JP2023181928A - Automatic adjustment method and automatic adjustment system - Google Patents
Automatic adjustment method and automatic adjustment system Download PDFInfo
- Publication number
- JP2023181928A JP2023181928A JP2022095327A JP2022095327A JP2023181928A JP 2023181928 A JP2023181928 A JP 2023181928A JP 2022095327 A JP2022095327 A JP 2022095327A JP 2022095327 A JP2022095327 A JP 2022095327A JP 2023181928 A JP2023181928 A JP 2023181928A
- Authority
- JP
- Japan
- Prior art keywords
- variation
- amount
- paint
- target
- addition ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 144
- 239000000203 mixture Substances 0.000 claims abstract description 121
- 230000004044 response Effects 0.000 claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 claims abstract description 107
- 239000000463 material Substances 0.000 claims abstract description 94
- 238000000576 coating method Methods 0.000 claims abstract description 63
- 239000011248 coating agent Substances 0.000 claims abstract description 60
- 238000005457 optimization Methods 0.000 claims abstract description 28
- 239000003973 paint Substances 0.000 claims description 307
- 239000003086 colorant Substances 0.000 claims description 135
- 238000004364 calculation method Methods 0.000 claims description 131
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 79
- 239000008199 coating composition Substances 0.000 claims description 78
- 239000003607 modifier Substances 0.000 claims description 75
- 230000008859 change Effects 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 27
- 238000004070 electrodeposition Methods 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000000049 pigment Substances 0.000 description 17
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 238000005259 measurement Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 6
- 239000001062 red colorant Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 238000004040 coloring Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 239000001060 yellow colorant Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 239000013022 formulation composition Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001054 red pigment Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- 239000001052 yellow pigment Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007592 spray painting technique Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- DOKVLJLABBCKOJ-UHFFFAOYSA-N 6-hydrazinyl-1,3,5-triazine-2,4-diamine Chemical compound NNC1=NC(N)=NC(N)=N1 DOKVLJLABBCKOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000038 blue colorant Substances 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- -1 fluororesin Polymers 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- 239000006115 industrial coating Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000011049 pearl Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 235000013759 synthetic iron oxide Nutrition 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/28—Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/80—Processes for incorporating ingredients
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Spectrometry And Color Measurement (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、自動調整方法及び自動調整システム、特に、塗料組成物の自動調整方法及び自動調整システムに関するものである。 The present invention relates to an automatic adjustment method and an automatic adjustment system, and particularly to an automatic adjustment method and an automatic adjustment system for a coating composition.
従来、塗料組成物の粘度等や、塗料組成物から得られる塗膜の色彩、光沢等を調整するために、理論式を用いることが提案されている。例えば、特許文献1では、クベルカ・ムンクの光学濃度式を用いて着色材を所定配合で混合した場合の分光反射率を予測計算し、調整色の予測反射率と見本色の反射率とを比較することにより、着色材の配合を計算する方法が提案されている。
Conventionally, it has been proposed to use theoretical formulas to adjust the viscosity of a coating composition and the color, gloss, etc. of a coating film obtained from the coating composition. For example, in
また、塗料組成物の粘度等や、塗料組成物から得られる塗膜の色彩、光沢等を自動調整するために、機械学習の手法を用いることも提案されている。例えば、特許文献2では、配合を説明変数とし、色彩を目的変数とする人工知能モデルを作成して、所定配合で着色した場合の色彩を予測することが提案されている。
It has also been proposed to use machine learning techniques to automatically adjust the viscosity of a paint composition and the color, gloss, etc. of a coating film obtained from the paint composition. For example,
しかしながら、近年、塗料組成物の色彩、光沢、及び粘度等の調整の精度への要求が高まっている中、特許文献1のような理論式を用いた算出には、より精度の高い調整を行うことに課題があった。また、特許文献2のような機械学習を用いた手法では、精度の高い自動調整は行い得るものの、機械学習を行うのに膨大な量の学習データを必要とするため、そのような学習データを収集することができない場合には当該手法を行うことができないといった課題や、膨大な学習データを収集するまでに長時間を要してしまうといった課題があった。
However, in recent years, there has been an increasing demand for accuracy in adjusting the color, gloss, viscosity, etc. of paint compositions, and calculations using theoretical formulas such as those in
そこで、本発明は、簡易な手法で塗料組成物の調整を精度良く行うことが可能な、自動調整方法及び自動調整システムを提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an automatic adjustment method and an automatic adjustment system that can accurately adjust a coating composition using a simple method.
本発明の要旨構成は、以下のとおりである。
(1)所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整方法であって、
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する、変動量応答曲線データ取得工程と、
前記コンピュータの前記計算部により、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算する、計算工程と、を含み、
前記計算工程において、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法を用いて計算することを特徴とする、自動調整方法。
The gist of the present invention is as follows.
(1) When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment suitable for obtaining the target paint properties and/or An automatic adjustment method for a paint composition, in which the amount of variation in manufacturing conditions is calculated by a calculation section of a computer, the method comprising:
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. a fluctuation amount response curve data acquisition step of acquiring fluctuation amount response curve data indicating the
Target data including at least one of the color of the target, the gloss of the target, and the viscosity of the target, and the variation response curve obtained in the variation response curve data acquisition step by the calculation unit of the computer. a calculation step of calculating the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment and/or the amount of variation in suitable manufacturing conditions using the data;
In the calculation step, the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a brute force search method. Features an automatic adjustment method.
(2)所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整方法であって、
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する、変動量応答曲線データ取得工程と、
前記コンピュータの前記計算部により、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算する、計算工程と、を含み、
前記計算工程において、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、数理最適化法を用いて計算することを特徴とする、自動調整方法。
(2) When adjusting the paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the material for adjusting paint properties to the paint composition before adjustment suitable for obtaining the target paint properties and/or An automatic adjustment method for a paint composition, in which the amount of variation in manufacturing conditions is calculated by a calculation section of a computer, the method comprising:
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. a fluctuation amount response curve data acquisition step of acquiring fluctuation amount response curve data indicating the
Target data including at least one of the color of the target, the gloss of the target, and the viscosity of the target, and the variation response curve obtained in the variation response curve data acquisition step by the calculation unit of the computer. a calculation step of calculating the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment and/or the amount of variation in suitable manufacturing conditions using the data;
In the calculation step, the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a mathematical optimization method. Automatic adjustment method.
(3)前記計算工程では、
前記変動量応答曲線データを用いて、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出し、
算出した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、前記(1)又は(2)に記載の方法。
(3) In the calculation step,
Using the variation response curve data, determine the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifier, the addition ratio of the one or more types of viscosity modifier, and the manufacturing conditions. Calculating the amount of change in at least one of color, gloss, and viscosity when at least one of them is changed,
At least one of the color, the gloss, and the viscosity after a change that has been changed by the calculated amount of change in at least one of the color, the gloss, and the viscosity, the target color, the target gloss, and the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifiers, and the addition of the one or more types of viscosity modifiers such that the difference from at least one of the target viscosity is small. The method according to (1) or (2) above, wherein the amount of variation in at least one of the ratio and the manufacturing conditions is calculated.
(4)前記計算工程に先立って、前記変動量応答曲線データを用いた、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量のデータを予め取得し、
前記計算工程では、予め取得した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、前記(1)又は(2)に記載の方法。
(4) Prior to the calculation step, the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifiers, and the viscosity adjustment of the one or more types are adjusted using the variation response curve data. Obtaining in advance data on the amount of variation in at least one of color, gloss, and viscosity when varying at least one of the addition ratio of the agent and the manufacturing conditions,
In the calculation step, at least one of the color, the gloss, and the viscosity after a change is changed by the amount of change in at least one of the color, the gloss, and the viscosity obtained in advance, and the target color. , an addition ratio of the plurality of types of colorants such that the difference from at least one of the target gloss and the target viscosity is small, an addition ratio of the one or more types of gloss modifiers, and the one or more types of gloss modifiers. The method according to (1) or (2) above, wherein the amount of change in at least one of the addition ratio of the viscosity modifier and the manufacturing conditions is calculated.
(5)前記計算工程は、
前記目標の光沢及び/又は前記目標の粘度のデータと前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、前記光沢調整剤及び/又は前記粘度調整剤の適した添加割合の変動量を計算する、第1の計算サブ工程と、
前記第1の計算サブ工程で得られた前記光沢調整剤及び/又は前記粘度調整剤の最適な添加割合の変動量と、前記変動量応答曲線データとを用いて、前記第1の計算サブ工程で得られた前記適した添加割合の変動量の分の前記光沢調整剤及び/又は前記粘度調整剤を添加することにより生じる、色彩の変動量を計算する、第2の計算サブ工程と、
前記第2の計算サブ工程で得られた前記色彩の変動量と、前記変動量応答曲線データとを用いて、前記着色剤の適した添加割合の変動量を計算する、第3の計算サブ工程と、を含む、前記(1)~(4)のいずれか1つに記載の方法。
(5) The calculation step is
Using the data of the target gloss and/or the target viscosity and the fluctuation amount response curve data obtained in the fluctuation amount response curve data acquisition step, the suitability of the gloss modifier and/or the viscosity modifier is determined. a first calculation sub-step of calculating the amount of variation in the addition ratio;
The first calculation sub-step using the variation amount of the optimal addition ratio of the gloss modifier and/or the viscosity modifier obtained in the first calculation sub-step and the variation response curve data. a second calculation sub-step of calculating the amount of variation in color caused by adding the gloss modifier and/or the viscosity modifier by the amount of variation in the appropriate addition ratio obtained in
A third calculation sub-step of calculating the amount of change in the appropriate addition ratio of the colorant using the amount of variation in the color obtained in the second calculation sub-step and the variation response curve data. The method according to any one of (1) to (4) above, comprising:
(6)前記着色剤の添加割合、前記光沢調整剤の添加割合、前記粘度調整剤の添加割合、及び前記製造条件のうちの少なくともいずれかの変動量の各数値生成範囲を設定する工程と、
設定された前記数値生成範囲内で生成された前記着色剤の添加割合、前記光沢調整剤の添加割合、前記粘度調整剤の添加割合、及び前記製造条件のうち少なくともいずれかの各変動量を組み合わせてなる、種々の前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は前記製造条件の変動量のデータ群を用意する工程と、を更に含み、
前記計算工程では、
前記変動量応答曲線データを用いて、用意した種々の前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は前記製造条件の変動量のデータ群の数値の分だけ前記調整前塗料組成物に対する塗料性状調整用材料の添加割合及び/又は前記製造条件を変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出し、
算出した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、前記(3)に記載の方法。
(6) setting a numerical value generation range for the amount of variation in at least one of the addition ratio of the colorant, the addition ratio of the gloss modifier, the addition ratio of the viscosity modifier, and the manufacturing conditions;
Combining the amount of variation in at least any of the addition ratio of the colorant, the addition ratio of the gloss modifier, the addition ratio of the viscosity modifier, and the manufacturing conditions that are generated within the set numerical value generation range. further comprising the step of preparing a data group of the amount of variation in the addition ratio of the paint property adjusting material to the various pre-adjustment coating compositions and/or the amount of variation in the manufacturing conditions,
In the calculation step,
Using the variation response curve data, the variation amount of the addition ratio of the paint property adjusting material to the prepared various pre-adjustment coating compositions and/or the variation amount of the production conditions is calculated by the numerical value of the data group. Calculating the amount of change in at least one of color, gloss, and viscosity when changing the addition ratio of the paint property adjusting material to the pre-adjustment paint composition and/or the manufacturing conditions,
At least one of the color, the gloss, and the viscosity after a change that has been changed by the calculated amount of change in at least one of the color, the gloss, and the viscosity, the target color, the target gloss, and the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifiers, and the addition of the one or more types of viscosity modifiers such that the difference from at least one of the target viscosity is small. The method according to (3) above, wherein the amount of variation in at least one of the ratio and the manufacturing conditions is calculated.
