JP2023513574A - 大面積iii族窒化物結晶及び基板、その製造方法、並びにその使用方法 - Google Patents

大面積iii族窒化物結晶及び基板、その製造方法、並びにその使用方法 Download PDF

Info

Publication number
JP2023513574A
JP2023513574A JP2022548644A JP2022548644A JP2023513574A JP 2023513574 A JP2023513574 A JP 2023513574A JP 2022548644 A JP2022548644 A JP 2022548644A JP 2022548644 A JP2022548644 A JP 2022548644A JP 2023513574 A JP2023513574 A JP 2023513574A
Authority
JP
Japan
Prior art keywords
group iii
less
iii metal
metal nitride
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022548644A
Other languages
English (en)
Inventor
カードウェル,ドリュー
ピー デヴリン,マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SLT Technologies Inc
Original Assignee
SLT Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/882,219 external-priority patent/US11705322B2/en
Application filed by SLT Technologies Inc filed Critical SLT Technologies Inc
Publication of JP2023513574A publication Critical patent/JP2023513574A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本開示の実施形態は、III族金属窒化物とガリウムをベースとした基板を製造するための材料を処理する技法に関連した技法を含む。より詳細には、本開示の実施形態は、処理技法の組合せを使用して大面積基板を成長させる技法を含む。単なる例として、本開示は、GaN、AlN、InN、InGaN、AlGaN、及びAlInGaNの結晶、並びにバルク基板又はパターン化された基板を製造するための他の結晶の成長に適用することができる。このようなバルク基板又はパターン化された基板は、光電子デバイス及び電子デバイス、レーザ、発光ダイオード、太陽電池、光電気化学的水分解及び水素発生、光検出器、集積回路、並びにトランジスタなどを含めたさまざまな用途に使用することができる。

