報告に含まれるTCR又はBCR配列によって認識されると予測される抗原又はエピトープを含む場合がある。これらの予測される抗原又はエピトープを、ワクチン開発に使用できる。例えば、最も優勢な抗原又はエピトープを、アジュバントを更に含むと考えられるワクチンの一部として含めることができる。
例えば、コロナウイルスエピトープ(BCR又はTCRによって認識される抗原)は、Table 1(表1)に記載のものを含む場合がある。
Figure 2023515270000002
この表では、各行が、SARS-CoV-2ペプチド及び対応する、T細胞受容体によって認識され得るSARS-CoV-1ペプチドを表す。この表は、ペプチドを認識するTCRのT細胞型(CD4又はCD8)及びウイルスタンパク質内のペプチド起源のタンパク質/アミノ酸位置に関する情報を含む。あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Le Bert, N.、Tan, A.T.、Kunasegaran, K.ら、「SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls」、Nature 584、457~462頁(2020年)、https://doi.org/10.1038/s41586-020-2550-zを参照のこと。
Table 2(表2)は、ヒトコロナウイルスペプチド及び対応するアミノ酸位置及び各ペプチドの発生源ウイルスタンパク質を含む。同じ行に記載のペプチドは、異なるコロナウイルスからの相同ペプチドである。あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Mateusら、DOI: 10.1126/science.abd3871を参照のこと。この表では、列1の「VP」はウイルスタンパク質、列2の「1st AA」は第1アミノ酸の位置を意味する。
Figure 2023515270000003
Table 3(表3)は、SARS-CoV-2ペプチド、対応するアミノ酸位置及び各ペプチドの発生源ウイルスタンパク質、並びに各ペプチドの適合HLAを含む。あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Sekineら、「Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19」、Cell (2020年)、doi: https://doi.org/10.1016/j.cell.2020.08.017を参照のこと。
Figure 2023515270000004
追加的なコロナウイルスペプチドが、科学文献に記載されている。例えば、あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Dijkstra JM及びHashimoto K.、「Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population [第2版、査読審査2承認済み]」、F1000Research 2020、9:285、https://doi.org/10.12688/f1000research.23458.2、及びPengら、「Broad and strong memory CD4 +and CD8 + T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients」、bioRxiv2020.06.05.134551、(2020年)、Pmid:32577665を参照のこと。
上記の方法及びシステムは、一般に医療と研究を目的とするデジタル・試験所医療プラットフォームと組み合わせて、又は当該プラットフォームの一部として活用することができる。上記の方法及びシステムの多数の使用が、当該プラットフォームと組み合わされる形で可能であることが理解されるべきである。当該プラットフォームの一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年10月18日に出願された「データに基づくがんの研究、並びに処置システム及び方法(Data Based Cancer Research and Treatment Systems and Methods)」というタイトルの米国特許出願第16/657,804号に記載されている。
例えば、上記の方法及びシステムの1つ以上の実施形態の実施は、TCR/BCRプロファイリングを支援するデジタル・試験所医療プラットフォームを構成するマイクロサービスを含む場合がある。実施形態としては、TCR/BCRプロファイリングを実行及び提供するための単一のマイクロサービス、又は上記の実施形態の1つ以上を一体的に実施する特定の役割を各々が有する複数のマイクロサービスが挙げられる。一例において、第1のマイクロサービスは、プロファイル結果を報告のために第2のマイクロサービスに提供できるよう、TCR/BCRプロファイリングを実行することができる。
上記の実施形態が1つ以上のマイクロサービスにおいて、又はデジタル・試験所医療プラットフォームとの組合せ又は当該の一部として実行される場合、当該マイクロサービスの1つ以上を、上記の実施形態を例示化するために必要な適切な時期及び適切な順序で必要に応じて事象の機序を調和させる依頼管理システムの一部とすることができる。マイクロサービスに基づく依頼管理システムは、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年7月13日に出願された「適応的依頼履行及び追跡方法及びシステム(Adaptive Order Fulfillment and Tracking Methods and Systems)」というタイトルの米国特許出願第16/927,976号に開示されている。
例えば、上記の第1及び第2のマイクロサービスを継続しつつ、依頼管理システムは、RNAシークエンシングの依頼を受け、処理の準備が整っていることを第1のマイクロサービスに通知することができる。第1のマイクロサービスは、RNAシークエンシングを第2のマイクロサービスに提供する準備が整ったら、RNAシークエンシングを実行し、依頼管理システムに通知することができる。また、依頼管理システムは、第2のマイクロサービス向けの実行パラメータ(必須要件)が、第1のマイクロサービスが完了していることを含め満たされていることを確認し、第2のマイクロサービスに対し、上記の実施形態に従って完成したRNA報告を提供するために依頼の処理を継続してもよいことを通知することができる。
デジタル・試験所医療プラットフォームが、ジェネティックアナライザシステムを更に含む場合、ジェネティックアナライザシステムは、標的化パネル及び/又はシークエンシングプローブを含んでいてもよい。標的化パネルの一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、それぞれ2020年2月12日と2020年5月12日に出願された米国特許出願第16/789,288号及び第15/930,234号に開示されている。一例において、標的化パネルは、複数の個人間及び/又は或る個人の細胞間での配列変動性の度合いが高い、免疫学的遺伝子(例えばTCR及びBCR遺伝子)を含む遺伝子について、上記の実施形態に従って、次世代シークエンシング結果の提供を可能にするものであってもよい。次世代シークエンシングプローブの設計の一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年10月21日に出願された「次世代シークエンシング統一プローブ設計のためのシステム及び方法(Systems and Methods for Next Generation Sequencing Uniform Probe Design)」というタイトルの米国特許出願第17/706,704号に開示されている。
デジタル・試験所医療プラットフォームが、バイオインフォマティクスパイプラインを更に含む場合、上記の方法及びシステムを、バイオインフォマティクスパイプラインにおいて活用されるシステム及び方法が完了又は実質的に完了した後に活用することができる。一例として、バイオインフォマティクスパイプラインは、次世代遺伝子シークエンシング結果を受け取り、参考ゲノムに対してアライメントされたDNA及び/又はRNAリードカウントを反映する1つ以上のBAMファイル等の一連のバイナリファイルを返すことができる。上記の方法及びシステムを活用して、例えば、DNA及び/又はRNAリードカウントを取り込み、TCR/BCR配列プロファイリングを結果として生成することができる。
デジタル・試験所医療プラットフォームが、RNAデータノーマライザを更に含む場合、上記の実施形態を処理する前に、任意のRNAリードカウントを正規化することができる。RNAデータノーマライザの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年9月24日に出願された「RNA発現データの正規化及び補正方法(Methods of Normalizing and Correcting RNA Expression Data)」というタイトルの米国特許出願第16/581,706号に開示されている。
デジタル・試験所医療プラットフォームが、遺伝学的データデコンボリュータを更に含む場合、デコンボリューションのためのシステム及び方法を、2つ以上の生物学的成分を有する標本に関連する遺伝学的データの解析に活用して、遺伝学的データに対する各成分の寄与を判定する、及び/又は標本の任意の成分が精製されたと仮定した場合にその成分に関連づけられると予想される遺伝学的データがどれであるかを判定することができる。遺伝学的データデコンボリュータの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年12月31日に出願されたいずれも「転移性組織サンプルのトランスクリプトームデコンボリューション(Transcriptome Deconvolution of Metastatic Tissue Samples)」というタイトルの米国特許出願第16/732,229号及びPCT/US19/69161号、並びに2020年10月20日に出願された「診断及び処置のための細胞型RNAプロファイルの計算(Calculating Cell-type RNA Profiles for Diagnosis and Treatment)」というタイトルの米国特許出願第17/074,984号に開示されている。
デジタル・試験所医療プラットフォームが、自動RNA発現コーラーを更に含む場合、RNA発現量を、参考発現量に対する相対値として表すよう調節することができ、これは多くの場合、複数のデータセットにおいて同じ方法、機器及び/又は試薬の使用により生成されていないことが原因で差異が生じている場合に人為的要素を回避する目的で解析のための複数のRNA発現データセットを準備するために行われる。自動RNA発現コーラーの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年12月4日に出願された「がん予測パイプラインにおけるRNA発現呼出を自動化するためのシステム及び方法(Systems and Methods for Automating RNA Expression Calls in a Cancer Prediction Pipeline)」というタイトルの米国特許出願第17/112,877号に開示されている。
デジタル・試験所医療プラットフォームは、患者及び/又は標本に関連づけられた遺伝学的及び/又は臨床データを基本とすることができる、疾患状態に関連する情報、特徴又は決定を提供する、1つ以上のインサイトエンジンを更に含む場合がある。例示的なインサイトエンジンとしては、起源不詳腫瘍エンジン、ヒト白血球抗原(HLA)同型接合性喪失(LOH)エンジン、腫瘍突然変異負担エンジン、PD-L1状態エンジン、相同組換え欠失エンジン、細胞経路活性化報告エンジン、免疫浸潤エンジン、マイクロサテライト不安定性エンジン、病原体感染状態エンジン等が挙げられる。起源不詳腫瘍エンジンの一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年05月12日に出願された「多標識がん分類のためのシステム及び方法(Systems and Methods for Multi-Label Cancer Classification)」というタイトルの米国特許出願第15/930,234号に開示されている。HLA LOHエンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年2月12日に出願された「NGS DNAシークエンシングにおける固形腫瘍型におけるヒト白血球抗原のクラスI同型接合性喪失の検出(Detection of Human Leukocyte Antigen Class I Loss of Heterozygosity in Solid Tumor Types by NGS DNA Sequencing)」というタイトルの米国特許出願第16/789,413号に開示されている。腫瘍突然変異負担(TMB)エンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年2月12日に出願された「標的化パネル腫瘍突然変異負担計算のシステム及び方法(Targeted-Panel Tumor Mutational Burden Calculation Systems and Methods)」というタイトルの米国特許出願第16/789,288号に開示されている。PD-L1状態エンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年5月29日に出願された「RNA発現データ及び他の患者データを使用してがん細胞サンプルのPD-L1状態を予測するための汎がんモデル(A Pan-Cancer Model to Predict The PD-L1 Status of a Cancer Cell Sample Using RNA Expression Data and Other Patient Data)」というタイトルの米国特許出願第16/888,357号に開示されている。PD-L1状態エンジンの追加的な一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年3月25日に出願された「組織病理学スライド画像からのバイオマーカーの判定(Determining Biomarkers from Histopathology Slide Images)」というタイトルの米国特許出願第16/830,186号に開示されている。相同組換え欠失エンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年2月12日に出願されたいずれも「相同組換え欠失を予測するための統合型機械学習枠組(An Integrative Machine-Learning Framework to Predict Homologous Recombination Deficiency)」というタイトルの米国特許出願第16/789,363号及びPCT US20/18002号に開示されている。細胞経路活性化報告エンジンの一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年8月14日に出願された「がん標本における細胞経路調節異常を検出するためのシステム及び方法(Systems And Methods For Detecting Cellular Pathway Dysregulation In Cancer Specimens)」というタイトルの米国特許出願第16/994,315号に開示されている。免疫浸潤エンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年8月6日に出願された「統合型RNA発現及びイメージング特徴に基づいて免疫浸潤を予測するための多モデルアプローチ(A Multi-Modal Approach to Predicting Immune Infiltration Based on Integrated RNA Expression and Imaging Features)」というタイトルの米国特許出願第16/533,676号に開示されている。免疫浸潤エンジンの追加的な一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年2月12日に出願された「免疫学的活性腫瘍微小環境を有する患者を特定するためのRNA免疫系の包括的評価(Comprehensive Evaluation of RNA Immune System for the Identification of Patients with an Immunologically Active Tumor Microenvironment)」というタイトルの米国特許出願第62/804,509号に開示されている。MSIエンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年10月15日に出願された「マイクロサテライト不安定性判定システム及び関連する方法(Microsatellite Instability Determination System and Related Methods)」というタイトルの米国特許出願第16/653,868号に開示されている。MSIエンジンの追加的な一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年7月31日に出願された「液体生検を使用してがんのマイクロサテライト不安定性を検出するためのシステム及び方法(Systems and Methods for Detecting Microsatellite Instability of a Cancer Using a Liquid Biopsy)」というタイトルの米国特許出願第16/945,588号に開示されている。
デジタル・試験所医療プラットフォームが報告生成エンジンを更に含む場合、上記の方法及びシステムを活用して、患者の遺伝的プロファイル及び医師に提示するための1つ以上のインサイトエンジンの結果に関する要約報告を作成することができる。例えば、報告は、シークエンシングされた標本が第1の臓器、第2の臓器、第3の臓器、等々からの腫瘍又は正常組織を含む度合いに関する情報を医師に提供するものであってもよい。例えば、報告は、標本における組織種別、腫瘍又は臓器それぞれの遺伝的プロファイルを提供するものであってもよい。遺伝的プロファイルは、組織種別、腫瘍又は臓器に存在する遺伝子配列を表すものであってもよいし、変異体、発現量、遺伝子生成物に関する情報、或いは組織、腫瘍又は臓器の遺伝学的解析から得られたその他の情報を含んでいてもよい。報告は、遺伝的プロファイル又はインサイトエンジンの所見及び要約の一部又はすべてに基づく、適合する療法及び/又は臨床試験を含んでいてもよい。例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年6月1日に出願された「臨床試験評価のシステム及び方法(Systems and Methods of Clinical Trial Evaluation)」というタイトルの米国特許出願第16/889,779号に開示されているシステム及び方法に従って、臨床試験を適合させることができる。
報告は、多数の標本からの結果のデータベースに対する結果の比較を含んでいてもよい。結果のデータベースに対して結果を比較するための方法及びシステムの一例は、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年12月31日に出願されたいずれも「患者コホートの反応、進行及び生存を予測及び解析するための方法及び工程(A Method and Process for Predicting and Analyzing Patient Cohort Response, Progression and Survival)」というタイトルの米国特許出願第16/732,168号及びPCT/US19/69149号に開示されている。この情報を、場合によっては追加標本からの同様の情報及び/又は臨床反応情報と併用して、バイオマーカーの発見又は臨床試験の設計に繋げることができる。
デジタル・試験所医療プラットフォームが、本明細書に記載の1つ以上の実施形態を、該プラットフォームとの関連で開発されるオルガノイドに応用することを更に含む場合、該方法及びシステムを使用して、オルガノイドから得られた遺伝子シークエンシングデータを更に評価することにより、シークエンシングされたオルガノイドが第1の細胞型、第2の細胞型、第3の細胞型、等々を含む度合いに関する情報を提供することができる。例えば、報告は、標本における細胞型それぞれの遺伝的プロファイルを提供するものであってもよい。遺伝的プロファイルは、任意の細胞型に存在する遺伝子配列を表すものであってもよいし、変異体、発現量、遺伝子生成物に関する情報、或いは細胞の遺伝学的解析から得られたその他の情報を含んでいてもよい。報告は、デコンボリューションされた情報の一部又はすべてを基に適合させた療法を含んでいてもよい。これらの療法を、オルガノイド、そのオルガノイドの誘導体、及び/又は類似するオルガノイドを対象に試験して、それらの療法に対するオルガノイドの感受性を判断することができる。例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年11月22日に出願された「腫瘍オルガノイド培養物の組成、システム及び方法(Tumor Organoid Culture Compositions, Systems, and Methods)」というタイトルの米国特許出願第16/693,117号、2020年10月22日に出願された「治療感受性を予測するためのシステム及び方法(Systems and Methods for Predicting Therapeutic Sensitivity)」というタイトルのPCT/US20/56930号、及び2020年12月7日に出願された「大規模オルガノイド表現型解析(Large Scale Phenotypic Organoid Analysis)」というタイトルの米国特許出願第17/114,386号に開示されているシステム及び方法に従って、オルガノイドを培養及び試験することができる。