(7)前記数理最適化法は、凸最適化法を用いる、上記(2)に記載の方法。 (7) The method according to (2) above, wherein the mathematical optimization method uses a convex optimization method.
(8)前記数理最適化法は、二次計画法を用いる、上記(2)に記載の方法。 (8) The method according to (2) above, wherein the mathematical optimization method uses quadratic programming.
(9)前記数理最適化法は、勾配降下法を用いる、上記(2)に記載の方法。 (9) The method according to (2) above, wherein the mathematical optimization method uses a gradient descent method.
(10)前記調整前塗料組成物は、(A1)前記1種類以上の前記着色剤、(A2)前記1種類以上の前記光沢調整剤、(A3)1種類以上の前記粘度調整剤の(A1)~(A3)のうちの2つ以上を含む、前記(1)~(9)のいずれか1つに記載の方法。 (10) The pre-adjustment coating composition comprises (A1) the one or more coloring agents, (A2) the one or more gloss modifiers, and (A3) the one or more viscosity modifiers. ) to (A3), the method according to any one of (1) to (9) above.
(11)前記製造条件は、
(a)前記塗料の粘度及び加熱残分のいずれか1つ以上、
(b)被塗物に塗料組成物を塗布する工程における、ロール周速、スプレー吐出量、電着塗装電圧、塗着圧及び塗料の流量のいずれか1つ以上、
(c)焼付け工程における被塗物の最高到達温度、焼付け温度及び焼付け時間のいずれか1つ以上、並びに
(d)製造ラインの環境温度及び湿度、塗料の温度のいずれか1つ以上、
の(a)~(d)うちのいずれか1つ以上を含む、前記(1)~(10)のいずれか1つに記載の方法。
(11) The manufacturing conditions are:
(a) one or more of the viscosity and heating residue of the paint;
(b) any one or more of roll circumferential speed, spray discharge amount, electrodeposition coating voltage, coating pressure, and paint flow rate in the process of applying the coating composition to the object to be coated;
(c) any one or more of the maximum temperature of the object to be coated, baking temperature, and baking time in the baking process, and (d) any one or more of the environmental temperature and humidity of the production line, and the temperature of the paint;
The method according to any one of (1) to (10) above, comprising any one or more of (a) to (d).
(12)前記塗料性状調整用材料は、前記複数の種類の着色剤を含み、
前記目標の塗料性状は、前記目標の色彩を含み、
前記調整前塗料組成物は、前記1種類以上の前記着色剤を含み、
前記変動量応答曲線データ取得工程は、1種類の着色剤の添加割合を種々変化させて、前記色彩を予め得ておき、前記1種類の着色剤の添加割合の変動量と前記色彩の変動量との関係を示す前記変動量応答曲線データを取得することを含み、
前記計算工程は、前記目標の色彩と、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記着色剤の添加割合の変動量を計算することを含む、前記(1)~(11)のいずれか1つに記載の方法。
(12) The paint property adjusting material includes the plurality of types of colorants,
The target paint properties include the target color,
The pre-adjustment coating composition includes the one or more coloring agents,
In the fluctuation amount response curve data acquisition step, the color is obtained in advance by variously changing the addition ratio of one type of colorant, and the fluctuation amount of the addition ratio of the one type of colorant and the fluctuation amount of the color are obtained. and obtaining the fluctuation amount response curve data indicating the relationship between
The calculation step includes calculating an appropriate amount of variation in the addition ratio of the colorant using the target color and the variation response curve data obtained in the variation response curve data acquisition step. The method according to any one of (1) to (11) above.
(13)所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整システムであって、
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する取得部をさらに備え、
前記計算部は、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するように構成され、
前記計算部は、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法を用いて計算することを特徴とする、自動調整システム。
(13) When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment suitable for obtaining the target paint properties and/or An automatic adjustment system for a paint composition that calculates the amount of variation in manufacturing conditions by a calculation section of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. further comprising an acquisition unit that acquires fluctuation amount response curve data indicating the
The calculation unit calculates the appropriate pre-adjustment paint using target data including at least one of the target color, the target gloss, and the target viscosity, and the obtained variation response curve data. configured to calculate the amount of variation in the addition ratio of the paint property adjusting material to the composition and/or the amount of variation in suitable manufacturing conditions,
The calculation unit calculates the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment coating composition and/or the amount of variation in suitable manufacturing conditions using a brute force search method. Features an automatic adjustment system.
(14)所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整システムであって、
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する取得部をさらに備え、
前記計算部は、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するように構成され、
前記計算部は、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、数理最適化法を用いて計算することを特徴とする。
(14) When adjusting the paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment suitable for obtaining the target paint properties and/or An automatic adjustment system for a paint composition that calculates the amount of variation in manufacturing conditions by a calculation section of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. further comprising an acquisition unit that acquires fluctuation amount response curve data indicating the
The calculation unit calculates the appropriate pre-adjustment paint using target data including at least one of the target color, the target gloss, and the target viscosity, and the obtained variation response curve data. configured to calculate the amount of variation in the addition ratio of the paint property adjusting material to the composition and/or the amount of variation in suitable manufacturing conditions,
The calculation unit is characterized in that the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a mathematical optimization method. do.
本発明によれば、簡易な手法で塗料組成物の調整を精度良く行うことが可能な、自動調整方法及び自動調整システムを提供することができる。 According to the present invention, it is possible to provide an automatic adjustment method and an automatic adjustment system that can accurately adjust a coating composition using a simple method.
以下、本発明の実施形態について図面を参照して詳細に例示説明する。
なお、本開示において、各用語は以下の内容を意味する。
「塗料性状調整用材料」とは、塗料性状の調整用に用いる、例えば着色剤、光沢調整剤及び粘度調整剤等の総称をいう。「調整前塗料組成物」とは、目標とする塗料組成物を構成する各材料のうち、塗料性状調整用材料と同じ機能を有する材料の所定量の約85~100%を配合した状態の塗料組成物で、その性状が目標とする性状に凡そ近似している状態の塗料組成物をいう。塗料性状調整用材料を含んでいても、含んでいなくても良い。また、各材料の配合量は不明であっても良い。「計算用塗料組成物」とは、1種類の着色剤で作成された塗料組成物で、理論的に色彩の絶対値を算出するために作成する塗料組成物をいう。着色剤を含む塗料性状調整用材料の他、樹脂、溶剤、硬化剤等を含む。なお、後述するクベルカ・ムンクの光学濃度式等を用いた色彩の変動量を予測計算で取得しない場合には、本材料は不要である。
Hereinafter, embodiments of the present invention will be illustrated in detail with reference to the drawings.
In addition, in this disclosure, each term means the following content.
"Materials for adjusting paint properties" is a general term for, for example, colorants, gloss modifiers, viscosity modifiers, etc. used for adjusting paint properties. "Pre-adjustment paint composition" refers to a paint in which about 85 to 100% of the predetermined amount of the material having the same function as the paint property adjusting material is blended among the materials constituting the target paint composition. A coating composition whose properties are approximately similar to the target properties. It may or may not contain a material for adjusting paint properties. Moreover, the blending amount of each material may be unknown. The term "calculation paint composition" refers to a paint composition made of one type of colorant, which is created in order to theoretically calculate the absolute value of a color. In addition to materials for controlling paint properties, including colorants, it also includes resins, solvents, curing agents, etc. Note that this material is not necessary if the amount of color variation is not obtained by predictive calculation using the Kubelka-Munk optical density equation, which will be described later.
<自動調整方法>
本発明の一実施形態にかかる自動調整方法は、所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整方法である。なお、本実施形態の自動調整方法は、一例としては、後述の本発明の一実施形態にかかる自動調整システムを用いて実行することができる。
<Automatic adjustment method>
An automatic adjustment method according to an embodiment of the present invention includes applying a paint property adjusting material to a pre-adjustment paint composition suitable for obtaining target paint properties when a paint composition is adjusted under predetermined manufacturing conditions. This is an automatic adjustment method for a coating composition in which the amount of variation in the addition ratio and/or the amount of variation in suitable manufacturing conditions is calculated by a calculation section of a computer. Note that the automatic adjustment method of this embodiment can be executed using, for example, an automatic adjustment system according to an embodiment of the present invention, which will be described later.
ここで、塗料組成物は、例えば、樹脂、溶剤、及び1種の着色顔料をSGミル等で分散させて用意した着色剤を、種々の色の着色顔料について複数準備し、任意の色に調整するため、1以上の着色剤に、樹脂、溶剤、及び添加剤を加えて、これらを混合させたものである。塗料組成物は、特には限定されないが、形態としては、例えば、水性塗料、溶剤系塗料、粉体塗料、無溶剤塗料等とすることができる。また、用途としては、例えば、コイル用塗料、一般工業用塗料、自動車用塗料、自動車補修用塗料、建築用塗料、重防食塗料、船舶用塗料とすることができ、塗装方法としては、スプレー塗装、ローラー塗装、刷毛塗装、ロール塗装(ナチュラル、リバース回転含む)、カーテンフロー塗装、ダイコート、電着塗装、粉体塗装、静電塗装とすることができ、乾燥方法としては、焼付け乾燥、強制乾燥、自然乾燥、紫外線硬化とすることができ、配合組成としては、樹脂原料、顔料、意匠原料、溶媒(水を含む)、添加剤等が挙げられる。樹脂原料としては、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、フッ素樹脂、ウレタン樹脂、アミノメラミン樹脂、イソシアネート樹脂、ブロックイソシアネート樹脂、ウレタン変性ポリエステル樹脂等のそれらの互いの変性樹脂とすることができ、顔料としては、無機顔料、有機顔料、着色顔料、体質顔料、意匠原料としては、メタリック、パール等の光輝材、骨材、シリカ、樹脂ビーズ、ワックス等、添加剤としては、粘度調整剤、シリコーン系添加剤、防錆剤、触媒、消泡剤等が挙げられる。 Here, the coating composition is prepared by, for example, dispersing a resin, a solvent, and one type of coloring pigment in an SG mill, etc., preparing a plurality of coloring pigments of various colors, and adjusting the color to any desired color. In order to do this, one or more colorants are mixed with a resin, a solvent, and an additive. The coating composition is not particularly limited, but may be in the form of, for example, a water-based coating, a solvent-based coating, a powder coating, a solvent-free coating, or the like. Applications include, for example, coil paints, general industrial paints, automotive paints, automotive repair paints, architectural paints, heavy-duty anticorrosion paints, and marine paints, and the coating methods include spray painting. , roller coating, brush coating, roll coating (including natural and reverse rotation), curtain flow coating, die coating, electrodeposition coating, powder coating, and electrostatic coating.Drying methods include baking drying and forced drying. , natural drying, and ultraviolet curing. Examples of the composition include resin raw materials, pigments, design raw materials, solvents (including water), additives, and the like. As resin raw materials, mutually modified resins such as acrylic resin, polyester resin, epoxy resin, alkyd resin, fluororesin, urethane resin, aminomelamine resin, isocyanate resin, block isocyanate resin, and urethane-modified polyester resin can be used. Pigments include inorganic pigments, organic pigments, coloring pigments, and extender pigments; design raw materials include glittering materials such as metallics and pearls; aggregates; silica; resin beads; and waxes; additives include viscosity modifiers. , silicone additives, rust preventives, catalysts, antifoaming agents, etc.