Description

本開示は、概して、ガリウム含有窒化物基板を製造するための材料を処理する技法、並びに光電子デバイス及び電子デバイスにおけるこれらの基板の利用に関する。より詳細には、本開示の実施形態は、処理技法の組合せを使用して大面積の結晶及び基板を成長させる技法を含む。
窒化ガリウム(GaN)をベースとした光電子デバイス及び電子デバイスは、商業的に非常に重要である。しかしながら、これらのデバイスの品質及び信頼性は、高い欠陥レベル、特に貫通転位、結晶粒界、及びデバイスの半導体層の歪みより危険にさらされる。貫通転位は、サファイア又は炭化ケイ素などの非GaN基板に対するGaNベースの半導体層の格子不整合から生じる可能性がある。結晶粒界は、エピタキシャルに過成長した層のコアレッセンスフロントから生じる可能性がある。追加の欠陥は、層の成長の詳細に応じて、熱膨張の不整合、不純物、傾斜境界から生じる可能性がある。
欠陥の存在は、エピタキシャルに成長した層に悪影響を及ぼす。このような影響には、電子デバイス性能の低下が含まれる。これらの欠陥を克服するために、欠陥の集中及び/又は影響を低減するために複雑かつ退屈な製造プロセスを必要とする技法が提案されている。窒化ガリウム結晶のためのかなりの数の従来式の成長方法が提案されてきたが、依然として制限が存在する。すなわち、従来の方法は、費用効果が高く、効率的になるように改善する価値がある。
大面積窒化ガリウム結晶の成長において進歩が見られ、ヘテロエピタキシャルなGaN層よりも欠陥レベルがかなり低くなった。しかしながら、大面積のGaN基板を成長させるためのほとんどの技法は、サファイア又はGaAsなどの非GaN基板上へのGaNの堆積を包含する。この手法は、概して、厚いブールの表面に貫通転位を10~10cm-2の平均濃度で生じさせ、大きい反り、応力、及び歪みを生じさせる。濃度が低下した貫通転位が、多くの用途にとって望ましい。反り、応力、及び歪みは、ブールをスライスしてウエハにする際の歩留まりを低下させ、下流の処理中にウエハに亀裂を生じやすくする可能性があり、デバイスの信頼性及び寿命に悪影響を及ぼす可能性もある。反り、応力、及び歪みの別の結果は、m面及び半極性方向での成長中に、アンモノサーマル成長などの平衡に近い技法によってさえ、かなりの濃度の積層欠陥が生成される可能性があることである。加えて、亀裂の形成、複数の結晶学的ドメインなどに起因して、c面成長の品質が不十分である可能性がある。2インチを超える基板を製造する能力は、非極性又は半極性の結晶方位を有する大面積GaN基板を製造する能力と同様に、現在は非常に制限されている。ほとんどの大面積基板は、比較的高価な水素化物気相エピタキシー(HVPE)などの気相法によって製造される。可能な限り迅速に大面積及び低貫通転位密度も達成しつつ、より安価な方法が望まれている。
アンモノサーマル結晶成長は、GaNブールを製造する手段として、HVPEよりも多くの利点を有している。しかしながら、アンモノサーマルGaN結晶成長プロセスの性能は、種結晶のサイズ及び品質に大いに依存しうる。HVPEによって製造された種結晶は上記制限の多くを被る可能性があり、アンモノサーマルで成長させた結晶は広く利用できるわけではない。
従来の技法は、タイル化法によって単純なGaN種結晶をより大きい化合物結晶へと融合する方法を提案してきた。従来の方法の幾つかは、水素化物気相エピタキシー(HVPE)によって成長させた単純なGaN種結晶を使用し、単純な結晶の縁部を傾斜角度で研磨して急速に成長する方向に融合させることを包含する。従来の方法の多く又はほとんどは、種結晶を結合するための結晶成長方法としてHVPEを使用している。しかしながら、このような従来の技法には制限がある。典型的には、例えば、従来の技法は、融合した単純な種結晶間の極方向及び方位角の両方の結晶方位の精度が指定されておらず、また、基本シード結晶間の高精度の結晶学的位置を生成し、単純な種結晶の融合に起因する欠陥を最小限に抑えることができる方法も提供されていない。アンモノサーマルGaNは通常、HVPE GaNの格子定数とは少なくともわずかに異なる格子定数を有している。格子定数にわずかな不整合が存在するだけでも、特にタイル化と合体が包含されている場合には、HVPE種結晶上でアンモノサーマルで成長させた結晶に応力及び亀裂を生じさせる可能性がある。さらには、1つ以上のHVPE種結晶上に形成されたアンモノサーマルで成長させた結晶のその後の鋸切断又は研磨中に、亀裂が発生する可能性がある。
少なくとも上記の問題に起因して、低い欠陥密度を有し、結晶成長プロセスを改善する技法によって形成される基板が必要とされている。また、上記から、結晶成長を改善する技法が非常に望まれていることが分かる。
本開示の実施形態は、自立型III族金属窒化物結晶を含む。自立型結晶は、ウルツ鉱結晶構造、第1の方向に40ミリメートルを超える最大寸法を有する第1の表面、10cm-1未満の積層欠陥の平均濃度;10cm-2から10cm-2の間の貫通転位の平均濃度を含み、ここで、第1の表面の貫通転位の平均濃度は、第1の方向に少なくとも2倍、周期的に変化し、第1の方向の変動の周期は5マイクロメートルから20ミリメートルの間であり、ミスカット角度は、第1の方向に沿って結晶の第1の表面の中央80%において0.1度以下で、かつ第1の方向に直交する第2の方向に沿って結晶の第1の表面の中央80%において0.1度以下で変動する。第1の表面は複数の第1の領域を含み、該複数の第1の領域の各々は貫通転位の局所的にほぼ線形のアレイを5cm-1から10cm-1の間の濃度で有しており、第1の表面はさらに、複数の第2の領域を含み、該複数の第2の領域の各々は、複数の第1の領域の隣接する対の間に配置され、かつ10cm-2未満の貫通転位の濃度と10cm-1未満の積層欠陥の濃度とを有しており、第1の表面はさらに、複数の第3の領域を含み、該複数の第3の領域の各々は、複数の第2の領域の1つの中に又は隣接する第2の対の間に配置され、かつ10マイクロメートルから500マイクロメートルの間の最小寸法と10cm-2から10cm-2の間の濃度の貫通転位とを有している。
本開示の実施形態は、少なくとも2つのドメインを含む、自立型III族金属窒化物結晶を含む。少なくとも2つのドメインの各々は、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含む。少なくとも2つのドメインの各々は、ウルツ鉱結晶構造を有し、また、第1の方向に10ミリメートルを超える最大寸法、10cm-2から1×10cm-2の間の貫通転位の平均濃度、10cm-1未満の積層欠陥の平均濃度、200秒角未満の対称X線ロッキングカーブ半値全幅、1017cm-3を超えるHの不純物濃度、並びに較正された二次イオン質量分析法によって定量化して1015cm-3を超えるLi、Na、K、F、CI、Br、及びIのうちの少なくとも1つの不純物濃度を有する、第1の表面を含む。第1の表面上のドメインの第1の表面内の貫通転位の濃度は、第1の方向に少なくとも2倍、周期的に変化することができ、第1の方向における変化の周期は5マイクロメートルから5ミリメートルの間である。第1の表面は、複数の第1の領域を含み、該複数の第1の領域の各々は、5cm-1から10cm-1の間の濃度で、貫通転位の局所的にほぼ線形のアレイを有する。第1の表面は、複数の第2の領域をさらに含むことができ、該複数の第2の領域の各々は、複数の第1の領域の隣接する対の間に配置されており、かつ10cm-2未満の貫通転位濃度、及び10cm-1未満の積層欠陥濃度を有する。第1の表面は、複数の第1の領域をさらに含み、該複数の第3の領域の各々は、複数の第2の領域のうちの1つ又は第2の領域の隣接する対の間に配置されており、10マイクロメートルから500マイクロメートルの間の最小寸法、並びに10cm-2から10cm-2の間の濃度の貫通転位を有している。自立型III族金属窒化物結晶は、40ミリメートルを超える第1の方向における最大寸法を有し、結晶学的ミスカットは、第1の方向に沿って結晶の中央80%にわたって2つの直交する方向において0.2度以下で、並びに第1の方向に直交する第2の方向に沿って結晶の中央80%にわたって2つの直交する方向において0.1度以下で変動し、少なくとも2つのドメインは、約50cm-1から約5×10cm-1の間の線形密度で転位の線によって分離され、第1のドメインと第2のドメインとの間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、方位差角度α及びβは、約0.01度超かつ約1度未満である。
本開示の実施形態は、結晶成長装置内の少なくとも2つの種結晶のタイル状アレイ上でバルク結晶成長プロセスを実施することを含む、化合物III族金属窒化物結晶を形成する方法を含み、ここで、バルク結晶成長プロセスは、第1の種結晶の第1の表面から成長させたバルク結晶層と第2の種結晶の第1の表面から成長させたバルク結晶層とを融合させて化合物結晶を形成し、第1の種結晶の第1の表面の結晶方位と第2の種結晶の第1の表面の結晶方位との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは約0.01度超かつ約1度未満であり、及び種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、かつウルツ鉱結晶構造及び少なくとも5ミリメートルの最大寸法を有している。幾つかの実施形態では、バルク結晶成長プロセスは第1の温度で行われ、少なくとも2つの種結晶のタイル状アレイは、バルク結晶成長プロセス中、機械的固定具の第1の表面に位置付けられ、この機械的固定具は、少なくともバッキングプレート部材とクランプ部材とを含み、それらの各々は、室温から第1の温度の範囲にわたって平均された、少なくとも2つの種結晶の熱膨張係数の80%から99%の間にある熱膨張係数を有し、この熱膨張係数は、第1の表面に平行な面で測定される。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、機械的固定具上に各々が第1の表面を有する少なくとも2つの種結晶を配置する工程、機械的固定具を結晶成長装置内に配置する工程、及び第2の温度でバルク結晶成長プロセスを実施して、第1の種結晶と第2の種結晶とを化合物結晶へと癒合させる工程を含み、種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、ウルツ鉱結晶構造及び少なくとも5ミリメートルの最大寸法を有している。機械的固定具は、少なくともバッキングプレート部材とクランプ部材とを含み、それらの各々は、室温と第2の温度との間の範囲にわたって平均された、第1の表面の平面に少なくとも2つの種結晶の熱膨張係数の80%から99%の間にある熱膨張係数を有しており、第1の種結晶の第1の表面の結晶方位と第2の種結晶の第1の表面の結晶方位との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは約0.01度超かつ約1度未満である。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、少なくとも2つの種結晶のタイル状アレイ上に多結晶III族金属窒化物を成長させる工程であって、少なくとも2つの種結晶のタイル状アレイが、第1の表面と第2の表面とを有する第1の種結晶と第1の表面と第2の表面とを有する第2の種結晶とを含み、少なくとも2つの種結晶のタイル状アレイ上に多結晶III族金属窒化物を成長させるプロセスによって第1の種結晶と第2の種結晶の第2の表面から成長させた多結晶III族金属窒化物層を融合させてタイル状アセンブリを形成する、工程;並びに、結晶成長装置内のタイル状アセンブリ上でバルク結晶成長プロセスを実施する工程を含む。バルク結晶成長プロセスは、第1の種結晶の第1の表面上で成長させたバルク結晶層と第2の種結晶の第1の表面上で成長させたバルク結晶層とを融合させて化合物結晶を形成し、第1の種結晶の第1の表面の結晶方位と第2の種結晶の第1の表面の結晶方位との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは約0.01度超かつ約1度未満であり、種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、かつウルツ鉱結晶構造及び少なくとも5ミリメートルの最大寸法を有している。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、少なくとも2つの種結晶のタイル状アレイ上に多結晶III族金属窒化物を成長させる工程、サセプタからタイル状アセンブリを分離する工程;並びに、結晶成長装置内のタイル状アセンブリ上でバルク結晶成長プロセスを実施する工程を含む。少なくとも2つの種結晶のタイル状アレイは、第1の表面と第2の表面とを有する第1の種結晶;並びに、第1の表面と第2の表面とを有する第2の種結晶を含み、少なくとも2つの種結晶のタイル状アレイがサセプタ上に配置され、少なくとも2つの種結晶のタイル状アレイ上に多結晶III族金属窒化物を成長させるプロセスにより、第1の種結晶と第2の種結晶の第2の表面上に堆積させた多結晶III族金属窒化物層を融合させてタイル状アセンブリを形成する。バルク結晶成長プロセスは、第1の種結晶の第1の表面上で成長させたバルク結晶層と第2の種結晶の第1の表面上で成長させたバルク結晶層とを融合させて化合物結晶を形成する。第1の種結晶の第1の表面の結晶方位と第2の種結晶の第1の表面の結晶方位との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは約0.01度超かつ約1度未満であり、種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、かつウルツ鉱結晶構造及び少なくとも5ミリメートルの最大寸法を有している。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、各々が第1の表面と該第1の表面とは反対側の第2の表面とを有している少なくとも2つの種結晶をサセプタ内に配置する工程、サセプタを成長反応器内に配置し、多結晶III族金属窒化物を少なくとも2つの種結晶の第2の表面上で成長させてタイル状アセンブリを形成する工程、サセプタからタイル状アセンブリを分離する工程、及びタイル状アセンブリを結晶成長装置内に配置する工程、及びバルク結晶成長プロセスを実施する工程、第1の種結晶と第2の種結晶とを化合物結晶へと癒合させる工程を含み、ここで、種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、かつウルツ鉱結晶構造と少なくとも5ミリメートルの最大寸法とを有している。種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、ウルツ鉱結晶構造及び少なくとも5ミリメートルの最大寸法を有している。第1の種結晶の第1の表面の結晶方位と第2の種結晶の第1の表面の結晶方位との間の極性方位差角度γは、約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは、約0.01度超かつ約1度未満である。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、少なくとも2つの第1の種結晶のアレイ上でIII族金属窒化物結晶層を成長させる工程であって、少なくとも2つの第1の種結晶のアレイ内の第1の種結晶の各々が、第1の方向に延びるアレイに整列され、III族金属窒化物結晶層を成長させるプロセスによって第1のタイル状結晶が形成される、工程、第1のタイル状結晶を第1の方向に直交する第2の方向に沿ってスライスする工程であって、第1のタイル状結晶をスライスすることによって少なくとも2つの第2の種結晶が形成され、かつ少なくとも2つの第2の種結晶が第1の表面を有する、工程、並びに少なくとも2つの第2の種結晶のアレイ上でIII族金属窒化物結晶層を成長させる工程であって、少なくとも2つの第2の種結晶のアレイ内の第2の種結晶の各々が、第1の方向に延びるアレイに整列され、少なくとも2つの第2の種結晶のアレイ上でIII族金属窒化物結晶層を成長させるプロセスによって第2のタイル状結晶が形成される、工程を含む。該方法は、第2の方向及び第1の方向の両方に沿って第2のタイル状結晶をスライスして少なくとも2つの第3の種結晶を形成する工程、並びに該少なくとも2つの第3の種結晶のアレイ上でIII族金属窒化物結晶層を成長させる工程をさらに含み、少なくとも2つの第3の種結晶のアレイ内の第3の種結晶の各々は、第1の方向に延びるアレイに整列され、少なくとも2つの第2の種結晶のアレイ上でIII族金属窒化物結晶層を成長させるプロセスによって、第3のタイル状結晶が形成される。
本開示の実施形態は、化合物III族金属窒化物結晶を形成する方法を含み、該方法は、各々が第1の表面と該第1の表面とは反対側の第2の表面とを有する少なくとも2つの第1の種結晶を第1の方向に沿って支持構造に配置する工程、第1のバルク結晶成長操作を実施して少なくとも2つの第1の種結晶を合体させて、第1の一次元タイル状結晶を形成する工程、第1の一次元タイル状結晶を第1の方向に直交する第2の方向に沿って少なくとも2つの第2の種結晶へとスライスする工程、第1の表面と該第1の表面とは反対側の第2の表面とを有する少なくとも2つの第2の種結晶を、第1の方向と第2の方向とに直交する第3の方向に沿って支持構造上に配置する工程、第2のバルク結晶成長操作を実施して少なくとも2つの第2の種結晶を合体させて第2の一次元タイル状結晶を形成する工程、第2の一次元タイル状結晶を第2の方向及び第1の方向の両方に沿ってスライスして少なくとも2つの第3の種結晶を形成する工程、第1の表面と該第1の表面とは反対側の第2の表面とを有する少なくとも2つの第3の種結晶を第1の方向に沿って支持構造上に配置する工程、第3のバルク結晶成長操作を実施して少なくとも2つの第3の種結晶を合体させて第1の表面及び該第1の表面とは反対側の第2の表面並びに少なくとも2つのドメインを有する第3の一次元タイル状結晶を形成する工程を含む。第3の一次元タイル状結晶内の少なくとも2つのドメインの各々は、2つの第3の種結晶の少なくとも一部を取り囲む。第3の一次元タイル状結晶の第1のドメインの第1の表面の結晶方位と第3の一次元タイル状結晶の第2のドメインの第1の表面の結晶方位との間の極性方位差角度γは、約0.005度超かつ約0.2度未満であり、第1及び第2の種結晶の第1の表面の結晶方位間の方位角の方位差角度α及びβは、約0.01度超かつ約1度未満である。第1の種結晶、第2の種結晶、及び第3の種結晶の各々は、ガリウム、アルミニウム、及びインジウムのうちの少なくとも1つと窒素とを含み、かつウルツ鉱結晶構造を有している。第1の種結晶、第2の種結晶、及び第3の種結晶の各々は、少なくとも5ミリメートルの最大寸法を含み、第1の種結晶、第2の種結晶、及び第3の種結晶の各々の第1の表面の結晶方位は、同じであり、約1度以内と同一である。
本開示の実施形態は、少なくとも2つの結晶を含む自立型III族金属窒化物基板を含み、少なくとも2つの結晶の各々は、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと窒素とを含む。ウルツ鉱結晶構造を有する少なくとも2つの結晶の各々は、第1の方向に10ミリメートルを超える最大寸法と第1の方向に直交する第2の方向に4ミリメートルを超える最大寸法とを有する第1の表面、10cm-2から1×10cm-2の間の貫通転位の平均濃度、10cm-1未満の積層欠陥の平均濃度、200秒角未満の対称X線ロッキングカーブ半値全幅を含む。自立型III族金属窒化物基板は、40ミリメートルを超える第1の方向における最大寸法を有する。少なくとも2つの結晶の各々の第1の表面の結晶学的ミスカットの大きさは、0.5度以内に等しく、少なくとも2つの結晶の各々の第1の表面の結晶学的ミスカットの方向は、10度以内に等しい。少なくとも2つの結晶の各々は、多結晶GaNを含むマトリクス部材に結合され、第1のドメインと第2のドメインとの間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、方位差角度α及びβは約0.01度超かつ約1度未満である。
本開示の実施形態は、少なくとも2つのドメインを含む自立型III族金属窒化物基板を製造する方法を含み、該方法は、サセプタ上に堆積させた少なくとも2つの種結晶のアレイ上に多結晶GaNの層を堆積させてタイル状複合部材を形成する工程、及びタイル状複合部材をサセプタから分離する工程を含む。多結晶GaNの層は、少なくとも2つの種結晶の各々の第1の表面とは反対側の第2の表面に形成される。少なくとも2つの種結晶の各々は、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含み、ウルツ鉱結晶構造を有する少なくとも2つの種結晶は、第1の方向に10ミリメートルを超える最大寸法と第1の方向に直交する第2の方向に4ミリメートルを超える最大寸法とを有する第1の表面、約2×10cm-2未満の貫通転位の平均濃度、10cm-1未満の積層欠陥の平均濃度、及び200秒角未満の対称X線ロッキングカーブ半値全幅を含む。
本開示の実施形態は、少なくとも2つのドメインを含む自立型III族金属窒化物基板を製造する方法を含み、該方法は、少なくとも2つの種結晶を提供する工程であって、少なくとも2つの種結晶の各々がガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと窒素とを含む、工程、少なくとも2つの種結晶をサセプタ上に配置する工程、多結晶GaNの層を少なくとも2つの種結晶の各々の第1の表面とは反対側の第2の表面に堆積させてタイル状複合部材を形成する工程、及びサセプタからタイル状複合部材を取り外す工程を含む。ウルツ鉱結晶構造を有する少なくとも2つの種結晶は、第1の方向に10ミリメートルを超える最大寸法及び第1の方向に直交する第2の方向に4ミリメートルを超える最大寸法を有する第1の表面、約2×10cm-2未満の貫通転位の平均濃度、10cm-1未満の積層欠陥の平均濃度、及び200秒角未満の対称X線ロッキングカーブ半値全幅を含む。第1の種結晶の第1の表面と第2の種結晶の第1の表面との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、方位差角度α及びβは約0.01度超かつ約1度未満である。
本開示の実施形態は、種結晶のアレイを含む自立型III族金属窒化物基板であって、種結晶のアレイ内の種結晶の各々が、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと窒素とを含む、自立型III族金属窒化物基板、及び種結晶のアレイ内の種結晶の各々の少なくとも1つの表面の上に配置された多結晶GaN層を含む。ウルツ鉱結晶構造を有する種結晶の各々は、10cm-2から1×10cm-2の間の貫通転位の平均濃度、及び10cm-1未満の積層欠陥の平均濃度を有する第1の表面を含む。種結晶の各々の第1の表面の結晶学的ミスカットの大きさは、0.5度以内に等しく、種結晶の各々の第1の表面の結晶学的ミスカットの方向は、10度以内に等しい。種結晶のアレイの第1の種結晶と種結晶のアレイの第2の種結晶との間の極性方位差角度γは約0.005度超かつ約0.2度未満であり、方位差角度α及びβは約0.01度超かつ約1度未満である。
本開示の実施形態は、ウルツ鉱結晶構造、少なくとも2つのドメインであって、その各々がガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと窒素とを含む、少なくとも2つのドメイン;第1の方向に40ミリメートルを超える最大寸法を有する第1の表面であって、少なくとも2つのドメインの各々のドメイン表面を含み、該少なくとも2つのドメインの各々のドメイン表面が、第1の方向における少なくとも10ミリメートルの寸法、10cm-1未満の積層欠陥の平均濃度、及び10cm-2から10cm-2の間の貫通転位の平均濃度を有する、第1の表面を含む、自立型III族金属窒化物結晶を含む。少なくとも2つのドメインの各々のドメイン表面上の貫通転位の平均濃度は、第1の方向に少なくとも2倍、周期的に変化することができ、第1の方向における変化の周期は5マイクロメートルから20ミリメートルの間である。少なくとも2つのドメインの各々のドメイン表面は、複数の第1の領域を含み、該複数の第1の領域の各々は、5cm-1から10cm-1の間の濃度で、貫通転位の局所的にほぼ線形のアレイを有する。少なくとも2つのドメインの各々のドメイン表面は、複数の第2の領域をさらに含み、該複数の第2の領域の各々は、複数の第1の領域の隣接する対の間に配置されており、かつ10cm-2未満の貫通転位濃度、及び10cm-1未満の積層欠陥濃度を有する。少なくとも2つのドメインの各々のドメイン表面は、複数の第3の領域をさらに含み、該複数の第3の領域の各々は、複数の第2の領域のうちの1つ又は第2の領域の隣接する対の間に配置されており、10マイクロメートルから500マイクロメートルの間の最小寸法、並びに10cm-2から10cm-2の間の濃度の貫通転位を有する。自立型III族金属窒化物結晶は、第1の方向に沿って結晶の中央80%にわたって2つの直交する方向において0.5度以下で変動し、第1の方向に直交する第2の方向に沿って結晶の中央80%にわたって2つの直交する方向において0.5度以下で変動する、結晶学的ミスカットを有する。少なくとも2つのドメインは、約50cm-1から約5×10cm-1の間の線形密度を有する転位線によって分離され、第1のドメインと第2のドメインとの間の極性方位差角度γは約0.005度超かつ約0.3度未満であり、方位差角度α及びβは約0.01度超かつ約1度未満である。
本開示の上記特徴を詳細に理解することができるように、その一部が添付の図面に示されている実施形態を参照することにより、上に簡単に要約されている本開示のより詳細な説明を得ることができる。しかしながら、添付の図面は例示的な実施形態のみを示すものであり、したがって、本開示の範囲を限定すると見なすべきではなく、他の等しく有効な実施形態も許容されうることに留意されたい。
本開示の実施形態による種結晶又は基板上にパターン化されたフォトレジスト層を形成する方法の段階を示す簡略図 本開示の実施形態による種結晶又は基板上にパターン化されたフォトレジスト層を形成する方法の段階を示す簡略図 本開示の実施形態による種結晶又は基板上にパターン化されたフォトレジスト層を形成する方法の段階を示す簡略図 本開示の実施形態による種結晶又は基板上にパターン化されたマスク層を形成する方法を示す簡略図 本開示の実施形態による種結晶又は基板上にパターン化されたマスク層を形成する方法を示す簡略図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の実施形態による種結晶又は基板上のパターン化されたマスク層における開口部の配置の上面図 本開示の別の実施形態による種結晶又は基板上にパターン化されたフォトレジスト層を形成する方法の異なる段階を示す簡略図 本開示の別の実施形態による種結晶又は基板上にパターン化されたフォトレジスト層を形成する方法の異なる段階を示す簡略図 本開示の別の実施形態による種結晶又は基板上にパターン化されたマスク層を形成する方法を示す簡略図 本開示の別の実施形態による種結晶又は基板上にパターン化されたマスク層を形成する方法を示す簡略図 本開示の実施形態による種結晶又は基板内にパターン化されたトレンチを形成する方法を示す簡略図 本発明の実施形態による種結晶又は基板内にパターン化されたトレンチを形成する別の方法を示す簡略図 本発明の実施形態による種結晶又は基板内にパターン化されたトレンチを形成する別の方法を示す簡略図 本発明の実施形態による種結晶又は基板内にパターン化されたトレンチを形成する別の方法を示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するためのエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するためのエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するためのエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するための改善されたエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するための改善されたエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するための改善されたエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するための改善されたエピタキシャル横方向過成長プロセスを示す簡略図 本開示の実施形態による大面積III族金属窒化物結晶を形成するための改善されたエピタキシャル横方向過成長プロセスを示す簡略図 自立型のアンモノサーマルIII族金属窒化物ブール及び自立型のアンモノサーマルIII族金属窒化物ウエハを形成する方法を示す簡略図 自立型のアンモノサーマルIII族金属窒化物ブール及び自立型のアンモノサーマルIII族金属窒化物ウエハを形成する方法を示す簡略図 自立型のアンモノサーマルIII族金属窒化物ブール及び自立型のアンモノサーマルIII族金属窒化物ウエハを形成する方法を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの個々の粒子又はドメイン上の第1の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの個々の粒子又はドメイン上の第1の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの個々の粒子又はドメイン上の第1の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの個々の粒子又はドメイン上の第1の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの個々の粒子又はドメイン上の第1の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 本開示の一実施形態による、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの第2の貫通転位パターン及び領域を示す簡略図 正方形パターンを特徴とし、本開示の一実施形態による、図1Gに示されるように構成されたタイル状種結晶のアレイ上に結晶成長プロセスを実施することによって形成された、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハを示す図 本開示の実施形態による方法、並びに結果として得られる光電子デバイス及び電子デバイスを示す断面図 本開示の実施形態による方法、並びに結果として得られる光電子デバイス及び電子デバイスを示す断面図 本開示の実施形態による方法、並びに結果として得られる光電子デバイス及び電子デバイスを示す断面図 本開示の実施形態による方法、並びに結果として得られる光電子デバイス及び電子デバイスを示す断面図 二次元正方形アレイに配置された開口部を有するマスク層を使用してアンモノサーマル横方向エピタキシャル成長によって形成された自立型の横方向成長GaNブール又はウエハの上面図(平面図) 本開示の実施形態による、例えばLEDのデバイス構造の上面図 本開示の実施形態による、例えばLEDのデバイス構造の上面図 本開示の実施形態による、例えばLEDのデバイス構造の上面図 本開示の実施形態に従って準備されたc面GaN基板におけるトレンチの研磨断面の光学顕微鏡写真 本開示の実施形態に従って形成されたc面アンモノサーマルGaN層の断面の光学顕微鏡写真 図11Aと同じ断面からのクローズアップ画像 欠陥選択エッチングに供されたc面アンモノサーマルGaN層の平面光学顕微鏡写真。本開示の2つの実施形態による、<10-10>の方向に沿って配向されたスリット形状のマスク開口部の上のウィンドウ領域における低濃度のエッチピット、並びに2つのウィンドウ領域のほぼ中間に形成されたコアレッセンスフロントにおけるエッチピット(貫通転位)の線形アレイを示している。 図12Aと同じ 本開示の一実施形態に従って製造された50mmウエハ全体にわたるミスカット変動を市販の50mmウエハのものと比較したX線回折測定の概要 本開示の一実施形態に従って製造された50mmウエハからの2つの反射の半値全幅を市販の50mmウエハのものと比較したx線ロッキングカーブ測定の概要 本開示の実施形態に従って準備されたc面GaN基板におけるトレンチのレーザ切断断面の光学顕微鏡写真 欠陥選択エッチングに供されたc面アンモノサーマルGaN層の平面光学顕微鏡写真。本開示の実施形態による、<10-10>の方向に沿って配向されたスリット形状のマスク開口部の上のウィンドウ領域における低濃度のエッチピット、並びに2つのウィンドウ領域のほぼ中間に形成されたコアレッセンスフロントにおけるエッチピット(貫通転位)の線形アレイを示している。 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による種結晶のアレイの平面図 本発明の実施形態による、基板バルク結晶成長プロセス中に種結晶のアレイを保持する固定具の概略図 本発明の実施形態による、基板バルク結晶成長プロセス中に種結晶のアレイを保持する固定具の概略図 本発明の実施形態による、基板バルク結晶成長プロセス中に種結晶のアレイを保持する固定具の概略図 本発明の実施形態による、基板バルク結晶成長プロセス中に種結晶のアレイを保持する固定具の概略図 本発明の一実施形態による、タイル状複合基板の形成に用いられるプロセス内のさまざまな状態における種結晶のアレイの概略図 本発明の一実施形態による、タイル状複合基板の形成に用いられるプロセスにおける種結晶のアレイの概略図 本発明の一実施形態による、タイル状複合基板の形成に用いられるプロセスにおける種結晶のアレイの概略図 本発明の一実施形態による、タイル状複合基板の形成に用いられるプロセスにおける種結晶のアレイの概略図 本発明の一実施形態による、図19Bに示される種結晶のアレイ内の種結晶の一部の拡大図 本発明の一実施形態による、図19Bに示されるような多孔質部材及び多結晶GaN層を含む構造の一部の上面断面図 本発明の一実施形態による、タイル状複合基板の上面図 本発明の一実施形態による、種結晶のアレイで使用するように適合された種結晶の概略図 本発明の一実施形態による、図20Aに示される種結晶を含む種結晶の一次元配列の上面図 本発明の一実施形態による、図20Bに示される種結晶の一次元配列の端面図 本発明の一実施形態による、その上に結晶層が成長した後の図20Bに示される種結晶の一次元配列の上面図 本発明の一実施形態による、図20Dに示される種結晶の一次元配列の端面図 本発明の一実施形態による、望ましい製造プロセスによって図20Eに示される種結晶の一次元配列に形成された横断面 本発明の一実施形態による、図21Aに示される横断面を使用して形成された種結晶の一次元配列の上面図 本発明の一実施形態による、図21Bに示される種結晶の横断面の端面図 本発明の一実施形態による、その上に結晶層が成長した後の図21Bに示される種結晶の一次元配列の上面図 本発明の一実施形態による、図21Dに示される種結晶の一次元配列の側面図 本発明の一実施形態による、望ましい製造プロセスによって図21Eに示される種結晶の一次元配列に形成された横断面 本発明の一実施形態による、コアレッセンスフロントに沿って実施されたスライスを示す、図22Aに示された種結晶の一次元配列の上面図 本発明の一実施形態による、図22A及び22Bに関連して説明された1つ以上の製造プロセスによって形成された横断面の一部を使用して形成された種結晶の一次元配列の上面図 本発明の一実施形態による、図22Cに示される種結晶の一次元配列の端面図 本発明の一実施形態による、その上に結晶層が成長した後の図22Cに示される種結晶の一次元配列の上面図 本発明の一実施形態による、図22Eに示される種結晶の一次元配列の端面図 本発明の一実施形態による、電子デバイスを形成し、複合基板を回収するために用いられるプロセスにおける複合基板の概略図 本発明の一実施形態による、電子デバイスを形成し、複合基板を回収するために用いられるプロセスにおける複合基板の概略図 本発明の一実施形態による、電子デバイスを形成し、複合基板を回収するために用いられるプロセスにおける複合基板の概略図
本開示によれば、III族金属窒化物及びガリウムをベースとした基板を製造するための材料を処理する技法に関連した技法が提供される。より詳細には、本開示の実施形態は、処理技法の組合せを使用して大面積基板を成長させる技法を含む。本開示の幾つかの実施形態では、大面積基板は、本明細書では自立型III族金属窒化物ウエハと呼ばれる。加えて、幾つかの実施形態では、さらに処理して1つ以上の自立型III族金属窒化物ウエハを形成するように構成された、形成又は成長させた構成要素は、本明細書では自立型III族金属窒化物ブールと呼ばれる。単なる例として、本開示は、GaN、AlN、InN、InGaN、AlGaN、及びAlInGaNの結晶、並びにバルク基板又はパターン化された基板を製造するための他の結晶の成長に適用することができる。このようなバルク基板又はパターン化された基板は、光電子デバイス、レーザダイオード、発光ダイオード、フォトダイオード、太陽電池、光電気化学的水分解及び水素発生、光検出器、集積回路、並びにトランジスタなどを含めたさまざまな用途に使用することができる。
GaNの貫通転位は、GaNをベースとしたLED及びレーザダイオードの効率を大幅に制限する可能性がある、強力な非放射再結合中心として作用することが知られている。非放射再結合により、局所的な加熱が生じ、デバイスの劣化の加速につながる可能性がある(Cao et al., Microelectronics Reliability, 2003, 43(12), 1987-1991)。高電力用途では、GaNをベースとしたデバイスは、ドループとして知られる、電流密度の増加に伴う効率の低下を被る。転位密度とLEDのドループの大きさとの間には相関関係があることを示唆する証拠が存在する(Schubert et al., Applied Physics Letters, 2007, 91(23), 231114)。GaNをベースとしたレーザダイオードの場合、転位密度と平均故障間隔(MTTF)との間には負の相関関係があることが十分に実証されている(Tomiya et al., IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(6), 1277-1286)。これは、転位に沿った不純物の拡散によるものと思われる(Orita et al., IEEE International Reliability Physics Symposium Proceedings, 2009, 736-740)。電子デバイスの場合、転位は漏れ電流を著しく増加させ(Kaun et al., Applied Physics Express, 2011, 4(2), 024101)、HEMT構造のデバイス寿命を短縮することが示されている(Tapajna et al., Applied Physics Letters, 2011, 99(22), 223501-223503)。バルクGaNをエピタキシャル薄膜成長の基板材料として使用する主な利点の1つは、膜における貫通転位の濃度の大幅な低下である。したがって、バルクGaN基板の転位密度は、デバイス効率及び信頼性に大きな影響を与える。