デジタル・試験所医療プラットフォームが、上記の1つ以上を、概して医療及び研究を目的とする医療機器又は試験所開発試験と組み合わせて又はその一部として応用することを更に含む場合、当該試験所開発試験又は医療機器の結果を、人工知能の使用を通じて拡充及び個人化することができる。試験所開発試験、特に、人工知能によって拡充できる試験の一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年10月22日に出願された「標準化された試験所診断試験に対する人工知能支援型高精度医療拡充(Artificial Intelligence Assisted Precision Medicine Enhancements to Standardized Laboratory Diagnostic Testing)」というタイトルの米国仮特許出願第62/924,515号に開示されている。
上記の例は例示的なものであり、本明細書に記載のシステム及び方法をデジタル・試験所医療プラットフォームと組み合わせて使用することを制限するものではないことが理解されるべきである。
応用
本開示は、T細胞受容体(TCR)及びB細胞受容体(BCR)のクローン数及びクローン分布を解析する方法を提供する。TCR及びBCRをコードする配列は、医療及び研究での応用に有用な様々な情報を含む。例えば、免疫プロファイルを実施することにより、T及びB細胞レパートリーのクローン性を判定できる。
一例において、病原体SARS-CoV-2に対して特異的であるT及びB細胞は、明白な症状を伴わない感染の後に活性化され、拡大する。当該症例における個人の免疫プロファイリングにより、SARS-CoV-2特異的リンパ球の拡大が判明すると予想される。また、SARS-CoV-2に対する体液性免疫反応は、経時的に減退し、循環血液中に残存するSARS-CoV-2特異的抗体が少なくなることが示されている(Self WHら、MMWR Morb Mortal Wkly Rep 2020、69:1762~1766頁)。SARS-CoV-2感染(COVID-19)におけるこの特徴により、ウイルス特異的抗体タイターに基づくSARS-CoV-2接触に関する試験の潜在的有効性が低下する。
例えば、T及びB細胞リンパ腫は一般にがんの進行に伴って出現し拡大する支配的クローンを有することから、免疫プロファイリングはこれらのがんを検出する際にも重要である。支配的T又はB細胞クローンの存在は、疾患の度合い又は重篤度の判定に役立つと予想される個人において評価することができる。
しかし、従来の免疫プロファイリングアッセイに欠けているのは、対象となる細胞の分子表現型を評価する能力である。したがって、本出願の技術は、DNA又はRNAに基づくサンプルの完全な次世代シークエンシングを免疫プロファイリングと組み合わせるものである。従来、或るサンプルに対してRNA又はエクソームのシークエンシング及び免疫プロファイリングを実施する場合、サンプル材料を2つの別々のアッセイに分け、シークエンシング後にデータを統合しなければならなかった。本出願の方法は、ゲノム/トランスクリプトーム両方のデータの解析と免疫プロファイリングを1回のアッセイで行うことを可能にし、いずれの成分に由来するデータの質も損ねない。したがって、本出願の方法は、様々な潜在的用途向けに医療実務者が日常的に使用する存続性を持たせることに繋がる規模で高精度医療を提供することに置き換えられる、優れた効率性を有する。
本開示の方法は、ハイブリッド捕捉プローブを活用して、個別の被検体におけるT及びB細胞レパートリーを理解する上で最も重要な配列を濃縮するものである。新奇のプローブは、TCR及びBCR配列の定常領域と非定常領域を敷き詰めるように設計される。プローブ集合は、従来のアッセイより少ないリードで完全な免疫プロファイルを開発できるよう、TCR及びBCR配列の臨界エリアにおいてシークエンシングが深くなるように設計される。また、プローブ集合は、TCRとBCRの両方をカバーする生産的配列を提供するように配合される。また、本出願の方法を用いることにより、プローブの配合を個別の用途に対して更に微調整して、免疫レパートリーの最大のカバレッジを提供することができる。この新奇のハイブリッド捕捉アプローチにより、免疫プロファイリングを達成する一方で、任意のシークエンシング実行におけるリードのうちTCR/BCRプロファイリングへの充当分を2%未満にすることができる。結果的に、シークエンシングリードの98%以上を他の用途に利用できることから、高品質で深いシークエンシングを免疫プロファイリングと同時に達成できる。
全般
任意の腫瘍サンプル、組織サンプル又は血液サンプルにおいて、数百、数千、数万、更には数百万もの異なるTCR及びBCR配列が存在する。これらの配列を使用して、例えば、過去の感染や、潜在的にどのT細胞が腫瘍細胞を死滅させているかを予測することができる。標準のRNAseqでは腫瘍におけるT細胞の割合(浸潤)を推測できる一方、TCRシークエンシングは、腫瘍におけるT細胞の大部分が単一の新抗原に対して特異的であるか、或いは多様な層から出現するかに関する情報源になり得る。患者コホートの全体にわたりTCR及びBCRを追跡することにより、同じ変化が生じた患者で再発する特異的受容体を特定し、TCRベース療法/CAR細胞療法に仕向けられる情報を生成することができる。
過去又は現在の感染の文脈で言えば、TCR及びBCRシークエンシングの結果は、感染及び/又は感染に対する免疫反応の特徴づけに有用であると考えられる。TCR/BCRシークエンシングを全エクソームRNAseqアッセイの一部として実施する場合、様々な免疫遺伝子(例えばサイトカイン、チェックポイント分子、先天性免疫遺伝子)のRNA配列及び発現レベルも、その特徴づけに貢献すると考えられる。
例として、ただし限定することなく、TCR/BCRプロファイリング結果を使用して、個人が1つ以上の感染性病原体と接触しているか否か判断すること、個人が感染性病原体群又は特定の感染性病原体に対する殺菌免疫及び/又は中和抗体に関連づけられるTCR又はBCR配列を有するか否かを検出すること、特定の病原体又は抗原に対する適応免疫反応を特定すること、一般的な患者集団又は患者従属集団向けに感染性疾患の処置プロトコルを解析し改善すること、疾患の重篤度と免疫プロファイルとの間の関連性を特定すること、個人の疾患の重篤度を分類又は予測し(例えば、参照によりその全体が本明細書に組み込まれている、SchultheiBら、2020年、Immunity、https://doi.org/10.1016/j.immuni.2020.06.024を参照のこと)、医師が処置プロトコルを選択し、個人の免疫反応に応じて処置プロトコルを適応させ、治療薬又は予防処置(例えばワクチン)を開発及び/又は効能を評価し、臨床試験を設計又は患者コホートを定義し、及び/又は追加の関連情報を得る際の支援とすることができる。
いくつかの例において、血清試験により、個人が感染性病原体及び/又は抗原に反応する抗体を発達させているかどうか判断することができる。しかし、すべての感染性病原体が個々の感染事例において強い抗体(B細胞)反応を引き起こす又はセロコンバージョンを引き起こすわけではないことが知られている。これらの感染は、ほとんどが宿主細胞内で発生するライフサイクルを有する病原体(リステリア菌等)、ウイルス血症を引き起こさない又は個人の血液において高濃度で認められるわけではないウイルスによって引き起こされる場合がある。一般にウイルス血症を引き起こさないウイルスの例としては、SARS、MERS、SARS-CoV-2等のコロナウイルスが挙げられる。
場合によっては、強いB細胞反応を引き起こさない感染はやはり、個人が制御して解消することができ、B細胞反応が生じない状況におけるこの制御について仮説が立てられたメカニズムの1つが、T細胞反応である(Gallaisら、2020年、MedRxiv、https://doi.org/10.1101/2020.06.21.20132449を参照のこと)。多数のアッセイ(例えばELISpot、Fluorospot、ELISA等)を用いて、特定の病原体及び/又は抗原に対して特異的な、個人のT細胞反応及び/又は記憶B細胞を解析することができる。しかし、これらのアッセイは、細胞培養技法及び/又はインキュベーション期間を必要とすることが多いため、毎日実施できる試験の数が限られてしまう。様々な例において、TCR/BCRシークエンシングを、大規模試験にもっと適応させ、多数のサンプルを毎日処理できるようにすることができる。
上記のT細胞、B細胞及び抗体のアッセイでは、アッセイに含まれる抗原に反応するTCRとBCRを検出するが、アッセイに含まれない感染、がん又は他の疾患状態の過程で生成された抗原に反応するTCR又はBCRは検出しない場合がある。また、これらのアッセイは、本明細書に開示されているTCR/BCRシークエンシングの方法における別の優位性である、BCR又はTCR分子の遺伝子配列(及び結果的にタンパク質構造)を自動的に提供するわけではない。
本発明の技術の追加的、例示的、非限定的な応用を以下に記す。
患者のTCR/BCRプロファイルの直接解析に関連する応用
疾患試験 - がんの診断及び重篤度の測定/確認
いくつかの実施形態において、血液又は腫瘍サンプルを含む患者サンプルが収集され、疾患の重篤度が評価される。例として、ただし限定することなく、T及びB細胞リンパ腫を含む血液系悪性腫瘍の重篤度を、TCR/BCRハイブリッド捕捉及びシークエンシングを実施することにより評価して、患者の免疫プロファイルを作成することができる。免疫プロファイルは、正常細胞と悪性細胞のクローン性に関する情報を提供する。この情報を医療実務者が使用して、患者における腫瘍負担への理解を深め、処置を決める指針として役立てることができる。
いくつかの実施形態において、TCR/BCRプロファイルに基づいて療法が推奨又は適合される。TCR/BCRプロファイルは、悪性腫瘍を構成する主要なクローンに関する情報を提供する。したがって、TCR/BCRプロファイルは、医療実務者が処置を決定する際の参考情報として役立つと考えられる。例として、ただし限定することなく、TCR/BCRプロファイリング後に推奨される療法としては、養子細胞療法/ACT、CAR-T細胞療法、キメラ抗原受容体マクロファージ(CAR-M)療法、又はキメラ抗原受容体(CAR)を発現するように操作された他の区分の細胞が挙げられる。追加的療法としては、がんワクチン、免疫腫瘍学薬物、免疫療法、チェックポイント阻害、免疫チェックポイント阻害薬、化学療法、がん特異的処置、ワクチン、抗ウイルス薬、抗生物質、抗寄生虫薬、抗真菌薬、1つ以上の抗体(モノクローナル、ポリクローナル等であってもよく、感染からの回復後に別の患者から単離されたものであってもよい)、抗ヒスタミン薬、鼻腔噴霧薬、抗ロイコトリエン、ロイコトリエン修飾薬、ロイコトリエン受容体拮抗薬、アレルギー注射又は別の、アレルギー性IgEをより耐容度の高いIgGに切り替えるアイソタイプを誘発する方法、抗炎症処置、ステロイド、経口コルチコステロイド、プレドニゾン、抗リウマチ薬(DMARDS)、共通の抗炎症経路を標的とする生物製剤、TNF経路拮抗薬(レミケードを含む)、B細胞枯渇(リツキサンを含む)、免疫抑制薬、インスリン、骨髄移植、抗炎症食事制限、理学療法、手術、局所投薬、及び/又は局所頭皮投薬が挙げられるが、それらに限定されない。
いくつかの実施形態において、本発明の技術は、次に挙げる機能の1つ以上を同時に果たす目的で用いられる:固形腫瘍サンプルにおけるリンパ球浸潤の存在及び度合いを評価すること、疾患重篤度を測定/確認すること、又は浸潤バイオマーカーを検出すること。固形腫瘍から得られた患者サンプルのTCR/BCRプロファイルは、腫瘍浸潤リンパ球(TIL)の頻度とクローン性に関する情報を提供する。いくつかの実施形態において、TCR/BCRプロファイリングを用いて行われたTIL解析に基づいて、療法が推奨される。例として、ただし限定することなく、TCR/BCRプロファイリング後に推奨されると考えられる処置としては、ACT、CAR-T及び/又は他の免疫オンコロジー(IO)療法が挙げられる。
いくつかの実施形態において、TCR/BCRデータを他の浸潤予測因子(エンジン)と組み合わせる、及び/又は1つの特徴として組み合わせてそれらの予測モデルを精緻化する。免疫浸潤エンジンの一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年8月6日に出願された「統合型RNA発現及びイメージング特徴に基づいて免疫浸潤を予測するための多モデルアプローチ(A Multi-Modal Approach to Predicting Immune Infiltration Based on Integrated RNA Expression and Imaging Features)」というタイトルの米国特許出願第16/533,676号に開示されている。免疫浸潤エンジンの追加的な一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年2月12日に出願された「免疫学的活性腫瘍微小環境を有する患者を特定するためのRNA免疫系の包括的評価(Comprehensive Evaluation of RNA Immune System for the Identification of Patients with an Immunologically Active Tumor Microenvironment)」というタイトルの米国特許出願第62/804,509号に開示されている。
一例において、非小細胞肺がん(NSCLC)及びEGFR突然変異を有する患者について、TCR/BCRプロファイルを生成することができる。このTCR/BCRプロファイルは、患者のデータの解析に使用する浸潤予測因子からの出力の有無を問わず解析できる。これらの結果を用いて、療法(例えば免疫療法、チェックポイント阻害等)を患者と適合させることができる。
治療効能試験
いくつかの実施形態において、本発明の技術を用いて、治療免疫細胞が標的腫瘍に浸潤しているかどうかを特定する。例として、ただし限定することなく、TCR/BCRプロファイリングを用いて検出される細胞としては、CAR-T細胞、又は養子細胞移植(ACT)療法を通じて提供される細胞が挙げられる。例として、ただし限定することなく、追加のプローブを追加して、特定の治療様式に固有の配列を特異的に標的とすることができる。
いくつかの実施形態において、本発明の技術を用いて、例えば、化学療法等免疫に影響を与える療法の実施前後に長期試験を行うことができる。化学療法薬は、患者の免疫系に悪影響を及ぼすことが多い。例として、ただし限定することなく、化学療法薬としては、ドキソルビシン及びエピルビシン等のアントラサイクリン類、パクリタキセルやドセタキセル等のタキサン類、5-フルオロウラシル、シクロホスファミド、又はカルボプラチン、或いは細胞増殖疾患の処置に使用される他の薬物が挙げられる。いくつかの実施形態において、本発明の技術を用いて、免疫レパートリーの有害事象又は標的外効果の度合い及び性質を監視することができる。例として、ただし限定することなく、TCR/BCRプロファイルは、免疫不全状態に関連づけられる感染症又は他の疾患に被検体がより罹患しやすいか否かを理解する目的に用いられる。いくつかの実施形態において、TCR/BCRプロファイルにより、医師はTCR/BCRプロファイル解析に対応する形で、追加的な方向性の定まった療法を提供することができる。例として、ただし限定することなく、TCR/BCRプロファイルは、免疫系にプラスの効果を与えることが知られているサイトカインの投与に繋がると考えられ、いくつかの実施形態において、長期間のTCR/BCR解析は免疫レパートリー改善の度合いと性質を判断するためのデータ、及び必要に応じて処置を修正するためのデータを提供する。
患者サンプルにおける細胞及び/又は受容体配列のシークエンシング、解析及びリスト報告
いくつかの実施形態において、本発明の技術は、患者の、又は例えば悪性組織から採取した患者サンプルのTCR/BCRプロファイルの決定に用いられる。いくつかの実施形態において、該方法は、腫瘍サンプルにおけるリンパ球浸潤の存在と度合いの判断、及び腫瘍サンプルにおいて最も存在度の高いクローンの特定に有用である。例として、ただし限定することなく、当該プロファイルは、患者特異的養子細胞移植向けに拡張される、及び/又は患者特異的キメラ受容体を生成するために発現量の多い受容体非定常領域を特定するのに用いられる、代表性の高いクローンの選択を可能にし得る。この情報は、例えばCAR-T細胞療法を用いる個人化された医療処置アプローチを開発するための基礎を提供する。
いくつかの実施形態において、本発明の技術は、病原体感染に苦しんでいる又は感染が疑われる患者のTCR/BCRプロファイルの決定に用いられる。いくつかの実施形態において、患者サンプル(例えば血液サンプル)において最も存在度の高いクローンが、患者特異的養子細胞移植向けに拡張されるものとして特定される。いくつかの実施形態において、この患者サンプル向けの受容体非定常領域が、CAR細胞療法に使用する患者特異的キメラ受容体を生成するために特定される。
TCR/BCR解析に基づく患者の診断又は確証的診断
いくつかの実施形態において、TCR/BCRデータは、他の病原体検出又は予測方法と組み合わされて使用される、及び/又はそれらの予測モデルを改正するための1つの特徴として使用され得る。病原体検出又は予測方法の一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2020年2月26日に出願された米国特許出願第16/802,126号に開示されている。病原体検出又は予測方法の別の例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2021年2月18日に出願されたPCT/US21/18619号に開示されている。いくつかの実施形態において、データを使用して、患者が将来の感染から保護されるか否かを予測できる。例として、ただし限定することなく、この情報は、ワクチン接種した又は自然にウイルス感染した後の患者にとって有益と思われる。いくつかの実施形態において、解析を長期的に実施して、病原性生物に対する免疫反応を特徴づけることができる。発がん性病原体の場合、免疫プロファイリングは、患者が既に感染している/過去に感染したことがあるか否かの予測に用いることができ、医療実務者が下す処置決定の指針になり得る。
いくつかの実施形態において、或る病原体に関連づけられる受容体配列のリスト(上記の技術の応用を参照のこと)が提供される。いくつかの実施形態において、例えば、任意の疾患、病原体又は抗原にどのTCR/BCR配列が関連づけられるかを判断するための、陽性対照と陰性対照を収録した大型データセットが提供される(例えば実施例2を参照のこと)。例として、ただし限定することなく、診断用途又は確証的診断用途向けに本発明のTCR/BCRプロファイリング方法を活用する一例を以下に記す。
SARS-CoV-2診断
様々な実施形態において、SARS-CoV-2抗原を認識するBCR配列は、Table 4(表4)に記載のものを含む場合がある。Table 4(表4)は、SAR-CoV-2接触及び/又は感染に関する陽性対照データの例を示す表である。
Figure 2023515270000005
Table 4(表4)の各行はBCR配列を表し、重鎖のV、D、Jファミリー分類及び重鎖CDR3のアミノ酸配列、並びに軽鎖のVとJファミリー分類及び軽鎖CDR3のアミノ酸配列を含む。アミノ酸配列は、アライメント及び比較した場合に複数のCDR3配列に存在するアミノ酸の共通配列を表す場合があり、波形符号(~)は、アライメントされたCDR3配列に同じアミノ酸を有しない配列における位置を意味する場合がある。様々な実施形態において、2つのBCR配列がペアになってもよい。例えば、3行目と4行目は、同じ細胞によって発現されてヘテロ二量体タンパク質BCR構造を創出する2つのアレルを表す場合がある。同様に、5行目と6行目はペア配列であってもよく、7行目と8行目はペアであってもよく、9行目と10行目はペアであってもよい、等々である。
Figure 2023515270000006
Figure 2023515270000007
Figure 2023515270000008
Figure 2023515270000009
Figure 2023515270000010
Figure 2023515270000011
Figure 2023515270000012
Figure 2023515270000013
Figure 2023515270000014
Figure 2023515270000015
Figure 2023515270000016
Figure 2023515270000017
Figure 2023515270000018
Figure 2023515270000019
Table 5(表5)の各行はBCR配列を表し、重鎖のVDJ領域及び軽鎖のVJ領域のヌクレオチドとアミノ酸配列を含む(あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Robbianiら、doi: https://doi.org/10.1101/2020.05.13.092619を参照のこと)。
SARS-CoV-2特異的T細胞及びそれらが認識するウイルス抗原(エピトープ)の特徴と表現型が科学文献に記載されている。例えば、あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Weiskopfら、「Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome」、Sci. Immunol. 5、eabd2071 (2020年)、doi:10.1126/sciimmunol.abd2071pmid:32591408を参照のこと。