本実施形態では、塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含む。塗料性状調整用材料は、少なくとも複数の種類の着色剤を含むことが好ましい。着色剤は、着色顔料を含み、着色顔料としては、黒色顔料、白色顔料、黄色顔料、緑色顔料、赤色顔料、青色顔料、酸化チタン、ベンガラ等を例示することができる。光沢調整剤としては、骨材(砂等)、シリカ、反射材、アルミナ等を成分として例示することができる。粘度調整剤としては、例えば、合成樹脂系粘度調整剤、天然物系粘度調整剤、無機系粘度調整剤等を例示することができる。更に、合成樹脂系粘度調整剤としては、例えば、高分子型粘度調整剤、会合型粘度調整剤等を例示することができる。また、水や有機溶剤等の溶媒も粘度調整剤として用いることができる。 In this embodiment, the paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers. It is preferable that the paint property adjusting material contains at least a plurality of types of colorants. The coloring agent includes a colored pigment, and examples of the colored pigment include a black pigment, a white pigment, a yellow pigment, a green pigment, a red pigment, a blue pigment, titanium oxide, red iron oxide, and the like. Examples of gloss modifiers include aggregates (sand, etc.), silica, reflective materials, alumina, and the like. Examples of the viscosity modifier include synthetic resin viscosity modifiers, natural product viscosity modifiers, and inorganic viscosity modifiers. Furthermore, examples of the synthetic resin viscosity modifier include polymer type viscosity modifiers, associative viscosity modifiers, and the like. Additionally, solvents such as water and organic solvents can also be used as viscosity modifiers.
また、前記の目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含む。なお、塗料性状は、色彩、光沢、粘度以外には、例えば、膜厚、隠ぺい率、フリップフロップ性、平滑性、目視外観、電気抵抗、接触角、汚染性、日射反射率、紫外線透過率、耐候性、粘弾性、加工性、塗膜異常、曳糸性、引火点、泡立ち性等を含むこともできる。 Further, the target paint properties include at least one of a target color, a target gloss, and a target viscosity. In addition to color, gloss, and viscosity, paint properties include, for example, film thickness, hiding rate, flip-flop properties, smoothness, visual appearance, electrical resistance, contact angle, staining properties, solar reflectance, ultraviolet transmittance, Weather resistance, viscoelasticity, processability, coating film abnormality, stringability, flash point, foaming property, etc. can also be included.
色彩は、例えばL*a*b*色空間におけるL*値、a*値、b*値(JIS Z 8781-4(2013年))、XYZ表色系、RGB表色系、Yxy表色系、ハンターLab表色系、L*C*h*表色系、マンセル表色系等の表色系に基づくものを用いることができる。色彩は、既知の色彩測定方法を用いて測定することができ、一例として、分光測色計CM-M6(コニカミノルタ社製)を用いて、試験板に形成した塗膜に垂直にある受光部を0°とした場合に、25°、45°、75°となる角度から光源を照射して測定されるL*値、a*値、b*値を測定することができる。あるいは、分光測色計X-Rite MA68II(エックスライト社製)を用いて測定することができる。測定角度は、目的又は使用する機器に応じて適宜調整することができる。その他任意の指標を用いることができる。更に例えば、反射スペクトルデータであり、380nm~780nmの5nm毎の反射スペクトル強度を色彩とした指標等、任意の指標を用いることもできる。光沢は、特には限定されないが、グロスを指標として用いることができる。グロスは、既知の光沢測定方法を用いて測定することができ、一例として、試験板に形成した塗膜の60°光沢度を、鏡面光沢度計(光沢計VG 7000(日本電色工業社製))を用い、JIS K 5600-4-7(鏡面光沢度)に準拠して測定することができる。粘度は、既知の粘度測定方法を用いることができ、一例としては、JIS K 5600-2-2(フローカップ法)に準拠して測定することができる。平滑性は、ウェーブスキャン値を指標として用いることが好ましい。ウェーブスキャン値は、一例として、ウェーブスキャン(BYK Gardner社製)を用いて測定することができ、du(波長0.1mm以下)、Wa(波長0.1~0.3mm)、Wb(波長0.3~1.0mm)、Wc(波長1.0~3.0mm)、Wd(波長3.0~10.0mm)、We(波長10.0~30.0mm)、Lw(波長1.2~12mm)、及びSw(波長0.3~1.2mm)のいずれか1つ以上であることが好ましい。なお、ウェーブスキャン値は、値が小さいほど表面における当該波長の凹凸が少なく、塗膜の外観品質が良いことを意味する。フリップフロップ性は、一例として多角度測色器BYK-mac i(BYK Gardner社製)等を用いて計測することができる。塗膜異常は、具体的には、ムラ、フクレ、割れ、タレ、ピンホール、額縁等である。これらについても、それぞれ既知の手法で測定することができる。
また、色彩は、得られた塗料組成物を直接評価してもよい。一例として、分光測色計CM-M6(コニカミノルタ社製)を用いて、塗料組成物を石英ガラスセルに入れた状態で測定することができる。
ここで、色彩、光沢、及び粘度は、いずれかの性状を調整すると他の性状にも影響を及ぼし得る。
Colors include, for example, L * value, a * value, b * value in L * a * b * color space (JIS Z 8781-4 (2013)), XYZ color system, RGB color system, Yxy color system , Hunter Lab color system, L * C * h * color system, Munsell color system, and other color systems can be used. Color can be measured using a known color measurement method; for example, using a spectrophotometer CM-M6 (manufactured by Konica Minolta), the light receiving area is measured perpendicular to the coating film formed on the test plate. When 0° is assumed, the L * value, a * value, and b * value can be measured by irradiating the light source from angles of 25°, 45°, and 75°. Alternatively, it can be measured using a spectrophotometer X-Rite MA68II (manufactured by X-Rite). The measurement angle can be adjusted as appropriate depending on the purpose or the equipment used. Any other index can be used. Furthermore, for example, any index can be used, such as an index that is reflection spectrum data and uses a color of reflection spectrum intensity every 5 nm from 380 nm to 780 nm. Although gloss is not particularly limited, gloss can be used as an index. Gloss can be measured using a known gloss measurement method. For example, the 60° gloss of a coating film formed on a test plate is measured using a specular gloss meter (Gloss Meter VG 7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.)). )) according to JIS K 5600-4-7 (specular gloss). The viscosity can be measured using a known viscosity measuring method, for example, in accordance with JIS K 5600-2-2 (flow cup method). As for smoothness, it is preferable to use a wave scan value as an index. The wave scan value can be measured using, for example, a wave scan (manufactured by BYK Gardner), and includes du (wavelength 0.1 mm or less), Wa (wavelength 0.1 to 0.3 mm), Wb (
Moreover, the color may be evaluated directly on the obtained coating composition. As an example, the measurement can be performed using a spectrophotometer CM-M6 (manufactured by Konica Minolta) with the coating composition placed in a quartz glass cell.
Here, adjusting any of the properties of color, gloss, and viscosity may affect the other properties as well.
製造条件としては、下地データ、塗装条件データ、測定条件データ等が挙げられる。下地データとしては、下地の種類や下地の色彩、表面張力、表面粗度等が挙げられ、単なる商品名や物質名をデータとして使用することができる。塗装条件データとしては、例えば、ロールコートであれば、(i)ラインスピード、ロール周速、ニップ圧、使用ロール数、ロール回転方向、塗着圧、塗料の流量、アプリケーターロールの状態、材質、硬さ、ピックアップロールの種類、及び塗装ライン構成等の設備・装置に関する条件、(ii)粘度、付着量等の塗料組成物に関する条件、(iii)焼付け工程における焼付け時間、被塗物の昇温曲線、最高到達温度、焼付け炉の温度、熱風風速、環境面としての温度及び湿度等の温湿度に関する条件、(iv)色差計、光沢計等の計器に関する条件、(v)その他の条件として、下塗り塗膜の種類や色、光沢、粗度、表面張力及び表面SP値等の物性データ、化学的性質データ等が挙げられる。また、スプレー塗装であれば塗料組成物の粘度、吐出圧、吐出量、ガンのタイプ、焼付け工程における焼付け温度、セッティング時間、焼付け時間、環境温度及び湿度等が挙げられる。更に、電着塗装であれば、塗装電圧、液温、通電時間、塗装方向(水平面か垂直面か)ラインスピード等が挙げられる。測定条件データとしては、色差計の機種、光沢計の機種測定温度、機器通電からの時間、個別測定器名が挙げられる。 Manufacturing conditions include base data, coating condition data, measurement condition data, and the like. The base data includes the type of base, the color of the base, surface tension, surface roughness, etc., and a simple product name or substance name can be used as data. For example, in the case of roll coating, the coating condition data includes (i) line speed, roll peripheral speed, nip pressure, number of rolls used, roll rotation direction, coating pressure, paint flow rate, applicator roll condition, material, Conditions related to equipment and devices such as hardness, type of pickup roll, and coating line configuration; (ii) Conditions related to coating composition such as viscosity and amount of coating; (iii) Baking time in the baking process and temperature rise of the object to be coated. Conditions related to temperature and humidity such as curve, maximum temperature, baking furnace temperature, hot air velocity, environmental temperature and humidity, (iv) conditions related to instruments such as color difference meter and gloss meter, (v) other conditions, Examples include physical property data such as the type and color of the undercoat film, gloss, roughness, surface tension, and surface SP value, and chemical property data. Further, in the case of spray painting, the viscosity of the coating composition, discharge pressure, discharge amount, gun type, baking temperature in the baking process, setting time, baking time, environmental temperature, humidity, etc. can be mentioned. Furthermore, in the case of electrodeposition coating, the coating voltage, liquid temperature, current application time, coating direction (horizontal or vertical plane), line speed, etc. may be mentioned. The measurement condition data includes the model of the color difference meter, the temperature measured by the model of the gloss meter, the time since the device was energized, and the name of the individual measuring device.
製造条件は、(a)塗料の粘度及び加熱残分のいずれか1つ以上、(b)被塗物に塗料組成物を塗布する工程における、ロール周速、スプレー吐出量、電着塗装電圧、塗着圧及び塗料の流量のいずれか1つ以上、(c)焼付け工程における被塗物の最高到達温度、焼付け温度及び焼付け時間のいずれか1つ以上、並びに(d)製造ラインの環境温度及び湿度、塗料の温度のいずれか1つ以上、の(a)~(d)うちのいずれか1つ以上を含むことが好ましい。 The manufacturing conditions include (a) one or more of the viscosity of the paint and the heating residue, (b) the peripheral speed of the roll, the amount of spray discharge, the electrodeposition voltage in the process of applying the paint composition to the object to be coated, (c) any one or more of the maximum temperature of the object to be coated in the baking process, the baking temperature, and the baking time; and (d) the environmental temperature of the production line. It is preferable to include any one or more of (a) to (d), including humidity and paint temperature.