横方向エピタキシャル過成長(LEO)は、気相法で成長させた膜の結晶品質の改善に広く適用されている方法である。例えば、サファイア基板上にGaN層を核生成し、開口部の周期的なアレイを備えたSiOマスクをGaN層上に堆積させ、次に、SiOマスク層の開口部を通した有機金属化学気相成長法(MOCVD)によってGaNを成長させ、マスク上で横方向に成長させ、合体させることによる、方法である。マスクの開口部の上の領域における転位密度は、マスクの下の層と同様に非常に高かったが、横方向に過成長した領域における転位密度は桁違いに低かった。この方法は、大面積基板に適用することができ、転位密度を大幅に低下させることができることから、魅力的である。同様の方法が、さまざまな形で、多くのグループによってGaN層の気相成長に適用されている。これらの方法は、LEO、エピタキシャル横方向過成長(ELO又はELOG)、選択領域成長(SAG)、及び逆ピラミッド状のピットを伴うエピタキシャル成長による転位除去(DEEP)などとさまざまに呼ばれる。この方法の本質的にすべてのバリエーションにおいて、薄いヘテロエピタキシャルなGaN層が非GaN基板上で成長し、パターン化されたマスクがGaN層上に堆積され、マスクの開口部の一次元又は二次元のアレイで成長が再開されると考えられている。マスクの開口部によって画成される成長位置の周期又はピッチは、典型的には2から100マイクロメートルの間であり、典型的には約5から20マイクロメートルの間である。個々のGaN結晶子又は領域は成長し、次いで合体する。次いで、合体したGaN材料の上でエピタキシャル成長を続けて、厚い膜又は「インゴット」を生成することができる。HVPEによって、合体したGaN材料上に比較的厚いGaN層を堆積させることができる。LEOプロセスは、特にマスクの上の領域において、転位濃度を、典型的には約10~10cm-2のレベルまで大幅に低下させることができる。しかしながら、非常に多くの場合、形成されたLEO層の横方向に成長したウィングは、下地基板から結晶学的に数度、傾斜しており(「ウィング傾斜」)、これは、薄膜プロセスでは許容できる場合があるが、バルク結晶成長プロセスでは、応力及び亀裂、並びに表面結晶方位の許容できない変動を引き起こす可能性があることから、許容できない場合がある。
平均転位密度を約10~10cm-2未満に低下させるため、若しくは50又は100mmのウエハ全体にわたるミスカット変動を約0.1度未満に低下させるために、従来適用されていたLEO法の能力は、幾つかの要因によって制限される。第1に、マスク層に形成された開口部のパターンのピッチは控えめになる傾向があるが、ある特定の用途ではより大きいピッチが望ましい場合がある。第2に、c面LEO成長は、排して、(0001)又はGa面方向で行われ、少なくとも2つの制限が生じる。1つの制限は、M方向の成長速度が(0001)方向の成長速度よりも遅くなる傾向があり、半極性(10-11)ファセットがしばしば形成され、その結果、全体の結晶直径が厚さの増加とともに低下し、大きいピッチパターンの合体が困難になることである。加えて、別の制限は、他の結晶方向での成長とは対照的に、(0001)方向での成長は酸素を排除する傾向があることである。結果として、シードとして用いた(0001)で成長させたHVPE結晶と、別の技法によってその上に成長させた結晶との間に、重大な格子不整合が存在する可能性がある。加えて、LEOプロセス中に半極性ファセットが形成されると、酸素(又は、他のドーパント)レベルが大幅に変動し、格子定数と応力の横方向の変動を引き起こし、LEO結晶自体又はシードとして用いた後者の上で成長させた結晶に亀裂を引き起こす可能性がある。
HVPE以外の他III族金属窒化物成長技法について、LEO法の変形が開示されている。第1の例では、Jiangら(米国特許出願公開第2014/0147650号、現在は米国特許第9,589,792号の明細書)によって、典型的な気相LEO型のプロセス(SiO又はSiN)のマスク層を接着層、拡散バリア層、及び不活性層の組合せで置き換える、III族金属窒化物のアンモノサーマルLEO成長のためのプロセスが開示された。第2の例では、Moriら(米国特許出願公開第2014/0328742号、現在は米国特許第9,834,859号の明細書)によって、ナトリウム-ガリウムフラックスにおけるIII族金属窒化物のLEO成長のためのプロセスが開示された。しかしながら、この方法では、合体する結晶子は、通常、顕著な半極性ファセットを有し、合体した結晶の不純物含有量に大きな横方向の変動をもたらし、合体する窒化物層と該合体する窒化物とは異なる材料を含むヘテロ基板との間に熱膨張の不整合を引き起こし、これが制御不能な亀裂を引き起こす可能性がある。
数名の著者、例えば、Linthicumら(Applied Physics Letters, 75, 196, (1999))、Chenら(Applied Physics Letters 75, 2062 (1999))、及びWangら(米国特許第6,500,257号明細書)は、GaNの成長における貫通転位が通常、主に成長方向に伝播することに注目し、パターン化されたマスクのウィンドウを通して垂直に成長させるのではなく、薄く欠陥の多いc面GaN層のトレンチの側壁から成長させることによって、転位密度を従来のLEO法よりもさらに低下させることができることを示した。これらの方法は、他の著者、例えば、Chenら(Japanese Journal of Applied Physics 42, L818 (2003))、及びImerら(米国特許第7,361,576号明細書)によって無極性及び半極性配向のGaN薄膜に拡張されている。しかしながら、発明者の知る限り、側壁LEO法は、バルクGaNの成長にも、NセクターGaNの成長にもまだ拡張されていない。特に、我々は、薄膜研究に用いられたさまざまな方法が、ミリメートルスケールのピッチで数百マイクロメートルの深さのトレンチを形成するのに最適であり、幾つかの予期しない利点を生み出すことを見出した。
図1A~1Tは、アンモノサーマル側壁横方向エピタキシャル過成長のためのパターン化されたマスクシード層を形成する方法のさまざまな段階における種結晶又は基板の概略的な断面図である。図1Aを参照すると、基板101には、その上にフォトレジスト層103が配置されている。基板101及び図1A~1Tに関して説明したその後形成される層は、図2A~2C、図3A~3E、及び図17A~22Fに関してさらに説明されるように、その後のタイル化操作において使用することができる。ある特定の実施形態では、図1A~1Tに関連して説明された層形成プロセス工程の幾つかは、例えば図17A~Fに関連してさらに説明されるように、タイル化操作のプロセス工程の幾つかに続いて実施される。ある特定の実施形態では、基板101は、単結晶III族金属窒化物、ガリウム含有窒化物、又は窒化ガリウムである基板材料からなるか、又はそれを含む。基板101は、HVPEによって、アンモノサーマル的に、又はフラックス法によって成長させることができる。基板101の大面積表面の一方又は両方が研磨及び/又は化学機械研磨されていてもよい。基板101の大面積表面102は、(0001)+c面、(000-1)-c面、{10-10}m面、{11-2±2}、{60-6±1}、{50-5±1}、{40-4±1}、{30-3±1}、{50-5±2}、{70-7±3}、{20-2±1}、{30-3±2}、{40-4±3}、{50-5±4}、{10-1±1}、{10-1±2}、{10-1±3}、{21-3±1}、又は{30-3±4}の5度以内、2度以内、1度以内、又は0.5度以内の結晶方位を有しうる。面{30-3±4}は、{30-34}面及び{30-3-4}面を意味することが理解されよう。大面積表面102は、(hkil)半極性配向を有することができ、ここで、i=-(h+k)及びlであり、h及びkのうちの少なくとも1つは非ゼロである。大面積表面102は、約5ミリメートルから約600ミリメートルの間の最大横方向寸法と、約1ミリメートルから約600ミリメートルの間の最小横方向寸法とを有することができ、基板101は、約10マイクロメートルから約10ミリメートルの間、又は約100マイクロメートルから約2ミリメートルの間の厚さを有することができる。
基板101は、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満の表面貫通転位密度を有しうる。基板101は、約10cm-1未満、約10cm-1未満、約10cm-1未満、約10cm-1未満又は約1cm-1未満の積層欠陥濃度を有しうる。基板101は、約500秒角未満、約300秒角未満、約200秒角未満、約100秒角未満、約50秒角未満、約35秒角未満、約25秒角未満、又は約15秒角未満の対称X線ロッキングカーブ(例えばc面の場合、(002))半値全幅(FWHM)を有しうる。基板101は、約500秒角未満、約300秒角未満、約200秒角未満、約100秒角未満、約50秒角未満、約35秒角未満、約25秒角未満、又は約15秒角未満の非対称X線ロッキングカーブ(例えばc面の場合、(201))半値全幅(FWHM)を有しうる。基板101は、少なくとも1つ、少なくとも2つ、又は3つの独立した又は直交する方向に、0.1メートル超、1メートル超、10メートル超、100メートル超、又は1000メートル超の結晶曲率半径を有しうる。
基板101は、比較的低濃度の貫通転位を有する領域によって分離された、比較的高濃度の貫通転位を有する領域を含みうる。比較的高い濃度領域における貫通転位の濃度は、約10cm-2超、約10cm-2超、約10cm-2超、又は約10cm-2超でありうる。比較的低い濃度領域における貫通転位の濃度は、約10cm-2未満、約10cm-2未満、又は約10cm-2未満でありうる。基板101は、比較的低い電気伝導性を有する領域によって分離された、比較的高い電気伝導性を有する領域を含みうる。基板101は、約10マイクロメートルから約100ミリメートルの間、又は約0.1ミリメートルから約10ミリメートルの間の厚さを有しうる。基板101は、少なくとも約5ミリメートル、少なくとも約10ミリメートル、少なくとも約25ミリメートル、少なくとも約50ミリメートル、少なくとも約75ミリメートル、少なくとも約100ミリメートル、少なくとも約150ミリメートル、少なくとも約200ミリメートル、少なくとも約300ミリメートル、少なくとも約400ミリメートル、又は少なくとも約600ミリメートルの最大寸法(直径を含む)を有しうる。
大面積表面102(図1A)は、(000-1)N面、c面配向の約5度以内の結晶方位を有することができ、(002)及び/又は(102)及び/又は(201)反射で約200秒角未満、約100秒角未満、約50秒角未満、又は約30秒角未満のX線回折ω-スキャンロッキングカーブ半値全幅(FWHM)を有することができ、かつ約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満の平均転位密度を有することができる。幾つかの実施形態では、大面積表面102における貫通転位は、ほぼ均一に分布している。他の実施形態では、大面積表面102における貫通転位は、低転位密度領域のマトリクス内に、比較的高及び比較的低濃度領域の行の一次元配列として又は高転位密度領域の二次元配列として不均一に配置される。大面積表面102の結晶方位は、約1度未満、約0.5度未満、約0.2度未満、約0.1度未満、又は約0.05度未満、約0.02度未満、又は約0.01度未満で一定でありうる。ある特定の実施形態では、大面積表面102は、マスク層の接着を強化するために、例えばウェットエッチングによって粗面化され、つや消しされた形態を形成する。
再び図1Aを参照すると、フォトレジスト層103は、当技術分野で知られている方法によって大面積表面102上に堆積することができる。例えば、リフトオフプロセスの特定の実施形態では、ネガ型フォトレジストの溶液が最初に大面積表面102に塗布される。次に、基板101を高速で回転させ(例えば、毎分1000から6000回転の間で30から60秒)、大面積表面102上に均一なフォトレジスト層103を生じさせる。フォトレジスト層103をベークして(例えば、摂氏約90から約120度の間)、過剰なフォトレジスト溶媒を除去することができる。ベーク後、次にフォトマスク(図示せず)を通してフォトレジスト層103をUV光に露光させて、非露出領域104B内に形成された、領域104Aなどの架橋フォトレジストの所定のパターンを有する、パターン化されたフォトレジスト層104(図1B)を形成することができる。パターン化されたフォトレジストの領域104Bは、特徴的な幅又は直径W及びピッチLを有する縞又はドットを形成することができる。次に、パターン化されたフォトレジスト層104を現像して、領域104Bに見られる非架橋材料を除去し、図1Cに示されるように領域104Aを残すことができる。
図1Dを参照すると、1つ以上のパターン化されたマスク層111が大面積表面102上及びパターン化されたフォトレジスト層104の領域104A上に堆積されうる。1つ以上のパターン化されたマスク層111は、大面積表面102上に堆積された接着層105、該接着層105上に堆積された拡散バリア層107、及び拡散バリア層107上に堆積された不活性層109を含みうる。接着層105は、Ti、TiN、TiN、TiSi、Ta、TaN、Al、Ge、AlGe、Cu、Si、Cr、V、Ni、W、TiW、TiWなどのうちの1つ以上を含んでよく、約1ナノメートルから約1マイクロメートルの間の厚さを有しうる。拡散バリア層107は、TiN、TiN、TiSi、W、TiW、TiN、WN、TaN、TiW、TiWSi、TiC、TiCN、Pd、Rh、Crなどのうちの1つ以上を含んでよく、約1ナノメートルから約10マイクロメートルの間の厚さを有する。不活性層109は、Au、Ag、Pt、Pd、Rh、Ru、Ir、Ni、Cr、V、Ti、又はTaのうちの1つ以上を含んでよく、約10ナノメートルから約100マイクロメートルの間の厚さを有しうる。1つ以上のパターン化されたマスク層111は、スパッタ堆積、熱蒸発、電子ビーム蒸発などによって堆積させることができる。(一又は複数の)パターン化されたマスク層111の堆積後、図1Dに示されるように、パターン化されたフォトレジスト層104の領域104A上に存在する(一又は複数の)パターン化されたマスク層111の部分は、基板101と直接接触しない。次に、図1Eに示されるように、領域104A及びその上に配置された(一又は複数の)パターン化されたマスク層111の部分を当技術分野で知られている方法によってリフトオフして、(一又は複数の)パターン化されたマスク層111に開口部112を形成する。ある特定の実施形態では、リフトオフプロセスの前に、例えば10から500ナノメートルの厚さの比較的薄い不活性層が堆積される。リフトオフプロセスの実施後、例えば5から100マイクロメートルの厚さの追加のより厚い不活性層を、電気めっき、無電解堆積などによって、すでにパターン化された不活性層の上に堆積させることができる。
シャドーマスキング、ポジレジスト反応性イオンエッチング、湿式化学エッチング、イオンミリング、及びナノインプリントリソグラフィ、さらに上記のネガ型のレジストリフトオフ手順のバリエーションを含めた、上記のリフトオフ手順以外の他の方法を使用して、パターン化されたマスク層111を形成することができる。
ある特定の実施形態では、(一又は複数の)パターン化されたマスク層111は、基板101の前面及び背面の両方に堆積される。
図1F~1Lは、上述の処理のうちの1つ以上によって形成された、基板101上の露出領域120の配置の上面図である。例えば図1F~1Lに示される露出領域120(又は、本明細書では成長中心とも呼ばれる)は、図1Eに示される(一又は複数の)パターン化されたマスク層111に形成された開口部112によって画成されうる。ある特定の実施形態では、露出領域120は、図1Iに示されるような露出領域120の単一の列など、y方向に一次元(1D)の配列で配置される。ある特定の実施形態では、露出領域120は、図1F~1H及び図1J~1Lに示されるように、x及びy方向に二次元(2D)の配列で配置される。開口部112、したがって露出領域120は、円形、正方形、長方形、三角形、六角形などであってよく、図1F~1Lに示されるように、約1マイクロメートルから約5ミリメートルの間、又は約10マイクロメートルから約500マイクロメートルの間の開口部寸法又は直径Wを有しうる。露出領域120は、図1F及び1Gに示されるように、約5マイクロメートルから約20ミリメートルの間、約200マイクロメートルから約15ミリメートルの間、又は約500マイクロメートルから約10ミリメートルの間、又は約0.8ミリメートルから約5ミリメートルの間のピッチ寸法Lを有する、2Dの六角形又は正方形のアレイに配置することができる。露出領域120は、2Dのアレイに配置することができ、図1H及び図1J~1Lに示されるように、y方向のピッチ寸法Lとx方向のピッチ寸法Lとは互いに異なっていてもよい。露出領域120は、長方形、平行四辺形、六角形、又は台形のアレイ(図示せず)に配置することができ、図1H及び図1J~1Lに示されるように、y方向のピッチ寸法Lとx方向のLとは互いに異なっていてもよい。露出領域120のアレイは、線形又は不規則な形状であってもよい。(一又は複数の)パターン化されたマスク層111の露出領域120は、基板101の構造と位置合わせして配置することができる。例えば、ある特定の実施形態では、大面積表面102は、六角形、例えば、(0001)又は(000-1)結晶方位であり、(一又は複数の)パターン化されたマスク層111の開口部は、最も近い隣接開口部間の分離が大面積表面102の<11-20>又は<10-10>の方向に平行になるように、2Dの六角形アレイを含む。ある特定の実施形態では、基板の大面積表面102は無極性又は半極性であり、露出領域120は、最も近い隣接開口部間の分離が基板101の大面積表面102上のc軸、m軸、及びa軸のうちの2つの投影に平行になるように、2Dの正方形又は長方形アレイを含む。ある特定の実施形態では、露出領域120のパターンは、基板101の構造に対して斜めに配向され、例えば、露出領域120は、ウルツ鉱結晶構造などの六角形の結晶構造を有する、基板101の大面積表面102上のc軸、m軸、及びa軸の投影など、基板の高対称軸に対して約1度から約44度の間で回転される。ある特定の実施形態では、露出領域120は、実質的に円形ではなく、実質的に線形である。ある特定の実施形態では、露出領域120は、図1Iに示されるように、基板101の全長にわたって延びるW及び周期Lを有するスリットである。ある特定の実施形態では、露出領域120は、y方向の幅W及び基板101の長さよりも短いx方向の所定の長さWを有するスリットであり、図1J~1Lに示されるように、y方向に周期L及びx方向に周期Lを有する2Dの線形アレイに配置することができる。幾つかの実施形態では、露出領域120(例えば、スリット)の隣接する行は、図1Kに示されるように、直接隣接して配置されるのではなく、互いにx方向にずれていてもよい。ある特定の実施形態では、露出領域120(例えば、スリット)の隣接する行は、互いから長手y方向にずれていてもよい。ある特定の実施形態では、露出領域120は、図1Lに示されるように、例えば、x方向及びy方向など、2つ以上の異なる方向に延びるスリットを含む。ある特定の実施形態では、露出領域120(例えば、スリット)は、基板の六方対称性を反映するように配置することができる。ある特定の実施形態では、露出領域120(例えば、スリット)は、基板101の縁部まで延在しうる。
ある特定の実施形態では、開口部のパターンは、基板の縁部から所定の距離、例えば、10マイクロメートルから5ミリメートルの間、20マイクロメートルから2ミリメートルの間、50マイクロメートルから1ミリメートルの間、又は100マイクロメートルから500マイクロメートルの間の距離で終端する。(一又は複数の)パターンの終端は、基板の縁部を取り囲むリムを形成する。リムは、所定の距離に等しい幅を有することができ、これは、例えば、パターン化されたマスク層の縁部の完全性及び堅牢性を改善するために使用することができる。基板の縁部だけでなく、リムも、パターン化されたマスク層111によって覆われてもよい。
代替的な実施形態では、図1Mに示されるように、基板101の大面積表面102は、接着層105、拡散バリア層107、及び不活性層109のうちの1つ、2つ、又はそれより多く含む、ブランケットマスク116で覆われ、その後にポジ型フォトレジスト層113が続く。フォトレジスト層は、フォトマスク(図示せず)を通してUV光に露光され、図1Nに示される、可溶性の露光領域106Bと非露光領域106Aとを形成する(基本的に、図1Bに示されるネガ型のパターン)。次に、露光領域106Bは現像によって除去される。図1Oに示されるように、ブランケットマスク116(接着層105、拡散バリア層107、及び不活性層109を含む)の開口部112が、パターン化されたフォトレジスト層113Aの開口部を通してウェットエッチング又はドライエッチングによって形成され、パターン化されたマスク層111を形成することができる。開口部112の形成後、フォトレジスト層113が除去され、図1Pに示されるように、図1Eに示される構造と同様又は同一の構造が生成される。
次に、図1Qに示されるように、パターン化されたマスク層111に形成された開口部112(又は、「ウィンドウ」)を通して基板101の露出領域120にトレンチ115が形成される。ある特定の実施形態では、トレンチ115の深さは、50マイクロメートルから約1ミリメートルの間、又は約100マイクロメートルから約300マイクロメートルの間である。ある特定の実施形態では、トレンチ115は、基板101の厚さ全体を貫通し、基板101の裏側118からパターン化されたマスク層111の開口部112を通って延びるパターン化された穴又はスリットを形成する。個々のトレンチの幅は、約10マイクロメートルから約500マイクロメートルの間、又は約20マイクロメートルから約200マイクロメートルの間でありうる。個々のトレンチ115は線形であっても湾曲していてもよく、X方向及び/又はY方向に約100マイクロメートルから約50ミリメートルの間、又は約200マイクロメートルから約10ミリメートルの間、又は約500マイクロメートルから約5ミリメートルの間の長さを有しうる。特定の実施形態では、基板101の大面積表面102は、(000-1)N面配向を有し、トレンチ115はウェットエッチングによって形成される。特定の実施形態では、エッチャント組成物又は溶液は、HSO/HPO比が0から約1:1の間の85%リン酸(HPO)及び硫酸(HSO)の溶液を含む。ある特定の実施形態では、リン酸溶液は、ポリリン酸を形成するように調整され、その沸点が上昇する。例えば、試薬グレード(85%)のHPOは、ビーカー内で摂氏約200度から摂氏約450度の間の温度で約5分から約5時間、攪拌及び加熱することによって調整することができる。特定の実施形態では、トレンチ115は、摂氏約200度から摂氏約350度の間の温度で約15分から約6時間、前述のエッチング溶液の1つにおいてマスクされた基板101を加熱することによって形成される。別の実施形態では、トレンチ115は、電気化学ウェットエッチングによって形成される。
図1R~1Tは、基板101にパターン化されマスクされたトレンチのアレイを形成するための代替的な手法を示している。図1Rに示されるように、ブランケットマスク116(接着層105、拡散バリア層107、及び不活性層109を含む)を基板101の大面積表面102上に堆積させることができる。パターン化されたマスク層111を形成するために、図1Sに示されるように、発生期のトレンチ114をレーザアブレーションによって形成することができる。レーザアブレーションプロセスは、レーザ加工プロセス又はレーザビーム加工プロセスとして知られてもいる、又はそのように呼ばれている。レーザアブレーションは、ネオジムをドープされたイットリウム-アルミニウム-ガーネット(Nd:YAG)レーザ、COレーザ、エキシマレーザ、Ti:サファイアレーザなどのワットレベルのレーザによって実施することができる。レーザは、ナノ秒、ピコ秒、又はフェムト秒の範囲のパルス長を有するパルスを放出することができる。ある特定の実施形態では、レーザの出力光の周波数は、適切な非線形光学を使用して、2倍化、3倍化、又は4倍化することができる。パターン化されたマスク層111を有する基板101の表面上でのレーザのビーム幅、出力、及び走査速度は、発生期のトレンチ114の幅、深さ、及びアスペクト比を調整するために変更することができる。レーザは、単一のトレンチ上を繰り返し走査するか、又はトレンチのアレイ全体の上を繰り返し走査することができる。
発生期のトレンチ114の表面及び側壁は、レーザアブレーションプロセスに由来して残った損傷を含んでいる可能性がある。ある特定の実施形態では、発生期のトレンチ114を含む基板101は、図1Tに示されるように、発生期のトレンチ114内の残留損傷を除去するために、ウェットエッチング、ドライエッチング、又は光電気化学エッチングによってさらに処理される。特定の実施形態では、基板101の大面積表面102は、(000-1)N面配向を有し、トレンチ115はウェットエッチングによって発生期のトレンチ114から形成される。特定の実施形態では、エッチャント組成物又は溶液は、HSO/HPO比が0から約1:1の間の85%リン酸(HPO)及び硫酸(HSO)の溶液を含む。ある特定の実施形態では、リン酸溶液は、ポリリン酸を形成するように調整され、その沸点が上昇する。例えば、試薬グレード(85%)のHPOは、ビーカー内で摂氏約200度から摂氏約450度の間の温度で約5分から約5時間、攪拌及び加熱することによって調整することができる。特定の実施形態では、トレンチ115は、摂氏約200度から摂氏約350度の温度で約15分から約6時間の間、上述のエッチング溶液のうちの1つにおいて基板101を加熱することによって形成される。
基板101で上述のプロセスの1つ以上を実施した後、結晶成長プロセスは、単一の基板101上又は基板101のアレイ上で同時に実施することができる。基板101の単一の基板101又はアレイは、結晶成長プロセス中に、それぞれ、一又は複数の種結晶として作用する。図17A~17Fは、結晶成長プロセス中に使用することができる、基板101などの種結晶370のさまざまなアレイの幾つかの例を示している。図17A~17Fを参照すると、2つ以上の種結晶370の縁部395の少なくとも幾つかは、タイル結晶の一次元又は二次元のアレイを形成するテッセレーション用に準備される。種結晶370はそれぞれ、正方形(図17A)、長方形(図17B)、六角形(図17C)、菱形と三角形の混合(図17D)、六角形と五角形の混合(図17E)、六角形と菱形の混合(図17F)、又は他の形状、若しくはそれらの組合せで調製することができる。表面102が非極性又は半極性の配向を有する場合、正方形又は長方形が好ましい場合がある。表面102が(000±1)c面配向を有する場合、六角形、菱形、三角形、菱面体、五角形、又は台形の形状が好ましい場合がある。三角形、四角形、又は五角形の形状は、種結晶のアレイの外周を画成するのに役立ちうる。ある特定の実施形態では、種結晶370の縁部395の一部又は全部は、縁部と大面積表面102との交点が、{11-20}a面、(000±1)c面、{10-10}m面、{10-1±1}から選択される面、又は大面積表面102に垂直な面とc軸、m軸、又はa軸から選択される軸とによって画成される面に対して、0.5度、0.2度、0.1度、0.05度、0.02度、又は0.01度以内で平行になるように調製される。ある特定の実施形態では、縁部395は、10マイクロメートル未満、5マイクロメートル未満、2マイクロメートル未満、又は1マイクロメートル未満の二乗平均表面粗さで調製される。ある特定の実施形態では、縁部395は、パターン化されたマスク層111が大面積表面102から縁部の少なくとも一部にわたって延在するように、上記及び図1A~1Tで説明したように、パターン堆積及びパターニングの前に調製される。ある特定の実施形態では、縁部395は、ダイシングソー、ワイヤーソー、及びレーザのうちの少なくとも1つによって調製される。ある特定の実施形態では、縁部395はまた、各種結晶370の結晶方位のトラッキングを単純化するために、欠落角又は方位溝などのオリエンテーションフラットも含む。
ある特定の実施形態では、アレイに位置づけられた種結晶370の多く、ほとんど、又はすべてが、正確に同じサイズ及び形状を有するように調製される。例えば、アレイ内の公称上同一の種結晶370の各々のX方向の寸法380は、0.5ミリメートル、0.2ミリメートル、0.1ミリメートル、50マイクロメートル、20マイクロメートル、10マイクロメートル、5マイクロメートル、2マイクロメートル、又は1マイクロメートル以内に等しくなりうる。ある特定の実施形態では、X方向の寸法380は、4ミリメートルから10ミリメートルの間、10ミリメートルから15ミリメートルの間、15ミリメートルから25ミリメートルの間、25ミリメートルから50ミリメートルの間、50ミリメートルから100ミリメートルの間、又は100ミリメートルから150ミリメートルの間である。同様に、アレイ内の公称上同一の種結晶の各々のY方向の寸法390は、0.5ミリメートル、0.2ミリメートル、0.1ミリメートル、50マイクロメートル、20マイクロメートル、10マイクロメートル、5マイクロメートル、2マイクロメートル、又は1マイクロメートル以内に等しくなりうる。同様に、アレイ内の公称上同一の種結晶の各々のY方向の寸法390は、0.5ミリメートル、0.2ミリメートル、0.1ミリメートル、50マイクロメートル、20マイクロメートル、10マイクロメートル、5マイクロメートル、2マイクロメートル、又は1マイクロメートル以内に等しくなりうる。ある特定の実施形態では、Y方向の寸法390は、8ミリメートルから10ミリメートルの間、10ミリメートルから15ミリメートルの間、15ミリメートルから25ミリメートルの間、25ミリメートルから50ミリメートルの間、50ミリメートルから100ミリメートルの間、又は100ミリメートルから150ミリメートルの間である。ある特定の実施形態では、縁部395の一部、具体的には、種結晶のアレイの外向きの縁部は、図19Gに示されるように、種結晶370のアレイの湾曲した、若しくはほぼ円形又は楕円形の周囲を可能にするために、直線ではなく、円形又は楕円形の横断面になるように切断することができる。ある特定の実施形態では、種結晶370の出発点は、大部分が円形の周囲を有するウエハであり、元の縁部の一部が保持される一方、他の縁部はテッセレーションのために上記のように調製される。
ある特定の実施形態では、1つ以上の種結晶の裏面、並びに任意選択的に1つ以上の縁部及び/又は前面が、機械的にコンプライアントなコーティング又は界面層1921でコーティングされており(図19E)、これは、種結晶370若しくは堆積された層又は構造のいずれも亀裂又は他の不具合を被ることなく、種結晶370とその上に配置された堆積層又は構造との間に形成された外因性又は内因性の応力に適応するように構成されている。機械的にコンプライアントなコーティングは、グラファイト、熱分解グラファイト、窒化ホウ素、熱分解窒化ホウ素、二硫化モリブデン、及び二硫化タングステンのうちの1つ以上を含むか、又はそれらで構成することができる。ある特定の実施形態では、機械的にコンプライアントなコーティングは、スパッタリング、化学気相堆積、プラズマ化学気相堆積、高密度プラズマ化学気相堆積、及び電子ビーム蒸発のうちの少なくとも1つによって堆積される。ある特定の実施形態では、機械的にコンプライアントなコーティングは、完全に高密度ではなく、スラリーに懸濁した粒子の噴霧、スラリーに懸濁した粒子のスクリーン印刷、スラリーに懸濁した粒子の塗装、プラズマ溶射などのうちの1つ以上によって堆積される。ある特定の実施形態では、機械的にコンプライアントなコーティングは、熱処理プロセスに供され、機械的コンプライアントなコーティング内の粒子が部分的又は完全に焼結される。
幾つかの実施形態では、種結晶370の各々の厚さは、50マイクロメートル以内、25マイクロメートル以内、10マイクロメートル(μm)以内、5マイクロメートル以内、2マイクロメートル以内、又は1マイクロメートル以内に等しい。ある特定の実施形態では、均一なシードの厚さは、種結晶のクランプされたアレイの機械的完全性を向上させる。ある特定の実施形態では、均一なシードの厚さは、種結晶の上面の共平面性を高める。ある特定の実施形態では、均一なシードの厚さは、製造される複合構造の機械的完全性及び熱均一性の両方を向上させることができる。種結晶370の大面積表面102の各々の結晶学的ミスカットは、大きさ及び方向397を有する。例えば、特定のc面種結晶が、m方向に0.50度、直交するa方向に0.06度ミスカットされている場合、ミスカットの大きさは約0.504度であり、その方向は特定のm方向から6.8度離れている。幾つかの実施形態では、種結晶370の結晶学的ミスカットの各々の大きさは、0.2度以内、0.1度以内、0.05度以内、0.02度以内、又は0.01度以内で等しい。幾つかの実施形態では、種結晶の各々の結晶学的ミスカットの方向397は、10度以内、5度以内、2度以内、1度以内、0.5度以内、0.2度以内、又は0.1度以内に位置合わせされる。
ある特定の実施形態では、種結晶370のアレイは、図18A~18Dに概略的に示されるように、機械的固定具内に配置される。この実施形態は、種結晶の数が少ない場合、又は種結晶のアレイ内の各種結晶の周囲の一部をクランプすることによって各種結晶を適所に保持することができる場合に好適でありうる。例えば、この技法は、図17E及び17Fに示される種結晶アレイには使用できるが、図17A~Dに示される種結晶アレイには使用することができない。種結晶370は、バッキングプレート1810上に配置することができ(図18A)、保持リング1830(図18B)は、種結晶370のアレイの周囲に配置することができ、クランプリング1840(図18C)は、保持リング1830の上部に配置することができる。バッキングプレート1810、保持リング1830、及びクランプリング1840の各々は、ねじ、ボルト、又はねじ付きロッドなどの1組の締結具による取り付けのために、3つ以上の貫通孔1820、1825を有しうる。ある特定の実施形態では、貫通孔1820はタップされ、一方、貫通孔1825は穿孔される。好ましい実施形態では、バッキングプレート1810、保持リング1830、及びクランプリング1840の各々は、モリブデンなど、種結晶370の熱膨張係数(CTE)よりわずかに小さい熱膨張係数(CTE)を有する材料から製造される。ある特定の実施形態では、貫通孔1820は、種結晶370の周囲に位置する。ある特定の実施形態では、少なくとも1つの種結晶370は、バッキングプレート1810内の少なくとも1つの貫通孔1820又は1825と位置合わせされた貫通孔が貫通している。ある特定の実施形態では、バッキングプレート1810、保持リング1830、及びクランプリング1840のうちの1つ以上を離型コーティングでコーティングして、固定具構成要素から融合した結晶を簡単に取り外すことができる。ある特定の実施形態では、離型コーティングは、機械部品上へのGaNの堆積又は接着を抑制する。ある特定の実施形態では、離型コーティングは、種結晶と固定具構成要素との間に機械的コンプライアンスを提供し、亀裂又は不具合なしに残留CTEの不整合による応力に適応する。離型コーティングは、グラファイト、窒化ホウ素、二硫化モリブデン、又は二硫化タングステンのうちの1つ以上を含むか、又はそれらで構成されうる。ある特定の実施形態では、離型コーティングは完全に高密度ではなく、スラリーに懸濁した粒子の噴霧、スラリーに懸濁した粒子のスクリーン印刷、スラリーに懸濁した粒子の塗装などのうちの1つ以上によって堆積される。
幾つかの実施形態では、モリブデン(Mo)は、摂氏20度から摂氏1000度の温度範囲にわたって平均された場合、約5.8×10-6/KのCTEを有することが知られていることから、機械的固定具の少なくとも一部をモリブデン(Mo)から形成することが望ましい。幾つかの実施形態では、Moの合金は、その再結晶温度が結晶成長プロセス中に機械的固定具が到達する最高温度を超えるように選択される。処理中に再結晶温度を超えると、Mo基板で結晶粒成長が発生し、材料の応力状態が変化し、その後の冷却後に材料の脆化につながる可能性がある。Moにチタンとジルコニウムをドーピングして、商業的にチタン-ジルコニウム-モリブデン(TZM)合金と呼ばれるものが生成されると、Moと比較して再結晶温度が摂氏1200度から摂氏1400度の範囲に上昇することが知られており、これは、元素Moの再結晶温度よりも摂氏200度から摂氏300度高く、エピタキシャル成長温度よりも摂氏100度から摂氏600度高い。TZMは、Mo(98%超、好ましくは少なくとも99%)、Ti(0.2%から1.0%の間)、Zr(0%から0.3%の間)、及びC(0%から0.1%の間)の希釈合金である。他の合金も可能である。例えば、摂氏20~1000度の温度範囲にわたって平均されたMoWの合金のCTEは、4.9×10-6/Kから5.8×10-6/Kの範囲に入るように設計することができる。機械的固定具構成材料のCTEは、第1の表面の平面における結晶のCTEの80%から99%の間、85%から98%の間、90から97%の間、又は94%から96%の間になるように設計することができる。
機械的固定具構成要素の平坦度は、それらの直径全体にわたる反りの量がそれらの直径の0.1%を超えてはならず、好ましくは0.02%を超えてはならないようなものである。反りは、本明細書では、仮想平面からの固定具構成要素の上面の正の最大偏差と負の最大偏差の合計として定義され、ここで、この架空の平面は、固定具構成要素の上面と交差し、反りの大きさを最小化する平面になるように選択される。
保持リングと種結晶370のアレイとの間のクリアランスは、バルク結晶成長に用いられる所定の温度でクリアランスがほぼゼロに収縮するように選択することができ、種結晶370の各々を、隣り合う結晶の隣接する縁部間に間隙がほとんど又は全く存在しないように位置決めし、種結晶370の正確な結晶学的位置合わせを確保する。一例では、種結晶370の隣接する縁部間の間隙1711(図17A~17F)は、ゼロから200マイクロメートルの間、0.1マイクロメートルから50マイクロメートルの間、又は0.2マイクロメートルから50マイクロメートルの間である。ある特定の実施形態では、バッキングプレート1810、保持リング1830、及びクランプリング1840の各々は、モリブデン、若しくはモリブデン合金、例えば、MoW又はTZM又は銀被覆若しくは銀被覆Mo、W、又はNiなどから製造される。ある特定の実施形態では、バッキングプレート1810、保持リング1830、及びクランプリング1840のうちの少なくとも1つを準備するために用いられる材料は、機械加工する前に残留応力を除去するためにアニールされる。ある特定の実施形態では、2つ、3つ、又はそれより多くの種結晶の交点の位置でバッキングプレート1810にメサ構造が組み込まれる。ある特定の実施形態では、メサの平面又は同一平面に平行な種結晶370の表面の位置合わせ精度又は平面性を改善するように、メサの頂部は、正確に平坦かつ同一平面になるように研削される。ある特定の実施形態では、追加の構成要素が、スペーサパッド又はばねなどの機械的固定具に組み込まれる。追加の構成要素は、モリブデン、タングステン、タンタル、ニオブ、銀、金、白金、又はイリジウムのうちの少なくとも1つなど、アンモノサーマル結晶成長環境に適合する材料から製造することができる。
固定具内に種結晶のアレイをアセンブリした後、固定具は、少なくとも3つのねじ、ボルト、ねじ付きロッド及びナット、又は同様の締結具1855を使用して一緒に固定され、タイル状アレイ1860を形成することができる(図18D)。