コロナウイルスを認識するTCR及び/又はBCR配列は、iReceptorデータベース(https://gateway.ireceptor.org/login)に収録されている配列を更に含む場合がある。1,414の標本に関連する、メタデータ、臨床データ、コロナウイルス感染状態、135,000を超えるTCRの配列、コロナウイルスペプチド配列、及びペプチドとTCR結合ペアデータ等のデータを含むデータベースの例については、あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Nolanら、DOI: 10.21203/rs.3.rs-51964/v1を参照のこと。
したがって、COVID又はSARS-CoV-2接触の診断又は確証的診断を、TCR/BCR解析に基づいて提供できる。
上記の例はSARS-CoV-2に向けられている一方、本発明の技術はそのように限定されるわけではなく、他の疾患、感染症又は状態の診断、診断確認、予測又は特定に用いることもできる。例として、ただし限定することなく、いくつかの実施形態において、1つ以上の特定のがん種別、感染性疾患、例えばA型インフルエンザ、HIV、EBV、CMV、SARS-CoV-2、ライム病、アレルギー及び自己免疫疾患(糖尿病、セリアック病、乾癬等)が、被検体サンプルのTCR/BCRプロファイルを決定することにより、診断される又は接触が確認される。
最小残存病変(MRD)試験
いくつかの実施形態において、本発明の技術は、例えば、血液系悪性腫瘍の処置中である患者における少数の残存腫瘍細胞の検出に用いられる。いくつかの実施形態において、本発明の方法は、1,000、10,000又は100,000の細胞における1つの悪性T/B細胞クローンを検出する。例としてただし限定することなく、1,000、10,000又は100,000の細胞における1つの細胞の検出は、医療実務者が疾患を処置するために療法を再開又は第二選択療法を選択すると決定する際に有用と考えられる。
患者データと既知のコホートデータとの比較に関連するTCR/BCRプロファイリングの応用
疾患のバイオマーカー及び療法開発
いくつかの実施形態において、特定の疾患、感染症又は医学的状態に苦しんでいる患者のコホートから多数のTCR/BCRプロファイルが作成され解析される。いくつかの実施形態において、陽性対照、即ち特定の疾患、感染症又は医学的状態を有すると診断されていることが既知である患者、及び陰性対照、即ち特定の疾患、感染症又は医学的状態を有しないことが既知である患者を含む、特定の疾患、感染症又は医学的状態に苦しんでいる患者のコホートからの、TCR/BCRプロファイルが提供される。例として、いくつかの実施形態において、TCR/BCRプロファイルは、単一種類の腫瘍又はがん、特定の感染性疾患、特定の自己免疫疾患、特定のアレルギー、又は特定の医学的状態に苦しんでいる人々のコホートから作成される。
いくつかの実施形態において、受容体鎖ペアが特定される。いくつかの実施形態において、主要組織適合性複合体(MHC)四量体アッセイ試験により、TCR反応性が検証される。
いくつかの実施形態において、特定された共通のTCR/BCR配列は、感染症、自己免疫疾患、アレルギー及びがんを含むがそれらに限定されない様々な疾患状態について、CAR-T細胞生成等の免疫療法生成に使用される。
いくつかの実施形態において、或る疾患のコホートについて特定された共通のTCR/BCR配列は、感染症、自己免疫疾患、アレルギー及びがんを含むがそれらに限定されない疾患又は状態についての抗原予測(例えばワクチン開発)に使用される。いくつかの実施形態において、患者をHLAの種類別に区分して、共通の受容体配列に対応する抗原を予測しやすくする。いくつかの実施形態において、機械学習を使用して1つ以上の抗原を予測する。いくつかの実施形態において、例えば、結合エネルギー及び分子相互作用を検出する表面プラズモン共鳴に基づく、抗原特異的T細胞(MIRA)アッセイ及びBiacore又は他の類似するアッセイの多重特定を含むがそれらに限定されないウェットラボ実験により、抗原を検証する。
予測的試験
いくつかの実施形態において、疾患コホート解析に由来するTCR/BCRプロファイルから生成されるモデルを、個別の患者データに適用することもできる。
いくつかの実施形態において、治療中又は臨床試験中にTCR/BCRプロファイルの長期試験を実施して、任意の治療アプローチの有効性/効能を判断する。同様に、例えばがんワクチンを背景とするワクチン接種と同時にTCR/BCRプロファイルの長期試験を実施して、効能及び進行に至るまでの推定期間又は寛解に至るまでの推定期間、疾患進行(療法を行う場合又は行わない場合)、及び/又は治療の転帰若しくは効能を判断することができる。いくつかの実施形態において、TCR/BCRプロファイルの長期試験を免疫オンコロジー(IO)療法と同時に実施すると、免疫オンコロジー治療様式の効能に関する詳細で正確な情報を得られる。
いくつかの実施形態において、IO治療様式における患者の反応又は効能を評価するには、単一のサンプリングポイントで十分であると考えられる。
いくつかの実施形態において、TCR/BCRプロファイルデータを他の免疫療法反応予測因子と統合して、免疫療法に対する患者の反応を正確に評価する。いくつかの実施形態において、TCR/BCRプロファイルを追加データとして、他の既存の予測モデルやまだ着想されていない予測モデルの精緻化に使用することができる。
いくつかの実施形態において、特定の疾患又は障害に苦しんでいる人々の大型コホートデータは、TCR/BCRプロファイルデータ及び治療転帰を含む。
いくつかの実施形態において、TCR/BCR解析は、自然感染/病原体接触又はワクチン接種後における保護的又は殺菌免疫を予測する。いくつかの実施形態において、陽性及び陰性対照並びに受容体配列濃縮レベル分布を有する大型データセットを使用して、病原体感染/接触に関連づけられる特定の受容体配列濃縮の閾値レベルを特定する。
いくつかの実施形態において、TCR/BCR解析をHLAタイピングに使用する。いくつかの実施形態において、TCR/BCRデータは、他のHLAタイピング方法と組み合わされて使用される、及び/又はそれらの予測モデルを精緻化するための1つの特徴として使用され得る。HLAタイピング方法の一例は、例えば、あらゆる目的のために参照によりその全体が本明細書に組み込まれている、2019年8月20日に出願された米国特許出願第16/789,413号に開示されている。
例示的実施形態
本発明の技術のいくつかの非限定的な例示的実施形態が本明細書に開示される。
実施形態1。第1の実施形態において、患者のTCR/BCRプロファイルを決定する方法が提供される。いくつかの実施形態において、該方法は、(a)患者のサンプルからRNAを単離すること、(b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、(c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び(d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含む。いくつかの実施形態において、TCR/BCRハイブリッド捕捉プローブの集合は、BCR定常領域プローブの第1の層、BCR非定常領域プローブの第2の層、TCR定常領域プローブの第3の層、及びTCR非定常領域プローブの第4の層を含む。
実施形態2。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態1の方法。
実施形態3。工程(b)が、(1)標的化全トランスクリプトームパネル、(2)標的化全エクソームパネル、(3)対象となる少なくとも10の標的配列に向けられる標的化パネル、又は(4)1~3のいずれかの組合せについて、ハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態1の方法。
実施形態4。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態3の方法。
実施形態5。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態4の方法。
実施形態6。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態1の方法。
実施形態7。工程(d)が、サンプル中の複数のTCR/BCRクローンを特定することを含む、実施形態1の方法。
実施形態8。工程(d)が、サンプル中の最も存在度の高いTCR/BCRクローンを特定することを含む、実施形態1の方法。
実施形態9。工程(d)が、サンプル中の最も存在度の高い非定常領域配列を特定することを含む、実施形態1の方法。
実施形態10。サンプルが、血液サンプル又は固形腫瘍サンプルである、実施形態1の方法。
実施形態11。TCR/BCRプロファイルに基づいて、或る疾患又は状態を有する患者を診断することを更に含む、上記の実施形態のいずれかの方法。
実施形態12。疾患又は状態が、がん、感染症、自己免疫状態、アレルギー、又は移植片対宿主病の1つ以上を含む、実施形態11の方法。
実施形態13。がん又は感染症(感染性疾患)が、実施形態114におけるリストに示されている1つ以上のものである、実施形態12の方法。
実施形態14。診断することが、被検体のTCR/BCRプロファイルを対照と比較することを含み、被検体のBCR/TCRプロファイルが対照と類似する(例えば、1つ以上のBCR/TCR受容体の存在度、同一性、及び/又はクローン性が対照と同等又は同一である)場合には被検体がその疾患又は状態を有すると診断される、実施形態11の方法。
実施形態15。上記の実施形態のいずれかのいくつかの方法において、疾患(がん又は感染症等)又は医学的状態についての対照TCR/BCRパネルが提供される。
実施形態16。いくつかの実施形態において、患者のTCR/BCRプロファイルに基づいて、或る疾患又は状態を有する患者を診断する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルを標準の集合と比較して、疾患又は状態を有する患者を診断することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態17。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態16の方法。
実施形態18。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態16の方法。
実施形態19。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態18の方法。
実施形態20。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態19の方法。
実施形態21。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態16の方法。
実施形態22。疾患又は状態が、感染性疾患、がん、自己免疫疾患、アレルギー、又は移植片対宿主病である、実施形態16の方法。
実施形態23。がん又は感染症(感染性疾患)が、実施形態114におけるリストに示されている1つ以上のものである、実施形態22の方法。
実施形態24。診断することが、被検体のTCR/BCRプロファイルを対照と比較することを含み、被検体のBCR/TCRプロファイルが対照と類似する(例えば、1つ以上のBCR/TCR受容体の存在度、同一性、及び/又はクローン性が対照と同等又は同一である)場合には被検体がその疾患又は状態を有すると診断される、実施形態23の方法。
実施形態25。いくつかの実施形態において、疾患(がん又は感染症等)又は医学的状態についての対照TCR/BCRパネルが提供される。
実施形態26。いくつかの実施形態において、患者のTCR/BCRプロファイルに基づいて、疾患又は状態の重篤度又は進行を評価する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルを標準の集合と比較して、疾患の重篤度又は進行を特徴づけることを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態27。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態26の方法。
実施形態28。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態26の方法。
実施形態29。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態28の方法。
実施形態30。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態29の方法。
実施形態31。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態26の方法。
実施形態32。疾患が、感染性疾患、がん、自己免疫疾患又はアレルギーである、実施形態26の方法。
実施形態33。サンプルが固形腫瘍サンプルである、実施形態29の方法。
実施形態34。工程(e)が、腫瘍のリンパ球浸潤の存在又は程度を決定することを含む、実施形態30の補方法。
実施形態35。がん又は感染症(感染性疾患)が、実施形態114におけるリストに示されている1つ以上のものである、実施形態32の方法。
実施形態36。診断することが、被検体のTCR/BCRプロファイルを対照と比較することを含み、被検体のBCR/TCRプロファイルが対照と類似する(例えば、1つ以上のBCR/TCR受容体の存在度、同一性、及び/又はクローン性が対照と同等又は同一である)場合には被検体がその疾患又は状態を有すると診断される、実施形態35の方法。
実施形態37。いくつかの実施形態において、疾患(がん又は感染症等)又は医学的状態についての対照TCR/BCRパネルが提供される。
実施形態38。いくつかの実施形態において、患者のTCR/BCRプロファイルに基づいて、患者の疾患又は状態を処置する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルに基づいて処置を実施することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態39。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態38の方法。
実施形態40。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態38の方法。
実施形態41。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態40の方法。
実施形態42。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態41の方法。
実施形態43。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態38の方法。
実施形態44。工程(d)が、サンプル中の最も存在度の高いTCR/BCRクローンを特定することを含み、工程(e)で実施される処置が、インビトロで最も存在度の高いクローンを増加させ、増加した細胞を患者に再投与することを含む、実施形態38の方法。
実施形態45。工程(d)が、サンプル中の最も存在度の高いTCR非定常領域の配列を特定することを含み、工程(e)で実施される処置が、最も存在度の高いTCR非定常領域配列の少なくとも1つを含むCAR-T細胞療法を実施することを含む、実施形態38の方法。
実施形態46。疾患又は状態が、感染性疾患、がん、自己免疫疾患又はアレルギーである、実施形態38の方法。
実施形態47。がん又は感染症(感染性疾患)が、実施形態114におけるリストに示されている1つ以上のものである、実施形態46の方法。
実施形態48。いくつかの実施形態において、患者のTCR/BCRプロファイルに対する治療の効果を特徴づける方法が提供される。いくつかの実施形態において、該方法は、(a)第1の時点において、治療を実施する前に(i)患者のサンプルからRNAを単離すること、(ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、(iii)(ii)のRNAの配列を決定して、シークエンシングデータを生成すること、及び(iv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、(b)第2の時点において、治療を実施した後に、(i)患者のサンプルからRNAを単離すること、(ii)ハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、(iii)(ii)のRNAの配列を決定して、シークエンシングデータを生成すること、及び(iv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及び(c)工程(a)で決定されたTCR/BCRプロファイルを、工程(b)で決定されたTCR/BCRプロファイルと比較して、患者のTCR/BCRプロファイルに対する治療の効果を特徴づけることを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態49。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態48の方法。
実施形態50。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態48の方法。
実施形態51。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態50の方法。
実施形態52。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態51の方法。
実施形態53。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態48の方法。
実施形態54。治療薬が免疫療法薬である、実施形態48の方法。
実施形態55。免疫療法薬がワクチンである、実施形態54の方法。
実施形態56。免疫療法薬がキメラ抗原受容体(CAR)T細胞である、実施形態54の方法。
実施形態57。観察された効果に基づいて患者に処方される処置を修正することを更に含む、実施形態48~57のいずれか1つの方法。
実施形態58。いくつかの実施形態において、特定の疾患又は状態を有する患者のコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定する方法が提供される。いくつかの実施形態において、該方法は、a)コホートにおける各患者のサンプルからRNAを単離すること、b)TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含むTCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、コホートにおける患者のTCR/BCRプロファイルを決定すること、及びe)疾患又は状態を有さない対照群と比較してコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定することを含む。
実施形態59。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態58の方法。
実施形態60。ハイブリッド捕捉プローブの集合が、標的化全エクソームパネルを含むプローブの第5の層を更に含む、実施形態58の方法。
実施形態61。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態60の方法。
実施形態62。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態61の方法。
実施形態63。ハイブリッド捕捉プローブの集合が、標的化全エクソームパネルを含むプローブの第5の層を更に含む、実施形態58の方法。
実施形態64。疾患又は状態が、感染症、自己免疫疾患、アレルギー、又はがんである、実施形態58の方法。
実施形態65。濃縮されたTCR/BCR非定常領域配列を使用して疾患特異的抗原を特定することを更に含む、実施形態58の方法。
実施形態66。疾患特異的抗原を含むワクチンを生成することを更に含む、実施形態65の方法。
実施形態67。疾患特異的抗原が腫瘍抗原である、実施形態65又は66の方法。
実施形態68。がん又は感染症(感染性疾患)が、実施形態114におけるリストに示されている1つ以上のものである、実施形態64の方法。
実施形態69。いくつかの実施形態において、患者のTCR/BCRプロファイルを決定するためのキットが提供される。いくつかの実施形態において、キットは、TCR/BCRハイブリッド捕捉プローブの集合を含む。
実施形態70。いくつかの実施形態において、患者のTCR/BCRプロファイルを決定する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、ハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びd)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、BCR定常領域プローブの第1の層、BCR非定常領域プローブの第2の層、TCR定常領域プローブの第3の層、及びTCR非定常領域プローブの第4の層を含み、集合内の全トランスクリプトーム標的化パネル、対、第1の層、対、第2の層、対、第3の層、対、第4の層の比が、10:1:2.5:100:100であり、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる。