図1は、本発明の一実施形態にかかる自動調整方法のフローチャートである。
本実施形態では、まず、変動前塗料組成物を用意する(ステップS101:変動量応答曲線データ取得工程の前段工程)。変動前塗料組成物は、樹脂及び溶剤のみでもよく、樹脂及び溶剤に、1種類以上の塗料性状調整用材料(着色剤、光沢調整剤及び粘度調整剤等)を含んでもよい。そして、変動前塗料組成物の塗料性状(「変動前塗料性状」ともいう。)の情報を予め得ておく。
FIG. 1 is a flowchart of an automatic adjustment method according to an embodiment of the present invention.
In this embodiment, first, a pre-variation paint composition is prepared (step S101: the first step of the variation response curve data acquisition process). The pre-change paint composition may contain only a resin and a solvent, or may contain one or more types of paint property adjusting materials (colorant, gloss modifier, viscosity modifier, etc.) in addition to the resin and solvent. Information on the paint properties of the paint composition before variation (also referred to as "paint properties before variation") is obtained in advance.
次いで、本実施形態では、(ステップS101で用意した)変動前塗料組成物に基づいて、1種類以上の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び各製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の塗料性状の情報を予め得ておくことを各パラメータについて行う(ステップS102:変動量応答曲線データ取得工程の中段工程)。前記添加割合は、例えば、用意した変動前塗料組成物の質量を100%とした際の質量%で表すことができる。 Next, in this embodiment, based on the pre-change coating composition (prepared in step S101), the addition ratio of one or more colorants, the addition ratio of one or more gloss modifiers, and one or more viscosity adjustments are determined. For each parameter, information on the paint properties when only one parameter of the agent addition ratio and each manufacturing condition is varied is obtained in advance (Step S102: Acquisition of variation response curve data middle stage of the process). The addition ratio can be expressed, for example, as % by mass when the mass of the prepared coating composition before variation is taken as 100%.
ステップS102においては、塗料性状の情報として、色彩、光沢、及び粘度の少なくともいずれかを測定により得ておく。色彩、光沢、粘度の測定は、塗料組成物又は塗料組成物から得られる塗膜の測定により行うことができる。色彩、光沢、及び粘度の各測定方法は、例えば、前記のとおりである。変化させるのは、1種類のみの着色剤の添加割合のみ、1種類のみの光沢調整剤の添加割合のみ、1種類のみの粘度調整剤の添加割合のみ、各種製造条件のうちの1つのみである。また、色彩に関しては、例えばクベルカ・ムンクの光学濃度式等を用いて着色剤を所定の配合で混合した際の分光反射率を用いて、塗料組成物添加前後の差分から色彩の変動量を予測計算して得ておくこともできる。 In step S102, at least one of color, gloss, and viscosity is obtained by measurement as information on paint properties. Color, gloss, and viscosity can be measured by measuring the coating composition or the coating film obtained from the coating composition. The methods for measuring color, gloss, and viscosity are, for example, as described above. The only thing that can be changed is the addition ratio of only one type of colorant, only the addition ratio of only one type of gloss modifier, only the addition ratio of only one type of viscosity modifier, or only one of the various manufacturing conditions. be. Regarding color, for example, using the Kubelka-Munk optical density formula, etc., and using the spectral reflectance when colorants are mixed in a predetermined formulation, the amount of color variation can be predicted from the difference before and after adding the paint composition. You can also calculate it and get it.
図2は、変動量応答曲線データ取得工程の中段工程について説明するための図であり、前記変化させるパラメータが、白色着色剤の添加割合の場合の例である。具体的には、白色塗料組成物の添加割合を、変動前塗料組成物の全質量に対して0%から、0.03%、0.1%、0.3%、1%、3%、10%へと変動させている。微調整を精度良く行えるようにするため、添加割合は、変動の大きい1%以下は0.01~1%程度の刻みで変動させることが好ましい。変動の数は1つのパラメータにつき、例えば2~20となり得る。図2に示すように、1つのみのパラメータを変動させた際の色彩、光沢、及び粘度について、例えば測定して情報を得ておく。このようなことを各パラメータ(他の着色剤、光沢調整剤、粘度調整剤、及び製造条件)についても行う。製造条件についても、変動の刻みは、各製造条件で実際に調整する調整幅等を考慮して微調整を精度良く行うのに十分細かく刻んで変動させることが好ましい。 FIG. 2 is a diagram for explaining the middle step of the fluctuation amount response curve data acquisition step, and is an example in which the parameter to be changed is the addition ratio of the white colorant. Specifically, the addition ratio of the white paint composition is changed from 0% to 0.03%, 0.1%, 0.3%, 1%, 3%, based on the total mass of the paint composition before change. It is changed to 10%. In order to make fine adjustments with high precision, it is preferable that the addition ratio is varied in increments of about 0.01 to 1% when the variation is large, 1% or less. The number of variations can be, for example, from 2 to 20 per parameter. As shown in FIG. 2, information is obtained by measuring, for example, the color, gloss, and viscosity when only one parameter is varied. The same thing is done for each parameter (other colorants, gloss modifiers, viscosity modifiers, and manufacturing conditions). As for the manufacturing conditions, it is preferable that the fluctuations be made in small enough increments to make fine adjustments with high accuracy, taking into consideration the adjustment range to be actually adjusted under each manufacturing condition.
次いで、本実施形態では、各パラメータの変動量と塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する(ステップS103:変動量応答曲線データ取得工程の後段工程)。図2で示す例でいえば、変動1において、白色着色剤の添加割合を0から0.03%に変動させた変動量と、その際の色彩の変動量(L*値の変動量(WL1)、a*値の変動量(Wa1)、b*値の変動量(Wb1))、光沢の変動量(Wg1)、及び粘度の変動量(Wv1)との関係のデータ、及び他の変動2~6でも同様に得られる、パラメータの変動量と塗料性状の情報の変動量との関係のデータを得る。変動前塗料組成物は、1つ用意するのでも良いが、様々な調整に対応するために、変動の調整前塗料組成物を用意して、それぞれの変動前塗料組成物の色彩について、パラメータの変動量と塗料性状の情報の変動量との関係のデータを得ることが好ましい。例えば、複数の変動前塗料組成物は、色彩(L*値、a*値、b*値)について、5刻みで作成することが好ましく、1刻みで作成することがより好ましい。より効率的には、着色剤の品種毎に作成することが好ましく、それらのいずれか2つ以上とする等、色彩の種類で分類して用意することができる。
本実施形態の方法では、前記のようにして得られるデータからなる変動量応答曲線データを取得する。図3に、変動量応答曲線の名称を例示している。
ここでいう取得とは、例えばコンピュータの計算部(プロセッサ)により計算して取得する場合のみならず、例えばコンピュータの通信部により前記のような変動量応答曲線データを受信する場合や、読み取り部によりメモリに記録された前記のような変動量応答曲線データを読み取る場合等も含まれる。なお、例えば、1つのみのパラメータとして着色剤の添加割合を変化させる場合においても、目標の塗料性状に、目標の色彩のみならず目標の光沢や目標の粘度を含む場合には、色彩のみならず、光沢や粘度の変動量も得ることが好ましい。着色剤の添加割合の変化は、色彩のみならず、光沢や粘度にも影響を及ぼし得るからである。
Next, in this embodiment, variation response curve data indicating the relationship between the variation of each parameter and the variation of paint property information is acquired (step S103: subsequent step of the variation response curve data acquisition step). In the example shown in FIG. 2, in
In the method of this embodiment, fluctuation amount response curve data consisting of the data obtained as described above is obtained. FIG. 3 shows examples of names of variation response curves.
Acquisition here refers not only to the case of calculation and acquisition by the calculation unit (processor) of the computer, but also to the case of receiving the above-mentioned variation response curve data by the communication unit of the computer, or by the reading unit. This also includes the case of reading the above-mentioned fluctuation amount response curve data recorded in the memory. For example, even when changing the addition ratio of colorant as only one parameter, if the target paint properties include not only the target color but also the target gloss and target viscosity, it is necessary to change the color only. First, it is preferable to also obtain variations in gloss and viscosity. This is because a change in the addition ratio of the colorant can affect not only the color but also the gloss and viscosity.
次いで、本実施形態では、コンピュータの計算部により、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含む目標データと、変動量応答曲線データ取得工程で得られた変動量応答曲線データとを用いて、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算する(計算工程)。以下、計算工程について更に具体的に説明する。 Next, in this embodiment, the calculation unit of the computer generates target data including at least one of target color, target gloss, and target viscosity, and a variation response curve obtained in the variation response curve data acquisition step. Using the data, the amount of variation in the addition ratio of the paint property adjusting material and/or the amount of variation in suitable manufacturing conditions with respect to the appropriate pre-adjustment coating composition is calculated (calculation step). The calculation process will be explained in more detail below.
本実施形態において、計算工程では、変動量応答曲線データを用いて、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出する(ステップS104:計算工程の前段工程)。
なお、2種類以上の添加物の添加割合を変化させた場合の計算は、例えば、2種類の着色剤の場合の例で説明すると、第1の手法として、1種類目の着色剤を添加した際の塗料性状の変動量を、変動量応答曲線を用いて計算し、例えば、「調整前塗料性状」から「塗料性状1」へと変動するとした際、2種類目の着色剤を添加した際の変動量は、「塗料性状1」からの変動量を、変動量応答曲線を用いて計算することができる。2種類同時に添加する場合は、「塗料性状0」からの変動量を2種類の着色剤それぞれについて計算し、それぞれ変動量1、2とすると、変動後の塗料性状は、「調整前塗料性状」+「変動量1」+「変動量2」とすることができる。
また、第2の手法として、特に1種類目の着色剤の添加による塗料性状の変動量が小さい場合には、2種類目の着色剤の添加による変動量を「調整前塗料性状」からの変動量として計算して、「変動量2´」とすることができる。この場合の同時添加の場合は、添加後の変動量を、「調整前塗料性状」+「変動量1」+「変動量2´」とすることができる。このようにすることで、変動量応答曲線を2つの種類の着色剤の場合で共通化することができるため、用意すべきデータ数を大幅に削減することができる。
図4A及び図4Bは、計算工程の前段工程について説明するための図である。
第2の手法における具体的な算出方法を記載する。図4Aは、白色着色剤を0.01%、0.02%、0.03%添加した際の、各塗膜性状の変動量を変動量応答曲線に代入して得られる算出結果を示している。同様に、図4Bは赤色着色剤の場合の算出結果である。白色着色剤を0.01%、赤色着色剤を0.02%、それぞれ単独で添加した場合のL*値の変動量は、それぞれ、WL(0.01)、RL(0.02)である。また、その両者を同時に添加した場合の変動量は、それぞれの着色剤を単独で添加した場合のL*値の変動量の合算[WL(0.01)+RL(0.02)]により計算できる。
また、変動量応答曲線データに基づいて、(例えば最小二乗法等による)近似曲線として変動量応答曲線を作成し、計算工程においては、当該変動量応答曲線を用いて、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出することも好ましい。
In the present embodiment, in the calculation step, using the variation response curve data, the addition ratio of a plurality of types of colorants, the addition ratio of one or more types of gloss modifier, the addition ratio of one or more types of viscosity modifier, and the amount of variation in at least one of color, gloss, and viscosity when at least one of the manufacturing conditions is varied (step S104: the first step of the calculation step).