機械的固定具は、該固定具上又は固定具内に位置づけられIII族窒化物結晶の各々の間の結晶方位が実質的に同一になるような態様で設計及び製造される。再び図18Dを参照すると、第1の座標系1821(x)は、第1のIII族窒化物結晶1801の結晶方位を表し、ここで、zは第1のIII族窒化物結晶1801の表面1811の公称方位の負の表面法線であり、x及びyはzに直交するベクトルである。例えば、表面1801が(0001)方位を有している場合、zは[000-1]に沿った単位ベクトルであり、x及びyは、それぞれ、[10-10]及び[1-210]に沿って選択することができる。表面1811が(10-10)方位を有している場合、zは[-1010]に沿った単位ベクトルであり、x及びyは、それぞれ、[1-210]及び[0001]に沿って選択することができる。同様に第2の座標系1822(x)は、第2の窒化物結晶1802の結晶方位を表し、ここで、zは第2の窒化物結晶1802の表面1812の公称方位の負の表面法線であり、x及びyはzに直交するベクトルであり、(x)の場合と同じ規則が(x)に対応する結晶学的方向に用いられる。第1の窒化物結晶の表面と第2の窒化物結晶の表面との間の結晶方位差は、3つの角度α、β、及びγによって特定することができ、ここで、αはxとxとの間の角度であり、βはyとyとの間の角度であり、γはzとzとの間の角度である。第1及び第2の窒化物結晶の表面方位がほぼ同一であることから、極性方位差角度γは非常に小さく、例えば、0.5度未満、0.2度未満、0.15度未満、0.1度未満、0.05度未満、0.02度未満、又は0.01度未満である。配置中の窒化物結晶の方位の正確な制御に起因して、方位差角度α及びβもまた非常に小さく、例えば、1度未満、0.5度未満、0.2度未満、0.1度未満、0.05度未満、0.02度未満、又は0.01度未満である。典型的には、γはα及びβ以下である。追加の隣接する窒化物結晶間の結晶方位差も同様に非常に小さい。しかしながら、結晶方位差角度α、β、及びγは、x線測定で検出可能であってよく、約0.005度超、約0.01度超、約0.02度超、約0.05度超、約0.1度超、又は約0.2度超でありうる。
上述の実施形態では、種結晶のアレイを支持する機械的固定具は、それらの種結晶のCTEと同様であるが、それよりわずかに小さいCTEを有しうる。別の実施形態では、多結晶III族窒化物含有支持構造が、機械的固定具のモリブデン材料の代わりに用いられる。多結晶III族窒化物は、テクスチャ化されているか、又は高度にテクスチャ化されていてもよい。GaNのCTEはa方向とc方向との間で約12%異なることから、例えば、多結晶GaNは、単結晶GaN種結晶と正確に整合するCTEを有しない。しかしながら、不整合は小さく、a方向及びc方向におけるCTEの温度依存性は類似している。加えて、多結晶GaN材料がc方向に高度にテクスチャ化されているという限界では、その横方向のCTEは、a方向の単結晶GaNのCTEに非常に近くなる。テクスチャ化された多結晶III族金属窒化物を製造する例示的な方法は、その各々がここに参照することによって本明細書に組み込まれる、米国特許第8,039,41号、同第8,461,071号、米国再発行特許47114号、米国特許第10,094,017号、及び同第10,619,239号の各明細書に記載されている。
処理中に種結晶370のアレイを支持するために用いられる、ある特定の実施形態では、種結晶370のアレイは、図19Aに示されるように、サセプタ1910の支持表面1915上に配置される。この実施形態は、図17A~Fに概略的に示されているシードアレイの各々に適している可能性がある。幾つかの実施形態では、X方向、又はX方向及びY方向など、少なくとも1つの方向において、画成された規則的な間隔を維持することができるように、所望のサイズのスペーサ(図示せず)が、種結晶370の各々の隣接する縁部間に配置される。スペーサは、機械加工されたブロック又は所望の直径のワイヤを含みうる。種結晶370の各々の隣接する縁部間の間隔は、該間隔が、0.1マイクロメートル(μm)から1ミリメートル(mm)の間、又は0.1マイクロメートルから200マイクロメートルの間、0.1マイクロメートルから50マイクロメートルの間、又は0.2マイクロメートルから50マイクロメートルの間など、2ミリメートル(mm)未満になるように設定することができる。
サセプタ1910は、SiO、グラファイト、熱分解窒化ホウ素(PBN)、SiC被覆グラファイト、PBN被覆グラファイト、TaC被覆グラファイト、モリブデン、又はモリブデン合金のうちの1つ以上を含むか、若しくはそれらで構成されうる。ある特定の実施形態では、1つ以上の種結晶に面するサセプタ1910の表面1915は、離型コーティング1923でコーティングすることができる。離型コーティング1923は、グラファイト、窒化ホウ素、二硫化モリブデン、又は二硫化タングステンのうちの1つ以上を含むか、又はそれらで構成されうる。ある特定の実施形態では、離型コーティング1923は完全に高密度ではなく、スラリーに懸濁した粒子の噴霧、スラリーに懸濁した粒子のスクリーン印刷、スラリーに懸濁した粒子の塗装などのうちの1つ以上によって堆積される。ある特定の実施形態では、種結晶370のアレイは、支持表面1915の上に配置されたリテーナリング1930によって取り囲まれる。ある特定の実施形態では、リテーナリング1930は、例えば、モリブデン又はモリブデン合金など、GaNよりわずかに小さいCTEを有する材料を含むか、若しくはそれらで構成されうる。ある特定の実施形態では、種結晶とそこに形成された結晶面との正確な位置合わせを容易にするために、サセプタ1910は、種結晶370の形状に形成された中空領域又は支持表面1915に形成された窪みを有するように機械加工される。ある特定の実施形態では、リテーナリング1930は、ワイヤを含むか、若しくはワイヤで構成されうる。ある特定の実施形態では、間に形成された機械的にコンプライアントなコーティング(例えば、図19Eの界面層1921)を有する1つ以上の種結晶の大面積表面が、サセプタ1910の支持表面1915と接触して配置される。ある特定の実施形態では、機械的にコンプライアントなコーティング(例えば、界面層1921)を有する1つ以上の種結晶の大面積表面が、サセプタ1910の支持表面1915とは反対側に位置づけられる。機械的にコンプライアントなコーティングは、(一又は複数の)種結晶370とサセプタ1910との間、及び/又は(一又は複数の)種結晶370と多孔質部材1940及び/又は反対側に配置された多結晶GaN層1950との間に形成される外因性及び内因性応力の一部を軽減するために用いられる(これらについては以下で論じる)。
ある特定の実施形態では、多孔質部材1940が種結晶370のうちの1つ以上の上に配置され、種結晶370と多孔質部材1940との間に生じるCTE不整合に起因して種結晶370に誘起される外因性の応力を最小限に抑えるように構成される。多孔質部材1940はまた、種結晶370とその上に形成されたその後に堆積された多結晶GaN層1950との間に生じるCTE不整合に起因して種結晶370に誘起される応力を低減するのにも有用である。ある特定の実施形態では、多孔質部材1940は、図19Fに示されるように、ハニカム構造を有する。多孔質部材1940は、グラファイト、炭素繊維、シリカ繊維、アルミノケイ酸繊維、ホウケイ酸繊維、炭化ケイ素コーティング、熱分解窒化ホウ素コーティング、熱分解グラファイトコーティング、又はポリマーのうちの1つ以上を含むか、又はそれらで構成されうる。
種結晶370のアレイの支持体を形成するために用いられるプロセスの一部として、種結晶370のアレイがその上に正確に位置決めされたサセプタ1910を、多結晶GaN合成が可能な反応器内に配置することができる。次に、多結晶GaN反応器を閉じ、排気し、窒素で埋め戻すことができる。反応器内のサセプタ1910の温度を約900℃まで上昇させて、N中5%Hの混合物中でのベークアウトを約24時間実施して、炉から酸素及び水分を除去することができる。窒素のベークアウト後、例えば、毎分1.2標準リットルのClを、摂氏約850度の温度でガリウムを含むソースチャンバを通じて流すことができ、流出物は、窒素キャリアガス中、NHの毎分15標準リットルの流れと混合させることができる。該プロセスを約30時間実施し、反応性ガスを停止し、反応器を冷却することができる。約1ミリメートル厚のテクスチャ化した多結晶GaN層1950を、種結晶370のアレイ上に堆積させて、図19Bに概略的に示される構造と同様の構造を生成することができる。多孔質部材1940内の開口部、間隙1941、又は細孔は、存在する場合には、多結晶GaNで部分的に又は完全に充填される。ある特定の実施形態では、多孔質部材1940は、多結晶GaN内に完全に包まれる(図示せず)。ある特定の実施形態では、例えば、多孔質部材1940の形成に用いられる材料内に配置されたポリマーなどの多孔質部材1940の1つ以上の成分は、多結晶GaN層1950の堆積中に部分的な又は完全な分解を被り、したがって、多孔質部材1940内の材料が1つ以上の望ましい機械的特性を発現することを可能にする。
多結晶GaN層1950の形成後、多結晶GaN層1950で結合させた、種結晶370を含むタイル状の複合構造1960は、次に、図19Cに概略的に示されるように、サセプタ1910から分離させることができる。少なくとも種結晶370のアレイも含むタイル状の複合構造1960の成分として、多結晶GaN層1950は、本明細書ではしばしばマトリクス部材と呼ばれる。図19C~19Fに示されるタイル状の複合構造1960及び多結晶GaN層又はマトリクス部材1950は、多孔質部材1940を含むが、この構成は、本明細書に提供される開示の範囲に関して限定することを意図していない。幾つかの実施形態では、マトリクス部材は、任意選択的に多孔質部材1940を含みうる。ある特定の実施形態では、サセプタ1910は、サセプタ1910とタイル状の複合構造1960内の成分との間に形成された任意の結合を破壊するために用いられる機械的プロセスを使用することによって、タイル状の複合構造1960から分離される。一例では、サセプタ1910とタイル状の複合構造1960との間に機械的剪断力が加えられて、その間に配置された離型コーティング1923又は界面層1921の一部に亀裂が生じて破損し、したがって、サセプタ1910とタイル状の複合構造1960とを分離させることができる。他の実施形態では、サセプタ1910は、例えば鉱酸又は塩基に溶解される。
タイル状の複合構造1960のある特定の実施形態では、図19Dに概略的に示されるように、隣接するタイル状種結晶370間に間隙1970が形成される。形成された間隙1970は、マージ処理などの後続の処理工程中に、多結晶GaN層1950の成長が種結晶370からの横方向の成長を妨げることを抑制するのに役立ちうる。間隙1970は、約1マイクロメートルから約5ミリメートルの間、約5マイクロメートルから約1ミリメートルの間、約10マイクロメートルから約500マイクロメートルの間、又は約20マイクロメートルから約200マイクロメートルの間の幅を有しうる。間隙1970は、約1マイクロメートルから約1ミリメートルの間、約5マイクロメートルから約300マイクロメートルの間、又は約10マイクロメートルから約100マイクロメートルの間の深さを有しうる。間隙1970は、例えば、ダイシングソーなどのレーザ加工によって形成することができる。ある特定の実施形態では、間隙形成プロセスは、エッチングの代わりに、又はエッチングに加えて、多結晶III族窒化物材料が隣接する種結晶370間に形成されることを防止するマスキング操作を含む。ある特定の実施形態では、種結晶370のパターニング及びエッチングは、図1A~1Tに概略的に示されるように、タイル状の複合構造1960の形成前ではなく形成後に実施される。
正確に配向された種結晶370のアレイを含む、タイルアレイ1860及び/又はタイル状の複合構造1960は、例えば、アンモノサーマル成長、HVPE成長、又はフラックス成長を含むバルク結晶成長のための基板として使用することができる。以下の説明では、成長したGaN層をアンモノサーマル層と表現されるが、代わりに、HVPE又はフラックス成長などの他のバルク成長法を使用してもよい。アンモノサーマルバルク成長を含むある特定の実施形態では、次に、1つ以上のタイル状アレイ1860及び/又はタイル状の複合構造1960をシードラック上に吊るし、カプセル、オートクレーブ、又はオートクレーブ内のライナなどの密封可能な容器内に配置することができる。ある特定の実施形態では、タイル状アレイの1つ以上の対が背中合わせに吊り下げられ、開口した及び/又はパターン化された大面積表面が外側に面する。次に、多結晶III族金属窒化物などのIII族金属源、少なくとも1つの鉱化剤組成物、及びアンモニア(又は、他の窒素含有溶媒)を密閉可能な容器に加え、該密閉可能な容器を密閉する。鉱化剤組成物は、Li、Na、K、Rb、又はCsなどのアルカリ金属、Mg、Ca、Sr、又はBaなどのアルカリ土類金属、若しくはアルカリ又はアルカリ土類の水素化物、アミド、イミド、アミドイミド、窒化物、又はアジドを含みうる。鉱化剤は、NHF、NHCl、NHBr、又はNHIなどのハロゲン化アンモニウム、GaF、GaCl、GaBr、GaIなどのハロゲン化ガリウム、若しくはF、Cl、Br、I、HF、HCl、HBr、HI、Ga、GaN、及びNHのうちの1つ以上の反応によって形成されうる任意の化合物を含みうる。鉱化剤は、他のアルカリ、アルカリ土類、又はアンモニウム塩、他のハロゲン化物、尿素、硫黄又は硫化物塩、若しくはリン又はリン含有塩を含みうる。次いで、密閉可能な容器(例えば、カプセル)を、内部加熱高圧装置又はオートクレーブなどの高圧装置内に配置し、該高圧装置を密閉することができる。次に、タイル状アレイ1860及び/又はタイル状の複合構造1960を含む密閉可能な容器を、摂氏約400度を上回る温度に加熱し、かつ約50メガパスカルを上回って加圧して、アンモノサーマル結晶成長を実施する。
図2A~2Cは、隣接したタイル状種結晶のアレイ上で実施されるバルク結晶成長プロセス内の異なる工程を示しており、パターン化された種結晶は、マスク開口部の下にトレンチを有しないLEOプロセスによって形成される。バルク結晶成長プロセス中、III族金属窒化物層213は、パターン化されたマスク層111の開口部112を通じて成長し、図2Bに示されるように開口部を通って外側に成長し、パターン化されたマスク層111上で横方向に成長し、最初に、隣接するマスク開口部間で合体し、次に、隣接するタイル又は種結晶間で合体する(図2C)。合体後、III族金属窒化物層213は、パターン化されたマスク層111の開口部に対して垂直に成長したウィンドウ領域215、パターン化されたマスク層111上で横方向に成長したウィング領域217、及びパターン化されたマスク層111の隣接する開口部から成長するウィング間の境界に形成されるコアレッセンスフロント219、並びに隣接するタイル又は種結晶から成長するウィング間の境界に形成される第2のコアレッセンスフロント235を含む。貫通転位214は、基板101の表面に存在した貫通転位に由来して、ウィンドウ領域215に存在しうる。
図3A~3Cは、バルクIII族窒化物の側壁LEOプロセスを示している。図3D~3Eは、隣接するタイル化種結晶上でのバルク結晶成長を示しており、ここで、パターン化された種結晶は、側壁LEOプロセスによって形成される。図3Aは、本明細書に記載されるプロセスの1つによって形成された、パターン化され、マスクされたトレンチ115を含む基板を示している。側壁LEOプロセスでは、III族金属窒化物材料221は、図3Bに示されるように、パターン化され、マスクされたトレンチ115の側部及び底部で成長する。トレンチ115の側壁上のIII族金属窒化物材料221が内側に成長するにつれて、原材料が、III族金属のアンモノサーマル錯体(アンモノサーマル成長の場合)、III族金属ハロゲン化物(HVPEの場合)、若しくはIII族金属合金又は無機錯体(フラックス成長の場合)を含むかどうかにかかわらず、III族窒化物原材料がトレンチの底部に到達ことが徐々に困難になる。最終的に、III族金属窒化物材料221は、トレンチの下部領域をピンチオフし、図3Cに示されるようにボイド225を形成する。横方向に成長したIII族金属窒化物材料221の貫通転位の濃度は、基板101内の濃度よりも低いことが分かった。基板101に由来する多くの貫通転位223は、ボイド225の表面で終端する。付随して、III族金属窒化物層213は、パターン化されたマスク層111の開口部112(又は、ウィンドウ)を通じて上方に成長する。しかしながら、横方向に成長したIII族金属窒化物材料221は基板101よりも低濃度の貫通転位を有し、基板101に由来する多くの転位はボイド225の表面で終端することから、図2A~2Cに関連して上述したように、垂直に成長したIII族金属窒化物層213の転位密度は、従来のLEOプロセスと比較して大幅に減少する。
図3D~3Eは、側壁LEO成長プロセスの継続と隣接するタイル又は種結晶間の融合を示している。従来のLEOプロセス(図2A~2C)と同様に、III族金属窒化物層213は、パターン化されたマスク層111の開口部112内で成長し、図3Dに示されるように開口部を通って外側に成長し、パターン化されたマスク層111上で横方向に成長し、最初に、隣接するマスク開口部間で合体し、次に、隣接するタイル又は種結晶間で合体する(図3E)。合体後、III族金属窒化物層213は、図3Eに示されるように、パターン化されたマスク層111の開口部に対して垂直に成長したウィンドウ領域215、パターン化されたマスク層111上で横方向に成長したウィング領域217、及びパターン化されたマスク層111の隣接する開口部から成長するウィング間の境界に形成されるコアレッセンスフロント219、並びに隣接するタイル又は種結晶から成長するウィング間の境界に形成される第2のコアレッセンスフロント235を含む。横方向に成長したIII族金属窒化物材料221は、基板101よりも低濃度の貫通転位を有し、基板101に由来する多くの貫通転位はボイド225で終端することから、ウィンドウ領域215の貫通転位の濃度は、従来のLEOの場合よりも著しく低い。
アンモノサーマルIII族金属窒化物層213は、約10マイクロメートルから約100ミリメートルの間、又は約100マイクロメートルから約20ミリメートルの間の厚さを有しうる。
ある特定の実施形態では、アンモノサーマルIII族金属窒化物層213は、鋸切断、ラッピング、研削、研磨、化学機械研磨、又はエッチングのうちの少なくとも1つなど、1つ以上のプロセスに供される。
ある特定の実施形態では、アンモノサーマルIII族金属窒化物層213における貫通転位及び積層欠陥などの拡張欠陥の濃度は、欠陥選択エッチングによって定量化することができる。欠陥選択エッチングは、例えば、HPO、ポリリン酸を形成するために長時間の熱処理によって調整されたHPO、及びHSO、又はNaOH及びKOHのうちの1つ以上を含む溶融フラックスのうちの1つ以上を含む溶液を使用して実施することができる。欠陥選択エッチングは、摂氏約100度から摂氏約500度の間の温度で約5分から約5時間の間、実施されてよく、処理温度及び時間は、約1マイクロメートルから約25マイクロメートルの間の直径を有するエッチピットの形成を生じさせるように選択され、その後、エッチャント溶液からアンモノサーマルIII族金属窒化物層、結晶、又はウエハを除去する。
ウィンドウ領域215の表面における貫通転位の濃度は、下地基板101における濃度より約10倍から約10倍低くなりうる。ウィンドウ領域215の表面における貫通転位の濃度は、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満でありうる。ウィング領域217の表面における貫通転位の濃度は、ウィンドウ領域215の表面における貫通転位の濃度よりも約1桁から約3桁低くなる可能性があり、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満でありうる。幾つかの積層欠陥が、例えば約1cm-1から約10cm-1の間の濃度で、ウィンドウ領域215の表面に存在しうる。ウィング領域217の表面における積層欠陥の濃度は、ウィンドウ領域215の表面におけるウィング領域217の表面よりも約1桁から約3桁低くなる可能性があり、約10cm-1未満、約10cm-1未満、約1cm-1未満、又は約0.1cm-1未満であってよく、あるいは検出不能でありうる。例えば刃状転位などの貫通転位は、例えば、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1、未満又は1×10cm-1未満の線密度で、コアレッセンスフロント219及び235に存在しうる。コアレッセンスフロントに沿った転位密度は、5cm-1超、10cm-1超、20cm-1超、50cm-1超、100cm-1超、200cm-1超、又は500cm-1超でありうる。
ある特定の実施形態では、マスキング及びバルクIII族窒化物結晶の成長プロセスは、1回、2回、3回、又はそれより多く繰り返される。幾つかの実施形態では、これらの動作は、第1のバルクIII族金属窒化物層が基板101に結合されたままで実施される。他の実施形態では、基板101は、その後のマスキング及びバルク結晶成長動作の前に、例えば、鋸切断、ラッピング、研削、及び/又はエッチングによって除去される。
図4A、4B、及び4Cは、自立型III族金属窒化物ブール及び自立型III族金属窒化物ウエハを形成する方法を示す簡略図である。ある特定の実施形態では、基板101は、アンモノサーマルIII族金属窒化物層213(図3Eと同様に構成されている、図4A)、又は堆積された最後のそのような層から取り外されて、アンモノサーマルIII族金属窒化物層213の少なくとも一部を含む自立型の融合したアンモノサーマルIII族金属窒化物ブール413を形成する。基板101の除去は、切断、研削、ラッピング、研磨、レーザリフトオフ、自己分離、及びエッチングのうちの1つ以上によって達成され、処理された自立型の横方向に成長したIII族金属窒化物ブール413を形成することができる。処理された自立型の横方向に成長したIII族金属窒化物ブール413は、アンモノサーマルIII族金属窒化物層と類似又は実質的に同一の組成を含むことができ、エッチングは、基板101の裏側のエッチング速度がアンモノサーマルIII族金属窒化物層の前面のエッチング速度よりもはるかに速い条件下で実施することができる。ある特定の実施形態では、アンモノサーマルIII族金属窒化物層213の一部、又は堆積された最後のそのような層は、マスク層の堆積、層の一部をテフロン(登録商標)で包む、層の一部を「テフロン」に対してクランプする、「テフロン」塗料で塗装するなどによって、エッチャントによる攻撃から保護することができる。特定の実施形態では、基板101は単結晶窒化ガリウムを含み、基板101の大面積表面102は(0001)結晶方位の約5度以内の結晶方位を有し、基板101は、HPO、ポリリン酸を形成するために長時間の熱処理によって調整されたHPO、及びHSOのうちの1つ以上を含む溶液中、摂氏約150度から摂氏約500度の間の温度で約30分から約5時間加熱することによって、又はNaOH及びKOHのうちの1つ以上を含む溶融フラックス中で加熱することによって、優先的にエッチングされる。驚くべきことに、(一又は複数の)パターン化されたマスク層111は、エッチングストップとして作用することにより、基板101の優先的な除去を容易にすることができる。処理された自立型の融合したアンモノサーマルIII族金属窒化物ブール413は、基板101の(一又は複数の)パターン化されたマスク層111の開口部112など、露出領域120の上に形成された1つ以上のウィンドウ領域415を含みうる。処理された自立型の融合し横方向に成長したIII族金属窒化物ブール413はまた、(一又は複数の)パターン化されたマスク層111の非開口領域の上に形成された1つ以上のウィング領域417、及び図4Bに示されるような貫通転位の局所的にほぼ線形のアレイ419のパターン、並びに1つ以上の第2のコアレッセンスフロント435も含みうる。自立型の融合したアンモノサーマルIII族金属窒化物ブール413の前面421及び背面423の1つ以上を、ラッピング、研磨、エッチング、及び化学機械研磨することができる。上で同様に論じたように、局所的にほぼ線形のアレイ419及び1つ以上の第2のコアレッセンスフロント435のパターンは、成長条件に応じて、隣接ウィング領域417間に配置された約25マイクロメートル未満又は約10マイクロメートル未満の幅を有する「鋭い境界」、若しくは、隣接ウィング領域417間に配置された約25マイクロメートルから約1000マイクロメートルの間、又は約30マイクロメートルから約250マイクロメートルの間の幅を有する「拡張境界」を含む、コアレッセンスフロント領域を含みうる。
ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物ブール413の縁部を研削して、円筒形の形状をしたアンモノサーマルIII族金属窒化物ブールを形成する。ある特定の実施形態では、1つ以上の平坦部が、自立型の融合したアンモノサーマルIII族金属窒化物ブール413の側面に研削される。ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物ブール413は、図4Cに示されるように、1つ以上の自立型の融合したアンモノサーマルIII族金属窒化物ウエハ431へとスライスされる。スライスは、マルチワイヤ鋸切断、マルチワイヤスラリー鋸切断、スライシング、内径鋸切断、外径鋸切断、劈開、イオン注入とそれに続く剥離、スポーリング、レーザ切断などによって実施することができる。自立型の融合したアンモノサーマルIII族金属窒化物ウエハ431の1つ以上の大面積表面は、当技術分野で知られている方法に従って、ラッピング、研磨、エッチング、電気化学研磨、光電気化学研磨、反応性イオンエッチング、及び/又は化学機械研磨することができる。ある特定の実施形態では、面取り、ベベル、又は丸みを帯びた縁部は、自立型の融合したアンモノサーマルIII族金属窒化物ウエハ431の縁部へと研削される。自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、少なくとも約10ミリメートル、少なくとも約25ミリメートル、少なくとも約50ミリメートル、少なくとも約75ミリメートル、少なくとも約100ミリメートル、少なくとも約150ミリメートル、少なくとも約200ミリメートル、少なくとも約300ミリメートル、少なくとも約400ミリメートル、又は少なくとも約600ミリメートルの直径を有することができ、約50マイクロメートルから約20ミリメートルの間、又は約150マイクロメートルから約5ミリメートルの間の厚さを有しうる。自立型の融合したアンモノサーマルIII族金属窒化物ウエハ431の1つ以上の大面積表面は、とりわけ、化学気相堆積、有機金属化学気相成長法、水素化物気相エピタキシー、分子線エピタキシー、フラックス成長、溶液成長、アンモノサーマル成長などによるIII族金属窒化物成長のための基板として使用することができる。
タイル状種結晶アレイの構成例
本開示の幾つかの実施形態では、形成されたタイル状種結晶アレイから成長させた結晶層が、特にコアレッセンスフロントにおいて、結晶欠陥の数が減少し、隣接する粒子間又は種結晶間のミスアライメントが減少するように、結晶成長プロセス中又は複数工程の結晶成長プロセスの1つ以上の工程で用いられる種結晶のタイル状アレイは、望ましい結晶学的属性及び構造的属性を有する種結晶の使用及び位置合わせを含みうる。ある特定の実施形態では、種結晶370のアレイは、図17A~19Gに示されるような二次元配列ではなく、図20B~20Cに示されるように、一次元配列に位置合わせされ、配向され、配置される。以下により詳細に説明するように、一度に一次元でタイル化することは、二次元で同時にタイル化することに比べて、ある特定の利点を提供することができる。概して、アレイ状に位置決めされた2つ以上の種結晶を支持する固定具又はハンドル基板は、種結晶とほぼCTEが一致している。しかしながら、c方向とa方向のCTEが異なる、非極性又は半極性GaN結晶をタイル化する場合、ウルツ鉱結晶構造のおかげで、ハンドル基板も同じ結晶方位を有する単結晶GaNでない限り、ハンドル基板は両方向でCTEが一致する可能性が低い。種結晶の一次元配列を形成し合体させることの利点は、一度に1つの成長方向だけで行うよりも、2方向で同時に結晶を合体させる方が困難でありうることである。さらに、コアレッセンス境界での欠陥レベルとタイル間の方位差角度は、研磨と位置合わせ操作の精度に大きく依存し、したがって、後続の操作で非常に高品質の合体したGaN結晶を形成することができるように、種結晶の一次元配列を位置合わせして構成する方が簡単な場合がある。
本開示のある特定の実施形態では、図20A~20Cに示されるように、第1の方向にタイル化されて種結晶の一次元配列を形成するために、複数の第1のGaN タイル又は種結晶2001が提供される。ある特定の実施形態では、種結晶370を含むか、又は種結晶370で構成されうるタイル結晶2001の各々は、例えば、マルチワイヤソーイング、研削、研磨、及び化学機械研磨によって、共通の単結晶から調製される。形成されたタイル結晶2001は、図20A~20Cに示されるように、例えば、m面種結晶のc方向に沿って、一次元にタイル化され、合体し、ほぼ平衡形状へと成長しうる。別の特定の実施形態では、c面種結晶は、方向に沿ってタイル化され、ほぼ平衡形状へと成長しうる。元のシードは、アンモノサーマル的に、又はHVPEによって成長した可能性がある。
種結晶の一次元配列を形成するプロセス中、種結晶を所望の配向で位置決めし、位置合わせした後、合体工程を使用して、一次元配列に配置された種結晶を互いに(Y方向)結合させる。合体プロセス中、隣接するタイル結晶2001間の間隙2011(図17A~17Fの間隙1711に類似した図20B)は満たされ、間隙2011(図20B及び20D)と同じ位置にコアレッセンスフロント2015を形成しうる。合体工程は、例えば、図18A~18Dに示されるように機械的固定具を使用して、図19A~19Cに示されるように多結晶III族窒化物層を使用して結合することによって、又は以下に説明するようにハンドル基板に結合することによって、別個のステップで実施することができる。次に、種結晶の合体させたアレイは、ハンドル基板から取り外し、後続のアンモノサーマル結晶成長実施のためのシードとして使用することができる。後続のアンモノサーマル結晶成長プロセスでは、図20D~20Eに示されるように、合体させた種結晶のアレイ上に形成された、成長結晶層2045をほぼ平衡形状に成長させて、成長したタイル状種結晶2050を形成することができる。
幾つかの実施形態では、機械的固定具(図18A~18D)又は多結晶III族窒化物結合層(図19A~19C)を使用するのではなく、合体工程は、モリブデン、モリブデン合金、単一の結晶又は多結晶III族金属窒化物、又は種結晶とCTEがほぼ一致し、結晶成長環境に適合する別の材料のうちの1つ以上から形成される支持構成要素からなる、又は該支持構成要素を含むハンドル基板を使用して実施される。ハンドル基板の前面及び種結晶の背面に接着層を堆積させることができる。接着層は、SiO、GeO、SiNx、AlNx、又はB、Al、Si、P、Zn、Ga、Si、Ge、Au、Ag、Ni、Ti、Cr、Zn、Cd、In、Sn、Sb、Tl、W、In、Cu、又はPb、若しくはそれらの酸化物、窒化物、又は酸窒化物のうちの1つ以上を含みうる。ある特定の実施形態では、ハンドル基板及び種結晶のうちの少なくとも1つの上の接着層の組成は、摂氏約300度未満、摂氏約400度未満、又は摂氏約500度未満の温度で発生期の溶融を被るように選択することができる融点を有しうる。ある特定の実施形態では、ハンドル基板及び種結晶のうちの少なくとも1つの他方の上の接着層の組成は、摂氏約300度未満、摂氏約400度未満、又は摂氏約500度未満の温度で発生期の溶融を被るように選択することができ、摂氏約600度を超える、摂氏約700度を超える、摂氏約800度を超える、又は摂氏約900度を超える融点を有するように選択することができる融点を有することができる。接着層の組成及び構造は、摂氏約300度未満、摂氏約400度未満、摂氏約500度未満、又は摂氏約約600度未満の温度で発生期の溶融を被るように選択することができ、次に、対になる接着層に結合し、固相線温度未満の温度で熱処理を行った後、未溶融のままにするか、若しくは、摂氏約600度を超える、摂氏約700度を超える、摂氏約800度を超える、又は摂氏約900度を超える温度で約20%未満、約10%未満、又は約5%未満の溶融体積分率を維持する。種結晶は、少なくとも1つの接着層組成物が溶融することができる第1の温度でハンドル基板に結合され、次に、結晶成長プロセスが行われる第2のより高い温度で未溶融のままになるように熱処理し、この温度で結晶成長プロセスを実施して、種結晶を融合結晶へと合体させる。さらなる詳細は、その全体がここに参照することによって本明細書に取り込まれる、米国特許第10,400,352号明細書に記載されている。
結晶形成プロセスの幾つかの実施形態では、次に、図21Aに概略的に示されるように、成長させたタイル状種結晶2050をスライスする。一例では、スライスは、m面に平行かつ元のシード表面に平行に実施され、成長したタイル状種結晶2050の長くて狭い部分、例えば、結晶2101、2102、2103、2104、2105、2106、2107、及び2108を形成する。次に、成長したタイル状種結晶2050の長くて狭い部分が、並べてタイル状にされる。隣接するストリップは互いの上又は下の結晶から形成されたため、図20A~20Eに示される元の一次元タタイル化プロセスがそれほど正確ではなかったとしても、列に沿った結晶方位は非常に正確であり、例えば、0.3°より良い、0.1°、0.05°、0.02°、又は0.01°より良い。
図21B~21Cに示される、種結晶のアレイを形成するプロセス中、成長させたタイル状種結晶の狭い部分を所望の配向で位置決めし、位置合わせした後、合体工程を使用して、成長させたタイル状種結晶の狭い部分を結合する(X方向)。合体プロセス中、隣接するタイル結晶2001間の間隙2112(図21B)が埋められ、間隙2112と同じ位置にコアレッセンスフロント2115を形成する(図21B及び21D)。合体後、図21D~21Eに示されるように、第1の二次元タイル状結晶は固定具又はハンドル基板から剥離され、再成長結晶層2145を取り囲むほぼ平衡形状へと再成長させることができる。再成長結晶2150は、種結晶2101、2102などにおける既存のコアレッセンスフロント2015の延長によって形成されたコアレッセンスフロント2015とともに、上述の第2のコアレッセンスフロント435と同様の結晶のアレイに見られる、間隙2112内又は間隙2112の上に形成されたコアレッセンスフロント2115を含む、成長させた結晶層2145を含む。元のタイル化の不正確さは、Y、又は軸方向の結晶粒界として現れる場合がある(すなわち、コアレッセンスフロント2015;示されている特定の例ではc方向)が、X方向の方位差(すなわち、コアレッセンスフロント2115;示されている特定の例ではa方向)は最小限に抑える必要がある。
次に、再成長結晶2150は、図22Aに概略的に示されるように、X-Y面(示された特定の例ではm面に平行)でスライスされて、例えば、スライス2201、2202、2203、2204、2205、2206、2207、及び2208を形成することができる。加えて、図22Bに示されるように、再成長結晶2150又はスライス2201~2208は、次に、特定の例ではc面に平行である(図21D)、コアレッセンスフロント2015で見られる欠陥のある粒界に対応する位置2220でスライスされて、例えばスラブ2201A、2201B、2201C、…、2202A、2202B、2202C、…2208C、2208D、及び2208E(例えば、合計40個のスラブ)を形成する。スライス2201~2208を形成し、位置2220でスライスを分割した後、得られたスラブ2201A~2208Eは、次に、図22Cに示されるように、前のタイル化操作と直交する方向に再度タイル化することができる。この構成では、Z方向に互いに隣接するスラブを横に並べて配置してY方向の一次元配列とし、位置2220に準備された縁部は、互いに隣り合わせに配置される。スラブ2201A~2208Aのこの形成されたアレイ(図22C~22D)は、再成長結晶2150に見られる非常に小さい方位差が、その後に形成されるモザイク結晶2250全体に複製されることを可能にする。
図22B~22Cに示されるスラブ2201A~2208Aのアレイを形成するプロセス中、スラブ2201A~2208Aを所望の配向に位置決めし、位置合わせした後、合体工程を使用して、スラブ2201A~2208Aのアレイを一緒に結合する(Y方向)。合体プロセス中、隣接するスラブ2201A~2208A間の間隙2212(図22C)が埋められ、間隙2212と同じ位置にコアレッセンスフロント2215を形成する(図22C及び22E)。アレイ内に配置されたスラブ2201A~2208Aの各々は、少なくとも1つのコアレッセンスフロント2215によって結合される(図22C)。スラブ2201A~2208Aのアレイが再合体されると、次に、図22Eに示されるように、固定具又はハンドル基板からそれらを剥離し、再成長させて、コアレッセンスフロント2215に関連する大幅に減少した欠陥濃度を含む、成長結晶層2245を有する平衡形状を形成することができる。同様の手順に従って、スラブ2201B~2208B、2201C~2208C、…及び2201E~2208Eを合体され、成長させることができる。
図20A~22Fに概略的に示される手順を用いて、後続のm面ブールのアンモノサーマル結晶成長、又はHVPE又はフラックス成長などの別の方法による後続のバルク結晶成長においてシードとして使用するのに適した、大面積で低欠陥のm面GaN結晶を製造することができる。同様の、連続的な1-Dタイル化操作を使用して、後続のバルク結晶成長でシードとして使用するのに適した、又は、電子デバイス又は光電子デバイス製造用の基板として使用するのに適した、大面積で低欠陥のc面又は半極性GaN結晶を調製することができる。
ある特定の実施形態では、さらに一次元又は二次元のタイル化プロセスで使用するため、又は電子デバイス又は光電子デバイスの製造に基板として使用するために、モザイク結晶2250は、短い寸法に沿って又は斜めの角度でスライスされて、例えば、HVPE又はフラックス成長などの別の方法による、後続のアンモノサーマル結晶成長又は後続のバルク結晶成長におけるシードとしての使用に適した種結晶を形成する。
代替的な実施形態では、例えば、c面又は半極性結晶の成長について、最初の一次元タイル化操作(図20A~20D)が省略され、分離されたm面結晶が単純にほぼ平衡形状へと成長される。形成された結晶は、再成長結晶2150を形成するために、図21A~21Eに示されるように、m面に平行にスライスされ、タイル化されてもよい。あるいは、形成された結晶は、c面に平行に、又は半極性配向でスライスされて、一次元タイル化操作用のシードを準備することができる。+c[0001]方向に成長させたブールの領域からスライスした結晶は、転位密度が大幅に減少しており、c面及び/又は半極性結晶の成長に特によく適しており、転位密度は10cm-2未満、10cm-2未満、10cm-2未満、又は10cm-2未満である。