実施形態71。いくつかの実施形態において、患者のTCR/BCRプロファイルを決定する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及びd)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定することを含み、患者はSARS-CoV-2に接触している又は接触している疑いがあり、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態72。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態71の方法。
実施形態73。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態71の方法。
実施形態74。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態73の方法。
実施形態75。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態74の方法。
実施形態76。工程(b)が、全エクソーム標的化パネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態71の方法。
実施形態77。サンプル中の複数のTCR/BCRクローンを特定することを更に含む、実施形態71の方法。
実施形態78。サンプル中の最も存在度の高いTCR/BCRクローンを特定することを更に含む、実施形態71の方法。
実施形態79。サンプル中の最も存在度の高い非定常領域配列を特定することを更に含む、実施形態71の方法。
実施形態80。サンプルが、血液サンプル又は固形腫瘍サンプルである、実施形態71の方法。
実施形態81。いくつかの実施形態において、患者のTCR/BCRプロファイルに基づいて、COVID-19の重篤度又は進行を評価する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルを標準の集合と比較して、疾患の重篤度又は進行を特徴づけることを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態82。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態81の方法。
実施形態83。工程(b)が、標的化トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態81の方法。
実施形態84。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態83の方法。
実施形態85。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態84の方法。
実施形態86。工程(b)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態81の方法。
実施形態87。いくつかの実施形態において、患者のTCR/BCRプロファイルに基づいてCOVID-19を処置する方法が提供される。いくつかの実施形態において、該方法は、a)患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びe)患者のTCR/BCRプロファイルに基づいて処置を実施することを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態88。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態87の方法。
実施形態89。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態87の方法。
実施形態90。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態89の方法。
実施形態91。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態90の方法。
実施形態92。工程(b)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態87の方法。
実施形態93。工程(d)が、サンプル中の最も存在度の高いTCR/BCRクローンを特定することを含み、工程(e)で実施される処置が、インビトロで最も存在度の高いクローンを増加させ、増加した細胞を患者に再投与することを含む、実施形態87の方法。
実施形態94。工程(d)が、サンプル中の最も存在度の高いTCR非定常領域の配列を特定することを含み、工程(e)で実施される処置が、最も存在度の高いTCR非定常領域配列の少なくとも1つを含むCAR-T細胞療法を実施することを含む、実施形態87の方法。
実施形態95。いくつかの実施形態において、患者のTCR/BCRプロファイルに対するCOVID-19治療の効果を特徴づける方法が提供される。いくつかの実施形態において、該方法は、a)第1の時点において、治療を実施する前にi. 患者のサンプルからRNAを単離すること、ii. TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、iii. (aii)のRNAの配列を決定して、シークエンシングデータを生成すること、及びiv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、b)第2の時点において、治療を実施した後に、i)患者のサンプルからRNAを単離すること、ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、iii)(bii)のRNAの配列を決定して、シークエンシングデータを生成すること、及びiv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及びc)工程(a)で決定されたTCR/BCRプロファイルを、工程(b)で決定されたTCR/BCRプロファイルと比較して、患者のTCR/BCRプロファイルに対する治療の効果を特徴づけることを含み、TCR/BCRハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態96。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態95の方法。
実施形態97。工程(aii)と(bii)が、標的化全トランスクリプトームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態95の方法。
実施形態98。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態97の方法。
実施形態99。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態98の方法。
実施形態100。工程(aii)と(bii)が、標的化全エクソームパネルについてハイブリッド捕捉プローブの第5の層を使用して濃縮を行うことを更に含む、実施形態95の方法。
実施形態101。治療薬が免疫療法薬である、実施形態95の方法。
実施形態102。免疫療法薬がワクチンである、実施形態101の方法。
実施形態103。免疫療法薬がキメラ抗原受容体(CAR)T細胞である、実施形態101の方法。
実施形態104。観察された効果に基づいて患者に処方される処置を修正することを更に含む、実施形態95~104のいずれか1つの方法。
実施形態105。いくつかの実施形態において、SARS-CoV-2の患者のコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定する方法が提供される。いくつかの実施形態において、該方法は、a)コホートにおける各患者のサンプルからRNAを単離すること、b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮すること、c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、d)シークエンシングデータを解析して、コホートにおける患者のTCR/BCRプロファイルを決定すること、及びe)疾患又は状態を有さない対照群と比較してコホートにおいて濃縮されたTCR/BCR非定常領域配列を特定することを含み、ハイブリッド捕捉プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む。
実施形態106。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、実施形態105の方法。
実施形態107。ハイブリッド捕捉プローブの集合が、全トランスクリプトーム標的化パネルを含むプローブの第5の層を更に含む、実施形態105の方法。
実施形態108。集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、実施形態107の方法。
実施形態109。シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、実施形態108の方法。
実施形態110。ハイブリッド捕捉プローブの集合が、全エクソーム標的化パネルを含むプローブの第5の層を更に含む、実施形態105の方法。
実施形態111。濃縮されたTCR/BCR非定常領域配列を使用してSARS-CoV-2特異的抗原を特定することを更に含む、実施形態105の方法。
実施形態112。SARS-CoV-2特異的抗原を含むワクチンを生成することを更に含む、実施形態108の方法。
実施形態113。いくつかの実施形態において、COVID-19患者のTCR/BCRプロファイルを決定するためのキットが提供される。いくつかの実施形態において、キットは、TCR/BCRハイブリッド捕捉プローブの集合を含む。いくつかの実施形態において、プローブの集合は、TCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含む4つの別々の層として提供される。いくつかの実施形態において、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比は、1:2.5:100:100である。いくつかの実施形態において、プローブの集合は、(1)全トランスクリプトーム標的化パネル、(2)全エクソーム標的化パネル、又は(3)プローブの第5の層として対象となる10~20,000の標的に向けられる標的化パネルのうち1つと組み合わされて使用され、集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比は、1:2.5:100:100:10である。rna-seq等のシークエンシング反応に使用される場合、TCR/BCRパネルは、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされるように構成される。
実施形態114。上記の実施形態の一部において、(a)被検体又はコホートは、がん又は感染症(感染性疾患)等の疾患又は医学的状態を有する、有すると疑われる、又はそれに苦しんでいると診断され、或いは(b)がん又は感染症(感染性疾患)等の疾患又は医学的状態を診断する方法が提供される。例として、ただし限定することなく、上記の実施形態のいずれかにおいて、がんは、軟骨肉腫、ユーイング肉腫、骨の悪性線維性組織球腫/骨肉腫、骨肉腫、横紋筋肉腫、平滑筋肉腫、粘液肉腫、星状細胞腫、脳幹神経膠腫、毛様細胞性星状細胞腫、上衣細胞腫、原始神経外胚葉腫瘍、小脳星細胞腫、大脳星細胞腫、膠芽細胞腫、神経膠腫、髄芽腫、神経芽細胞腫、乏突起膠腫、松果体星細胞腫、下垂体腺腫、乳がん、浸潤性小葉がん、管状腺がん、浸潤性篩状がん、髄様がん、男性乳がん、葉状腫瘍、炎症性乳がん、副腎皮質がん、島細胞がん(内分泌性膵臓がん)、多発性内分泌腫瘍症候群、副甲状腺がん、褐色細胞腫、甲状腺がん、メルケル細胞がん、ブドウ膜メラノーマ、網膜芽腫、肛門がん、虫垂がん、胆管がん、カルチノイド腫瘍、消化管がん、結腸がん、肝外胆管がん、胆嚢がん、胃がん、消化管カルチノイド腫瘍、消化管間質腫瘍、肝細胞がん、膵臓がん、島細胞がん、直腸がん、膀胱がん、子宮頸がん、子宮内膜がん、性腺外胚細胞腫瘍、卵巣がん、卵巣上皮がん(被蓋上皮間質腫瘍)、卵巣胚細胞腫瘍、陰茎がん、腎細胞がん、腎盂・尿管がん、移行細胞がん、前立腺がん、精巣がん、妊娠性絨毛腫瘍、尿管・腎盂がん、移行細胞がん、尿道がん、子宮肉腫、膣がん、外陰がん、ウィルムス腫瘍、食道がん、頭頸部がん、鼻咽腔がん、口腔がん、中咽頭がん、副鼻腔・鼻腔がん、咽頭がん、唾液腺がん、下咽頭がん、急性混合型白血病、急性好酸球性白血病、急性リンパ性白血病、急性骨髄性白血病、急性骨髄性樹状細胞白血病、エイズ関連リンパ腫、未分化大細胞リンパ腫、血管免疫芽球性T細胞リンパ腫、B細胞前リンパ球性白血病、バーキットリンパ腫、慢性リンパ球性白血病、慢性骨髄性白血病、皮膚T細胞性リンパ腫、びまん性大細胞型B細胞リンパ腫、濾胞性リンパ腫、ヘアリー細胞白血病、肝脾T細胞リンパ腫、ホジキンリンパ腫、ヘアリー細胞白血病、血管内大細胞型B細胞リンパ腫、大型顆粒リンパ球白血病、リンパ形質細胞性リンパ腫、リンパ腫様肉芽腫症、外套細胞リンパ腫、辺縁帯B細胞リンパ腫、肥満細胞白血病、縦隔大細胞型B細胞リンパ腫、多発性骨髄腫/形質細胞腫、骨髄異形成症候群、粘膜関連リンパ組織リンパ腫、菌状息肉腫、節性辺縁帯B細胞リンパ腫、非ホジキンリンパ腫、前駆Bリンパ芽球性白血病、原発性中枢神経系リンパ腫、原発性皮膚濾胞性リンパ腫、原発性皮膚免疫細胞腫、原発性滲出リンパ腫、形質芽球性リンパ腫、セザリー症候群、脾性辺縁帯リンパ腫、T細胞前リンパ球性白血病、基底細胞がん、扁平上皮がん、皮膚付属器腫瘍(例えば皮脂腺がん)、黒色腫、原発性皮膚由来の肉腫(例えば隆起性皮膚線維肉腫)、原発性皮膚由来のリンパ腫、気管支腺腫/カルチノイド、小細胞肺がん、中皮腫、非小細胞肺がん、胸膜肺芽腫、喉頭がん、胸腺がん、カポシ肉腫、類上皮型血管内皮腫(EHE)、線維形成性小円形細胞腫瘍、又は脂肪肉腫の1つ以上であってもよい。上記の実施形態のいずれかにおいて、感染症(感染性疾患)は、アシネトバクター感染症、放線菌症、アフリカ睡眠病、AIDS(後天性免疫不全症候群)、アメーバ症、アナプラズマ病、住血線虫症、アニサキス症、炭疽病、溶血性アルカノバクテリア感染症、アルゼンチン出血熱、回虫症、アスペルギルス症、アストロウイルス感染症、バベシア症、セレウス菌感染症、細菌性髄膜炎、細菌性肺炎、細菌性膣症、バクテロイデス感染症、バランチジウム症、バルトネラ症、ベイリサスカリス感染症、BKウイルス感染症、黒色砂毛症、ブラストシスティス症、ブラストミセス症、ボリビア出血熱、ボツリヌス中毒症(及び小児ボツリヌス中毒症)、ブラジル出血熱、ブルセラ症、腺ペスト、バークホルデリア感染症、ブルーリ潰瘍、カリシウイルス属感染症(ノロウイルス及びサポウイルス)、カンピロバクター感染症、カンジダ症(モニリア症、鵝口瘡)、毛頭虫症、カリオン病、猫ひっかき病、蜂巣炎、シャーガス病(アメリカトリパノソーマ症)、軟性下疳、水痘、チクングンヤ熱、クラミジア感染症、肺炎クラミジア感染症(台湾急性呼吸器因子又はTWAR)、コレラ、真菌感染症、ツボカビ症、クロストリジウム・ディフィシル腸炎、コクシジオイデス症、コロラドダニ熱(CTF)、風邪(急性ウイルス性鼻咽喉炎、急性鼻風邪)、コロナウイルス病2019 (COVID-19)、クロイツフェルト・ヤコブ病(CJD)、クリミア・コンゴ出血熱(CCHF)、クリプトコッカス症、クリプトスポリジウム症、皮膚幼虫移行症(CLM)、サイクロスポーラ症、神経嚢虫症、サイトメガロウイルス感染症、デング熱、デスモデスムス属感染症、二核アメーバ症、ジフテリア、裂頭条虫症、メジナ虫症、エボラ出血熱、エキノコックス症、エーリキア症、蟯虫症、エンテロコッカス属感染症、エンテロウイルス感染症、流行性発疹チフス、感染性紅斑(第5病)、突発性発疹(第6病)、肝蛭症、肥大吸虫症、致死性家族性不眠症(FFI)、フィラリア症、クロストリジウム・パーフリンジェンス食中毒、自由生息アメーバ感染症、フゾバクテリウム属感染症、ガス壊疽(クロストリジウム性筋壊死)、ジオトリクム症、ゲルストマン・ストロイスラー・シャインカー症候群(GSS)、ランブル鞭毛虫症、鼻疽、顎口虫症、淋病、鼠径部肉芽腫、A群連鎖球菌感染症、B群連鎖球菌感染症、インフルエンザ菌感染症、手足口病(HFMD)、ハンタウイルス肺症候群(HPS)、ハートランドウイルス病、ピロリ菌感染症、溶血性尿毒症症候群(HUS)、腎症候性出血熱(HFRS)、ヘンドラウイルス感染症、A型肝炎、B型肝炎、C型肝炎、D型肝炎、E型肝炎、単純ヘルペス、ヒストプラスマ症、鉤虫症、ヒトボカウイルス感染症、ヒトエーリキア症、ヒト顆粒球アナプラズマ症(HGA)、ヒトメタニューモウイルス感染症、ヒト単球エーリキア症、ヒトパピローマウイルス(HPV)感染症、ヒトパラインフルエンザウイルス感染症、膜様条虫症、エプスタイン-バーウイルス感染性単核球症、インフルエンザ、イソスポーラ症、川崎病、角膜炎、キンゲラ・キンゲ感染症、クールー、ラッサ熱、レジオネラ症、ポンティアック熱、リーシュマニア症、ハンセン病、レプトスピラ症、リステリア症、ライム病(ライムボレリア症)、リンパ管フィラリア症(象皮病)、リンパ球性脈絡髄膜炎、マラリア、マールブルグ出血熱(MHF)、はしか、中東呼吸器症候群(MERS)、類鼻疽(ホイットモア病)、髄膜炎、髄膜炎菌性疾患、メタゴニムス症、微胞子虫症、伝染性軟属腫(MC)、サル痘、おたふく風邪、発疹熱(流行性発疹チフス)、マイコプラズマ肺炎、マイコプラズマ・ジェニタリウム感染症、菌腫、ハエうじ症、新生児結膜炎(新生児眼炎)、ニパウイルス感染症、ノロウイルス、(新)変異型クロイツフェルト・ヤコブ病(vCJD、nvCJD)、ノカルジア症、オンコセルカ症(河川盲目症)、オピストルキス症、パラコクシジオイデス症(南米ブラストミセス症)、肺吸虫症、パスツレラ病、アタマジラミ、コロモジラミ、ケジラミ、骨盤内炎症性疾患(PID)、百日咳、腺ペスト、肺炎球菌感染症、ニューモシスチス肺炎(PCP)、肺炎、ポリオウイルス感染症、プレボテラ属感染症、原発性アメーバ性髄膜脳炎(PAM)、進行性多巣性白質脳症、オウム病、Q熱、狂犬病、回帰熱、呼吸器合胞体ウイルス感染症、リノスポリジウム症、ライノウイルス感染症、リケッチア感染症、リケッチア痘瘡、リフトバレー熱(RVF)、ロッキー山発疹熱(RMSF)、ロタウイルス感染症、風疹、サルモネラ症、重症急性呼吸器症候群(SARS)、疥癬、猩紅熱、住血吸虫症、敗血症、細菌性赤痢、帯状疱疹、天然痘、スポロトリクム症、ブドウ球菌食中毒、ブドウ球菌感染症、糞線虫症、亜急性硬化性全汎脳炎、ベジェル、梅毒、イチゴ腫、条虫症、破傷風、白癬性毛瘡、頭部白癬、体部白癬、頑癬、手白癬、黒癬、爪白癬、癜風、毒素性ショック症候群(TSS)、トキソカラ症(眼幼虫移行症(OLM))、トキソカラ症(臓器幼虫移行症(VLM))、トキソプラズマ症、トラコーマ、旋毛虫病、トリコモナス症、鞭虫症、結核、野兎病、腸チフス、発疹チフス、ウレアプラズマ・ウレアリチカム感染症、渓谷熱、ベネズエラウマ脳炎、ベネズエラ出血熱、ビブリオ・バルニフィカス感染症、腸炎ビブリオ、ウイルス性肺炎、西ナイル熱、白色砂毛、仮性結核菌感染症、エルシニア症、黄熱、ゼアスポラ、ジカ熱、接合菌症の1つ以上であってもよい。
実施形態115。複数のプローブを使用して標本の少なくとも1つのTCR又はBCR領域をシークエンシングする方法であって、プローブがTCR定常領域プローブの第1の層、TCR非定常領域プローブの第2の層、BCR定常領域プローブの第3の層、及びBCR非定常領域プローブの第4の層を含み、第1の層が第1の濃度レベルを有し、第2の層が第2の濃度レベルを有し、第3の層が第3の濃度レベルを有し、第4のプールが第4の濃度レベルを有する方法。
実施形態116。第1の濃度レベル、第2の濃度レベル、第3の濃度レベル、及び第4の濃度レベルが互いに異なる、実施形態115の方法。
実施形態117。第1の層中のプローブの濃度レベルが第2の層中のプローブの濃度レベルより低く、第3の層中のプローブの濃度レベルが第4の層中のプローブの濃度レベルより低い、実施形態115又は116の方法。いくつかの実施形態において、第1の層中のプローブの濃度レベルは第2の層中のプローブの濃度レベルとおおよそ同じであり、第3の層中のプローブの濃度レベルが第4の層中のプローブの濃度レベルより低い。
実施形態118。第1及び第3の層中のプローブの濃度レベルが独立に、第2及び第4の層中のプローブの濃度レベルの少なくとも2分の1未満、少なくとも約5分の1未満、少なくとも約10分の1未満、少なくとも約15分の1未満、少なくとも約20分の1未満、少なくとも約30分の1未満、少なくとも約40分の1未満、又は少なくとも約50分の1未満である、実施形態115~117のいずれか1つの方法。いくつかの実施形態において、第3及び第4の層中のプローブの濃度レベルは独立に、第1及び第2の層中のプローブの濃度レベルの少なくとも2分の1未満、少なくとも約5分の1未満、少なくとも約10分の1未満、少なくとも約15分の1未満、少なくとも約20分の1未満、少なくとも約30分の1未満、少なくとも約40分の1未満、又は少なくとも約50分の1未満である。
実施形態119。プローブの集合から複数のプローブを選択して層を形成することを含む、標本の少なくとも1つのTCR又はBCR領域をシークエンシングする方法であって、層中の複数のプローブが、少なくとも1つのTCR又はBCR領域の定常領域の少なくとも一部分を除外するように選択される方法。
実施形態120。層が、TCR又はBCRの定常領域の少なくとも一部分をシークエンシングするためのプローブを含む、実施形態119の方法。
実施形態121。シークエンシングが全トランスクリプトームシークエンシングである、実施形態119又は120の方法。
実施形態122。シークエンシングがショートリードシークエンシングである、実施形態117~121のいずれかの方法。
実施形態123。患者から採取された標本に対してシークエンシングが実施され、結果が患者の疾患に罹りやすさの予測に使用される、実施形態115の方法。