In addition, the calculation when changing the addition ratio of two or more types of additives is explained using an example of two types of colorants.The first method is to add the first type of colorant. Calculate the amount of change in the paint properties at the time using the change amount response curve. For example, when the paint properties change from "paint properties before adjustment" to "paint
In addition, as a second method, especially when the amount of change in paint properties due to the addition of the first type of colorant is small, the amount of change due to the addition of the second type of colorant can be calculated by calculating the amount of change from the "paint properties before adjustment". It can be calculated as a "variation amount 2'". In the case of simultaneous addition in this case, the amount of variation after addition can be set to "paint properties before adjustment" + "amount of
4A and 4B are diagrams for explaining the first step of the calculation step.
A specific calculation method in the second method will be described. Figure 4A shows the calculation results obtained by substituting the amount of change in each coating film property into the amount of change response curve when adding 0.01%, 0.02%, and 0.03% of white colorant. There is. Similarly, FIG. 4B shows the calculation results for the red colorant. When 0.01% of white coloring agent and 0.02% of red coloring agent are added alone, the amount of variation in L * value is WL (0.01) and RL (0.02), respectively. . Also, the amount of variation when both are added at the same time can be calculated by adding up the amount of variation in L * value when each colorant is added individually [WL (0.01) + RL (0.02)] .
In addition, based on the variation response curve data, a variation response curve is created as an approximate curve (for example, by the least squares method), and in the calculation process, the variation response curve is used to calculate multiple types of colorants. color, gloss, and/or viscosity when at least one of the following is changed: It is also preferable to calculate the amount of variation.
次いで、本実施形態では、算出した色彩、光沢、及び粘度の少なくともいずれかの変動量の分だけ変動した変動後の色彩、光沢、及び粘度の少なくともいずれかと、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかとの差が小さくなるような、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかの変動量を算出する(ステップS105:計算工程の後段工程)。
特には限定されないが、指標として、目標値と計算値との差が小さくなるような(例えば所定の閾値以下となる、あるいは、最小となる等)、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかの変動量を算出する。より具体的には、gを光沢、vを粘度、Gを光沢の許容範囲、Vを粘度の許容範囲、Δを目標との差異を表す場合、|Δg|≦G及び|Δv|≦Vとなる条件において、ΔEが最小となる値を算出する。ここで、ΔEは色差を表し、ΔE=(ΔL*2+Δa*2+Δb*2)1/2で求められる。
Next, in the present embodiment, the target color, the target gloss, and at least one of the changed color, gloss, and viscosity that has been changed by the amount of change in at least one of the calculated color, gloss, and viscosity are used. Addition ratios of multiple types of colorants, addition ratios of one or more types of gloss modifiers, addition ratios of one or more types of viscosity modifiers, and manufacturing conditions such that the difference from at least one of the target viscosity is small. (Step S105: subsequent step of the calculation step).
Although not particularly limited, as an indicator, the ratio of addition of multiple types of colorants such that the difference between the target value and the calculated value becomes small (for example, below a predetermined threshold, or becomes the minimum), 1 The amount of variation in at least one of the addition ratio of one or more types of gloss modifiers, the addition ratio of one or more types of viscosity modifier, and manufacturing conditions is calculated. More specifically, when g is gloss, v is viscosity, G is the gloss tolerance range, V is the viscosity tolerance range, and Δ is the difference from the target, |Δg|≦G and |Δv|≦V. Under these conditions, calculate the value that minimizes ΔE. Here, ΔE represents color difference, and is determined by ΔE=(ΔL *2 +Δa *2 +Δb *2 ) 1/2 .
別の例としては、計算工程に先立って、変動量応答曲線データを用いた、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量のデータを予め取得し、計算工程では、予め取得した色彩、光沢、及び粘度の少なくともいずれかの変動量の分だけ変動した変動後の色彩、光沢、及び粘度の少なくともいずれかと、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかとの差が小さくなるような、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかの変動量を算出しても良い。 Another example is the addition ratio of multiple types of colorants, the addition ratio of one or more types of gloss modifier, the addition ratio of one or more types of viscosity modifier using variation response curve data prior to the calculation process. Data on the amount of change in at least one of color, gloss, and viscosity when changing at least one of the addition ratio and manufacturing conditions is obtained in advance, and in the calculation process, the data on the amount of change in at least one of color, gloss, and viscosity is obtained in advance. such that the difference between at least one of the color, gloss, and viscosity after the change that has changed by the amount of change of at least one of the above and at least one of the target color, target gloss, and target viscosity becomes small; The amount of variation in at least any one of the addition ratio of a plurality of types of colorants, the addition ratio of one or more types of gloss modifier, the addition ratio of one or more types of viscosity modifier, and manufacturing conditions may be calculated.
ここで、塗料性状調整用材料は、複数の種類の着色剤を含み、目標の塗料性状は、目標の色彩を含むことが好ましい。この場合、調整前塗料組成物は、1種類以上の着色剤を含み、変動量応答曲線データ取得工程は、1種類の着色剤の添加割合を種々変化させて、色彩を予め得ておき、1種類の着色剤の添加割合の変動量と色彩の変動量との関係を示す変動量応答曲線データを取得することを含むことが好ましい。そして、計算工程は、目標の色彩と、変動量応答曲線データ取得工程で得られた変動量応答曲線データとを用いて、適した着色剤の添加割合の変動量を計算することを含むことが好ましい。特には限定されないものの、塗料の調整においては、色彩を調整することが多いためである。 Here, it is preferable that the paint property adjusting material includes a plurality of types of colorants, and the target paint property includes a target color. In this case, the pre-adjustment coating composition contains one or more types of colorants, and the variation response curve data acquisition step involves obtaining colors in advance by variously changing the addition ratio of one type of colorant. Preferably, the method includes obtaining variation response curve data indicating the relationship between the variation in the addition ratio of each type of colorant and the variation in color. The calculation step may include calculating the amount of variation in the appropriate colorant addition ratio using the target color and the variation response curve data obtained in the variation response curve data acquisition step. preferable. Although not particularly limited, this is because colors are often adjusted when adjusting paint.
塗料性状調整用材料が、複数の種類の着色剤と、1種類以上の光沢調整剤及び/又は1種類以上の粘度調整剤と、を含む場合、計算工程は、以下のように行うことが好ましい。
まず、目標の光沢及び/又は目標の粘度のデータと変動量応答曲線データ取得工程で得られた変動量応答曲線データとを用いて、光沢調整剤及び/又は粘度調整剤の適した添加割合の変動量を計算する(第1の計算サブ工程)。
次いで、第1の計算サブ工程で得られた光沢調整剤及び/又は粘度調整剤の最適な添加割合の変動量と、変動量応答曲線データとを用いて、第1の計算サブ工程で得られた、適した添加割合の変動量の分の光沢調整剤及び/又は粘度調整剤を添加することにより生じる色彩の変動量を計算する(第2の計算サブ工程)。
次いで、第2の計算サブ工程で得られた、色彩の変動量(及び目標の色彩のデータ)と、変動量応答曲線データとを用いて、着色剤の適した添加割合の変動量を計算する(第3の計算サブ工程)。
これによれば、光沢調整剤及び/又は粘度調整剤の色彩へ与える影響を考慮した、着色剤の最適な添加割合の変動量を計算することが可能となる。
When the paint property adjusting material includes multiple types of colorants, one or more types of gloss modifiers and/or one or more types of viscosity modifiers, the calculation process is preferably performed as follows. .
First, using the target gloss and/or target viscosity data and the variation response curve data obtained in the variation response curve data acquisition step, determine the appropriate addition ratio of the gloss modifier and/or viscosity modifier. Calculate the amount of variation (first calculation sub-step).
Next, using the amount of variation in the optimum addition ratio of the gloss modifier and/or viscosity modifier obtained in the first calculation sub-step and the variation response curve data, calculate the amount of variation obtained in the first calculation sub-step. In addition, the amount of variation in color caused by adding the gloss modifier and/or viscosity modifier corresponding to the amount of variation in the appropriate addition ratio is calculated (second calculation sub-step).
Next, using the color variation (and target color data) and variation response curve data obtained in the second calculation sub-step, the variation in the appropriate addition ratio of the colorant is calculated. (Third calculation sub-step).
According to this, it becomes possible to calculate the optimum amount of variation in the addition ratio of the colorant, taking into consideration the influence of the gloss modifier and/or viscosity modifier on the color.
ここで、計算工程に先立って、以下の準備を行うことが好ましい。着色剤の添加割合、光沢調整剤の添加割合、粘度調整剤の添加割合、及び製造条件のうちの少なくともいずれかの変動量の各数値生成範囲を設定する工程と、設定された数値生成範囲内で生成された着色剤の添加割合、光沢調整剤の添加割合、粘度調整剤の添加割合、及び製造条件のうち少なくともいずれかの各変動量を(例えばランダムに)組み合わせてなる、種々の調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は製造条件の変動量のデータ群を用意する工程と、を計算工程に先立って行う。ここで、データ群は、特には限定されないものの、例えば10万~1,000万通りの組み合わせの数からなるものとすることが好ましい。そして、計算工程では、変動量応答曲線データを用いて、用意した種々の調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は製造条件の変動量のデータ群の数値の分だけ塗料組成物の添加割合及び/又は製造条件を変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出し、算出した色彩、光沢、及び粘度の少なくともいずれかの変動量の分だけ変動した変動後の色彩、光沢、及び粘度の少なくともいずれかと、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかとの差が小さくなるような、複数の種類の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び製造条件の少なくともいずれかの変動量を算出する。これにより、効率の良い計算が可能になる。前記数値生成範囲は、予め設定された調整後の塗料配合の標準値又は実績値からの一定範囲に基づいて求めることができる。これにより標準値や実績値からのずれの小さい計算結果を得ることができる。あるいは、前記数値生成範囲は、塗膜の耐候性試験の合格範囲、及びメタメリズム試験の合格範囲の少なくともいずれかに基づいて求めることもできる。 Here, it is preferable to perform the following preparations prior to the calculation step. A step of setting each numerical value generation range for the amount of variation in at least one of the colorant addition ratio, gloss modifier addition ratio, viscosity modifier addition ratio, and manufacturing conditions, and within the set numerical value generation range. Various pre-adjustment methods, which are obtained by combining (for example, randomly) the amount of variation in at least one of the colorant addition ratio, gloss modifier addition ratio, viscosity modifier addition ratio, and manufacturing conditions produced in Prior to the calculation step, a step of preparing a data group of the amount of variation in the addition ratio of the paint property adjusting material to the paint composition and/or the amount of variation in manufacturing conditions is performed. Here, although the data group is not particularly limited, it is preferable that the data group consists of, for example, 100,000 to 10 million combinations. In the calculation process, the fluctuation amount response curve data is used to calculate the numerical value of the data group of the amount of fluctuation in the addition ratio of the paint property adjusting material and/or the amount of fluctuation in manufacturing conditions to the various prepared paint compositions before adjustment. Calculate the amount of change in at least one of color, gloss, and viscosity when the addition ratio and/or manufacturing conditions of the paint composition are changed by A plurality of types of coloring such that the difference between at least one of the color, gloss, and viscosity after variation that has changed by the amount of variation and at least one of the target color, target gloss, and target viscosity is small. The amount of change in at least one of the addition ratio of the agent, the addition ratio of one or more types of gloss modifier, the addition ratio of one or more types of viscosity modifier, and manufacturing conditions is calculated. This enables efficient calculation. The numerical value generation range can be determined based on a predetermined range from the standard value or actual value of the adjusted paint composition. This allows calculation results with small deviations from standard values and actual values to be obtained. Alternatively, the numerical value generation range can be determined based on at least one of the passing range of the weather resistance test of the coating film and the passing range of the metamerism test.