図17A~19Fに概略的に示されるように、二次元タイルの一工程プロセスに関して、連続的な1-Dタイル化手法は、より容易にタイルを選択、準備、及びスタック可能にする;単一の結晶ドメインをより正確に位置合わせする;ハンドル基板又は固定具に対するCTEの不整合を減らし、それによって亀裂のリスクが軽減される;並びに、個々のタイルが例えば0.1°の目標仕様を超えて方位ずれするリスクが軽減されることを含めた、幾つかの利点を有しうる。
成長させた自立型の結晶の例
図5A~5Eは、図1A~4Cにまとめたパターン化された成長方法によって形成された個々のタイル結晶の上に形成された貫通転位パターンを示す簡略図である。図5A~5Eに示される個々のタイル結晶は、図4A~4Cに関連して説明される、自立型の融合したIII族金属窒化物ブール413又はウエハ431の一部を形成することができるか、あるいは、以下でさらに説明される、図6A~6Gに示される自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの一部を形成することができる。自立型のアンモノサーマルIII族金属窒化物ブール413又はウエハ431の大面積表面は、図3A~3Eに関連して上述したように、エピタキシャル横方向過成長プロセス中に形成されたコアレッセンスフロント219から伝播した貫通転位の局所的にほぼ線形のアレイ419のパターンによって特徴づけることができる。貫通転位の局所的にほぼ線形のアレイのパターンは、2Dの六角形、正方形、長方形、台形、三角形、1Dの線形、若しくは、自立型の横方向に成長したIII族金属窒化物ブール413を形成するためにプロセス中に用いられる露出領域120のパターン(図1F~1L)に少なくとも部分的に起因して形成される不規則なパターンでありうる。1つ以上のウィンドウ領域415が露出領域120(図1F~1L)の上に形成され、1つ以上のウィング領域417が、露出領域120の上にない部分、すなわち、横方向成長によって形成された部分に形成される。上で論じたように、形成されたコアレッセンスフロント219又は局所的にほぼ線形のアレイ419のパターンは、成長条件に応じて変動しうる横幅(すなわち、図5A~5Eを含むページの表面に平行に測定される)を有するコアレッセンスフロント領域を含みうる。
より複雑なパターンも可能であり、これらは、例えば、亀裂又は劈開に対してより耐性があるという点で有利でありうる。パターン502は、例えば、自立型の融合し横方向に成長したIII族金属窒化物ブール413が自立型のアンモノサーマルIII族金属窒化物ブール413の大面積表面に対して傾斜角度でスライスされることに起因して、直交する別の方向と比較して一方向に長くなっていてもよい。貫通転位の局所的にほぼ線形のアレイのパターン502は、約5マイクロメートルから約20ミリメートルの間、又は約200マイクロメートルから約5ミリメートルの間のピッチ寸法Lを有する貫通転位の線形アレイ(図5D)によって特徴づけることができる。貫通転位の局所的にほぼ線形のアレイのパターン502は、約5マイクロメートルから約20ミリメートルの間、又は約200マイクロメートルから約5ミリメートルの間、又は約500マイクロメートルから約2ミリメートルの間のピッチ寸法L(図5A、5B)、又は2つの直交する方向におけるピッチ寸法L及びL(図5C及び5E)によって特徴づけることができる。ある特定の実施形態では、貫通転位の局所的にほぼ線形のアレイのパターン502は、III族金属窒化物の下地結晶構造とほぼ整列し、例えば、局所的にほぼ線形のアレイは、<10-10>、<11-20>、又は[000±1]のうちの1つ以上、若しくは自立型のアンモノサーマルIII族金属窒化物ブール413又はIII族金属窒化物ウエハ431の表面の平面におけるそれらの投影の約5度以内、約2度以内、又は約1度以内に位置する。パターン内の貫通転位の線形濃度は、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1未満、又は約1×10cm-1未満でありうる。パターン502内の貫通転位の線形濃度は、5cm-1超、10cm-1超、20cm-1超、50cm-1超、100cm-1超、200cm-1超、又は500cm-1超でありうる。
再び図5A~5Eを参照すると、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハ内の個々の粒子又はドメインの大面積表面は、ウィング領域417のアレイ及びウィンドウ領域415のアレイによってさらに特徴づけることができる。各ドメイン(又は本明細書では粒子と呼ばれることもある)は、個々のタイル結晶(例えば、種結晶370)上での成長によって形成されうる。ドメインは、概して、ウィング領域、ウィンドウ領域、コアレッセンスフロント、及び転位の局所的にほぼ線形のアレイを含み、概してコアレッセンスフロントによって囲まれている。各ウィング領域417は、貫通転位の隣接する局所的にほぼ線形のアレイ419間に位置づけることができる。各ウィンドウ領域415は、単一のウィング領域417内に配置されてもよく、又は2つの隣接するウィング領域417間に位置付けられてもよく、10マイクロメートルから500マイクロメートルの間の最小寸法を有することができ、かつ、10cm-2から10cm-2の間の貫通転位濃度によって特徴づけることができ、これは、バルク結晶成長プロセス中にウィンドウ領域から垂直に伝播した残留貫通転位と、10cm-1未満の積層欠陥の濃度とから結果的に生じる。幾つかの実施形態では、ウィンドウ領域とウィング領域との間の境界には、約5cm-1から10cm-1の間の線密度で、転位が施されていてもよい。
アレイは、例えば、自立型の融合したアンモノサーマルIII族金属窒化物ブールの大面積表面に対して傾斜した角度でブールがスライスされることに起因して、別の直交方向と比較して一方向に細長くなりうる。貫通転位の局所的にほぼ線形のアレイ419のパターンは、約5マイクロメートルから約20ミリメートルの間、又は約200マイクロメートルから約2 ミリメートルの間のピッチ寸法L、又は2つの直交する方向のピッチ寸法L及びLによって特徴づけることができる。ある特定の実施形態では、貫通転位の局所的にほぼ線形のアレイ419の第1のパターンは、III族金属窒化物の下地結晶構造とほぼ整列しており、例えば、局所的にほぼ線形のアレイは、<10-10>、<11-20>、又は[000±1]のうちの1つ以上、若しくは自立型のアンモノサーマルIII族窒化物ブール又はウエハの表面の平面におけるそれらの投影の約5度以内、約2度以内、又は約1度以内にある。パターン内の貫通転位の線形濃度は、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1未満、約1×10cm-1未満、約3×10cm-1未満、又は約1×10cm-1未満でありうる。パターン内の貫通転位の線形濃度は、5cm-1超、10cm-1超、20cm-1超、50cm-1超、100cm-1超、200cm-1超、又は500cm-1超でありうる。
貫通転位の局所的にほぼ線形のアレイ間のウィング領域417における貫通転位の濃度は、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-1未満、又は約10cm-2未満でありうる。ウィンドウ領域415の表面における貫通転位の濃度は、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満でありうる。ウィンドウ領域の表面における貫通転位の濃度は、ウィング領域の表面における貫通転位の濃度よりも少なくとも2倍、少なくとも3倍、少なくとも10倍、少なくとも30倍、又は少なくとも100倍高くなりうる。ウィンドウ領域の表面における貫通転位の濃度は、ウィング領域の表面における貫通転位の濃度よりも10倍未満、3000倍未満、1000倍未満、300倍未満、100倍未満、又は30倍未満で高くなりうる。幾つかの実施形態では、ウィンドウ領域415とウィング領域417との間の境界は、例えば、約5cm-1から10cm-1の間の線密度で、転位が施されていてもよい。自立型のアンモノサーマルIII族窒化物のブール又はウエハの大面積表面にわたって平均された貫通転位の濃度は、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満でありうる。自立型のアンモノサーマルIII族窒化物のブール又はウエハの大面積表面にわたって平均された積層欠陥の濃度は、約10cm-1未満、約10cm-1未満、約10cm-1未満、約1cm-1未満、又は約0.1cm-1未満でありうるか、又は検出不能でありうる。幾つかの実施形態では、例えば、転位のパターン化されたアレイを有する種結晶上での再成長及び/又は2ミリメートル超、3ミリメートル超、5ミリメートル超、又は10ミリメートル超の厚さへの成長を繰り返した後、貫通転位の位置は、種結晶のパターンに対して横方向にある程度ずれていてもよい。このような場合、貫通転位の濃度がより高い領域は、図5A~5Eに概略的に示されている比較的鋭い線よりも幾分拡散している可能性がある。しかしながら、表面上の線に沿った横方向位置の関数としての貫通転位の濃度は、約5マイクロメートルから約20ミリメートルの間、又は約200マイクロメートルから約5ミリメートルの間の周期で周期的に変化する。周期的に変化する領域内の貫通転位の濃度は、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも30倍、少なくとも100倍、少なくとも300倍、又は少なくとも1000倍、変化しうる。
図6A~6Fを参照すると、上で論じたように、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、図3A~4C及び17A~22Fに関連して説明したタイル化プロセスのうちの1つ以上を使用することによって形成することができる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、転位635の1つ以上の第2の線によって分離された2つ以上のドメイン又は粒子を含むことができ、後者は、図2C、3E、及び22Eに概略的に示されるように、アンモノサーマルIII族金属窒化物材料の一のシードからその隣のシードへの横方向の成長中に形成された、第2のコアレッセンスフロント235又は2215に由来する。元の窒化物結晶の形状に応じて、ドメインのパターンは、例えば、(a)正方形(図6A及び17A)、(b)長方形(図6B及び17B)、(c)六角形(図6C及び17C)、(d)菱面体(図6D及び17D)、(e)六角形と五角形の混合(図6E及び17E);又は(f)六角形と菱面体の混合(図6F及び17F)でありうる。他のパターンも可能である。図6Gは、結晶成長プロセス中に、図1Gに示されている複数のタイル状種結晶(例えば、種結晶370)を使用して形成された、正方形の自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの一例を示しており、ここで、単一のタイル結晶(例えば、種結晶370)から生じるドメインの各々は、ウィンドウ領域及びウィング領域並びにコアレッセンスフロントを含む。ドメインは、元のタイル結晶寸法380及び390にそれぞれほぼ対応する、第1の横方向のタイル寸法680及び第2の横方向のタイル寸法690を有することができ(図17A~17Fを参照)、横方向寸法は、厚さに垂直な平面を画成し、ここで、第1の横方向のタイル寸法680及び第2の横方向のタイル寸法690の各々は、少なくとも約5ミリメートル、10ミリメートル、15ミリメートル、20ミリメートル、25ミリメートル、35ミリメートル、50ミリメートル、75ミリメートル、100ミリメートル、150ミリメートル、又は少なくとも約200ミリメートルでありうる。隣接するドメイン間の極性方位差角度γは、0.5度未満、0.2度未満、0.1度未満、0.05度未満、0.02度未満、又は0.01度未満でありうる。第1の横方向のタイル寸法680は、第1の横方向のシード寸法(すなわち、X方向の寸法380)とほぼ同じでありうる。同様に、第2の横方向のタイル寸法690は、第2の横方向のシード寸法(すなわち、Y方向の寸法390)にほぼ等しくなりうる。隣接するドメイン間の方位差角度α及びβは、0.5度未満、0.2度未満、0.1度未満、0.05度未満、0.02度未満、又は0.01度未満でありうる。典型的には、γはα及びβ以下である。結晶方位差角度α、β、及びγは、約0.01度超、約0.02度超、約0.05度超、又は約0.1度超でありうる。隣接するドメイン間の線に沿った転位密度は、約5×10cm-1未満、約2×10cm-1未満、約1×10cm-1未満、約5×10cm-1未満、約2×10cm-1未満、約1×10cm-1未満、約5×10cm-1未満、約2×10cm-1未満、又は約1×10cm-1未満でありうる。隣接するドメイン間の線に沿った転位密度は、50cm-1超、100cm-1超、200cm-1超、500cm-1超、1,000cm-1超、2000cm-1超、又は5000cm-1超でありうる。
自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、約300秒角未満、約200秒角未満、約100秒角未満、約50秒角未満、約35秒角未満、約25秒角未満、又は約15秒角未満の対称X線ロッキングカーブ(例えばc面の場合、(002))半値全幅(FWHM)を有しうる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、約300秒角未満、約200秒角未満、約100秒角未満、約50秒角未満、約35秒角未満、約25秒角未満、又は約15秒角未満の非対称X線ロッキングカーブ(例えばc面の場合、(201)又は(102))半値全幅(FWHM)を有しうる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、約100マイクロメートルから約100ミリメートルの間、又は約1ミリメートルから約10ミリメートルの間の厚さを有しうる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、少なくとも約15ミリメートル、少なくとも約20ミリメートル、少なくとも約25ミリメートル、少なくとも約35ミリメートル、少なくとも約50ミリメートル、少なくとも約75ミリメートル、少なくとも約100ミリメートル、少なくとも約150ミリメートル、少なくとも約200ミリメートル、又は少なくとも約400ミリメートルの直径を有しうる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの表面は、(0001)Ga極性、(000-1)N極性、{10-10}無極性、又は{11-20}無極性a面の10度以内、5度以内、2度以内、1度以内、0.5度以内、0.2度以内、0.1度以内、0.05度以内、0.02度以内、又は0.01度以内の結晶方位を有しうる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの表面は、(hkil)半極性配向を有することができ、ここで、i=-(h+k)及びlであり、h及びkのうちの少なくとも1つは非ゼロである。特定の実施形態では、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの結晶方位は、{11-2±2}、{60-6±1}、{50-5±1}、{40-4±1}、{30-3±1}、{50-5±2}、{70-7±3}、{20-2±1}、{30-3±2}、{40-4±3}、{50-5±4}、{10-1±1}、{10-1±2}、{10-1±3}、{21-3±1}、又は{30-3±4}の10度以内、5度以内、2度以内、1度以内、0.5度以内、0.2度以内、0.1度以内、0.05度以内、0.02度以内、又は0.01度以内である。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、少なくとも10ミリメートルの最小横方向寸法を有する。幾つかの実施形態では、融合した窒化物結晶は、少なくとも2センチメートル、少なくとも3センチメートル、少なくとも4センチメートル、少なくとも5センチメートル、少なくとも6センチメートル、少なくとも8センチメートル、少なくとも10センチメートル、又は少なくとも20センチメートルの最小横方向寸法を有する、
幾つかの実施形態では、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、半導体構造を形成するエピタキシーのための基板として用いられる。自立型の融合したアンモノサーマルIII族窒化物ブールは、当技術分野で知られている方法によって、鋸切断、ラッピング、研磨、ドライエッチング、及び/又は化学機械研磨することができる。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの1つ以上の縁部は、研削されてもよい。自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハを適切な反応器内に配置し、MOCVD、MBE、HVPEなどによってエピタキシャル層を成長させることができる。特定の実施形態では、エピタキシャル層は、GaN又はAlInGa(1-x-y)Nを含み、ここで、0≦x、y≦1である。エピタキシャル層の形態は、表面方位がほぼ同じであることから、表面上のドメイン間で均一である。
幾つかの実施形態では、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、さらなるタイル化のための基板として用いられる。例えば、図17A~19Dを参照すると、種結晶370自体を、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハになるように選択することができる。タイル化、合体、及び再タイル化操作は、2回より多く、4回より多く、8回より多く、又は16回より多く繰り返すことができる。このように、連続するタイル化操作によって、優れた結晶品質と非常に大きい直径とを有する融合した窒化物結晶を製造することができる。
自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハは、発光ダイオード、レーザダイオード、光検出器、アバランシェフォトダイオード、トランジスタ、整流器、ショットキー整流器、サイリスタ、p-i-nダイオード、金属-半導体-金属ダイオード、高電子移動度トランジスタ、金属半導体電界効果トランジスタ、金属酸化物電界効果トランジスタ、パワー金属酸化膜半導体電界効果トランジスタ、パワー金属絶縁膜半導体電界効果トランジスタ、バイポーラ接合トランジスタ、金属絶縁膜電界効果トランジスタ、ヘテロ接合バイポーラトランジスタ、パワー絶縁ゲートバイポーラトランジスタ、パワー垂直接合型電界効果トランジスタ、カスコードスイッチ、内側サブバンドエミッタ、量子井戸赤外光検出器、量子ドット赤外光検出器、太陽電池、又は光電気化学的水分解及び水素発生デバイス用のダイオードのうちの少なくとも1つなどの光電子デバイス及び電子デバイスを製造するための基板として使用することができる。幾つかの実施形態では、自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハにおけるドメイン構造に対するデバイスの位置は、個々のデバイスのアクティブ領域が自立型の融合したアンモノサーマルIII族窒化物ブール又はウエハの単一のドメイン又は粒子内に存在するように選択される。
自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハは、(0001)+c面、(000-1)-c面、{10-10}m面、{11-20}a面、{11-2±2}、{60-6±1}、{50-5±1}、{40-4±1}、{30-3±1}、{50-5±2}、{70-7±3}、{20-2±1}、{30-3±2}、{40-4±3}、{50-5±4}、{10-1±1}、{10-1±2}、{10-1±3}、{21-3±1}、又は{30-3±4}の5度以内、2度以内、1度以内、0.5度以内、0.2度以内、0.1度以内、0.05度以内、0.02度以内、又は0.01度以内の大面積結晶方位を有しうる。自立型のアンモノサーマルIII族金属窒化物のブール又はウエハは、(hkil)半極性大面積表面配向を有することができ、ここで、i=-(h+k)及びlであり、h及びkのうちの少なくとも1つは非ゼロである。
ある特定の実施形態では、自立型のアンモノサーマルIII族金属窒化物結晶又はウエハの大面積表面は、{10-10}m面から[0001]+c方向に向かって約-60度から約+60度の間、及び直交する<1-210>a方向に向かって最大で約10度までのミスカットされた結晶方位を有する。ある特定の実施形態では、自立型のアンモノサーマルIII族金属窒化物結晶又はウエハの大面積表面は、{10-10}m面から[0001]+c方向に向かって約-30度から約+30度の間、及び直交する<1-210>a方向に向かって最大で約5度までのミスカットされた結晶方位を有する。ある特定の実施形態では、自立型のアンモノサーマルIII族金属窒化物結晶又はウエハの大面積表面は、{10-10}m面から[0001]+c方向に向かって約-5度から約+5度、及び直交する<1-210>a方向に向かって最大で約1度までのミスカットされた結晶方位を有する。自立型のアンモノサーマルIII族金属窒化物結晶又はウエハは、10cm-1未満、10cm-1未満、又は1cm-1未満の積層欠陥濃度、並びに、2つの大面積表面の一方又は両方に、約10cm-2未満、約10cm-2未満、約10cm-2未満、約10cm-2未満、又は約10cm-2未満の非常に低い転位密度を有しうる。
自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハは、約200秒角未満、約100秒角未満、約50秒角未満、約35秒角未満、約25秒角未満、又は約15秒角未満の対称X線ロッキングカーブ半値全幅(FWHM)を有しうる。自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハは、少なくとも1つ、少なくとも2つ、又は3つの独立した又は直交する方向に、0.1メートル超、1メートル超、10メートル超、100メートル超、又は1000メートル超の結晶曲率半径を有しうる。
ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの少なくとも一方の表面は、約1×1016cm-3を上回る、約1×1017cm-3を上回る、又は約1×1018cm-3を上回る、酸素(O)及び水素(H)のうちの少なくとも1つの原子不純物濃度を有する。ある特定の実施形態では、Hの原子不純物濃度のOの原子不純物濃度に対する比は、約0.3から約1000の間、約0.4から約10の間、又は約10から約100の間である。ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの少なくとも一方の表面は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、フッ素(F)、塩素(Cl)、臭素(Br)、又はヨウ素(I)のうちの少なくとも1つの不純物濃度が、約1×1015cm-3超、約1×1016cm-3超、又は約1×1017cm-3超、約1×1018cm-3超である。ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの上面及び底面は、O、H、炭素(C)、Na、及びKの不純物濃度が、較正された二次イオン質量分析法(SIMS)で定量化して、それぞれ、約1×1016cm-3から1×1019cm-3の間、約1×1016cm-3から2×1019cm-3の間、1×1017cm-3未満、1×1016cm-3未満、及び1×1016cm-3未満でありうる。別の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの上面及び底面は、O、H、C、並びにNa及びKのうちの少なくとも一方の不純物濃度が、較正された二次イオン質量分析法(SIMS)で定量化して、それぞれ、約1×1016cm-3から1×1019cm-3の間、約1×1016cm-3から2×1019cm-3の間、1×1017cm-3未満、及び約3×1015cm-3から1×1018cm-3の間でありうる。さらに別の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの上面及び底面は、O、H、C、並びにF及びClのうちの少なくとも一方の不純物濃度が、較正された二次イオン質量分析法(SIMS)で定量化して、それぞれ、約1×1016cm-3から1×1019cm-3の間、約1×1016cm-3から2×1019cm-3の間、1×1017cm-3未満、及び約1×1015cm-3から1×1019cm-3の間でありうる。幾つかの実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハの上面及び底面は、Hの不純物濃度が、較正された二次イオン質量分析法(SIMS)で定量化して、約5×1017cm-3から1×1019cm-3の間でありうる。ある特定の実施形態では、自立型のアンモノサーマルIII族金属窒化物のブール又はウエハの少なくとも一方の表面は、約1×1016cm-3から1×1019cm-3の間の銅(Cu)、マンガン(Mn)、及び鉄(Fe)の不純物濃度を有する。特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物のブール又はウエハは、約3175cm-1における赤外線吸収ピークを有し、単位厚さあたりの吸光度は約0.01cm-1を超える。
自立型の融合したアンモノサーマルIII族金属窒化物結晶又はウエハは、立方体又は他の結晶構造を実質的に含まないウルツ鉱構造によって特徴づけることができ、他の結晶構造は、実質的なウルツ鉱構造に対して約0.1体積%未満である。
驚くべきことに、HVPE GaNとアンモノサーマルGaNとの間の格子不整合を所与とすると、本明細書に開示される技法の使用結果は、アンモノサーマル横方向エピタキシャル過成長が、亀裂のない、厚い大面積GaN層を生成することができることを示している。ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物結晶又はウエハは、約25ミリメートル超、約50ミリメートル超、約75ミリメートル超、約100ミリメートル超、約150ミリメートル超、約200ミリメートル超、約300ミリメートル超、又は約600ミリメートル超の直径、並びに約0.1ミリメートル超、約0.2ミリメートル超、約0.3ミリメートル超、約0.5ミリメートル超、約1ミリメートル超、約2ミリメート超ル、約3ミリメートル超、約5ミリメートル超、約10ミリメートル超、又は約20ミリメートル超の厚さを有し、実質的に亀裂を含まない。対照的に、我々は、大面積のパターン化されていないHVPE GaN種結晶におけるアンモノサーマル成長が、HVPE GaN種結晶を形成するためにパターニングプロセスが使用されていたとしても、層が数百マイクロメートルよりも厚い場合には亀裂が発生することを見出した。
自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、約25マイクロメートル未満、約10マイクロメートル未満、約5マイクロメートル未満、約2マイクロメートル未満、又は約1マイクロメートル未満の全厚さ変動(TTV)によって、並びに約200マイクロメートル未満、約100マイクロメートル未満、約50マイクロメートル未満、約25マイクロメートル未満、又は約10マイクロメートル未満である巨視的な反りによって特徴づけることができる。自立型の融合したアンモノサーマルIII族金属窒化物ウエハの大面積表面は、約100マイクロメートル超の直径又は特性寸法が約2cm-2未満、約1cm-2未満、約0.5cm-2未満、約0.25cm-2未満、又は約0.1cm-2未満のマクロ欠陥濃度を有しうる。自立型のアンモノサーマルIII族金属窒化物結晶又はウエハの大面積表面にわたるミスカット角度の変動は、2つの直交する結晶学的方向の各々において、約1度未満、約0.5度未満、約0.2度未満、約0.1度未満、約0.05度未満、又は約0.025度未満でありうる。自立型の融合したアンモノサーマルIII族金属窒化物ウエハの大面積表面の二乗平均平方根表面粗さは、少なくとも10μm×10μmの面積にわたって測定して、約0.5ナノメートル未満、約0.2ナノメートル未満、約0.15ナノメートル未満、約0.1ナノメートル未満、又は約0.10ナノメートル未満でありうる。自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、約1×1017cm-3から約3×1019cm-3の間のキャリア濃度、及び約100cm/V-sを超えるキャリア移動度を有する、n型の電気伝導性によって特徴づけることができる。代替的な実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、約1×1015cm-3から約1×1019cm-3の間のキャリア濃度を有する、p型の電気伝導性を特徴とする。さらに他の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、半絶縁性の電気的挙動を特徴とし、室温抵抗率は、約10オーム・センチメートル超、約10オーム・センチメートル超、約10オーム・センチメートル超、約1010オーム・センチメートル超、又は約1011オーム・センチメートル超である。ある特定の実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物ウエハは、透明度が高く、400ナノメートルの波長における光吸収係数は、約10cm-1未満、約5cm-1未満、約2cm-1未満、約1cm-1未満、約0.5cm-1未満、約0.2cm-1未満、又は約0.1cm-1未満である。
幾つかの実施形態では、自立型の融合したアンモノサーマルIII族金属窒化物結晶又はウエハは、さらなるバルク成長のための種結晶として用いられる。1つの特定の実施形態では、さらなるバルク成長は、融合したアンモノサーマルバルク結晶成長を含む。別の特定の実施形態では、さらなるバルク成長は、フラックス結晶成長としても知られる高温溶液結晶成長を含む。さらに別の特定の実施形態では、さらなるバルク成長はHVPEを含む。さらに成長した結晶は、当技術分野で知られている方法によって、スライス、ラッピング、研磨、エッチング、及び/又は化学機械研磨してウエハにすることができる。ウエハの表面は、約1ナノメートル未満又は約0.2ナノメートル未満である、10マイクロメートル×10マイクロメートルの面積にわたって測定された二乗平均平方根表面粗さによって特徴づけることができる。
ウエハは、半導体構造に組み込むことができる。半導体構造は、少なくとも1つのAlInGa(1-x-y)Nエピタキシャル層を含んでよく、ここで、0≦x、y、x+y≦1である。エピタキシャル層は、当技術分野で知られている方法に従って、例えば有機金属化学気相成長法(MOCVD)又は分子線エピタキシー(MBE)によってウエハ上に堆積することができる。半導体構造の少なくとも一部は、窒化ガリウムをベースとした電子デバイス又は光電子デバイスの一部、例えば、発光ダイオード、レーザダイオード、電力変換光ダイオード、光検出器、アバランシェフォトダイオード、光起電力、太陽電池、水を光電気化学的に分解する電池、トランジスタ、整流器、及びサイリスタなど;トランジスタ、整流器、ショットキー整流器、サイリスタ、p-i-nダイオード、金属-半導体-金属ダイオード、高電子移動度トランジスタ、金属半導体電界効果トランジスタ、金属酸化物電界効果トランジスタ、パワー金属酸化膜半導体電界効果トランジスタ、パワー金属絶縁膜半導体電界効果トランジスタ、バイポーラ接合トランジスタ、金属絶縁膜電界効果トランジスタ、ヘテロ接合バイポーラトランジスタ、パワー絶縁ゲートバイポーラトランジスタ、パワー垂直接合型電界効果トランジスタ、カスコードスイッチ、内側サブバンドエミッタ、量子井戸赤外光検出器、量子ドット赤外光検出器、及びそれらの組合せのうちの1つを形成することができる。窒化ガリウムをベースとした電子デバイス又は光電子デバイスは、ランプ又は照明器具などの備品に組み込むことができる。窒化ガリウムをベースとした電子デバイス又は光電子デバイスは、個片化した後に、少なくとも0.1ミリメートル×0.1ミリメートルの横方向寸法を有しうる。窒化ガリウムをベースとした電子デバイス又は光電子デバイスは、少なくとも8ミリメートルの最大寸法を有することができ、例えば、レーザダイオードを含みうる。窒化ガリウムをベースとした電子デバイス又は光電子デバイスは、その体積全体にわたって完全に転位を含まなくてもよい。例えば、10cm-2の転位密度では、0.1×0.1mmのデバイスのかなりの部分に転位がないものと予想することができる。10cm-2の転位密度では、1×1mmのデバイスのかなりの部分に転位がないものと予想することができる。窒化ガリウムをベースとした電子デバイス又は光電子デバイスは、その体積全体にわたって完全に積層欠陥を含まなくてもよい。例えば、1cm-1の積層欠陥密度では、無極性又は半極性大面積表面s及びc面ファセットを備えたレーザダイオードなどの10×1mmの縞状のデバイスのかなりの部分に積層欠陥がないものと予想することができる。
図7A~7Dは、本開示の実施形態による方法、並びに結果として得られる光電子デバイス及び電子デバイスを示す断面図である。光電子デバイス又は電子デバイスなどの二端子デバイス又は三端子デバイスは、自立型の融合したアンモノサーマルIII族金属窒化物ウエハ431の上又は貫通転位の局所的にほぼ線形のアレイ419のパターンを有し、かつ例えば図7Bに示されるようにMOCVDによって少なくとも1つのAlInGaN活性層631を含む基板の上にエピタキシャル層を堆積させるステップを含む、一連のステップによって形成することができる。ある特定の実施形態では、堆積された層は、n型又はn+層633、ドープされた又は意図せずにドープされた単一の量子井戸(SQW)、多重量子井戸(MQW)構造、二重ヘテロ構造(DH構造)、又はnドリフト層、並びに、図示されるように、p型層636を含む。デバイス構造は、図7B及び7Dに概略的に示されるように縦型であっても、図7Cに概略的に示されるように横型であってもよい。デバイスは、外部回路に電気的に接続されて、n型コンタクト639とp型コンタクト637との間に電位を提供することができる。とりわけ、分離閉じ込めヘテロ構造(SCH)層、クラッド層、AlGaN電子ブロック層、及びp+コンタクト層などの追加の層を堆積させることができる。多くの場合、局所的にほぼ線形のアレイ419のパターンなどの基板における貫通転位は、堆積された層に伝播し、潜在的にデバイスの性能に影響を与える。
特定の実施形態では、該方法は、図7B及び7Cに示されるように、n型コンタクト639、及びp型コンタクト637も堆積する。幾つかの実施形態では、n型及びp型コンタクトのセットの少なくとも1つは、コアレッセンスフロント、ウィング領域、及び/又はウィンドウ領域に関して特定の位置合わせで配置される。発光部分は、コアレッセンスフロントの上、又はコアレッセンスフロント間の中心にあってもよい。1つの特定の実施形態では、透明なp型コンタクトが堆積され、高い貫通転位濃度を有しうるコアレッセンスフロントとの接触を避けるように配置される。このようにして、比較的低濃度の貫通転位を有する発光構造又はフォトダイオード構造を形成することができる。このようにして、比較的低濃度の貫通転位を有する、発光構造、PNダイオード、フォトダイオード、又はショットキーバリアダイオードを形成することができる。好ましい実施形態では、光放出及び/又は最大電場の領域は、ウィング領域417の上に重なり、かつ局所的にほぼ線形のアレイ419のパターンを回避するように設計されている。ある特定の実施形態では、コアレッセンスフロント又はウィンドウ領域に関連する欠陥領域が、直列抵抗を低減するためのシャント経路として利用される。ある特定の実施形態では、n型コンタクトは、10cm-1を上回る刃状転位密度及び/又は約10cm-2を超える貫通転位密度で、コアレッセンスフロント又はウィンドウ領域の上に配置される。
次に図7Cを参照すると、幾つかの実施形態、例えば、レーザダイオード、PNダイオード、フォトダイオード、又はショットキーバリアダイオードなどでは、p-コンタクトは、実質的にコアレッセンスフロントがない領域に配置することができる。レーザダイオードなどのある特定の実施形態では、レーザ・リッジ又は縞状構造740は、実質的にコアレッセンスフロントがない領域に配置することができる。従来のリソグラフィと、n型層及び/又は基板と電気的に接触して配置されたn型コンタクトとによって、メサが形成されうる。側壁パッシベーション、イオン注入領域、フィールドプレートなどの追加の構造は、コアレッセンスフロントと位置合わせして配置することができる。
次に図7Dを参照すると、例えば、電流開口垂直電子トランジスタ(CAVET)などの幾つかの実施形態では、nドリフト層731はn+コンタクト層730の上に堆積され、これが今度は自立型の融合したアンモノサーマルIII族金属窒化物ブール413上に堆積される。P型層636は、開口736を有するn層731の上に形成される。n層731の残りの再成長に続き、AlGaN 2D電子ガス層738が堆積される。最後に、ソースコンタクト737、ドレインコンタクト739、誘電体層741、及びゲートコンタクト743が堆積される。好ましい実施形態では、開口736は、第1のコアレッセンスフロント419及び第2のコアレッセンスフロント435から離れて配置される。好ましい実施形態では、開口736は、ウィンドウ領域415から離れて配置される。好ましい実施形態では、開口736は、ウィング領域417の上に配置される。トレンチCAVET、MOSFETなどの他のタイプの三端子デバイスは、最大電界の領域がウィング領域417内に位置するように位置づけられる。
図8は、二次元配列の形態のマスクを使用して、アンモノサーマル横方向エピタキシャル成長によって形成された自立型のGaN基板の上面図(平面図)を示している。GaN層は、ウィンドウ領域415を形成するために、元のマスク層の開口部の二次元配列を通して成長させた。GaN層の合体により、貫通転位の局所的にほぼ線形のアレイ419のパターンの二次元グリッドを形成することができる。
図9Aは、透明なp-コンタクト970がウィンドウ領域415又は貫通転位の局所的にほぼ線形のアレイ419のパターンのいずれとも接触しないように位置合わせされ、配置されている、例えばLEDのデバイス構造の上面図を示している。図9Bは、デバイス構造、例えばLEDの代替的な実施形態の上面図を示しており、ここで、電気コンタクト980は、ウィンドウ領域415及び貫通転位の局所的にほぼ線形のアレイ419のパターンに関して再び位置合わせされるが、ここでは貫通転位の局所的にほぼ線形のアレイ419のパターンの上に配置されている。図9Cは、例えば、フリップチップLEDのデバイス構造の代替的な実施形態の上面図を示しており、ここで、n型電気コンタクト990はウィンドウ領域415に関して位置合わせされ、p型電気コンタクト995はウィンドウ領域415間に位置合わせされる。