実施形態124。TCR又はBCR領域がウイルス感染に関連づけられ、ウイルス感染から保護するように設計されたワクチンを患者に投与する前に標本が採取される、実施形態115の方法。
実施形態125。患者から採取された標本に対してシークエンシングが実施され、標本採取の前に患者が感染性病原体と接触していた、実施形態115の方法。
実施形態126。患者が感染性病原体に対する抗体を生成していた、実施形態125の方法。
実施形態127。患者が感染性病原体に対する実質的な量の抗体を生成していなかった、実施形態125の方法。
実施形態128。感染性病原体がセロコンバージョンを引き起こさなかった、実施形態125の方法。
実施形態129。高濃度の感染性病原体が患者の血液中で検出可能でなかった、実施形態125の方法。
実施形態130。感染性病原体がSARS-CoV-2である、実施形態125の方法。
実施形態131。患者から採取された標本に対してシークエンシングが実施され、患者が呼吸器疾患に関連する症状に見舞われている、実施形態115の方法。
実施形態132。患者から採取された標本に対してシークエンシングが実施され、患者がインフルエンザ様の症状に見舞われている、実施形態115の方法。
実施形態133。標本が組織標本である、実施形態115の方法。
実施形態134。標本が腫瘍標本である、実施形態115の方法。
実施形態135。標本が血液標本である、実施形態115の方法。
実施形態136。標本が唾液標本である、実施形態115の方法。
実施形態137。標本が粘膜標本である、実施形態115の方法。
実施形態138。標本が髄液標本である、実施形態115の方法。
実施形態139。シークエンシングが全トランスクリプトームシークエンシングにおいて実施される、実施形態115の方法。
実施形態140。実施形態115の方法を含む、RNAトランスクリプトームのシークエンシング方法。
実施形態141。標本中の複数のTCRクローンを特定することを更に含む、実施形態115の方法。
実施形態142。標本中の複数のTCRクローンにおける少なくとも1つのTCRクローンの割合を特定することを更に含む、実施形態141の方法。
実施形態143。標本中の複数のBCRクローンを特定することを更に含む、実施形態115の方法。
実施形態144。標本中の複数のBCRクローンにおける少なくとも1つのBCRクローンの割合を特定することを更に含む、実施形態143の方法。
実施形態145。集合が、TCR定常領域層、TCR非定常領域層、BCR定常領域層、及びBCR非定常領域層からの少なくとも1つのオリゴヌクレオチドを含む、実施形態115~141のいずれかの方法。
実施形態146。TCR/BCRプローブの集合が実施例1に記載のように得られる、上記の実施形態のいずれかの方法。
以下の実施例は例示的であり、特許請求の対象事項を制限するものと解釈されるべきではない。
(実施例1)
TCR/BCRプロファイリングプローブ及びアッセイ開発
A.ハイブリッド捕捉プローブの配列を選択又は設計する方法
例えばRNA-seqアッセイの範囲内でシークエンシングライブラリ内のTCR/BCR遺伝子に関連づけられる核酸を濃縮するために、プローブを設計することができる。
工程1は、所望の標的遺伝子内に位置する参考標的遺伝子配列のリストを生成する工程である。
工程1は、これらの遺伝子及び対応するアレルの参考配列の完全な集合を、潜在的プローブ設計のデータベースから収集することを含んでいてもよい。別の実施形態において、これらの遺伝子の参考配列の集合を収集して、リストを生成することができる。一実施形態において、或る遺伝子の参考配列は、その遺伝子に関連づけられるすべてのエクソン及びすべてのイントロン、エクソンの一部分のみ、イントロンの一部分のみを含む、又はイントロンを全く含まないものであってもよい。一例において、各遺伝子について、遺伝子のセグメント(部分)を標的遺伝子配列として選択してもよい。一実施形態において、各標的遺伝子配列は、約400bpの長さを有する。各遺伝子は複数のアレルを有していてもよいし、各アレルは固有の参考配列を有していてもよい。
一実施形態において、工程1は、IG及びTCR遺伝子配列の完全な集合を、遺伝子配列データベース、例えばIMGTデータベースから収集することを含む。一例において、データベースは、一般に約100~1000bpの長さの範囲である296のIG(BCR)及び222のTCR遺伝子を有する。図14に見られるように、これらの遺伝子の約半分は複数の注釈付きアレルを有する。
IG及びTCR遺伝子座は、実質的な相同性及びアレル変異を有する数百の遺伝子を含んでいてもよい。図14(「遺伝子数及びアレル数」)は、1、2、3、4又は5+アレルを有するIG(BCR)又はTCR遺伝子の各類における遺伝子数(y軸)を示す図であり(配色については凡例参照)、これらの遺伝子のアレル変異を実証するものである。遺伝子の各類はx軸に沿って表される(IGHC、IGHD、IGHJ、IGHV、IGKC、IGKJ、IGKV、IGLC、IGLJ、IGLV、TRAC、TRAJ、TRAV、TRBC、TRBD、TRBJ、TRBV、TRDC、TRDD、TRDJ、TRDV、TRGC、TRGJ、TRGV等)。
工程2は、複数のアレルにわたる遺伝子共通配列を決定する任意選択のセットである。この工程は、遺伝子のアレル配列を比較して共通配列を決定することを含んでいてもよい。
すべてのアレルをカバーするプローブ集合は、完全なカバレッジを保証するものであってもよい一方、アレル間における高い配列類似性に起因する相当量の冗長性を排除することが可能であると考えられる。基本的レベルでは、遺伝子レベルの代表的(共通)標的配列は、アレル変異の大部分をカバーするプローブパネルをもたらすものであってもよい。
アレル配列の比較は、比較に先立って参考配列の欠落部分を埋めることを含んでいてもよい。この例では、IMGTは、キュレートされたアライメントフォーマット(IMGTギャップ型fasta)の参考配列を提供する。残念ながら、これらのIMGT参考配列の多くは、5'又は3'末端において不完全にシークエンシングされている。結果として、単一のヌクレオチド変異に加え、生IMGTアレル配列に度々トランケーションが存在することが多い。この問題は、図15において、5'及び3'両方の末端での様々なアレルにおけるトランケーションと併せて、例TRAV 8~4に例示されている。図15は、アライメントされたTCR参考配列の例を示す図である。
一例において、参考配列の欠落部分を埋めること(生IMGT参考配列を完全アレル参考配列に変換すること)は、IMGTのキュレートされたアライメント(各位置で最も頻度の高いヌクレオチド)に基づいて共通配列を決定し、その共通配列を使用して、各アレルにおいてトランケートされた又は欠落しているセグメントを埋める(代替する)ことによって行われる。この例では、参考配列において埋められる処理後の集合は、プローブがカバーすべき標的配列の集合を含む。(図15、「IMGT配列処理」参照)
工程3は、複数のアレルにわたる配列類似性を評価する、任意選択の工程である。
この工程は、処理されたIMGT参考配列(該当する場合及び/又は配列の一部分が上記のように欠落していた場合に埋められる)を使用して、遺伝子レベルの共通配列が潜在的アレル多様性をカバーし得るかどうか判定することができる。
この工程は、各アレル配列をそれぞれの対応する遺伝子共通配列と比較することを含んでいてもよい。図16は、ミスマッチ塩基対(bp)の数の累積分布、及びミスマッチbpの割合(遺伝子長に対するミスマッチ数)を示す図である。
図16(「アレル配列類似性」)は、経験的累積分布関数(CDF)によると、ほとんどのアレルがそれらの遺伝子共通配列と非常に類似していることを示す図である。
この例では、すべてのアレルの98.6%が15bp未満のミスマッチを有し、すべてのアレルの98.2%が遺伝子共通配列と比較して少なくとも95%の同一性を有する。共通配列同一性が低い少数の(20未満)アレルの場合、すべてのアレルをカバーするプローブの集合を設計するために、それらの配列の違いを別々にカバーするのが適切と考えられる。
工程4は、遺伝子、アレル、及び/又は標的セグメントのリストをフィルタリングする、任意選択の工程である。ここに記載されるフィルタリング戦略は、個別に、当該技術分野において公知の他のプローブ設計リストフィルタリング戦略、又はそれらの任意の組合せと併用することができる。
そのリストを、あまり望ましくない標的からのシークエンシングリードの低減を目標としてフィルタリングしてもよい。一例において、定常領域標的は、非定常領域標的ほど望ましくない。この例では、定常領域標的を選別し、それらが位置する非定常領域からの距離が指定された距離閾値(bp単位)を超える場合にはリストから排除することができる。別の例では、定常領域標的を選別し、それらが或る遺伝子の非定常領域に最も近接する位置にある2~5つの標的内にない場合にはリストから排除することができる。
そのリストを、標的及びそれらの標的に基づいて設計された複製又は実質的に同等のプローブ配列の冗長性の低減を目標としてフィルタリングしてもよい。
一例において、アレル参考配列をリストから排除し、又は、それらの遺伝子共通配列が少なくとも95%の配列同一性を有する(例えば、それらの配列の少なくとも95%が、共通配列内での位置及びアレル配列内での対応する位置について、共通配列と同じヌクレオチドを有する)場合には遺伝子共通配列に置き換えることができる。95%の配列同一性が達成されない19のアレルについては、元来のアレル配列が保持される。この例では、この遺伝子共通集合との同一性が少なくとも95%であるすべてのアレル配列が最終プローブ集合によってカバーされる可能性が高い。
工程5は、これらの遺伝子座について全所望プローブカバレッジの推定値を計算する、任意選択の工程である。
図17の表は、IG及びTCRアレル配列の完全集合(上限、フィルタリングされていない標的リスト)を使用した場合(図17の表1の)と遺伝子レベルの共通配列(フィルタリングされた標的リスト)を使用した場合(図17の表2)との(塩基対における)全所望カバレッジ長さの差を示す表である。遺伝子レベルの共通配列戦略を用いると、集合内の遺伝子配列数が1098の全アレル配列から532の全遺伝子共通配列にまで減少し、全カバレッジ長さが325kbから125kbにまで減少する。この配列集合減少は相応に、カバレッジに必要なプローブ数の低減に繋がると予想される。この例では、遺伝子レベルの共通配列戦略を用いると、IG/TCR配列に含まれる、可能な標的配列/異なる120-mer(プローブ長さの例)の数が115,920から68,746にまで減少する。結果は選択されるプローブ長さに応じて異なる場合がある。
工程6は、標的リストをプローブ設計スペシャリストに提供する、任意選択の工程である。リストは、工程4で生成されるフィルタリングされた標的のリストであってもよい。プローブ設計スペシャリストは、シークエンシングプローブ及び/又はプライマーを設計及び/又は製造する民間ベンダであってもよい。当該民間ベンダの一例はIDTである。
工程7は、リストに基づいて(例えばプローブ設計ソフトウェアを使用して)プローブ配列を選択(設計)する工程である。プローブ配列選択は、プローブ設計スペシャリストが行ってもよい。
例として、ただし限定することなく、プローブ配列は、参照により本明細書に組み込まれている、PCRプライマー並びにプローブ設計及び反復検索用FastPCRソフトウェア(Kalendarほか、2009年、Genes, Genomes, and Genomics、第3号(特別号1)、1~14頁)に記載の方法に従って選択又は設計されてもよい。
B.工程Aの方法によって得られるプローブを使用してのTCR/BCRアッセイ開発。
この実施例は、TCR/BCRプロファイリングアッセイの一実施形態の開発を例示するものである。この実施形態では、TCR/BCRシークエンシングはRNAseqと組み合わされて実施される。ここに記載の実施形態では、7つの受容体、即ちIGH、IGK、IGL、TRA、TRB、TRG及びTRDを敷き詰める。したがって、レパートリーデータは、IgH、IgK、IgL、TCR-アルファ、TCR-ベータ、TCR-デルタ及びTCR-ガンマ受容体についての注釈付きCDR3超可変配列定量化を含む。(例えば図4参照)
本実施形態の捕捉方法は、RNAseq出力を得るように最適化されており、フィルタリングされていないすべてのリードペアの2%以下が、サンプルの95%においてTCR及びBCR配列にマッピングされる。この捕捉率は、下流の解析向けにトランスクリプトームの完全性を維持する一方、それでもなお、最も存在度の高い浸潤性リンパ球クローンから受容体クローン型を適正に特定するのに十分な深度を捕捉する。(図3及び図5を参照のこと)
この解析を実施するためのいくつかの初期の試みにおいて、最も参考にならない領域(定常領域)の一部がリードの大部分を占めていた。また、BCR領域カバレッジがTCR領域カバレッジを圧倒的に上回っていた。この問題に対処するため、いくつかの実施形態において、有用な定常領域カバレッジが特定及び保持された一方、参考になるTCR/BCRリードを生成しそうになかった多数の定常領域プローブは除外された。また、TCR及びBCR領域からのシグナルを独立に微調整できるように、プローブを異なるTCRの層とBCRの層に分けた。いくつかの実施形態において、プローブを、TCR非定常、TCR定常、BCR非定常、及びBCR定常プローブ濃度層に分けた。TCR非定常、TCR定常、BCR非定常、及びBCR定常プローブ濃度を独立に微調整することにより、より多くの参考になるTCR/BCR情報が、はるかに少ないリードで得られた。また、TCR/BCRプロファイリングからの情報がTCRとBCRとの間でより均等にバランスが取れていることを確保することもできた。
RNAseqアッセイで成功裏に使用できるTCR/BCRプローブの構成に繋がる、いくつかの実験を実施した。当該実験の簡単な説明を以下に示すとともに、該方法の概略図が図2に示されている。
第一に、TCR/BCRプローブの2つの集合を設計した。設計1ではすべてのTCR/BCRプローブを単一のチューブに含めた。この構成を最適化するためのいくつかの試みを、特定のプローブを層から除外し、全エクソームパネルプローブの濃度と相対的な層中のプローブの濃度を変化させることを含めて実施したが、いずれの場合も結果は許容不可と見なされた。設計2には、プローブを4つの群、即ちTCR非定常、TCR定常、BCR非定常、BCR定常に分けることが含まれた。次いで、各群向けにプローブを選択した結果、各群の最終構成が以下の通りとなった。
I.「BCR定常」 - 45のプローブ
II.「BCR非定常」 - 893のプローブ
III.「TCR定常」 - 18のプローブ
IV.「TCR非定常」 - 650のプローブ
互いの相対的な及びエクソームプローブと相対的なTCR/BCRプローブ濃度も評価した。エクソームプローブを25アットモル/プローブ/捕捉で試験した。下記の比はエクソームと比較した相対濃度を指す。例えば、10倍のスパイクは、250アットモル/プローブ/捕捉の最終量を意味する(この場合のエクソームは25アットモル/プローブ/捕捉)。様々な実施形態において、全ヒトエクソームを標的とするよう設計されたプローブを、DNA又はRNA分子と併せてハイブリダイズすることができる。プローブをRNA分子と併せてハイブリダイズする場合、ライブラリ内の分子をヒトトランスクリプトームと称することができる。
Figure 2023515270000020
レパートリーシークエンシング(rep-seq)を大量のRNA-seqワークフローに統合するよう特別に設計されたプローブを活用した。本明細書に開示されている方法は、トランスクリプトーム解析を損ねることなく、免疫受容体レパートリーのスナップショットを捕捉できる。
(実施例2)
シークエンシングの結果
この実施例では、B細胞リンパ腫患者から採取された血液標本におけるTCR及びBCR配列を、本明細書に開示されているシステム及び方法に従って解析した。
方法
サンプル調製(実施例1の方法に従って得られるTCR/BCRハイブリッド捕捉プローブによる濃縮を含む)
Quant-it Ribogreen RNAアッセイ(ThermoFisher Scientific社製、品番R11490)を使用してRNAを定量し、Fragment Analyzer High Sens RNA解析キット(Agilent Technologies社製、品番DNF-472-1000)を使用して認証した。10uLの開始容量における10ng/uLに対してRNAを正規化し、次いで熱及び化学的断片化を施し、可変パラメーターによって、開始サイズ分布が異なるRNA投入量から同等サイズの断片を得た。市販のキット(Illumina社向けKAPA RNA HyperPrepキット、品番KK8544)をIDT固有二重インデックス化(UDI)固有分子識別子(UMI)アダプタと併せて使用して、ライブラリ調製を実施した。これは第1鎖cDNAを創出するための逆転写酵素(RT)を使用しての第1鎖合成とそれに続く、二本鎖cDNAを創出する第2鎖合成を達成するための、RNAを分解させるRNAse、及びDNAポリメラーゼによる処理が関係した。IDT UDI-UMIアダプタをcDNAに結合し、磁性ビーズに基づく方法(Roche Diagnostics社製、品番KK8002)を用いてアダプタ結合ライブラリを洗浄した。アダプタ配列に対して相補的なプラマを使用して、高忠実度、低バイアスのPCRによってライブラリを増幅した。増幅したライブラリを磁性ビーズに基づく浄化(Axygen社製、品番MAG-PCR-CL-250)で処理して未使用プライマーを排除し、数量を評価した。ハイブリダイゼーションに先立ち、ライブラリ質量によってサンプルを正規化し、捕捉層当たり6~8のサンプルからなる層へと多重化した。工程Aの方法によって得られたTCR/BCRプローブを含む補完的な特別設計のプローブを有するxGen Exome Research Panel v2プローブセットを、xGen汎用ブロッカー(Integrated DNA Technologies社製、品番1075475)及びxGenハイブリダイゼーション/洗浄キット(Integrated DNA Technologies社製、品番1080584)と併用して、ライブラリのハイブリダイゼーションと捕捉を実施した。濃縮した標的を、KAPA HiFi HotStart ReadyMix及びプライマー(Roche Diagnostics社製、品番KK2621)を使用して増幅し、追加の磁性ビーズに基づく浄化を施した。最終ライブラリの数量と質を評価し、定量化測定と品質認定測定の両方を組み入れたモル濃度計算結果に基づいて成功を判定した。
シークエンシング:増幅した標的-捕捉ライブラリを、パターン化フローセル技術を用いるIllumina社製NovaSeq 6000システム上で平均5,000万リードまでシークエンシングした。
解析:リードペアを含むFASTQファイル形式のRNAシークエンシングデータについて、TRUST4v1.0.0ソフトウェアを使用してレパートリーシークエンシング解析を行った。TRUST4v1.0.0を、開発者の指示に従って、修正を加えず実行し、リードペアを含むFASTQファイルを入力として使用し、同ソフトウェアと一緒に提供されたヒトIMGT参考配列ファイルを使用して、同ソフトウェアによって特定されたTCR及びBCRクローン型(生産的、非生産的及び部分的)に関連する定量的データを生成した。TRUST4によって生成された表形式クローン型レポートを使用して、各免疫受容体鎖(IGH、IGK、IGL、TRA、TRB、TRG及びTRD)における生産的クローン型のシャノンエントロピーを計算した。TRUST4レポートの行及び追加の非統計的注釈を組み合わせると、最終データ表になり、列の説明は以下に挙げる通りである。
結果
増加させたB細胞とT細胞の1,957のクローン型を標本中で検出し、検出したクローン型のうち1,074を生産的配列であると決定した(例えば、それらは終止コドンを含まない、アウトオブフレームでない、部分配列でない、等々であった)。
Table 6(表7)は、最も存在度の高い上位10の配列を示す表である(例えば、最も数が多い支持配列リードに関連づけられる配列)。各列はクローンを表す。左に近い列ほど、より多くの生(raw)存在度(例えば、検出された支持配列リード)がそのクローンに関連づけられる。示す増加度が大きいクローンほど、左に近い。この例では、第1の(左端)IGH CDR3は、存在度が最大25%のIGH生産的クローン型である(「receptor_productive_frequency」の行を参照のこと)。完全な結果は、米国仮特許出願第63/013,130号、第63/084,459号及び第63/201,020号の付録Iに別表として含まれている。最も頻度の高いクローンは、B細胞又はT細胞の増加した集団に相当すると考えられる。この場合、B細胞の増加集団を解析してB細胞リンパ腫を追跡し、進行、処置に対する反応、MRD等を検出することができる。一実施形態において、本明細書に開示されているTCR/BCRシークエンシング方法は、疾患を経時的に追跡するために、異なる時点で患者から採取される複数の標本に対して活用される。
以下は、各CDR3配列又はクローン型に関連づけられるTCR/BCR免疫レパートリーシークエンシングデータを含む場合がある様々なデータの一例としての、付録における行の名称及び説明である。
a. カウント - リード断片支持クローン型の整数(例えば、或るクローン型参考配列にアライメントするリード断片の数)
b. 頻度 - BCR又はTCR内のクローン型頻度
c. CDR3nt - CDR3ヌクレオチド配列
d. CDR3aa - CDR3アミノ酸配列(配列が非生産的の場合、「_」は終止コドンを意味し、「out_of_frame」はフレームシフト突然変異を意味し、又は「partial」は部分配列を意味する)
e. V - コールされるV遺伝子クローン型割当て{遺伝子*アレルとしてフォーマット化される}(「null」はコールされる遺伝子がないことを意味する)(V遺伝子ファミリー、V遺伝子、及び/又はVアレルを含んでいてもよい)
f. D - コールされるD遺伝子クローン型割当て{遺伝子*アレル}(コールされる遺伝子がない又は受容体に該当しない場合はnull)(D遺伝子ファミリー、D遺伝子、及び/又はDアレルを含んでいてもよい)