ここで、本実施形態では、計算工程において、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法又は数理最適化法を用いて計算する。 Here, in the present embodiment, in the calculation step, the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before suitable adjustment and/or the amount of variation in suitable manufacturing conditions is calculated using the brute force search method or Calculate using mathematical optimization method.
ブルート・フォース・サーチ法は、例えば計算工程に先立って行うことのできる前記変動量のデータ群を用意する工程において、例えば10万~1,000万通りの変動量のパターンを用意した場合、その全てについて変動量応答曲線データを用いた計算により、色彩、光沢、及び粘度の変動値を計算することにより、しらみつぶしに目標値との差が小さくなる場合の各種変動量を求める手法である。 In the brute force search method, for example, when 100,000 to 10 million patterns of variation are prepared in the process of preparing a data group of the variation amount that can be performed prior to the calculation process, This method calculates the variation values of color, gloss, and viscosity through calculations using variation response curve data for all of them, and thoroughly determines the various variation amounts when the difference from the target value becomes small.
数理最適化法は、着色剤の添加割合の変動量x1、光沢調整剤の添加割合の変動量x2、粘度調整剤の添加割合の変動量x3、製造条件の変動量x4の関数の最適化問題としてx1、x2、x3、x4を求める手法である。
数理最適化法としては、凸最適化法を用いることが好ましい。あるいは、数理最適化法として、二次計画法を用いることも好ましい。あるいは、数理最適化法として、勾配降下法を用いることも好ましい。
以下、本実施形態の自動調整方法の作用効果について説明する。
The mathematical optimization method is an optimization problem of a function of the amount of variation in the addition ratio of colorant x1, the amount of variation in the addition ratio of gloss modifier x2, the amount of variation in the addition ratio of viscosity modifier x3, and the amount of variation in manufacturing conditions x4. This method calculates x1, x2, x3, and x4 as follows.
As the mathematical optimization method, it is preferable to use a convex optimization method. Alternatively, it is also preferable to use quadratic programming as the mathematical optimization method. Alternatively, it is also preferable to use gradient descent as the mathematical optimization method.
The effects of the automatic adjustment method of this embodiment will be described below.
本実施形態の自動調整方法では、計算工程において、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するに当たり、変動量応答曲線データ取得工程において得られた変動量応答曲線データを用いている。そして、変動量応答曲線データは、前記調整前塗料組成物を用いて得られるものである。このため、(後述の実施例でも示されるように)着色剤の混合比が既知の調整前塗料組成物の色彩の絶対値と、目標の色彩の絶対値から理論的に算出した目標となる塗料組成物の着色剤の混合比との差異を埋めるように、調整前塗料組成物に着色剤を添加する量を算出する方法に比べて、高精度に塗料性状を自動調整し得る。また、機械学習の場合と比べて要求されるデータ量が少なくて済む。また、変動量応答曲線データは、1種類以上の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び各製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の塗料性状の情報を予め得ておくことを各パラメータについて行って得ているため、1つのみのパラメータの変動の影響を精度良く得ておくことができ、後の計算工程の計算結果の精度を高めることができる。また、測定値には、一般的には、例えば測定器に起因する誤差が生じ得るものであるが、本実施形態の方法では、変動量応答曲線データは、塗料性状の絶対値ではなく変動量を用いたものであるから、そのような誤差を相殺してより高い精度で計算を行うことができる。
計算工程において、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法又は数理最適化法を用いて計算している。これらの手法によれば、得られた変動量応答曲線から精度良く適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を求めることができる。
以上のように、本実施形態の自動調整方法によれば、簡易な手法で塗料組成物の調整を精度良く行うことができる。
特に、色彩、光沢、及び粘度は、互いに影響を及ぼし得るため同時に調整することが困難であることが判明したが、本開示において、塗料性状として、色彩、光沢、及び粘度の全てを変動量の計算の対象とした場合には、これらの同時調整を高精度に行うことが可能となった。
In the automatic adjustment method of the present embodiment, in the calculation process, when calculating the amount of change in the addition ratio of the paint property adjusting material to the paint composition before suitable adjustment and/or the amount of change in the suitable manufacturing conditions, the amount of change is responded to. The fluctuation amount response curve data obtained in the curve data acquisition step is used. The variation response curve data is obtained using the coating composition before adjustment. For this reason, (as shown in Examples below), the target paint is theoretically calculated from the absolute value of the color of the pre-adjustment paint composition whose colorant mixing ratio is known and the absolute value of the target color. Compared to the method of calculating the amount of colorant to be added to the paint composition before adjustment so as to compensate for the difference in the mixing ratio of the colorant in the composition, paint properties can be automatically adjusted with higher precision. Additionally, the amount of data required is smaller than in the case of machine learning. In addition, the variation response curve data may be any one of the addition ratio of one or more colorants, the addition ratio of one or more gloss modifiers, the addition ratio of one or more viscosity modifiers, and each manufacturing condition. Since information on the paint properties when only one parameter is varied in various ways is obtained for each parameter in advance, the influence of variations in only one parameter can be obtained with high accuracy. , it is possible to improve the accuracy of calculation results in subsequent calculation steps. In addition, in general, errors may occur in the measured values due to, for example, the measuring device, but in the method of this embodiment, the variation response curve data is based on the variation amount rather than the absolute value of the paint properties. , it is possible to cancel out such errors and perform calculations with higher accuracy.
In the calculation process, the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before suitable adjustment and/or the amount of variation in suitable manufacturing conditions is calculated using the brute force search method or mathematical optimization method. are doing. According to these methods, it is possible to accurately determine the amount of variation in the addition ratio of the material for adjusting paint properties and/or the amount of variation in suitable manufacturing conditions for the paint composition before adjustment from the obtained variation response curve. can.
As described above, according to the automatic adjustment method of this embodiment, the coating composition can be adjusted with high accuracy using a simple method.
In particular, it has been found that it is difficult to adjust color, gloss, and viscosity at the same time because they can influence each other. When used as a calculation target, it has become possible to perform these simultaneous adjustments with high precision.
ブルート・フォース・サーチ法は、1つしかない解を探索する場合、パラメータの種類及び数が多いと、その候補の数が爆発的に増えてしまう。塗料分野に活用する場合においても、求める解が1つとすると、パラメータが1つ、例えば、着色剤の添加量について、0~10質量%まで添加する場合でも、添加量を0.1%刻みとすると100通り、着色剤が2種類ならば、100×100で10,000通り、更に、材料100分割、塗装条件10分割でも、合計10パラメータでは10の20乗となり、天文学的な組み合わせ数になってしまう。しかし、塗料分野の場合、1)規格幅がある(解の幅がある)こと、2)同じ解になる組み合わせが複数あること(例えば、塗料組成物を黒色に調整する場合、黒色着色剤だけの場合、又は、赤色着色剤、青色着色剤及び黄色着色剤を混色した場合、そのどちらでも黒色に調整することは可能である)、3)塗膜性能上、添加できる量はそれぞれの着色剤の添加量の制限範囲内であること、という制約もあるため、実際には0~2%の範囲で20分割等範囲を限定し易い。このような特有の理由があるため、全組み合わせを計算しなくても、ランダムな組み合わせ(1パラメータの分割数は同じだか、組み合わせをランダム)にして、10の6乗通り等実用上問題のない組み合わせ数に削減しても解を得ることが可能である。このような理由から、ブルート・フォース・サーチ法は、塗料性状を計算する本開示においては特に有効に活用できる。
また、塗料組成物の製造においては、必ずしも色彩、光沢、粘度が最も目標に近ければ近いほどよいとは限らない。例えば、目標との色差の規格が±0.1以内の場合に、最も目的の色彩に近いと予測した組み合わせが、5つの材料を用いて目標との色差が0.01であり、2番目に目的の色彩に近いと予測した組み合わせが、2つの材料を用いて目標との色差が0.02であった場合、目標との色差が0.01劣るものの、添加する材料の数が少ない2番目に近い組み合わせの方が、規格を満足し、且つ最も生産性が高いと判断できる。その他、高価格の材料や塗膜性能に悪影響を及ぼすおそれのある材料の使用を極力避ける等、様々な要因から「適した」を選定すべきである。このような係数も、式の中に組み込み、計算させることも理論上は可能であるが、色彩、生産性、価格、塗膜性能等を1つの式で扱う場合、それらの係数を適切に設定するのは困難であり、また、後に要因を追加する場合のメンテナンスも複雑になる。また、式が複雑になると解を算出できない場合が生じるため、塗料分野のような多数の材料を使用しつつ、生産性その他の要因の総合的「最適」を数理最適化だけで対応するのは困難であった。これに対し、ブルート・フォース・サーチ法はすべての解を算出してから、適した組み合わせを選択するため、「色彩、光沢、粘度の規格範囲、且つ添加材量数の最も少ないものを選択する」等、解を算出してから利用者の要求に合わせてプログラムを変更することが容易で、且つ解が算出できないということがないことも利点である。
一方で、膨大な数の計算をさせるため時間はかかるが、数値生成範囲を限定したり、予めあり得る範囲で、且つ用いる可能性のある変動量応答曲線で1~100億通り計算しておき、その中から選択だけさせたりする等、市販のパーソナルコンピュータでも10秒以内で算出でき、作業性に与える影響を極力少なくすることが可能である。
また、ブルート・フォース・サーチ法は、どれだけ複雑な条件と(凸関数以外の)関数であっても必ず最適解を算出することができる。
In the brute force search method, when searching for only one solution, if there are many types and numbers of parameters, the number of candidates increases explosively. Even when applied to the paint field, if there is only one solution, there is only one parameter.For example, even if the amount of colorant to be added is 0 to 10% by mass, the amount to be added is set in 0.1% increments. Then, if there are 2 types of colorants, there are 100 x 100 = 10,000 combinations, and even if the material is divided into 100 parts and the coating conditions are divided into 10 parts, the total number of combinations is 10 to the 20th power for a total of 10 parameters, which is an astronomical number of combinations. It ends up. However, in the case of the paint field, 1) there is a range of standards (there is a range of solutions), and 2) there are multiple combinations that give the same solution (for example, when adjusting a paint composition to black, only a black colorant is required). (or if a red colorant, blue colorant, and yellow colorant are mixed, it is possible to adjust the color to black with either of them), 3) The amount that can be added is limited depending on the coating performance. Since there is also a restriction that the amount of addition must be within the limited range, it is actually easy to limit the range to 20 divisions in the range of 0 to 2%. Because of these unique reasons, you can use random combinations (the number of divisions for one parameter is the same, or the combinations are random) without calculating all combinations, such as 10 to the 6th power, which do not cause any practical problems. It is possible to obtain a solution even if the number of combinations is reduced. For these reasons, the brute force search method can be particularly effectively utilized in the present disclosure for calculating paint properties.