個々のダイ、例えば、発光ダイオード又はレーザダイオードは、電気コンタクトの隣接するセット間で、鋸切断、劈開、スライス、単一化などによって形成することができる。再び図9Aを参照すると、スライシングは、貫通転位の局所的にほぼ線形のアレイ419のパターンに沿って実施することができる。スライシングは、ウィンドウ領域415を介して実施することもできる。次に図9Bを参照すると、ある特定の実施形態では、スライシングは、ウィンドウ領域415を介して実施することができるが、貫通転位の局所的にほぼ線形のアレイ419のパターンに沿って実施することはできない。再び図9Cを参照すると、ある特定の実施形態では、スライシングは、シード領域を介して実施されることも、すべてのコアレッセンスフロントに沿って実施されることもない。シード領域の一次元又は二次元のアレイの配置に応じて、単一化されたダイは、3つの隅部、4つの隅部、又は6つの隅部を有しうる。
本明細書に記載される方法は、幾つかの潜在的な欠陥領域を有するが、大面積のIII族金属窒化物基板を製造する手段を提供する。本明細書に記載される方法は、大面積のIII族金属窒化物基板の欠陥領域に関連する潜在的な問題を回避する高性能発光ダイオード及び/又はレーザダイオードを製造する手段を提供する。
タイル状結晶アレイ基板の実施例
再び図19D及び図19Gを参照すると、ある特定の実施形態では、タイル状の複合構造1960をさらなるバルク結晶成長のための種結晶として使用するのではなく、タイル状の複合構造1960をさらに処理してタイル状複合基板1980を形成し、光学デバイス又は電子デバイス製造用の基板として直接使用する。形成されたタイル状複合基板1980は、マトリックス部材とも呼ばれる多結晶GaN層1950によって結合された種結晶370のアレイを含む。幾つかの実施形態では、種結晶370のアレイは、各種結晶の表面1975が、図19Gに示されるX-Y平面などの第1の平面と平行になるように位置決めされる。種結晶370のアレイは、間隙1986(図19G)が種結晶370の隣接する縁部間に形成されるように位置決めすることができる。一例では、間隙1986は、2ミリメートル(mm)未満、例えば、0.1マイクロメートル(μm)から1ミリメートル(mm)の間、又は0.1マイクロメートルから200マイクロメートルの間、0.1マイクロメートルから50マイクロメートルの間、又は0.2マイクロメートルから50マイクロメートルの間である。ある特定の実施形態では、間隙1986は、マトリクス部材材料1950で完全に満たされる。ある特定の実施形態では、図19Dに示されるように、マトリクス部材材料1950の上面は、種結晶表面1975の上面の下にある。ある特定の実施形態では、マトリクス部材材料1950が間隙1986内に存在せず、したがって、種結晶370は、それらの裏側からマトリクス部材1950への結合によってのみ適所に保持される。ある特定の実施形態では、アレイ内の種結晶370の表面1975は、研削、ラッピング、研磨などによって平坦化される。ある特定の実施形態では、表面1975は、化学機械研磨され、クリーンルーム環境で最終的なクリーン操作に供される。ある特定の実施形態では、タイル状複合基板1980を形成するために用いられるプロセス中、タイル状複合構造1960の裏面は、例えば研削、ラッピング、及び/又は研磨によって薄肉化され、平坦化される。ある特定の実施形態では、タイル状複合基板1980の厚さは、種結晶370の厚さと同一であり、したがって、マトリクス部材1950は間隙1986内にのみ存在する。他の実施形態では、タイル状複合基板1980の厚さは、種結晶370の厚さよりも大きく、この場合、マトリクス部材1950は種結晶370の裏側に結合される。タイル状の複合構造1960の周囲を研削して、タイル状複合基板1980の外縁1990を形成することができる。ある特定の実施形態では、面取り、ベベル、又は丸みを帯びた縁部がタイル状複合基板1980の縁部1990へと研削される。幾つかの実施形態では、種結晶370のアレイを取り囲む外縁1990は、円形の形状をしている。ある特定の実施形態では、1つ以上のオリエンテーションフラット1995がタイル状複合基板1980の縁部1990へと研削されうる。ある特定の実施形態では、タイル状複合基板1980は、20ミリメートルから210ミリメートルの間、20ミリメートルから30ミリメートルの間、45ミリメートルから55ミリメートルの間、90ミリメートルから110ミリメートルの間、140ミリメートルから160ミリメートルの間、又は190ミリメートルから210ミリメートルの間の直径、並びに150マイクロメートルから約5ミリメートルの間、約200マイクロメートルから約2ミリメートルの間、又は約250マイクロメートルから約1.5ミリメートルの間の厚さを有する。
ある特定の実施形態では、タイル状複合基板1980内の種結晶370の各々の厚さは、50マイクロメートル以内、25マイクロメートル以内、10マイクロメートル以内、5マイクロメートル以内、2マイクロメートル以内、又は1マイクロメートル以内に等しい。ある特定の実施形態では、種結晶370の各々の表面1975は、10マイクロメートル以内、5マイクロメートル以内、2マイクロメートル以内、又は1マイクロメートル以内で同一平面上にある。種結晶370の表面1975の各々の結晶学的ミスカットは、0.5度以内、0.3度以内、0.2度以内、0.1度以内、0.05度以内、0.02度以内、又は0.01度以内で等しくなりうる大きさを有する。好ましい実施形態では、種結晶370の各々の結晶学的ミスカットの方向は、10度以内、5度以内、2度以内、1度以内、0.5度以内、0.2度以内、又は0.1度以内に位置合わせされる。特定の実施形態では、種結晶370の表面1975の各々は、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の5度以内、2度以内、1度以内、又は0.5度以内の方位、並びに0.5度未満、0.2度未満、0.1度未満、又は0.05度未満のa方向におけるミスカットを有する。
タイル状複合基板1980は、約25マイクロメートル未満、約10マイクロメートル未満、約5マイクロメートル未満、約2マイクロメートル未満、又は約1マイクロメートル未満の全厚さ変動(TTV)によって、並びに約200マイクロメートル未満、約100マイクロメートル未満、約50マイクロメートル未満、約25マイクロメートル未満、又は約10マイクロメートル未満の巨視的な反りによって特徴づけることができる。TTV及び巨視的な反りの値が小さいことは、均一な特性及び高いデバイス歩留まりでのエピタキシャル層の堆積を可能にすることから、電子デバイスの製造にとって有用である。タイル状複合基板1980の少なくとも1つの表面1975(図19D)は、約100マイクロメートルを超える直径又は特性寸法で、約2cm-2未満、約1cm-2未満、約0.5cm-2未満、約0.25cm-2未満、又は約0.1cm-2未満のマクロ欠陥濃度を有しうる。種結晶370の表面1975の集合全体にわたるミスカット角度の変動は、2つの直交する結晶学的方向の各々において、約1度未満、約0.5度未満、約0.2度未満、約0.1度未満、約0.05度未満、又は約0.025度未満でありうる。タイル状複合基板1980の少なくとも1つの表面1975の平均二乗平均表面粗さは、少なくとも10μm×10μmの面積にわたって測定して、約0.5ナノメートル未満、約0.2ナノメートル未満、約0.15ナノメートル未満、約0.1ナノメートル未満、又は約0.10ナノメートル未満でありうる。タイル状複合基板1980内の少なくとも1つの種結晶370は、約1×1017cm-3から約3×1019cm-3の間のキャリア濃度、及び約100cm/V-sを超えるキャリア移動度を有する、n型の電気伝導性によって特徴づけることができる。代替的な実施形態では、タイル状複合基板1980内の少なくとも1つの種結晶370は、約1×1015cm-3から約1×1019cm-3の間のキャリア濃度を有する、p型の電気伝導性を特徴とする。さらに他の実施形態では、タイル状複合基板1980ウエハ内の少なくとも1つの種結晶370は、半絶縁性の電気的挙動を特徴とし、室温抵抗率は、約10オーム・センチメートル超、約10オーム・センチメートル超、約10オーム・センチメートル超、約1010オーム・センチメートル超、又は約1011オーム・センチメートル超である。
1つ以上のデバイス構造は、図23Aに概略的に示されるように、タイル状複合基板1980内の種結晶370のうちの1つ以上の上に成長又は堆積されうる。ある特定の実施形態では、例えば、MOCVD、MBE、又はHVPEによる第1の層2310の堆積に続いて、離型層2320がその上に堆積されうる。幾つかの実施形態では、第1の層2310は、n型ドーパントでドープされた層を含みうる。離型層2320は、InGaNを含むか、又はInGaNで構成されうる。離型層2320は、多重量子井戸又は歪み層超格子を含むか、又はそれらで構成されうる。
ある特定の実施形態では、その後、デバイス層2340が堆積され、離型層2320の上に重なる。デバイス層2340は、低nGaNドリフト層、1つ以上のAlInGaN活性層、1つ以上のAlInGaNクラッド層、p型層、及びp型電気コンタクトのうちの1つ以上を含みうる。発光ダイオード、レーザダイオード、フォトダイオード、ダイオード、トランジスタなどのデバイスの製造に適しうることから、他の層もまた、デバイス層2340に存在しうる。ある特定の実施形態では、接着層2350がデバイス層2340の上に堆積されうる。幾つかの実施形態では、トレンチ2355が、接着層2350、デバイス層2340を通り、離型層2320に又は離型層2320を通って形成される。図23Bに概略的に示されるように、次に、ハンドル基板2360が接着層2350に結合される。ハンドル基板2360を接着層2350に結合するプロセスは、熱圧着、はんだ付け、無焼結銀接合、又は接着接合のうちの1つ以上によって達成することができる。幾つかの実施形態では、次に、図23Cに概略的に示されるように、離型層2320が除去され、ハンドル基板2360に結合された1つ以上のデバイス層2340を、1つ以上の種結晶370から分離させる。ある特定の実施形態では、離型層2320は、光電気化学エッチングによって除去される。ある特定の実施形態では、これらの操作の順序が変更される。1つの特定の実施形態では、ハンドル基板2360を接着層2350に結合する前に、離型層2320の一部又は全部が除去される。
ある特定の実施形態では、種結晶370の表面2370は、第1の層2310又は存在する他の層の一部を有していてもよく、研削、ラッピング、及び研磨のうちの1つ以上によって再平坦化されうる。表面2370は、クリーンルーム環境での化学機械研磨及び最終洗浄によってさらに準備されてもよい。デバイス層2340をタイル状複合基板1980から除去し、タイル状複合基板1980内に種結晶370の表面2370を再調製した後、タイル状複合基板は、光学デバイス又は電子デバイスの製造用の基板として再び直接使用される。タイル状複合基板1980は、光学デバイス又は電子デバイスの形成に用いられる基板として、少なくとも1回、少なくとも2回、少なくとも3回、少なくとも5回、又は少なくとも10回、再利用することができる。図19A~19E及び図23A~23Cは、タイル状複合基板1980の多結晶GaN層1950が種結晶370の表面(例えば、図23A~23Cの下面)上に延在する構成を示しているが、幾つかの構成では、多結晶GaN層1950は、種結晶370の縁部にのみ位置決めされ、種結晶370の主面(例えば、図23A~23Bの上面及び下面)のいずれの上にも配置されないことから、この構成は、本開示の範囲を限定することを意図したものではない。
上記の一連の工程は、本開示の一実施形態による方法を提供する。特定の実施形態では、本開示は、構造化された支持部材を有する高圧装置によって提供される方法及び得られる結晶性材料を提供する。本明細書の特許請求の範囲から逸脱することなく、工程が追加されるか、1つ以上の工程が削除されるか、又は1つ以上の工程が異なる順序で提供される、他の代替案も提供することができる。
本開示によって提供される実施形態は、以下の実施例を参照することによってさらに示される。当業者にとって、本開示の範囲から逸脱することなく、材料及び方法の両方に対して多くの修正を実施することができることは明らかであろう。
実施例1
約0.3ミリメートル厚のHVPEによって成長したc面配向バルクGaN結晶を、パターン化及びアンモノサーマル結晶成長のための基板101として使用するために提供した。TiWの100ナノメートルの厚さの層を、基板の(000-1)N面上に接着層としてスパッタ堆積し、続いてAuを含む780ナノメートルの厚さの不活性層を堆積した。次に、6マイクロメートル厚のAu層をスパッタ層上に電気めっきし、不活性層(例えば、ブランケットマスク116)の厚さを増加させた。フォトレジスト(例えば、フォトレジスト層103)としてAZ-4300を使用して、3マイクロメートル幅×1センチメートル長のスリット(例えば、開口部112)の線形アレイを含み、ピッチ直径が1200マイクロメートルのパターンを画成した。図1M~1Pに概略的に示されるように、市販のTFA金エッチング溶液を室温で使用して、ウェットエッチングプロセスを実施し、パターン化されたマスク層111を有する基板を得た。マスクパターンは、約30~40マイクロメートル幅で<10-10>に平行に配向した線形の開口部を備えた、mストライプのドメインで構成されていた。次に、パターン化されたマスク層111を有する基板を、濃HPOを含む撹拌ビーカーに入れた。ビーカーを約30分にわたって摂氏約280度まで加熱し、この温度で約90分間保持し、冷却した。約162マイクロメートルの深さ及び約105マイクロメートルの上部の幅を有する、この手順で形成したトレンチ115の断面が図10に示されている。トレンチ115の側壁は、驚くべきことに、ほぼ垂直である。
実施例2
パターン化され、トレンチが形成されたc面配向バルクGaN基板101を、実施例1に記載される手順と同様の手順で調製した。パターン化された基板を、オープンエリアが15%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量でそれぞれ、約1.69及び0.099であった。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約666度、下部の結晶成長ゾーンでは摂氏約681度に加熱し、これらの温度で約215時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、トレンチ内のほとんどの体積を満たし、HVPE GaN基板上のパターン化されたマスクの線形の開口部を通して成長し、横方向に成長し、完全に合体して、滑らかな上面を有する約1200マイクロメートル厚のアンモノサーマルGaN層を形成した。アンモノサーマルGaN層の表面とパターンの両方に垂直に、2つの平行な切り込みを入れ、m面の表面を有する棒状の試験片を作成した。図11A及び11Bに示されるように、試験片の1つのm面表面を研磨し、光学顕微鏡で調べた。図11Bの右側の拡大図に破線で示すように、基板101と横方向に成長したIII族金属窒化物材料221との間に界面が見える。パターン化されたマスク層111とボイド225は両方とも、画像では黒く見え、アンモノサーマルIII族金属窒化物層213の下にある。
実施例3
パターン化され、トレンチが形成されたc面配向バルクGaN基板を、実施例1及び2に記載される手順と同様の手順で調製し、最終的なIII族金属窒化物層213が図12Bに示されている(すなわち、右側の図)。第2のパターン化された基板を、マスク開口部の下にトレンチが準備されなかったことを除き、同様の手順で調製し、最終的なIII族金属窒化物層が図12Aに示されている(すなわち、左側の図)。パターン化された基板を、オープンエリアが15%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量でそれぞれ、約2.05及び0.099であった。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約666度、下部の結晶成長ゾーンでは摂氏約678度に加熱し、これらの温度で約427時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、トレンチが形成された基板のトレンチ内のほとんどの体積を満たし(図12B)、HVPE GaN基板上のパターン化されたマスクの線形の開口部を通して成長し、横方向に成長し、完全に合体して、滑らかな上面を有する約2100マイクロメートル厚のアンモノサーマルGaN層を形成した。アンモノサーマルGaN層は、パターン化された、トレンチが形成されていないHVPE GaN基上のパターン化されたマスクの線形の開口部を通して同様に成長し(図12A)、横方向に成長し、完全に合体して、滑らかな上面を有する約2100マイクロメートル厚のアンモノサーマルGaN層を形成した。両方のアンモノサーマルGaN層の表面を軽くエッチングし、光学顕微鏡で調べた。両方の層の微分干渉コントラスト(Nomarski)顕微鏡及び透過顕微鏡写真が図12A~12Bに示されている。トレンチを有しないパターン化された基板上で成長させたアンモノサーマルGaN層の平均エッチピット密度(貫通転位密度を正確に表すと考えられる)(図12A)は、約1.0×10cm-2であった。パターン化され、トレンチが形成された基板上で成長させたアンモノサーマルGaN層の平均エッチピット密度(図12B)は、約1.0×10cm-2であり、少なくとも10倍改善された。
実施例4
パターン化され、トレンチが形成されたc面配向バルクGaN基板を、実施例1及び2に記載される手順と同様の手順だが、800マイクロメートルのピッチで調製した。パターン化され、トレンチが形成された基板を、オープンエリアが15%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量でそれぞれ、約1.71及び0.099であった。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約668度、下部の結晶成長ゾーンでは摂氏約678度に加熱し、これらの温度で約485時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、トレンチが形成された基板のトレンチ内のほとんどの体積を満たし、HVPE GaN基板上のパターン化されたマスクの線形の開口部を通して成長し、横方向に成長し、完全に合体して、滑らかな上面を有する約980マイクロメートル厚のアンモノサーマルGaN層を形成した。HVPE GaN基板を研削によって除去し、得られた自立型のアンモノサーマルGaN基板を研磨し、化学機械研磨した。次に、PANalytical X’Pert PRO回折計を使用し、45kVの電子エネルギーを、40mAの線焦点、0.0002度のステップ、1秒の滞留時間、Ge(220)ミラー、1.0mmのスリット高さ、及び1.0mmのスリット幅と共に基板全体にわたり9か所の異なる位置で使用して、自立型のアンモノサーマルGaN基板をX線回折によって特徴づけた。形成されたGaN基板の分析結果が図13に要約されている。[1-100]に沿ったミスカットの範囲は結晶の大面積表面の中央80%で0.078度であると測定され、[11-20]に沿ったミスカットの範囲は結晶の大面積表面の中央80%で0.063度であると測定された。したがって、幾つかの実施形態では、自立型結晶は、第1の方向に沿って結晶の大面積表面の中央80%において0.1度以下で変動するミスカット角度、及び第1の方向に直交する第2の方向に沿って結晶の大面積表面の中央80%において0.1度以下で変動するミスカット角度を有する。対照的に、市販のHVPEウエハ上での同一の測定を行った結果、0.224度の[1-100]に沿ったミスカットの範囲、及び0.236度の[11-20]に沿ったミスカットの範囲が得られた。図14に示される表及びグラフに要約されているように、(002)反射のロッキングカーブの半値全幅は36秒角と測定され、一方、(201)反射のロッキングカーブの半値全幅は32秒角と測定された。対照的に、直径50mmの市販のHVPE基板上での同一の測定は、それぞれ、48秒角及び53秒角の値を生成し、直径100mmの市販のHVPE基板上での同一の測定は、それぞれ、78秒角及び93秒角の値を生成した。
実施例5
約0.3ミリメートル厚のHVPEによって成長したc面配向バルクGaN結晶を、パターン化及びアンモノサーマル結晶成長のための基板として使用するために提供した。TiWの100ナノメートルの厚さの層を、基板の(000-1)N面上に接着層としてスパッタ堆積し、続いてAuを含む780ナノメートルの厚さの不活性層を堆積した。次に、6マイクロメートル厚のAu層をスパッタ層上に電気めっきし、不活性層の厚さを増加させた。ナノ秒パルスの周波数倍増YAGレーザを使用して、基板のN面上にパターンを形成した。パターンは、ピッチが1200マイクロメートルである、約50~60マイクロメートル幅で<10-10>に平行に配向した線形の開口部を備えた、mトレンチのドメインで構成されていた。次に、パターン化された基板を、濃HPOを含む撹拌ビーカーに入れた。ビーカーを約30分にわたって摂氏約280度まで加熱し、この温度で約60分間保持し、冷却した。約200マイクロメートルの深さ及び約80マイクロメートルの上部の幅を有する、この手順で形成したトレンチの断面が、図15に示されている。トレンチの側壁は、驚くべきことに、ほぼ垂直である。
実施例6
パターン化され、トレンチが形成されたc面配向バルクGaN基板を、基板を完全に貫通するスロットが形成されるようにレーザにより高い出力を使用したことを除き、実施例5に記載される手順と同様の手順で調製した。濃HPOを用いて摂氏約280度で約30分エッチングした後、スロットの幅は約115マイクロメートルであった。パターン化された基板を、オープンエリアが15%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量でそれぞれ、約1.74及び0.099であった。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約667度、下部の結晶成長ゾーンでは摂氏約681度に加熱し、これらの温度で約500時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、トレンチが形成された基板のトレンチ内のほとんどの体積を満たし、HVPE GaN基板上のパターン化されたマスクの線形の開口部を通して成長し、横方向に成長し、完全に合体して、滑らかな上面を有する約2010マイクロメートル厚のアンモノサーマルGaN層を形成した。アンモノサーマルGaN層の表面を軽くエッチングし、光学顕微鏡で調べた。この層の光学顕微鏡写真が図16に示されている。図16に示される長方形A、B、C、D、E、F、及びG内のエッチピットをカウントし、パターン化された、レーザ-トレンチが形成された基板上で成長させたアンモノサーマルGaN層の平均エッチピット密度(貫通転位密度を正確に表すと考えられる)が約6.0×10cm-2であるという決定をもたらした。
実施例7
図17Eに示される構成と同様に、線形の切断縁部がほぼa面となるように、3つの直径100mmのバルクGaNウエハから4つのc面配向したバルクGaN種結晶をレーザ切断した。TiWの100ナノメートルの厚さの層を、種結晶の(000-1)N面上に接着層としてスパッタ堆積し、続いてAgを含む2.6マイクロメートルの厚さの層を堆積した。ナノ秒パルスの周波数倍増YAGレーザを使用して、種結晶のN面上にパターンを形成した。パターンは、三角形のパターンを形成する、<10-10>に平行に配向した線形の開口部を備えた、mトレンチのドメインで構成されていた。4つのタイルは、線形のタイル縁部とオフカット方向が位置合わせされるように、Moアラインメントリング内の平坦なMoバッキングプレート上に配置される。図18Dに示される構成と同様に、Ag円形リングガスケット及びMo円形リングクランプを種結晶の上に配置し、4つのMoボルトを使用してバッキングプレートにクランプし、種結晶を固定した。4つの追加のMoボルトを2つの大きい種結晶の貫通孔に取り付けて、後者をバッキングプレートに固定し、タイルの反りを提言した。アセンブリされた固定具は、直径約5.3インチ(約13.462cm)の露出した円形タイル領域を有していた。アセンブリされた固定具を、オープンエリアが7%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量でそれぞれ、約2.53及び0.094であった。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約667度、下部の結晶成長ゾーンでは摂氏約680度に加熱し、これらの温度で約500時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、種結晶上のパターン化されたマスクの線形の開口部を通じて成長し、横方向に成長し、パターン化されたトレンチ間及び種結晶間で合体して、厚さ約2600マイクロメートル、円形直径約5.3インチ(約13.462cm)、及び4つのドメインを含むアンモノサーマルGaN層を形成した。成長後にタイル状の界面全体に実施したX線回折測定は、隣接するタイル状ドメイン間の約0.2度の結晶方位差を示した。
実施例8
図17Eに示される構成と同様に、線形の切断縁部がほぼa面となるように、3つの直径100mmのバルクGaNウエハから4つのc面配向したバルクGaN種結晶をレーザ切断する。200ナノメートルの厚さのAlN層が、種結晶の(0001)Ga面にスパッタリングされる。バッキングプレート及びアラインメントリングで構成されたMoサセプタに、揮発性有機キャリアと疑われる非常に細かいBN粒子を噴霧し、離型層を形成する。4つの種結晶は、線形タイル縁部とオフカット方向が正確に位置合わせされるように、Moアラインメントリング内の平坦なMoサセプタ上に(000-1)N面を下にして配置される。サセプタは、ポリGaN反応器内に水平に配置され、厚さ約1mmの共形多結晶GaN層を成長させて、4つの種結晶の(0001)Ga面に連続した多結晶GaNハンドルを形成する。多結晶GaNの成長が完了し、反応器が冷却された後、サセプタは、種結晶及び多結晶GaNがインタクトの状態でポリGaN反応器から取り出される。多結晶GaNマトリクスに埋め込まれた種結晶は、離型層での分離によってMoバッキングプレートから分離される。ナノ秒パルスの周波数倍増YAGレーザは、タイル状の複合構造の縁部をトリミングし、直径約5.3インチ(約13.462cm)の円形のタイル状複合体を形成する。大面積の露出した多結晶GaNハンドルと(000-1)N面の表面は、研削、研磨、及び化学機械研磨を被る。TiWの100ナノメートルの厚さの層を、種結晶の(000-1)N面上に接着層としてスパッタ堆積し、続いてAgを含む1.3マイクロメートルの厚さの層を堆積する。次に、6マイクロメートルの厚さのAu層が、種結晶の(000-1)N面と露出した多結晶GaNハンドル表面に電気めっきされる。ナノ秒パルスの周波数倍増YAGレーザを使用して、タイル片のN面にパターンが形成を形成する。パターンは、三角形のパターンを形成する、<10-10>に平行に配向した線形の開口部を備えた、mトレンチのドメインを含む。次に、パターン化された、タイル状の複合構造を、オープンエリアが15%のバッフル、多結晶GaN原料、NHF鉱化剤、及びアンモニアとともに銀カプセルに入れ、カプセルを密閉した。GaN原料及びNHF鉱化剤のアンモニアに対する比は、それぞれ、重量で約1.74及び0.099である。カプセルを内部加熱高圧装置に入れ、上部の原料ゾーンでは摂氏約667度、下部の結晶成長ゾーンでは摂氏約681度に加熱し、これらの温度で約500時間維持し、その後、冷却し、取り出した。アンモノサーマルGaNは、種結晶上のパターン化されたマスクの線形の開口部を通じて成長し、横方向に成長し、パターン化されたトレンチ間及びタイル片間で合体して、厚さ約3000マイクロメートルのアンモノサーマルGaN層を形成する。
実施例9
(30-3-1)の配向、c軸投影に平行な方向に10ミリメートル、m方向に20ミリメートルの寸法、及び300マイクロメートルの厚さを有する38の種結晶を使用することを除き、実施例8に記載されたものと同様のタイル状の複合構造を調製する。アレイの周囲を構成する種結晶の縁部は、種結晶を(30-3-1)面を下にしてMoサセプタ上に配置する前に、直径95ミリメートルの円へとレーザトリミングされる。種結晶及びサセプタの(30-31)側に厚さ1ミリメートルの多結晶GaNマトリクスを堆積させた後、離型層で分離することによってタイル状の複合構造をサセプタから取り外す。タイル状の複合構造の周囲を直径100ミリメートルまで研削し、種結晶のm面に平行な平面を一方の縁部で研削する。1000グリットの研削ホイールに続き、4800グリットの研削ホイールを使用して、タイル状の複合構造の裏側を研削し、前面に対して正確に平行な平面を形成する。次に、タイル状の複合構造の前面を化学機械研磨し、約15マイクロメートルの材料を除去して、図19Gに示される基板に似た厚さ600マイクロメートルのタイル状複合基板を生成する。
次いで、タイル状複合基板を市販のMOCVD反応器内のサセプタ上に配置する。n型GaN層が堆積され、続いてInGaN歪層超格子離型層が堆積され、続いて別のn型GaN層が堆積され、続いてn型InGaNクラッド層が堆積され、続いて非ドープInGaN多重量子井戸が堆積され、続いてp型クラッド層が堆積され、続いてp型層及びp-コンタクト層が堆積される。次いで、従来のリソグラフィによってトレンチが形成され、(30-3-1)面のc方向の投影に沿って長さ約1200マイクロメートル、直交するm方向に沿って幅100マイクロメートルのメサが形成される。離型層の約95%が、KOH溶液と405ナノメートルの照明とを使用した光電気化学プロセスによってエッチング除去される。次に、金含有接着層がpコンタクト層上に堆積され、メサ構造が熱圧着によって炭化ケイ素ハンドル基板に連続プロセスで転写され、続いて除去されていない離型層が破砕される。メサ構造の除去後、タイル状複合基板の表面は、化学機械研磨によって再調製される。
上記は本開示の実施態様を対象としているが、本開示の他の及びさらなる実施態様は、その基本的な範囲から逸脱することなく考案することができ、その範囲は、以下の特許請求の範囲によって決定される。
101 基板
102 大面積表面
103,104 フォトレジスト層
105 接着層
107 拡散バリア層
109 不活性層
111 マスク層
112 開口部
113 フォトレジスト層
115 トレンチ
120 露出領域
221 III族金属窒化物材料
213 III族金属窒化物層
215 ウィンドウ領域
217 ウィング領域
219 コアレッセンスフロント
225 ボイド
370 種結晶
395 縁部
1810 バッキングプレート
1820、1825 貫通孔
1830 保持リング
1840 クランプリング
1910 サセプタ
1921 界面層
1923 離型コーティング
1940 多孔質部材
1950 多結晶GaN層
1960タイル状の複合構造
1970 間隙
上記は本開示の実施態様を対象としているが、本開示の他の及びさらなる実施態様は、その基本的な範囲から逸脱することなく考案することができ、その範囲は、以下の特許請求の範囲によって決定される。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
少なくとも2つの結晶を含む自立型III族金属窒化物基板であって、前記少なくとも2つの結晶の各々が、
ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含み、ここで、
ウルツ鉱結晶構造を有する前記少なくとも2つの結晶の各々が、第1の方向に10ミリメートルを超える最大寸法及び前記第1の方向に直交する第2の方向に4ミリメートルを超える最大寸法を有する第1の表面、10 cm -2 から1×10 cm -2 の間の貫通転位の平均濃度、10 cm -1 未満の積層欠陥の平均濃度、200秒角未満の対称X線ロッキングカーブ半値全幅を含み、
前記少なくとも2つの結晶の各々の前記第1の表面の結晶学的ミスカットの大きさが0.5度以内に等しく、
前記少なくとも2つの結晶の各々の前記第1の表面の結晶学的ミスカットの方向が10度以内に等しく、
前記少なくとも2つの結晶の各々が、多結晶GaNを含むマトリクス部材に結合され、かつ
前記少なくとも2つの結晶の第1の結晶の第1の表面と前記少なくとも2つの結晶の第2の結晶の第1の表面との間の極性方位差角度γが約0.005度超かつ約0.2度未満であり、方位差角度α及びβが約0.01度超かつ約1度未満である、
自立型III族金属窒化物基板。
実施形態2
前記自立型III族金属窒化物基板が、40ミリメートルを超える前記第1の方向の最大寸法を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態3
前記少なくとも2つの結晶の各々の前記第1の表面の前記結晶学的ミスカットの大きさが0.2度以内に等しく、前記少なくとも2つの結晶の各々の前記第1の表面の前記結晶学的ミスカットの方向が2度以内に等しい、実施形態2に記載の自立型III族金属窒化物基板。
実施形態4
前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の5度以内の結晶方位と、0.5度未満の前記a方向におけるミスカットとを有する、実施形態2に記載の自立型III族金属窒化物基板。
実施形態5
前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の1度以内の結晶方位と、0.1度未満の前記a方向におけるミスカットとを有する、実施形態4に記載の自立型III族金属窒化物基板。
実施形態6
前記第1の方向における最大寸法が45から110ミリメートルの間である、実施形態2に記載の自立型III族金属窒化物基板。
実施形態7
前記自立型III族金属窒化物基板が、
約150マイクロメートルから約2ミリメートルの厚さ、
約25マイクロメートル未満の全厚さ変動、及び
約50マイクロメートル未満の巨視的な反り
をさらに含む、実施形態2に記載の自立型III族金属窒化物基板。
実施形態8
前記少なくとも2つの結晶の各々の隣接する縁部間に間隙が形成され、前記間隙に前記マトリクス部材が少なくとも部分的に充填される、実施形態1に記載の自立型III族金属窒化物基板。
実施形態9
前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、{10-10}m面から5度以内の結晶方位を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態10
前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、(0001)+c面から5度以内又は(000-1)-c面から5度以内の結晶方位を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態11
前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、{60-6±1}、{50-5±1}、{40-4±1}、{30-3±1}、{50-5±2}、{70-7±3}、{20-2±1}、{30-3±2}、{40-4±3}、{50-5±4}、{10-1±1}、{10-1±2}、{10-1±3}、{21-3±1}、及び{30-3±4}から選択される半極性配向から5度以内の結晶方位を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態12
前記第1の表面が、
1×10 16 cm -3 から1×10 19 cm -3 の間の酸素(O)、
1×10 16 cm -3 から2×10 19 cm -3 の間の水素(H)、及び
1×10 15 cm -3 から1×10 19 cm -3 の間のフッ素(F)及び塩素(Cl)のうちの少なくとも一方
の不純物濃度を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態13
前記第1の表面が、
1×10 16 cm -3 から1×10 19 cm -3 の間の酸素(O)、
1×10 16 cm -3 から2×10 19 cm -3 の間の水素(H)、及び
3×10 15 cm -3 から1×10 18 cm -3 の間のナトリウム(Na)及びカリウム(K)のうちの少なくとも一方
の不純物濃度を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態14
前記少なくとも2つの結晶のうちの少なくとも1つの結晶と前記マトリクス部材との間の界面に界面層をさらに含む、実施形態1に記載の自立型III族金属窒化物基板。
実施形態15
前記界面層が、グラファイト、窒化ホウ素、二硫化モリブデン、及び二硫化タングステンのうちの少なくとも1つを含む、実施形態14に記載の自立型III族金属窒化物基板。
実施形態16
前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、第1の平面に対して実質的に平行である、実施形態1に記載の自立型III族金属窒化物基板。
実施形態17
前記マトリクス部材が40mmを超える直径を有する、実施形態1に記載の自立型III族金属窒化物基板。
実施形態18
前記マトリクス部材が多孔質部材をさらに含む、実施形態1に記載の自立型III族金属窒化物基板。
実施形態19
前記多孔質部材が、グラファイト、炭素繊維、シリカ繊維、アルミノケイ酸繊維、ホウケイ酸繊維、炭化ケイ素コーティング、熱分解窒化ホウ素コーティング、又は熱分解グラファイトコーティングのうちの少なくとも1つを含む、実施形態18に記載の自立型III族金属窒化物基板。
実施形態20
自立型III族金属窒化物基板において、
種結晶のアレイであって、前記種結晶のアレイ内の前記種結晶の各々が、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含む、種結晶のアレイ;並びに
前記種結晶のアレイ内の前記種結晶の各々の少なくとも1つの表面の上に配置された多結晶GaN層
を含み、ここで、
ウルツ鉱結晶構造を有する前記種結晶の各々が、10 cm -2 から1×10 cm -2 の間の貫通転位の平均濃度、及び10 cm -1 未満の積層欠陥の平均濃度を有する第1の表面を含み、
前記種結晶の各々の前記第1の表面の結晶学的ミスカットの大きさが0.5度以内に等しく、
前記種結晶の各々の前記第1の表面の結晶学的ミスカットの方向が10度以内に等しく、かつ
前記種結晶のアレイの第1の種結晶と前記種結晶のアレイの第2の種結晶との間の極性方位差角度γが、約0.005度超かつ約0.2度未満であり、方位差角度α及びβが約0.01度超かつ約1度未満である、自立型III族金属窒化物基板。
実施形態21
前記種結晶の各々が、
200秒角未満の対称X線ロッキングカーブ半値全幅、並びに
前記第1の方向に10ミリメートルを超える最大寸法、及び前記第1の方向と直交する前記第2の方向に4ミリメートルを超える最大寸法
を含む、実施形態20に記載の自立型III族金属窒化物基板。
実施形態22
前記マトリクス部材が40mmを超える直径を有する、実施形態20に記載の自立型III族金属窒化物基板。
実施形態23
前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の5度以内の結晶方位、並びに0.5度未満の前記a方向におけるミスカットを有する、実施形態20に記載の自立型III族金属窒化物基板。
実施形態24
前記自立型III族金属窒化物基板が、
約150マイクロメートルから約2ミリメートルの間の厚さ、
約25マイクロメートル未満の全厚さ変動、及び
約50マイクロメートル未満の巨視的な反り
をさらに含む、実施形態20に記載の自立型III族金属窒化物基板。