g. J - コールされるJ遺伝子クローン型割当て{遺伝子*アレル}(コールされる遺伝子がない場合はnull)(J遺伝子ファミリー、J遺伝子、及び/又はJアレルを含んでいてもよい)
h. C - コールされるC遺伝子クローン型割当て{遺伝子}(C遺伝子の場合はアレル情報が返されない)(コールされる遺伝子がない場合はnull)
i. 受容体[type] - {「IGH」、「IGK」、「IGL」、「TRA」、「TRB」、「TRG」、「TRD」、「mixed(混合型)」}(いくつかの例において、mixedはアルファ/デルタTCRであってもよい)
j. productive_status - {「in」、「partial」、「out_of_frame」、「internal_stop」}(inはインフレーム/生産的を意味し、partialは部分配列を意味し、out_of_frameは配列がフレームシフト型であり、生産的とは予想されないことを意味し、internal_stopは配列が終止コドンを有し、生産的とは予想されないことを意味する)
k. receptor_frequency - (当該受容体についての)受容体別のクローン型頻度
l. receptor_productive_frequency - すべての生産的受容体クローン型の範囲内での生産的クローン型の頻度
m. V_gene_family - (例えばIGLV3-25*03→IGLV3)
n. V_gene - (例えばIGLV3-25*03→IGLV3-25)
o. V_allele - (例えばIGLV3-25*03→03)
p. D_gene_family
q. D_gene
r. D_allele
s. J_gene_family
t. J_gene
u. J_allele
v. IGH_isotype - コールされない/該当しない場合はnull:それ以外は{「A1」、「A2」、「D」、「E」、「G1」、「G2」、「G3」、「G4」、「M」}
w. has_CDR3nt_twin - レパートリーにこのクローン型のnt配列の複製が存在する場合に「True」が入力される
x. has_CDR3aa_twin - このレパートリーにこのクローン型のaa配列の複製が存在する場合に「True」が入力される
様々な実施形態において、クローン型頻度及び/又は遺伝子クローン型割当てを、本明細書に記載のシステム及び方法に含まれるTCR又はBCR配列組立てアルゴリズムによって決定することができる。
Figure 2023515270000021
Figure 2023515270000022
(実施例3)
TCR/BCR配列データベース及びその使用
この実施例では、参考データセットを生成してもよいし、又は既存の参考データセットを選択してもよい。データは非特定化されたデータであってもよい。データは、保護医療情報(PHI)を除外したものであってもよい。参考データセットは、注釈付き臨床ドキュメンテーションに関連づけられたTCR/BCRシークエンシングデータ、並びに追加的なNGSに基づく出力(患者のHLA種別又は適合NGS DNA/RNAシークエンシング、ウイルス/病原体シークエンシング、患者標本の全エクソーム又は標的化パネルシークエンシングを含むがそれらに限定されない)を含み得る。臨床ドキュメンテーションとしては、疾患の特徴づけ及び持続期間、症状又は疾患の重篤度(例えば、病原体による感染に関連づけられる疾患)、症状の説明及び/又は重篤度等級づけ、1つ又は複数の療法(例えば、免疫療法又はワクチン等のがん療法)及び持続期間及び転帰、疾患の開始及び/又は終了からサンプル採取までの期間、サンプル採取部位/標本情報(例えば唾液、血液、粘膜、鼻/前鼻孔スワブ、鼻咽頭スワブ、ナイロン植毛スワブ、紡糸ポリエステルスワブ、鼻咽頭吸引物、気管支肺胞洗浄、Mawlsチューブ又はLonghorn Primerstore MTMチューブに採取された標本、ウイルス輸送媒体/VTMに採取された鼻咽頭/鼻/鼻孔又は他の標本、糞便等)、1つ以上の診断アッセイにより決定された1つ以上の病原体の感染状態(例えばPCRに基づくもの、等温核酸増幅に基づくもの、NGSに基づくもの、血清学に基づくもの、アレイ/マイクロアレイ/アレイカード/オープンアレイプレート/FilmArray等、ELISA、ELISpot、FluoroSpot、抗原に基づくもの、迅速抗原試験、又は他の分子アッセイ)等が挙げられる。HLAデータを使用して、TCR配列データを更に注釈づけ又は状況に当てはめることができる。
例えば、TCR配列とHLA種別の特定の組合せが不適合の場合があり、これは特定のTCR配列が特定のHLA種別の文脈で予想されると考えられることを意味する。例えば、特定の病原体との接触の文脈で予想されるTCR配列を欠いている患者の場合、その配列の欠如は、そのTCR配列に適合する種類のHLAを患者が有していない場合に予想できる。
この参考データセットをマイニングして、特定の病原体又は複数の病原体の組合せによって引き起こされた疾患に反応している又は当該疾患から最近回復した患者において濃縮されたTCR又はBCR配列を特定することができる。例えば、あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Emerson, R.、DeWitt, W.、Vignali, M.ら、「Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire」、Nat Genet 49、659~665頁(2017年)、https://doi.org/10.1038/ng.3822を参照のこと。
マイニングは、TCR/BCR配列データベースに関する機械学習クラスタ化技法の使用を含んでいてもよい。方法の例としては、特定種類のがんを有する患者からのデータにおける病原体関連のTCR又はBCR配列の検出が挙げられる。これらの配列を、バイオマーカー、即ちチェックポイント阻害薬の処方又はIOに対する反応の予測のための指標として使用することができる。交差反応性は、特に病原体による感染が多発している場合に配列がより高い割合で患者に存在し得ることから、これらが多数の患者に共通して発見される第1の配列である可能性がより高いことを意味する。
該システム及び方法を用いて、或る疾患状態への反応として生成されるが交差反応性であり、別の疾患状態に対する養子細胞療法として使用可能な受容体配列を検出することができる。例えば、インフルエンザ感染症若しくはワクチン、又はSARS-CoV-2感染若しくはワクチンは、その後にがん細胞を攻撃する受容体配列を生じさせ得る(https://onlinelibrary.wiley.com/doi/10.1111/bjh.17116参照)。
一例において、患者は非小細胞肺がん(NSCLC)及びウイルス関連TCR配列を有する。TCRベータ鎖を(類似するアミノ酸構造に基づいて)複数の親和性群に分けた。特定のウイルス関連TCRはがん抗原と交差反応する(同じHLAを有する患者の場合)。(Cell Press社の免疫関連論文「Global analysis of shared T cell specificities inhuman non-small cell lung cancer enables HLA inference and antigen discovery」、Chiouら、https://www.sciencedirect.com/science/article/pii/S1074761321000 807を参照のこと)
患者におけるこれらのTCR及びBCR配列の後続の観察を、次いで参考データセット又は参考データセットのサブセット(例えば、既知の陰性若しくは陽性状態に関連付けられたデータ又は予測目標若しくは予測カテゴリに関連する数値スコアを含む、予測に関連すると見なされるデータを有する記録のみ)に基づいて練り上げた予測モデルによって解析して、TCR及び/又はBCR配列のいずれかに関連づけられる感染状態、接触歴、及び/又は当該感染に対する潜在的保護若しくは抵抗性を患者が有する可能性を計算することができ、この関連性は参考データセットにおいて捕捉された関連性又は傾向に基づくものであってもよい。
参考データセットを解析して、疾患の重篤度と様々な遺伝学的、免疫学的又は臨床的な要因又は特徴との間の関連性を見いだすこともできる。例えば、要因としては、ABO血液型遺伝子に関連づけられるアレル又は変異体、染色体9q34.2に位置する遺伝子、免疫学的遺伝子、染色体3又は6に位置する遺伝子、HLA遺伝子等、免疫学的特徴、臨床データ/状態(年齢、心臓病、糖尿病の経歴、血糖値、高血圧、肥満、喘息、COPD等)、及び/又は特定のTCR及び/若しくはBCR配列の存在が挙げられる。
TCR及び/又はBCR配列は、疾患を引き起こす病原体への反応又は別の病原体への反応として生成されたものであってもよい。例えば、疾患がCOVID-19、SARS又はMERSである場合、TCR又はBCRは、OC43、HKU1、229E及びNL63コロナウイルスへの反応として生成されたと考えられ、SARS-CoV-2、SARS-CoV-1、MERS等と交差反応する場合がある。
例として、重度のCOVID-19疾患に関連づけられる免疫学的特徴としては、活性化CD4 T細胞の大型集団、循環する小胞ヘルパーT細胞(cTfh)がほとんど又は全くない状態、CD8 T細胞集団が活性化及び/又は消耗した状態、TEMRA様細胞、T-bet+細胞(形質芽球細胞を含む)、Ki67+細胞(形質芽球細胞を含む)、記憶B細胞がほとんど又は全くない状態、強い又はTbetbrightエフェクタ様のCD8 T細胞反応、弱いCD4 T細胞反応、リンパ球反応の減少、活性化cTfhの大型集団がない状態での強い形質芽球反応、又はT若しくはB細胞反応の障害のいずれかが挙げられる。(あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Mathewら、Science、2020年9月4日、第369巻、第6508号を参照のこと)
例として、軽度又は無症候性のCOVID-19に関連づけられる免疫学的特徴としては、SARS-CoV-2特異的T細胞反応(例えば、標的化内部ウイルスタンパク質、ウイルス表面タンパク質、ウイルスヌクレオカプシドタンパク質、ウイルス膜、又はウイルススパイクタンパク質)、持続的に機能する記憶T細胞反応、CD38、HLA-DR、Ki-67、PD-1(又は他の抑制性受容体)、CCR7、CD127、CD45RA及び/又はTCF1を発現するT細胞、SARS-CoV-2特異的IgG、炎症性マーカー(例えば患者の血漿中のもの)のいずれかが挙げられる。(あらゆる目的のために参照によりその内容全体が本明細書に組み込まれている、Sekineら、Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19、Cell、(2020年)、doi:https://doi.org/10.1016/j.cell.2020.08.017を参照のこと)。
したがって、いくつかの実施形態において、参考TCR/BCR配列データセットを解析して、例えば、重度、軽度又は無症候性のCOVID-19に関連づけられる免疫学的特徴及び/又は臨床的特徴(診断を含む)の間の関連性を見いだすことができる。次いで、当該情報を使用して、例えば、診断を提供又は確認し、疾患重篤度を予測し、治療効能を予測することができる。
(実施例4)
コロナウイルス特異的TCR/BCR配列
この実施例では、コロナウイルスコホート(例えば、標本採取直前の指定された期間についてコロナウイルスに感染若しくは接触した患者群及び/又はコロナウイルスに接触していない若しくは罹患していないことが既知の陰性対照群から収集されたデータ)を解析できる。コロナウイルスコホートは、参考データセット、例えば実施例2に記載の参考データセット、特にデータセットのうちコロナウイルス接触状態であることが既知である又は推測される患者のサブセットからアセンブルされてもよい。コロナウイルスは、ヒトに感染する個別のコロナウイルス(例えばSARS-CoV-1、SARS-CoV-2、MERS-CoV、コロナウイルスHKU1、コロナウイルスNL63、コロナウイルス229E、コロナウイルスOC43等)又はそれらの組合せを含んでいてもよい。
コホート又は参考データセットを使用して、コロナウイルス感染又は接触に関連づけられるTCR及び/又はBCR配列がどれであるか判断することができる。コロナウイルス関連TCR配列の場合、該システム及び方法は、実施例1に記載のHLAタイプを照合することができる。例えば、該方法では、患者のHLA種別が既知である場合を除き、対象となる集団における上位5つ又は10のHLAアレルがすべての患者に存在すると想定する。
患者におけるこれらのTCR及び/又はBCR配列の数量及び有無を用いて、患者のコロナウイルスとの接触(例えば、実施例1における参考データセット、そのデータセットのサブセット、又は別のデータセットに基づいて練り上げた予測モデルの使用を含む)、患者がコロナウイルスに接触した場合に軽度の症状又は重度の症状を有する可能性を予測し、及び/又はワクチンに対する患者の反応を測定することができる。それらのTCR及び/又はBCRの存在が、重度のCOVID症状からの保護(又は易罹患性)をもたらしたか否かの判断は可能と予想され、次いでその判断を用いて、SARS-CoV-2(又は他のコロナウイルス)感染後における患者の合併症の潜在的リスクを基に患者を層化することができる。
この解析を用いて、コロナウイルス接触に関連づけられるTCR及び/又はBCR配列のどれがSARS-CoV-2(又は他のコロナウイルス)に対して交差保護的であるかを予測すること、集団全体にわたる特定の配列の存在度を測定すること、或いは設計試行向けにTCR-HLAの組合せが保護的であるか又は特定の症状重篤度に関連づけられるか判断することもできる。
(実施例5)
病原体及び/又は疾患に対する患者の易罹患性の予測
この実施例では、上記に開示されている方法によるTCR及び/又はBCR配列について、患者からの標本を解析することができる。患者は、呼吸器感染症及び/又はインフルエンザ様症状を有しているが、どの呼吸器感染症が症状の原因であるかに関して特異的診断を受けていない場合がある。検出されたTCR及び/又はBCR配列を、参考データセット、例えば実施例2に記載のデータセットによって練り上げた予測モデルによって解析して、症状の原因である可能性が最も高い病原体、及び/又は患者が軽度の疾患若しくは重度の疾患を罹患する可能性(例えば患者の疾患易罹患性)を予測することができる。様々な実施形態において、患者のCOVID-19状態(SARS-CoV-2に感染しているか否か)は未知である。別の実施形態において、患者はCOVID-19と診断されている、及び/又は過去にSARS-CoV-2診断アッセイで陽性の結果が出ている。
患者からの標本を解析して、(例えば実施例1で挙げられているアッセイにより)病原体の存在の証拠を確認することもできる。アッセイによってスクリーニングされる病原体としては、一般的に呼吸器系感染症及び/又はインフルエンザ様症状に関連づけられる病原体、例えばSARS-CoV-1、SARS-CoV-2、MERS-CoV、コロナウイルスHKU1、コロナウイルスNL63、コロナウイルス229E、コロナウイルスOC43、A型インフルエンザ、A H1型インフルエンザ、A H1-2009型インフルエンザ、A H1N1型インフルエンザ、A H3型インフルエンザ、B型インフルエンザ、C型インフルエンザ、パラインフルエンザウイルス1、パラインフルエンザウイルス2、パラインフルエンザウイルス3、パラインフルエンザウイルス4、ライノウイルス/エンテロウイルス、アデノウイルス、呼吸器合胞体ウイルス、A型呼吸器合胞体ウイルス、B型呼吸器合胞体ウイルス、ヒトメタ肺炎ウイルス、ボカウイルス、ヒトボカウイルス、クラミジア肺炎、マイコプラズマ肺炎、レジオネラ肺炎、ボルデテラ属(Bordetella)、ボルデテラ・ホルメシイ(Bordetella holmesii)、ボルデテラ・パーツシス(Bordetella pertussis)、肺炎連鎖球菌(Streptococcus pneumoniae)、コクシエラ・バーネッティ(Coxiella burnetii)、黄色ブドウ球菌(Staphylococcus aureus)、クレブシエラ肺炎桿菌(Klebsiella pneumoniae)、モラクセラ・カタラーリス(Moraxella catarrhalis)、インフルエンザ菌(Haemophilus influenzae)、ニューモシスチス・イロベチイ(Pneumocystis jirovecii)、エンテロウイルスD68、エプスタイン-バーウイルス(EBV)、おたふく風邪、はしか、サイトメガロウイルス、ヒトヘルペスウイルス(HHV-6)、水痘帯状ヘルペスウイルス(VZV)、パレコウイルスなどが挙げられる。
(実施例6)
治療反応の評価 - ワクチン
この実施例では、上記に開示されている方法によるTCR及び/又はBCR配列について、ワクチン試験の被検体又は別の状況でワクチン接種を受けた患者からの標本を解析して、ワクチンに対する患者の反応、及びワクチンに関連づけられる疾患(例えば、予防、軽減又は緩和を目的にワクチンが設計された対象疾患)又は別の疾患に対する患者の易罹患性を評価することができる。
実施例2に記載の参考データセットを使用して、ワクチンに対する反応に関連づけられるのがどのTCR及び/又はBCR配列であるか判断することができる。これらのTCR/BCR配列の有無、及び患者におけるTCR/BCR配列に関連づけられる追加的な統計又は結果を使用して、患者の疾患易罹患性の程度を予測することができる。従前の実施例に記載の追加的な臨床又は分子データも、疾患易罹患性予測の考慮に入れることができる。
報告は、検出されたTCR/BCR配列、予測された疾患易罹患性、予測された疾患易罹患性の根拠、及び他の関連情報を含む場合がある。
一実施形態において、標本は、被検体にワクチンを投与した後に採取される。別の実施形態において、ワクチンを患者に投与する前に採取される第1の標本及びワクチンを患者に投与した後に採取される第2の標本を含む、複数の標本が患者から採取される。別の実施形態において、ワクチンは患者に複数回投与され、標本は毎回のワクチン投与後に採取することができる。
(実施例7)
様々ながんにおけるT細胞のクローナル増加及びレパートリー内のクローン性の推定
序文
腫瘍への免疫細胞浸潤度は、例えば腫瘍の免疫原性度、腫瘍が発生した組織の種類、免疫細胞が腫瘍間質物質を通って物理的に移動できる度合い、又は固形腫瘍の代謝的な抑圧性と低酸素性等、様々な要因に影響される。しかし、免疫濾過のレベルは、類似する種類の腫瘍において特徴的となる場合があり、脳腫瘍は特徴的に免疫濾過が低く、肺や皮膚の悪性腫瘍は特徴的に浸潤が高い。起源が異なる腫瘍においても、腫瘍微小環境内に存在するリンパ球の異なるクローンがより多い場合もあればより少ない場合もある。リンパ腫及び白血病は、悪性のT又はB細胞が単一のクローンから発生する場合があることから、独特の症例を示す。したがって、リンパ腫を患っている患者からのサンプルは、免疫プロファイルに占めるT細胞受容体(TCR)又はB細胞受容体(BCR)クローンがごくわずかである場合がある。要約すると、細胞起源が異なる様々な腫瘍サンプルのシークエンシング、及び免疫プロファイルの開発は、特定の免疫プロファイリングアッセイの有効性に関して有益な洞察をもたらす。様々な悪性腫瘍からの免疫プロファイルの開発により、本明細書に記載の新奇のハイブリッド捕捉アプローチを実世界における診断上の難題に応用するための、偏りのない評価が可能になる。
方法
上記の実施例2に記載の通り、サンプル調製とシークエンシングを実施した。
解析:実施例2について上記の通り、解析を実施した(遺伝子発現RUO浸潤解析は当該技術分野において公知であり、例えばhttps://www.worldscientific.com/doi/abs/10.1142/9789813279827_0026に記載されており、また、参照により本明細書に組み込まれている(公表されている)特許出願第16/533,676号にも記載されている)。
結果
本明細書に開示されている新奇のハイブリッド捕捉アプローチは免疫プロファイルの正確で効率的なサンプル採取を提供する、という仮説を立てた。この仮説を検証するため、501名からRNAサンプルを取得し、cDNAライブラリを調製し、本明細書に記載の新奇のハイブリッド捕捉プローブアプローチを用いて配列を単離した。シークエンシングの結果、シークエンシングした501のサンプルそれぞれについて平均約20,000のリードが生成された。シークエンシングデータをグラフ化し、生産的クローン型をX軸、CDR3支持リード断片をY軸として、腫瘍サンプル中に存在するクローン型の平均数を実証した(図7)。他の報告と整合的に、脳腫瘍サンプル(青い丸)からは生産的クローン型がほとんどないことが判明した一方、肺腫瘍サンプルは多様なリンパ腫クローン型の顕著な浸潤を示した。また、免疫細胞プロファイルは、広範なクローン豊富度を実証した(図8)。また、生産的T及びB細胞のリードは、推定上のT及びB細胞の腫瘍への浸潤と相関関係にあった(図9、図10)。これらのデータは、新奇のハイブリッド捕捉アプローチを用いて、特にレパートリー収量がリンパ球浸潤に関する組織特異的な予想の反復となる場合に、様々な種類の腫瘍から有益な免疫プロファイリングデータを効率的に収集することができる、という仮説を裏付けるものである。