Furthermore, in producing a coating composition, it is not necessarily the case that the closer the color, gloss, or viscosity is to the target, the better. For example, when the standard for color difference from the target is within ±0.1, the combination predicted to be closest to the target color is one using five materials with a color difference of 0.01 from the target, and the second If a combination predicted to be close to the target color uses two materials and has a color difference of 0.02 from the target, then the second combination, which is 0.01 inferior to the target but has a smaller number of added materials, is selected. It can be determined that the combination closest to , satisfies the standards and has the highest productivity. In addition, "suitable" should be selected based on various factors, such as avoiding as much as possible the use of expensive materials or materials that may adversely affect coating performance. It is theoretically possible to incorporate such coefficients into the formula and have them calculated, but when handling color, productivity, price, coating film performance, etc. in one formula, it is necessary to set these coefficients appropriately. This also complicates maintenance when adding factors later. In addition, if the formula becomes complex, it may not be possible to calculate the solution, so it is difficult to achieve the overall "optimum" of productivity and other factors using only mathematical optimization when using a large number of materials, such as in the paint field. It was difficult. On the other hand, the brute force search method calculates all solutions and then selects the appropriate combination. '' etc., it is easy to change the program to suit the user's request after calculating the solution, and it is also advantageous that there is no possibility that the solution cannot be calculated.
On the other hand, although it takes time to perform a huge number of calculations, it is possible to limit the numerical generation range and calculate in
Furthermore, the brute force search method can always calculate the optimal solution no matter how complex the conditions and functions (other than convex functions) are.
数理最適化法は、最適化問題として解を求める手法であるため、高い精度が要求される塗料性状の調整に適したものである。また、しらみつぶしに探索するよりも効率的に短時間で計算が可能であり、且つ数式上最適な組み合わせを1つ得ることができる。例えば凸関数の凸最適化を用いることによって簡易に計算を行うことができる。また、特に二次計画法を用いることによれば、凸最適化よりも簡易に迅速に計算を行うことができる。 Since the mathematical optimization method is a method for finding a solution as an optimization problem, it is suitable for adjusting paint properties which requires high accuracy. Furthermore, calculations can be made more efficiently and in a shorter time than searching exhaustively, and one mathematically optimal combination can be obtained. For example, calculation can be easily performed by using convex optimization of a convex function. In addition, especially by using quadratic programming, calculations can be performed more easily and quickly than convex optimization.
ここで、調整前塗料組成物は、(A1)1種類以上の着色剤、(A2)1種類以上の光沢調整剤、(A3)1種類以上の粘度調整剤の(A1)~(A3)のうちの2つ以上を含むことが好ましい。前記のとおり、着色剤、光沢調整剤、及び粘度調整剤のそれぞれは、色彩、光沢、及び粘度のいずれにも影響を及ぼし得る。そこで、例えば、着色剤の添加割合を1つのみのパラメータとして変動させる際にも、光沢調整剤や粘度調整剤が調整前塗料組成物に含まれていることにより、これらの影響を考慮した変動量応答曲線を得ることができ、後の計算工程において、より一層精度の高い計算結果を得ることができる。 Here, the pre-adjustment coating composition comprises (A1) to (A3) of (A1) one or more colorants, (A2) one or more gloss modifiers, and (A3) one or more viscosity modifiers. It is preferable to include two or more of them. As mentioned above, each of the colorants, gloss modifiers, and viscosity modifiers can affect both color, gloss, and viscosity. Therefore, for example, even when changing the addition ratio of a colorant as only one parameter, since gloss modifiers and viscosity modifiers are included in the paint composition before adjustment, changes can be made that take these effects into account. A dose-response curve can be obtained, and calculation results with even higher accuracy can be obtained in the subsequent calculation process.
<自動調整システム>
図4は、本発明の一実施形態にかかる自動調整システムのブロック図である。本システムは、所定の製造条件下で塗料組成物を調整する際の、目標の塗料性状を得るのに適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を、コンピュータの計算部による計算で求める、塗料組成物の自動調整システムである。
<Automatic adjustment system>
FIG. 4 is a block diagram of an automatic adjustment system according to an embodiment of the present invention. This system deals with the amount of variation and/or the amount of change in the addition ratio of paint property adjusting materials to the paint composition before adjustment that is suitable for obtaining target paint properties when adjusting a paint composition under predetermined manufacturing conditions. This is an automatic adjustment system for coating compositions in which the amount of variation in manufacturing conditions is calculated by a computer calculation section.
塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含む。これらの詳細は、自動調整方法の実施形態と同様であるため、再度の説明を省略する。 The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint properties include a target color, a target gloss , and at least one of a target viscosity. These details are the same as those in the embodiment of the automatic adjustment method, and therefore will not be explained again.
図4に示すように、本システム10は、コンピュータ11を備える。コンピュータ11は、取得部12と計算部13とを備える。
As shown in FIG. 4, the
取得部12は、1種類以上の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含有する変動前塗料組成物に基づいて、1種類以上の着色剤の添加割合、1種類以上の光沢調整剤の添加割合、1種類以上の粘度調整剤の添加割合、及び各製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の塗料性状の情報を予め得ておくことを各パラメータについて行い、各パラメータの変動量と塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得するように構成されている。この機能の詳細は、自動調整方法の実施形態(変動量応答曲線データ取得工程)と同様であるため、再度の説明を省略する。前記のように、取得部12は、例えばコンピュータの計算部(プロセッサ)としても良く(この場合、後述の計算部13にこのような機能を持たせても良いし、計算部13とは別の計算部としても良い)、あるいは、例えば前記のような変動量応答曲線データを受信可能な通信部としても良く、あるいは、メモリに記録された前記のような変動量応答曲線データを読み取る機能を有する読み取り部としても良い。
The
計算部13は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含む目標データと、得られた変動量応答曲線データとを用いて、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するように構成されている。計算部は、プロセッサ等とすることができる。なお、計算について、その詳細は、自動調整方法の実施形態(計算工程)と同様であるため、再度の説明を省略する。計算部は、適した調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法又は数理最適化法を用いて計算する。これらの手法についても、その詳細は、自動調整方法の実施形態(計算工程)と同様であるため、再度の説明を省略する。
The
以下の実施例により、本発明を更に具体的に説明するが、本発明はこれらに限定されない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited thereto.
まず、実施例1~3及び比較例1~2で用いた着色剤の調製方法について説明する。
<白色着色剤の調製例>
樹脂としてアクリル樹脂 20質量部、有機溶剤としてイソホロン 35質量部及び白色顔料として酸化チタン 46質量部を混合し、サンドミル(分散媒体:ガラスビーズ)を用いて、顔料粗粒の最大粒子径が10μm以下になるまで分散し、白色着色剤を調製した。
<その他の着色剤の調製例>
各材料種及び量を以下の表1のとおりに変更する以外は、前記白色着色剤の調製例と同様の方法で、黒色着色剤1、黒色着色剤2、黄色着色剤及び赤色着色剤を調製した。それぞれの着色剤の配合を表1に示す。
First, a method for preparing the colorants used in Examples 1 to 3 and Comparative Examples 1 to 2 will be explained.
<Example of preparation of white colorant>
20 parts by mass of acrylic resin as a resin, 35 parts by mass of isophorone as an organic solvent, and 46 parts by mass of titanium oxide as a white pigment were mixed, and using a sand mill (dispersion medium: glass beads), the maximum particle size of coarse pigment particles was 10 μm or less. A white coloring agent was prepared.
<Examples of preparation of other colorants>
<光沢調整剤>
光沢調整剤は、つや消し剤として用いる市販品のシリカ(二酸化ケイ素)を用いた。
<粘度調整剤>
粘度調整剤は、溶剤として用いるイソホロンを用いた。
<Gloss adjuster>
As the gloss modifier, commercially available silica (silicon dioxide) used as a matting agent was used.
<Viscosity modifier>
Isophorone, which is used as a solvent, was used as the viscosity modifier.
<計算用塗料組成物Wの調製例>
アクリル樹脂 5質量部、フッ素樹脂 25質量部、イソホロン 35質量部及びシクロヘキサノン 35質量部を加えて、ディスパーを用いて樹脂を均一に溶解した後、更に前記白色着色剤 100質量部を加えて、ディスパーを用いて均一に混合し、計算用塗料組成物W(固形分濃度:48質量%)を調整した。
<その他の各計算用塗料組成物の調製例>
各材料種及び量を以下の表2のとおりに変更する以外は、前記計算用塗料組成物Wの調製例と同様の方法で調製し、計算用塗料組成物K1、K2、Y及びRを得た。それぞれの計算用塗料組成物の配合を表2に示す。
<Example of preparation of calculation coating composition W>
After adding 5 parts by mass of acrylic resin, 25 parts by mass of fluororesin, 35 parts by mass of isophorone, and 35 parts by mass of cyclohexanone and uniformly dissolving the resin using a disper, 100 parts by mass of the white colorant was added and were mixed uniformly to prepare a calculation coating composition W (solid content concentration: 48% by mass).
<Preparation examples of other calculation paint compositions>
The calculation coating compositions K1, K2, Y, and R were prepared in the same manner as in the preparation example of the calculation coating composition W except that the types and amounts of each material were changed as shown in Table 2 below. Ta. Table 2 shows the formulation of each calculation coating composition.
<調整前塗料組成物1の調製例>
アクリル樹脂 5質量部、フッ素樹脂 25質量部、イソホロン 35質量部及びシクロヘキサノン 35質量部を加えて、ディスパーを用いて樹脂を均一に溶解した後、白色着色剤 25質量部、黒色着色剤1 2質量部、黄色着色剤 69質量部、赤色着色剤 4質量部及び光沢調整剤1 2質量部を加えて、ディスパーを用いて均一に混合し、調整前塗料組成物1(固形分濃度:47質量%)を調製した。
<Preparation example of
After adding 5 parts by mass of acrylic resin, 25 parts by mass of fluororesin, 35 parts by mass of isophorone, and 35 parts by mass of cyclohexanone, and uniformly dissolving the resin using a disper, 25 parts by mass of white colorant, and 12 parts by mass of black colorant. 1, 69 parts by mass of yellow colorant, 4 parts by mass of red colorant, and 2 parts by mass of
<調整前塗料組成物2~4の調製例>
各材料種及び量を以下の表3のとおりに変更する以外は、前記調整前塗料組成物1の調製例と同様に調製し、調整前塗料組成物2~4を調製した。それぞれの調整前塗料組成物の配合を表3に示す。
<Preparation examples of
塗料組成物調製に使用した材料の詳細は以下のとおりである。
・アクリル樹脂:パラロイドB44(Rohm & Haas社製)、固形分濃度:100質量%
・フッ素樹脂:KYNAR500(ARKEMA社製)、固形分濃度:100質量%
・白色顔料:TI-PURE R-706(酸化チタン、デュポン社製)
・黒色顔料1:三菱カーボンブラック MA-100(カーボンブラック、三菱化学社製)
・黒色顔料2:SUNBLACK X15(カーボンブラック、白石カルシウム社製)
・黄色顔料:TAROX 合成酸化鉄 LL-XLO(黄色酸化鉄、チタン工業社製)
・赤色顔料:TODA COLOR 140ED(酸化鉄、戸田工業社製)
・光沢調整剤1:GASIL HP395(合成シリカ、INEOS SILICAS社製)
・光沢調整剤2:サイリシア435(二酸化ケイ素、富士シリシア化学社製)
・有機溶剤:イソホロン(ARKEMA社製)
・有機溶剤:シクロヘキサノン(宇部興産社製)
Details of the materials used to prepare the coating composition are as follows.