Claims (24)

  1. 少なくとも2つの結晶を含む自立型III族金属窒化物基板であって、前記少なくとも2つの結晶の各々が、
    ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含み、ここで、
    ウルツ鉱結晶構造を有する前記少なくとも2つの結晶の各々が、第1の方向に10ミリメートルを超える最大寸法及び前記第1の方向に直交する第2の方向に4ミリメートルを超える最大寸法を有する第1の表面、10cm-2から1×10cm-2の間の貫通転位の平均濃度、10cm-1未満の積層欠陥の平均濃度、200秒角未満の対称X線ロッキングカーブ半値全幅を含み、
    前記少なくとも2つの結晶の各々の前記第1の表面の結晶学的ミスカットの大きさが0.5度以内に等しく、
    前記少なくとも2つの結晶の各々の前記第1の表面の結晶学的ミスカットの方向が10度以内に等しく、
    前記少なくとも2つの結晶の各々が、多結晶GaNを含むマトリクス部材に結合され、かつ
    前記少なくとも2つの結晶の第1の結晶の第1の表面と前記少なくとも2つの結晶の第2の結晶の第1の表面との間の極性方位差角度γが約0.005度超かつ約0.2度未満であり、方位差角度α及びβが約0.01度超かつ約1度未満である、
    自立型III族金属窒化物基板。
  2. 前記自立型III族金属窒化物基板が、40ミリメートルを超える前記第1の方向の最大寸法を有する、請求項1に記載の自立型III族金属窒化物基板。
  3. 前記少なくとも2つの結晶の各々の前記第1の表面の前記結晶学的ミスカットの大きさが0.2度以内に等しく、前記少なくとも2つの結晶の各々の前記第1の表面の前記結晶学的ミスカットの方向が2度以内に等しい、請求項2に記載の自立型III族金属窒化物基板。
  4. 前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の5度以内の結晶方位と、0.5度未満の前記a方向におけるミスカットとを有する、請求項2に記載の自立型III族金属窒化物基板。
  5. 前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の1度以内の結晶方位と、0.1度未満の前記a方向におけるミスカットとを有する、請求項4に記載の自立型III族金属窒化物基板。
  6. 前記第1の方向における最大寸法が45から110ミリメートルの間である、請求項2に記載の自立型III族金属窒化物基板。
  7. 前記自立型III族金属窒化物基板が、
    約150マイクロメートルから約2ミリメートルの厚さ、
    約25マイクロメートル未満の全厚さ変動、及び
    約50マイクロメートル未満の巨視的な反り
    をさらに含む、請求項2に記載の自立型III族金属窒化物基板。
  8. 前記少なくとも2つの結晶の各々の隣接する縁部間に間隙が形成され、前記間隙に前記マトリクス部材が少なくとも部分的に充填される、請求項1に記載の自立型III族金属窒化物基板。
  9. 前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、{10-10}m面から5度以内の結晶方位を有する、請求項1に記載の自立型III族金属窒化物基板。
  10. 前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、(0001)+c面から5度以内又は(000-1)-c面から5度以内の結晶方位を有する、請求項1に記載の自立型III族金属窒化物基板。
  11. 前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、{60-6±1}、{50-5±1}、{40-4±1}、{30-3±1}、{50-5±2}、{70-7±3}、{20-2±1}、{30-3±2}、{40-4±3}、{50-5±4}、{10-1±1}、{10-1±2}、{10-1±3}、{21-3±1}、及び{30-3±4}から選択される半極性配向から5度以内の結晶方位を有する、請求項1に記載の自立型III族金属窒化物基板。
  12. 前記第1の表面が、
    1×1016cm-3から1×1019cm-3の間の酸素(O)、
    1×1016cm-3から2×1019cm-3の間の水素(H)、及び
    1×1015cm-3から1×1019cm-3の間のフッ素(F)及び塩素(Cl)のうちの少なくとも一方
    の不純物濃度を有する、請求項1に記載の自立型III族金属窒化物基板。
  13. 前記第1の表面が、
    1×1016cm-3から1×1019cm-3の間の酸素(O)、
    1×1016cm-3から2×1019cm-3の間の水素(H)、及び
    3×1015cm-3から1×1018cm-3の間のナトリウム(Na)及びカリウム(K)のうちの少なくとも一方
    の不純物濃度を有する、請求項1に記載の自立型III族金属窒化物基板。
  14. 前記少なくとも2つの結晶のうちの少なくとも1つの結晶と前記マトリクス部材との間の界面に界面層をさらに含む、請求項1に記載の自立型III族金属窒化物基板。
  15. 前記界面層が、グラファイト、窒化ホウ素、二硫化モリブデン、及び二硫化タングステンのうちの少なくとも1つを含む、請求項14に記載の自立型III族金属窒化物基板。
  16. 前記少なくとも2つの結晶の前記結晶の各々の前記第1の表面が、第1の平面に対して実質的に平行である、請求項1に記載の自立型III族金属窒化物基板。
  17. 前記マトリクス部材が40mmを超える直径を有する、請求項1に記載の自立型III族金属窒化物基板。
  18. 前記マトリクス部材が多孔質部材をさらに含む、請求項1に記載の自立型III族金属窒化物基板。
  19. 前記多孔質部材が、グラファイト、炭素繊維、シリカ繊維、アルミノケイ酸繊維、ホウケイ酸繊維、炭化ケイ素コーティング、熱分解窒化ホウ素コーティング、又は熱分解グラファイトコーティングのうちの少なくとも1つを含む、請求項18に記載の自立型III族金属窒化物基板。
  20. 自立型III族金属窒化物基板において、
    種結晶のアレイであって、前記種結晶のアレイ内の前記種結晶の各々が、ガリウム、アルミニウム、及びインジウムから選択されるIII族金属、又はそれらの組合せと、窒素とを含む、種結晶のアレイ;並びに
    前記種結晶のアレイ内の前記種結晶の各々の少なくとも1つの表面の上に配置された多結晶GaN層
    を含み、ここで、
    ウルツ鉱結晶構造を有する前記種結晶の各々が、10cm-2から1×10cm-2の間の貫通転位の平均濃度、及び10cm-1未満の積層欠陥の平均濃度を有する第1の表面を含み、
    前記種結晶の各々の前記第1の表面の結晶学的ミスカットの大きさが0.5度以内に等しく、
    前記種結晶の各々の前記第1の表面の結晶学的ミスカットの方向が10度以内に等しく、かつ
    前記種結晶のアレイの第1の種結晶と前記種結晶のアレイの第2の種結晶との間の極性方位差角度γが、約0.005度超かつ約0.2度未満であり、方位差角度α及びβが約0.01度超かつ約1度未満である、自立型III族金属窒化物基板。
  21. 前記種結晶の各々が、
    200秒角未満の対称X線ロッキングカーブ半値全幅、並びに
    前記第1の方向に10ミリメートルを超える最大寸法、及び前記第1の方向と直交する前記第2の方向に4ミリメートルを超える最大寸法
    を含む、請求項20に記載の自立型III族金属窒化物基板。
  22. 前記マトリクス部材が40mmを超える直径を有する、請求項20に記載の自立型III族金属窒化物基板。
  23. 前記第1の表面の各々が、{20-2±1}、{30-3±1}、及び{10-10}から選択される方位の5度以内の結晶方位、並びに0.5度未満の前記a方向におけるミスカットを有する、請求項20に記載の自立型III族金属窒化物基板。
  24. 前記自立型III族金属窒化物基板が、
    約150マイクロメートルから約2ミリメートルの間の厚さ、
    約25マイクロメートル未満の全厚さ変動、及び
    約50マイクロメートル未満の巨視的な反り
    をさらに含む、請求項20に記載の自立型III族金属窒化物基板。
JP2022548644A 2020-02-11 2021-02-10 大面積iii族窒化物結晶及び基板、その製造方法、並びにその使用方法 Pending JP2023513574A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202062975078P 2020-02-11 2020-02-11
US62/975,078 2020-02-11
US202063006700P 2020-04-07 2020-04-07
US63/006,700 2020-04-07
US16/882,219 2020-05-22
US16/882,219 US11705322B2 (en) 2020-02-11 2020-05-22 Group III nitride substrate, method of making, and method of use
PCT/US2021/017514 WO2021163230A1 (en) 2020-02-11 2021-02-10 Large area group iii nitride crystals and substrates, methods of making, and methods of use