次に、血液系悪性腫瘍からの免疫プロファイルを更に解析した。血液がんは、多くの場合、腫瘍細胞増加のクローナルな性質により、ごくわずかなクローン型からなる。したがって、新奇のハイブリッド捕捉アプローチにより、白血病及びリンパ腫から得られるサンプルにはクローンがごくわずかしかないことが明らかとなる一方、他の種類の腫瘍では多数のクローンが明らかになる、という仮説を立てた。各受容体のクローナル分布を表す任意のレパートリーサイズにおける理論上の最大の均一度に対して、シャノンエントロピーを正規化した。これにより、各サンプルにおけるクローン型の多様性の予想対観察結果を評価するための尺度が得られた。T細胞リンパ腫又は白血病から得られたサンプルは、低い正規化シャノンエントロピーを示した一方、例えば、黒色腫、乳がん又は口腔咽頭がんから得られたサンプルは、高い正規化シャノンエントロピーを示した(図11、左パネル)。最も生産的な上位10のTCRベータ(TRB)クローン型の相対頻度を更に分解した結果が図11の右パネルに示されている。したがって、これらのデータは、本明細書に記載の新奇のハイブリッド捕捉アッセイにより、臨床診断の決定に大いに関連する配列を効率的に単離及び増幅できる、という仮説を裏付けるものである。実際、本明細書に記載の新奇のハイブリッド捕捉アッセイを多様な腫瘍サンプルの集合に応用した結果、このアッセイは、既知の生物学的傾向を反映する、多様な免疫浸潤状況及びレパートリーの差異を把握する上で効果的であることが実証された。
(実施例8)
B細胞リンパ腫症例研究:患者における抗CD19 CAR検出の実証
序文
キメラ抗原受容体(CAR)技術では、総合的生物学アプローチを活用して、抗原特異的な形で疾患を処置する。CARは、選択肢となる抗原に向けられる「代替」T細胞受容体の役割を果たすよう設計される。したがって、T細胞を患者から単離し、CARで形質導入し、自己移植として投与することができる。CARは、抗体の抗原認識領域(scFv)及び様々な細胞間シグナル伝達領域から構築される。CARが同種抗原に結合すると、細胞間部分のシグナル伝達領域は、天然T細胞受容体と似たシグナルを、共刺激シグナルと併せて形質導入し、CAR T細胞のエフェクタ機能を活性化させる。成功する永続的なCAR T細胞処置は、患者のCAR T細胞の生着と持続が頼りである。したがって、患者のCAR T細胞の存在と状態を長期的に検出できる技術は、医療実務者が処置に関して情報に基づく決定を下す能力の支援となる。
方法
実施例2に記載の通り、被検体サンプル調製とシークエンシングを実施した。
上記の通り解析を実施した(rep-seqデータにおけるこのCARのCDR3アミノ酸配列の検出向けにデータを準備するための特別な解析は不要であった)。
被検体の履歴
被検体は2015年にB細胞リンパ腫と診断された。リツキシマブでの初期処置が、疾患の完全寛解に繋がった。疾患が2017年に再発したため、再びリツキシマブで2回目の処置を行うことになり、完全寛解に至った。被検体は2019年にまた疾患再発に見舞われ、抗CD19 CAR(アキシカブタゲン・シロルユーセル)による処置を受け、完全寛解に至った。被検体は2020年にまたも再発に見舞われ、リツキシマブと抗CD-79bモノクローナル抗体処置を受けた。抗CD19 CARによる処置の1年後に被検体サンプルが採取された。この時点で、サイメトリにより、悪性細胞はCD19+、CD20-であった。
結果
本明細書に開示されている新奇のハイブリッド捕捉及びシークエンシングアプローチは、CAR T細胞の生着を効率的且つ正確に検出する、という仮説を立てた。したがって、この仮説を検証するため、抗CD19 CAR処置を受けて成功したが、その後再発に見舞われていたという被検体の免疫プロファイルを作成した。抗CD19 CARアキシカブタゲン シロルユーセルは、FMC63 scFvを細胞外ドメインとして活用してCD19を検出する。様々な実施形態において、如何なるCAR配列も、本明細書に記載のシステム及び方法を用いることで検出できた。IGHJ4重鎖はマウス由来であるが、この領域におけるヒトとマウスとの間における高い配列相同性により、この実施例で言えば、ヒト用として設計された新奇のハイブリッド捕捉アプローチを用いて検出できるはずである。様々な実施形態において、所望のCAR配列に対して特異的な追加のプローブを、本明細書に開示されているシステム及び方法に追加して、CAR配列に対応するシークエンシングリードを増やすことができた。免疫プロファイリングの結果、全体的なレパートリーは、類似するB細胞リンパ腫レパートリーのサイズの60%以下であることが判明した。また、T細胞は被検体のレパートリーに占める割合が高かった(図12)。この結果の1つの解釈は、拡大的なリツキシマブ処置によってB細胞レパートリーが減少したということである。特に、このアプローチにより、抗CD19 CARにマッピングされる20/164 IGHにアライメントされたリードを検出できた。(図12、黄色のアスタリスク)。したがって、これらのデータは、新奇のハイブリッド捕捉アプローチにより、被検体における抗CD19 CAR scFv配列を効率的且つ正確に検出できることを実証するものである。
(実施例9)
COVID-19症例研究:外部データとのrep-seqデータの両立性の実証 - COVID-19患者に認められる推定上のSARS-CoV-2特異的TCRの検出
序文
抗原特異的免疫細胞レパートリーは、被検体の免疫学的履歴に関する潜在的に重要な情報を含む。例えば、被検体のT及びB細胞レパートリーは、それらが病原体と接触したことを反映する。また、病原体に向けられる循環抗体は、経時的に減退する場合がある。対照的に、病原体特異的T細胞は無期限に持続する場合がある。したがって、被検体の免疫レパートリーのシークエンシングと免疫プロファイルの作成は、例えば血清試験より効率的且つ正確な、接触の判断材料であると考えられる。
SARS-CoV-2によって引き起こされたパンデミックは、世界中で信じ難いほどの生命損失と、人々の苦難に繋がった。しかし、このパンデミックへの応答として、前例のない努力と資源が免疫学的研究に投じられてきた。これらの努力を通じ、SARS-CoV-2に感染した人々から免疫レパートリーが取得され、公表された。したがって、本明細書に開示されている新奇のハイブリッド捕捉アプローチを用いて創出される免疫プロファイルを、SARS-CoV-2に感染した人々から作成し、外部で生成されたデータと比較して妥当性を確認することができる。
方法
サンプル調製、シークエンシング及び解析を上記の通り実施した。
結果
本明細書に開示されている新奇のハイブリッド捕捉アプローチは、上質な免疫プロファイルを患者サンプルから効率的に生成する。新奇のハイブリッド捕捉アプローチは病原体特異的TCR配列を検出できるという仮説を検証するため、SARS-CoV-2感染歴のある人々から免疫プロファイルを作成した。免疫プロファイリングの結果、47のTCRベータ及び56のTCRアルファのクローン型が判明した。次に、TCRベータクローン型を、T細胞受容体抗原アッセイ(MIRA)(PMID:32793896)の多重化された特定を用いて開発されたSARS-CoV-2特異的TCRベータクローン型の公開データベースと比較した。このレパートリーは、SARS-CoV-2ペプチドに対して親和性のある160,000のTCRベータクローン型を含み、これはSARS-CoV-2接触及び/又は感染に関する陽性対照パネルと捉えることができる。興味深いことに、4つのTCRベータクローン型が、MIRAアッセイによって発見されたクローン型に適合する(図13)。MIRAアッセイデータに適合した4つのCDR3リードは、CASSIGVNTEAFF(509のCOVID-19+レパートリーで見つかった11のリード、図13の紫のアスタリスク)、CASSLSGGPYNEQFF(30のCOVID-19+レパートリーで見つかった7つのリード、図13の黄色のアスタリスク)、CASSSGIQPQHF(500のCOVID-19-妥当性確認サンプルで検出されず)、及びCASSVSYEQYF(500のCOVID-19-妥当性確認サンプルで検出されず)であった。これらのデータは、本明細書に記載の新奇のハイブリッド捕捉アプローチにより、SARS-CoV-2等の病原体に感染した人々の免疫プロファイル(TCR/BCRプロファイル)を効率的且つ正確に特定できる、という仮説を裏付けるものである。
(実施例10)
一例において、結腸直腸がんを患っている患者について、TCR/BCRプロファイルを生成することができる。患者はKRAS P12D変化と、この変化したKRASペプチドに存在することが知られているHLA C08.02アレルも有すると考えられる。変化したKRASペプチドを認識すると予想されるCDR3配列について、TCR/BCRプロファイルを解析することができる。
実施例2に記載の通り、被検体サンプル調製とシークエンシングを実施することができる。上記の実施例2に記載の通り、解析を実施することができる。
本出願に記載の新奇のハイブリッド捕捉アプローチを用いて、結腸直腸がんを患っている人々の免疫プロファイルを作成できる。いくつかの実施形態において、患者はKRAS P12D突然変異を生じている。更なる実施形態において、患者は、新抗原として変異KRASペプチドに存在することが知られているHLA C08.02アレルを有する。したがって、いくつかの実施形態において、上記のKRAS突然変異及び特異的なHLAアレルC08.02を有する人々から作成された免疫プロファイルは、KRASにおけるP12D突然変異によって生じたKRAS新抗原を認識するTCRクローン型を含む。いくつかの実施形態において、これらのクローン型配列を使用して、患者特異的な精密医学療法を生み出すためのリンパ球クローンを選択することができる。いくつかの実施形態において、患者の免疫プロファイルから得られる推定上の新抗原特異的クローン型を使用して、当該クローン型のデータベースをアセンブルすることができる。いくつかの実施形態において、新抗原関連クローン型のデータベースを更に、未知のKRAS突然変異状態を有する患者との比較に使用することができる。いくつかの実施形態において、新抗原関連クローン型のデータベースを使用して、生検及び追加的なシークエンシング工程に加え、又は当該工程を必要とせずに、患者の免疫プロファイルに基づいて、KRAS P12D突然変異を有する患者を診断することができる。
いくつかの実施形態において、結腸直腸がん患者から作成された免疫プロファイルを使用して、腫瘍の処置に好適な療法を選択することができる。更なる実施形態において、免疫プロファイルに基づいて結腸直腸がん処置のために選択される療法は、細胞毒性化学療法、標的化療法、例えばヤヌスキナーゼ阻害薬、又は免疫療法から選択される。いくつかの実施形態において、選択される免疫療法は、チェックポイント阻害療法、CAR T細胞療法、CAR M療法、がんワクチン又は他の免疫オンコロジー治療様式からなる群から選択される。
いくつかの実施形態において、結腸直腸がん患者のTCR/BCRプロファイルを使用して、最も存在度の高いT細胞及びB細胞のクローンを詳述する報告を作成できる。いくつかの実施形態において、最も頻度の高い上位10のクローンを示すことができる。最も頻度の高いクローンは、B細胞又はT細胞の増加した集団に相当すると考えられる。一実施形態において、本明細書に開示されているTCR/BCRシークエンシング方法は、疾患を経時的に追跡するために、異なる時点で患者から採取される複数の標本に対して活用される。
(実施例11)
一例において、非小細胞肺がん(NSCLC)及びEGFR突然変異を有する患者について、TCR/BCRプロファイルを生成することができる。突然変異EGFR遺伝子によってコードされたペプチドを認識すると予想されるCDR3配列について、TCR/BCRプロファイルを解析することができる。
実施例2に記載の通り、被検体サンプル調製とシークエンシングを実施することができる。上記の実施例2に記載の通り、解析を実施することができる。
本出願に記載の新奇のハイブリッド捕捉アプローチをシークエンシングと併用して、非小細胞肺がんを患っている人々の免疫プロファイルを作成できる。いくつかの実施形態において、患者はEGFR突然変異を生じている。いくつかの実施形態において、EGFR突然変異を生じている人々から作成された免疫プロファイルは、EGFR新抗原を認識するTCRクローン型を含む。いくつかの実施形態において、これらのクローン型配列を使用して、患者特異的な精密医学療法を生み出すためのリンパ球クローンを選択することができる。いくつかの実施形態において、患者の免疫プロファイルから得られる推定上の新抗原特異的クローン型を使用して、当該クローン型のデータベースをアセンブルすることができる。いくつかの実施形態において、新抗原関連クローン型のデータベースを更に、未知のEGFR突然変異状態を有する患者との比較に使用することができる。いくつかの実施形態において、新抗原関連クローン型のデータベースを使用して、生検及び追加的なシークエンシング工程に加え、又は当該工程を必要とせずに、患者の免疫プロファイルに基づいて、EGFR突然変異を有する患者を診断することができる。
いくつかの実施形態において、非小細胞肺がん患者から作成された免疫プロファイルを使用して、腫瘍の処置に好適な療法を選択することができる。更なる実施形態において、免疫プロファイルに基づいて結腸直腸がん処置のために選択される療法は、細胞毒性化学療法、標的化療法、例えばヤヌスキナーゼ阻害薬、又は免疫療法から選択される。いくつかの実施形態において、選択される免疫療法は、チェックポイント阻害療法、CAR T細胞療法、CAR M療法、がんワクチン又は他の免疫オンコロジー治療様式からなる群から選択される。
いくつかの実施形態において、NSCLC患者のTCR/BCRプロファイルを使用して、最も存在度の高いT細胞及びB細胞のクローンを詳述する報告を作成できる。いくつかの実施形態において、最も存在度の高い上位10のクローンを示すことができる。最も存在度の高いクローンは、B細胞又はT細胞の増加した集団に相当すると考えられる。一実施形態において、本明細書に開示されているTCR/BCRシークエンシング方法は、疾患を経時的に追跡するために、異なる時点で患者から採取される複数の標本に対して活用される。

Claims (29)

  1. a)患者のサンプルからRNAを単離すること、
    b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、ハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、
    c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び
    d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること
    を含む、患者のTCR/BCRプロファイルを決定する方法であって、
    TCR/BCRハイブリッド捕捉プローブの集合は、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、TCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む方法。
  2. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、請求項1に記載の方法。
  3. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、請求項1に記載の方法。
  4. シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、請求項3に記載の方法。
  5. 工程(c)が、全トランスクリプトームシークエンシング又はショートリードシークエンシングを含む、請求項1に記載の方法。
  6. 工程(d)が、サンプル中の複数のTCR/BCRクローンを特定することを含む、請求項1に記載の方法。
  7. 工程(d)が、サンプル中の最も存在度の高いTCR/BCRクローンを特定することを含む、請求項1に記載の方法。
  8. 工程(d)が、サンプル中の最も存在度の高い非定常領域配列を特定することを含む、請求項1に記載の方法。
  9. サンプルが、血液サンプル又は固形腫瘍サンプルである、請求項1に記載の方法。
  10. a)患者のサンプルからRNAを単離すること、
    b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、
    c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び
    d)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること
    を含む、患者のTCR/BCRプロファイルを決定する方法であって、
    TCR/BCRハイブリッド捕捉プローブの集合が、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、及びTCR非定常領域プローブを含む第4の層を含み、集合内のトランスクリプトーム標的化パネルプローブ、対、第1の層、対、第2の層、対、第3の層、対、第4の層の比が、10:1:2.5:100:100であり、シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、方法。
  11. 工程(c)が、全トランスクリプトームシークエンシング又はショートリードシークエンシングを含む、請求項1~10のいずれか一項に記載の方法。
  12. 患者のBCR/TCRプロファイルを対照TCR/BCRプロファイルと比較し、その比較に基づいて、患者を、疾患又は医学的状態を有するものと特定することを含む、請求項1~11のいずれか一項に記載の方法。
  13. 疾患又は状態が、感染性疾患、がん、自己免疫疾患又はアレルギーである、請求項12に記載の方法。
  14. がん又は感染性疾患が、実施形態114におけるリストに示されている1つ以上のものである、請求項13に記載の方法。
  15. 解析が、腫瘍のリンパ球浸潤の存在又は程度を決定することを含む、請求項1~11のいずれか一項に記載の方法。
  16. 患者を治療薬で処置することを更に含む、請求項12~14のいずれか一項に記載の方法。
  17. 治療薬が免疫療法薬である、請求項16に記載の方法。
  18. 免疫療法薬がワクチンである、請求項17に記載の方法。
  19. 免疫療法薬がキメラ抗原受容体(CAR)T細胞である、請求項17に記載の方法。
  20. a)患者のサンプルからRNAを単離すること、
    b)TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、ハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、
    c)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び
    d)シークエンシングデータを解析することであって、解析が、サンプル中の最も存在度の高いTCR/BCRクローンを決定し、場合により患者のTCR/BCRプロファイルを決定することを含み、
    TCR/BCRハイブリッド捕捉プローブの集合が、BCR定常領域プローブを含む第1の層、BCR非定常領域プローブを含む第2の層、TCR定常領域プローブを含む第3の層、及びTCR非定常領域プローブを含む第4の層、並びにトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む、こと、並びに
    (e)患者を処置すること
    を含む、患者の疾患又は状態を処置する方法。
  21. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、請求項20に記載の方法。
  22. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、請求項20に記載の方法。
  23. シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、請求項22に記載の方法。
  24. 処置が、インビトロで最も存在度の高いTCR/BCRクローンを増加させ、増加したクローンを患者に投与することを含む、請求項20に記載の方法。
  25. 工程(d)が、サンプル中の最も存在度の高いTCR非定常領域の配列を特定することを含み、工程(e)で施される処置が、CAR-T細胞治療薬を投与することを含み、CAR-T細胞が、最も存在度の高いTCR非定常領域配列の少なくとも1つを含む、請求項20に記載の方法。
  26. a)治療薬を投与する前の第1の時点において、
    i)患者のサンプルからRNAを単離すること、
    ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、
    iii)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び
    iv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、
    b)治療薬を投与した後の第2の時点において、
    i)患者のサンプルからRNAを単離すること、
    ii) TCR/BCRハイブリッド捕捉プローブの集合を使用して、TCR/BCR遺伝子について単離RNAを濃縮し、トランスクリプトームハイブリッド捕捉プローブの集合を使用して、標的化全トランスクリプトームパネルについて濃縮を行うこと、
    iii)(b)のRNAの配列を決定して、シークエンシングデータを生成すること、及び
    iv)シークエンシングデータを解析して、患者のTCR/BCRプロファイルを決定すること、及び
    c)工程(a)で決定されたTCR/BCRプロファイルを、工程(b)で決定されたTCR/BCRプロファイルと比較して、患者のTCR/BCRプロファイルに対する治療の効果を特徴づけること
    を含む、患者のTCR/BCRプロファイルに対する治療の効果を特徴づける方法であって、
    ハイブリッド捕捉プローブの集合は、TCR定常領域プローブを含む第1の層、TCR非定常領域プローブを含む第2の層、BCR定常領域プローブを含む第3の層、BCR非定常領域プローブを含む第4の層、及びトランスクリプトームハイブリッド捕捉プローブを含む第5の層を含む方法。
  27. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層の比が、1:2.5:100:100である、請求項26に記載の方法。
  28. 集合内の第1の層、対、第2の層、対、第3の層、対、第4の層、対、第5の層の比が、1:2.5:100:100:10である、請求項27に記載の方法。