Publications (1)

Publication Number Publication Date
JP2023513574A true JP2023513574A (ja) 2023-03-31

Family

ID=77293101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022548644A Pending JP2023513574A (ja) 2020-02-11 2021-02-10 大面積iii族窒化物結晶及び基板、その製造方法、並びにその使用方法

Country Status (4)

Country Link
EP (1) EP4104202A1 (ja)
JP (1) JP2023513574A (ja)
CN (1) CN115104175A (ja)
WO (1) WO2021163230A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230170213A1 (en) * 2021-12-01 2023-06-01 Slt Technologies, Inc. Group iii nitride substrate with oxygen gradient, method of making, and method of use

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500257B1 (en) 1998-04-17 2002-12-31 Agilent Technologies, Inc. Epitaxial material grown laterally within a trench and method for producing same
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US8039412B2 (en) 2005-12-20 2011-10-18 Momentive Performance Materials Inc. Crystalline composition, device, and associated method
US20120000415A1 (en) * 2010-06-18 2012-01-05 Soraa, Inc. Large Area Nitride Crystal and Method for Making It
US8461071B2 (en) 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US9589792B2 (en) 2012-11-26 2017-03-07 Soraa, Inc. High quality group-III metal nitride crystals, methods of making, and methods of use
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
JP5904421B2 (ja) 2012-01-11 2016-04-13 国立大学法人大阪大学 Iii族窒化物結晶および半導体装置の製造方法
US9209596B1 (en) * 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
JP6405889B2 (ja) * 2014-10-29 2018-10-17 三菱ケミカル株式会社 GaN基板の製造方法
WO2016098518A1 (ja) * 2014-12-16 2016-06-23 三菱化学株式会社 GaN基板
US10094017B2 (en) 2015-01-29 2018-10-09 Slt Technologies, Inc. Method and system for preparing polycrystalline group III metal nitride
JP6735647B2 (ja) * 2016-09-29 2020-08-05 株式会社サイオクス 窒化物結晶基板の製造方法

Also Published As

Publication number Publication date
EP4104202A1 (en) 2022-12-21
WO2021163230A1 (en) 2021-08-19
CN115104175A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
JP7121769B2 (ja) Iii族金属窒化物結晶を含むデバイスおよびその形成方法
US11453956B2 (en) Method for growth of a merged crystal by bonding at least a first and second crystal to an adhesion layer to form a tiled substrate and growing a crystalline composition over said tiled substrate
USRE49677E1 (en) Reusable nitride wafer, method of making, and use thereof
US9650723B1 (en) Large area seed crystal for ammonothermal crystal growth and method of making
US20210246571A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
US20120000415A1 (en) Large Area Nitride Crystal and Method for Making It
US11466384B2 (en) Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
US20230317444A1 (en) Group iii nitride substrate, method of making, and method of use
US20210249266A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
JP2023513574A (ja) 大面積iii族窒化物結晶及び基板、その製造方法、並びにその使用方法
US11661670B2 (en) High quality group-III metal nitride seed crystal and method of making
US20230340695A1 (en) Large area group iii nitride crystals and substrates, methods of making, and methods of use
US20230167586A1 (en) Group iii nitride substrate with oxygen gradient, method of making, and method of use
US20230295839A1 (en) Group iii nitride substrate and method of making

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240522