  29. シークエンシングデータにおけるリードの2%以下がTCR/BCR遺伝子にマッピングされる、請求項28に記載の方法。
JP2022564450A 2020-04-21 2021-04-21 Tcr/bcrプロファイリング Pending JP2023515270A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202063013130P 2020-04-21 2020-04-21
US63/013,130 2020-04-21
US202063084459P 2020-09-28 2020-09-28
US63/084,459 2020-09-28
US202163201020P 2021-04-08 2021-04-08
US63/201,020 2021-04-08
PCT/US2021/070440 WO2021217181A1 (en) 2020-04-21 2021-04-21 Tcr/bcr profiling

Publications (1)

Publication Number Publication Date
JP2023515270A true JP2023515270A (ja) 2023-04-12

Family

ID=78270138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022564450A Pending JP2023515270A (ja) 2020-04-21 2021-04-21 Tcr/bcrプロファイリング

Country Status (6)

Country Link
US (2) US11414700B2 (ja)
EP (1) EP4139477A4 (ja)
JP (1) JP2023515270A (ja)
AU (1) AU2021259958A1 (ja)
CA (1) CA3174332A1 (ja)
WO (1) WO2021217181A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147468A1 (en) 2020-12-31 2022-07-07 Tempus Labs, Inc. Systems and methods for detecting multi-molecule biomarkers
EP4416733A1 (en) 2021-10-11 2024-08-21 Tempus AI, Inc. Methods and systems for detecting alternative splicing in sequencing data
WO2023091587A1 (en) * 2021-11-17 2023-05-25 Ampel Biosolutions, Llc Systems and methods for targeting covid-19 therapies
BE1031300B1 (fr) 2023-01-30 2024-09-03 Grand Hopital De Charleroi Procede pour l'integration ciblée d'identificateurs moleculaires uniques (ium) et la détection de haute précision d'états médicaux ou cosmetiques
US20240355485A1 (en) 2023-04-13 2024-10-24 Tempus Ai, Inc. Systems and methods for predicting clinical response
CN116751280B (zh) * 2023-05-17 2024-01-26 复旦大学附属中山医院 一种特异性识别SARS-CoV-2新冠病毒S蛋白抗原肽的T细胞受体及制备和应用

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635354A (en) 1991-01-09 1997-06-03 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for describing the repertoires of antibodies (Ab) and of T-cell receptors (TcR) of an individual's immune system
US6080840A (en) 1992-01-17 2000-06-27 Slanetz; Alfred E. Soluble T cell receptors
US6399368B1 (en) 1992-01-17 2002-06-04 Board Of Regents, The University Of Texas System Secretion of T cell receptor fragments from recombinant Escherichia coli cells
US6927044B2 (en) 1998-09-25 2005-08-09 Regeneron Pharmaceuticals, Inc. IL-1 receptor based cytokine traps
US20090137416A1 (en) 2001-01-16 2009-05-28 Regeneron Pharmaceuticals, Inc. Isolating Cells Expressing Secreted Proteins
JP4317940B2 (ja) 2001-08-31 2009-08-19 イミュノコア・リミテッド 物質
US9193997B2 (en) * 2010-12-15 2015-11-24 The Board Of Trustees Of The Leland Stanford Junior University Measuring and monitoring of cell clonality
ES2983094T3 (es) * 2014-10-31 2024-10-21 Univ Pennsylvania Alteración de la expresión génica en células CAR-T y usos de los mismos
JP6905934B2 (ja) 2014-12-05 2021-07-21 ファウンデーション・メディシン・インコーポレイテッド 腫瘍試料の多重遺伝子分析
RU2763320C2 (ru) * 2016-01-13 2021-12-28 Регенерон Фармасьютикалз, Инк. Грызуны, имеющие сконструированный участок разнообразия тяжелой цепи
WO2017177308A1 (en) * 2016-04-15 2017-10-19 University Health Network (Uhn) Hybrid-capture sequencing for determining immune cell clonality
GB201612242D0 (en) * 2016-07-14 2016-08-31 Genome Res Ltd And Cambridge Entpr Ltd Novel kit
CA3050127A1 (en) * 2017-01-12 2018-07-19 Massachusetts Institute Of Technology Methods for analyzing t cell receptors and b cell receptors
CA3064312A1 (en) * 2017-05-30 2018-12-06 University Health Network Hybrid-capture sequencing for determining immune cell clonality
WO2018231958A1 (en) * 2017-06-13 2018-12-20 Adaptive Biotechnologies Corp. Determining wt-1 specific t cells and wt-1 specific t cell receptors (tcrs)
US10957041B2 (en) 2018-05-14 2021-03-23 Tempus Labs, Inc. Determining biomarkers from histopathology slide images
US10801064B2 (en) * 2018-05-31 2020-10-13 Personalis, Inc. Compositions, methods and systems for processing or analyzing multi-species nucleic acid samples
WO2020033453A1 (en) 2018-08-06 2020-02-13 Tempus Labs, Inc. A multi-modal approach to predicting immune infiltration based on integrated rna expression and imaging features
US20210317522A1 (en) * 2018-09-21 2021-10-14 Garvan Institute Of Medical Research Phenotypic and molecular characterisation of single cells
AU2019346427A1 (en) 2018-09-24 2021-05-13 Tempus Ai, Inc. Methods of normalizing and correcting RNA expression data
US20200118644A1 (en) 2018-10-15 2020-04-16 Tempus Labs, Inc. Microsatellite instability determination system and related methods
US20200258601A1 (en) 2018-10-17 2020-08-13 Tempus Labs Targeted-panel tumor mutational burden calculation systems and methods
US20200365232A1 (en) 2018-10-17 2020-11-19 Tempus Labs Adaptive order fulfillment and tracking methods and systems
WO2020117952A2 (en) * 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
US20200210852A1 (en) 2018-12-31 2020-07-02 Tempus Labs, Inc. Transcriptome deconvolution of metastatic tissue samples
AU2019418813A1 (en) 2018-12-31 2021-07-22 Tempus Ai, Inc. A method and process for predicting and analyzing patient cohort response, progression, and survival
US10975445B2 (en) 2019-02-12 2021-04-13 Tempus Labs, Inc. Integrated machine-learning framework to estimate homologous recombination deficiency
US11081210B2 (en) 2019-02-12 2021-08-03 Tempus Labs, Inc. Detection of human leukocyte antigen loss of heterozygosity
US11043304B2 (en) 2019-02-26 2021-06-22 Tempus Labs, Inc. Systems and methods for using sequencing data for pathogen detection
JP2022532897A (ja) 2019-05-14 2022-07-20 テンパス ラブズ,インコーポレイテッド マルチラベルがん分類のためのシステムおよび方法
US20200395097A1 (en) 2019-05-30 2020-12-17 Tempus Labs, Inc. Pan-cancer model to predict the pd-l1 status of a cancer cell sample using rna expression data and other patient data
EP3977343A4 (en) 2019-05-31 2023-06-14 Tempus Labs SYSTEMS AND METHODS FOR EVALUATION OF CLINICAL TRIAL
US11705226B2 (en) 2019-09-19 2023-07-18 Tempus Labs, Inc. Data based cancer research and treatment systems and methods
EP4008005A4 (en) 2019-08-01 2023-09-27 Tempus Labs, Inc. METHODS AND SYSTEMS FOR DETECTING MICROSATELLITE INSTABILITY OF CANCER IN A LIQUID BIOPSY TEST
US11367508B2 (en) 2019-08-16 2022-06-21 Tempus Labs, Inc. Systems and methods for detecting cellular pathway dysregulation in cancer specimens
US20210118526A1 (en) 2019-10-21 2021-04-22 Tempus Labs, Inc. Calculating cell-type rna profiles for diagnosis and treatment
US11041200B2 (en) 2019-10-21 2021-06-22 Tempus Labs, Inc. Systems and methods for next generation sequencing uniform probe design
US20210118559A1 (en) 2019-10-22 2021-04-22 Tempus Labs, Inc. Artificial intelligence assisted precision medicine enhancements to standardized laboratory diagnostic testing
WO2021081253A1 (en) 2019-10-22 2021-04-29 Tempus Labs, Inc. Systems and methods for predicting therapeutic sensitivity
US11629385B2 (en) 2019-11-22 2023-04-18 Tempus Labs, Inc. Tumor organoid culture compositions, systems, and methods
AU2020398175A1 (en) 2019-12-04 2022-06-16 Tempus Ai, Inc. Systems and methods for automating RNA expression calls in a cancer prediction pipeline
JP2023505265A (ja) 2019-12-05 2023-02-08 テンパス・ラボズ・インコーポレイテッド ハイスループット薬物スクリーニングのためのシステムおよび方法
WO2021168143A1 (en) 2020-02-18 2021-08-26 Tempus Labs, Inc. Systems and methods for detecting viral dna from sequencing

Also Published As

Publication number Publication date
US20230121729A1 (en) 2023-04-20
AU2021259958A1 (en) 2022-11-17
US20210355533A1 (en) 2021-11-18
US11414700B2 (en) 2022-08-16
US12129519B2 (en) 2024-10-29
EP4139477A4 (en) 2024-05-22
CA3174332A1 (en) 2021-10-28
EP4139477A1 (en) 2023-03-01
WO2021217181A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP2023515270A (ja) Tcr/bcrプロファイリング
Berger et al. The emerging clinical relevance of genomics in cancer medicine
Kaufmann et al. Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis
JP7539367B2 (ja) 無細胞dnaにおけるマイクロサテライト不安定性の検出
Van der Velden et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol
JP2021531775A (ja) 腫瘍遺伝子変異量を腫瘍割合およびカバレッジによって調整するための方法およびシステム
US20190390273A1 (en) Hybrid-capture sequencing for determining immune cell clonality
KR20220011140A (ko) 종양 분획 평가를 위한 시스템 및 방법
EP2663864A1 (en) Immunodiversity assessment method and its use
Liu et al. The methods and advances of adaptive immune receptors repertoire sequencing
Farmanbar et al. RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma
JP2022538499A (ja) サンプル調製、サンプルシークエンシング、およびシークエンシングデータのバイアス補正と品質管理のためのシステムならびに方法
JP2024112843A (ja) ゲノム変化を評価するための組成物および方法
Kiyotani et al. Characterization of the B-cell receptor repertoires in peanut allergic subjects undergoing oral immunotherapy
US11788136B2 (en) Hybrid-capture sequencing for determining immune cell clonality
Li et al. Identifying IGH disease clones for MRD monitoring in childhood B-cell acute lymphoblastic leukemia using RNA-Seq
Bauer et al. Gene-expression profiling in rheumatic disease: tools and therapeutic potential
Peng et al. Profiling the TRB and IGH repertoire of patients with H5N6 Avian Influenza Virus Infection by high-throughput sequencing
WO2022271159A1 (en) Systems and methods for evaluating tumor fraction
Sun et al. Association of the characteristics of B‑and T‑cell repertoires with papillary thyroid carcinoma
Gao et al. Landscape of B cell receptor repertoires in COVID-19 patients revealed through CDR3 sequencing of immunoglobulin heavy and light chains
US20220205042A1 (en) Molecular Signatures for Distinguishing Liver Transplant Rejections or Injuries
AU2016281193B2 (en) Method of measuring chimerism
EP3825418A2 (en) Molecular signatures for distinguishing liver transplant rejections or injuries
EA038246B1 (ru) Уровни экспрессии иммуноглобулинов в качестве биологического маркера для реакции на ингибитор протеасом

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240422