・Acrylic resin: Paraloid B44 (manufactured by Rohm & Haas), solid content concentration: 100% by mass
・Fluororesin: KYNAR500 (manufactured by ARKEMA), solid content concentration: 100% by mass
・White pigment: TI-PURE R-706 (titanium oxide, manufactured by DuPont)
・Black pigment 1: Mitsubishi Carbon Black MA-100 (carbon black, manufactured by Mitsubishi Chemical Corporation)
・Black pigment 2: SUNBLACK X15 (carbon black, manufactured by Shiraishi Calcium Co., Ltd.)
・Yellow pigment: TAROX synthetic iron oxide LL-XLO (yellow iron oxide, manufactured by Titan Kogyo Co., Ltd.)
・Red pigment: TODA COLOR 140ED (iron oxide, manufactured by Toda Kogyo Co., Ltd.)
・Gloss adjuster 1: GASIL HP395 (synthetic silica, manufactured by INEOS SILICAS)
・Gloss adjuster 2: Silicia 435 (silicon dioxide, manufactured by Fuji Silicia Chemical Co., Ltd.)
・Organic solvent: Isophorone (manufactured by ARKEMA)
・Organic solvent: Cyclohexanone (manufactured by Ube Industries)
<調整前塗料組成物の塗膜の調製方法>
素材(亜鉛-アルミニウム合金めっき鋼板:1,800×300×0.35mm)表面に、下塗り塗料として、ファインタフGプライマー(エポキシ樹脂系プライマー:日本ペイント・インダストリアルコーティングス社製)を、ロールコーター塗装(基準膜厚:5μm)した後、素材到達最高温度が210℃となる条件で60秒間焼付けを行い、下塗り塗膜を形成した。
次に、前記下塗り塗膜上に、前記調整前塗料組成物1を、ロールコーター塗装(基準膜厚:15μm)した後、素材最高到達温度が250℃となる条件で60秒間焼付けた後、ただちに冷却させることで、塗料組成物の塗膜を得た。
<Method for preparing coating film of pre-conditioned coating composition>
The surface of the material (zinc-aluminum alloy plated steel plate: 1,800 x 300 x 0.35 mm) is coated with Fine Tough G primer (epoxy resin primer: manufactured by Nippon Paint Industrial Coatings) as an undercoat using a roll coater. (Reference film thickness: 5 μm) After that, baking was performed for 60 seconds under conditions such that the maximum temperature reached by the material was 210° C. to form an undercoat film.
Next, the
次に、各実施例及び比較例の予測について説明する。まず初めに変動量応答曲線の作成について説明する。 Next, predictions for each example and comparative example will be explained. First, the creation of a variation response curve will be explained.
<変動量応答曲線作成例1>
前記変動前塗料組成物1の塗膜を作成し、変動前塗料性状の色彩、光沢、粘度データを取得した。次に、白色着色剤を0.03%添加して同様に塗膜を作成し、変動後塗料性状1の色彩L*値のデータを取得した。同様に、白色着色剤をそれぞれ0.1%、0.3%、1%、3%、10%添加して、変動後塗料性状2~7の色彩L*値のデータを得た。これら、変動前塗料性状と、変動後塗料性状1~7から最小二乗法等による近似曲線として変動量応答曲線WL(x)-1を得た。
前記と同様の方法で、黒色着色剤1、黄色着色剤、赤色着色剤、光沢調整剤1、粘度調整剤の他の塗料性状データを取得して、それぞれ変動量応答曲線を得た。結果を表4に示す。
また、前記と同様の方法で、製造条件の一であるロールコーターのニップ圧を、それぞれ-100Kgf、-50Kgf、+50Kgf、+100Kgfに変動させ、同様に塗膜を作成し、変動量応答曲線PL(x)-1を得た。
更に、前記と同様に製造条件の一である素材最高到達温度を、それぞれ10℃、20℃、-10℃、-20℃に変動させて変動量応答曲線D(x)-1を得た。
<Example 1 of creating a variation response curve>
A coating film of the
In the same manner as above, other paint property data of
In addition, in the same manner as above, the nip pressure of the roll coater, which is one of the manufacturing conditions, was varied to -100 Kgf, -50 Kgf, +50 Kgf, and +100 Kgf, respectively, coating films were created in the same way, and the variation response curve PL ( x)-1 was obtained.
Furthermore, similarly to the above, the maximum temperature of the material, which is one of the manufacturing conditions, was varied to 10°C, 20°C, -10°C, and -20°C, respectively, to obtain a variation response curve D(x)-1.
前記調整前塗料組成物2~4(調整前塗料性状;L*値:29~90、a*値:-1~13、b*値:2~36、光沢:7~29、粘度:230~260秒)についても、前記と同様の方法で、それぞれ変動量応答曲線を得た。結果を表4に示す。
<変動量応答曲線作成例2>
<吸収係数及び散乱計数の取得例1>
計算用塗料組成物W、計算用塗料組成物K1及び計算用塗料組成物Wと計算用塗料組成物K1を80対20で混合した塗料組成物について、前記3種類の塗料組成物をそれぞれ塗装し、それぞれの分光反射率を測定し、黒色顔料1の吸収係数K及び散乱係数Sを算出した。
<Example 2 of creating a variation response curve>
<Example 1 of acquiring absorption coefficient and scattering coefficient>
For calculation coating composition W, calculation coating composition K1, and coating composition in which calculation coating composition W and calculation coating composition K1 were mixed at a ratio of 80:20, the three types of coating compositions described above were applied respectively. , the spectral reflectance of each was measured, and the absorption coefficient K and scattering coefficient S of
<吸収係数及び散乱計数の取得例2>
計算用塗料組成物K1を、計算用塗料組成物K2、Y、Rに変更した以外は、吸収係数及び散乱計数の取得例1と同様にして、黒色顔料2、黄色顔料、赤色顔料の吸収係数K及び散乱係数Sを算出した。
<Example 2 of acquiring absorption coefficient and scattering coefficient>
Absorption coefficients of
これらの吸収係数と散乱計数、顔料、塗膜の屈折率とクベルカ・ムンクの理論、ダンカンの理論、サンダーソン補正式を用いて変動前塗料組成物1に、白色着色剤を0.03%添加した際の塗膜の変動後塗料性状1cのデータを算出した。同様に、白色着色剤をそれぞれ0.1%、0.3%、1%、3%、10%添加して、変動後塗料性状2c~7cを得た。これら変動前塗料性状と、変動後塗料性状1~7cから最小二乗法等による近似曲線として変動量応答曲線WL(x)-1cを得た。同様にして、各塗料性状、各パラメータ、各調整前塗料組成物について、変動量応答曲線を作成した。結果を表5に示す。
Using these absorption coefficients, scattering coefficients, pigments, refractive indexes of paint films, Kubelka-Munk theory, Duncan's theory, and Sanderson correction formula, 0.03% of white colorant was added to paint
<塗料調整の合格判定基準>
下記3点の条件すべてを満たすことを合格判定の基準とした。なお、目標値と実測値のL値、a値、b値の差をそれぞれΔL*、Δa*、Δb*とした。
1)ΔE=√(ΔL*2+Δa*2+Δb*2)の値が0.05以下であり、且つΔL*、Δa*、Δb*のそれぞれが0.05以下であること。
2)目標値と実測値の光沢の差が、光沢値が10未満の場合、標準板との差異が0.3以下であり、10以上20未満の場合は0.5以下、20以上の場合は2.0以下であること。
3)目標値と実測値の粘度の差が5秒以下であること。
<Paint adjustment acceptance criteria>
The criteria for passing the test was to meet all three conditions below. Note that the differences between the L value, a value, and b value between the target value and the actual measurement value were defined as ΔL * , Δa * , and Δb *, respectively.
1) The value of ΔE=√(ΔL *2 +Δa *2 +Δb *2 ) is 0.05 or less, and each of ΔL * , Δa * , and Δb * is 0.05 or less.
2) If the difference in gloss between the target value and the measured value is less than 10, the difference from the standard plate is 0.3 or less, if it is 10 or more and less than 20, it is 0.5 or less, and if it is 20 or more. must be 2.0 or less.
3) The difference in viscosity between the target value and the actual value is 5 seconds or less.
<調整回数の合格判定基準>
4種類の塗料について、平均調整回数が3回未満を合格とし、3回以上を不合格とした。
<Criteria for passing the number of adjustments>
Regarding the four types of paints, those whose average number of adjustments was less than three times were considered to be passed, and those whose average number of adjustments were three or more times were judged to be failed.
<実施例1>
<塗料調整>
・補正配合予測のデータ入力
塗料性状調整用の原料の各着色剤と光沢調整剤の補正配合変動範囲の下限、上限値を調整前塗料全量に対して0~2%の範囲の任意の量、粘度調整剤を同じく0~10%の範囲に、ニップ圧を-100Kgf~+100Kgf、高到達温度を-20℃~20℃の範囲に設定し、その設定した補正配合の変動範囲に基づいて、塗料性状調整用の原料の補正配合組成と塗装条件の組み合わせ候補(各着色剤、光沢調整剤、粘度調整剤それぞれの添加量と塗装条件の組み合わせ)1,000万通りの候補データを作成した。
<Example 1>
<Paint adjustment>
・Data input for corrected blend prediction
The lower and upper limits of the corrected blending variation range of each colorant and gloss modifier, which are raw materials for adjusting paint properties, can be set to an arbitrary amount within the range of 0 to 2% based on the total amount of the paint before adjustment, and the viscosity modifier can also be set to 0 to 2%. The nip pressure is set in the range of 10%, the nip pressure is set in the range of -100Kgf to +100Kgf, and the high temperature is set in the range of -20℃ to 20℃, and the raw material for adjusting the paint properties is corrected based on the set variation range of the correction mixture. We created candidate data for 10 million possible combinations of formulation composition and coating conditions (combinations of addition amounts of each colorant, gloss modifier, and viscosity modifier and coating conditions).
<変動量応答曲線とブルート・フォース・サーチによる配合予測>
表4に示す、変動量応答曲線WL(x)-1~Tg(x)-1に添加量1,000万通りの候補データを代入し、調整後塗料組成物1の塗料性状の予測値を得た。具体的には、1,000万通りの1つめの候補配合の白色着色剤の添加量をWL(x)-1に代入したときのL値の変動量と、黒色着色剤1、黄色着色剤、赤色着色剤、光沢調整剤1、粘度調整剤、ニップ圧、最高到達温度を、それぞれKL(x)-1、YL(x)-1、RL(x)-1、ML(x)-1、SL(x)-1、PL(x)-1、TL(x)-1に代入したときのL値の変動量すべてを合算されたものが、1つめの候補配合のL*値の変動量となる。同様にして、各候補のa*、b*値、光沢、粘度の変動量を得た。これを1,000万回繰り返した。
調整後塗料組成物1の目標とするL*、a*、b*値、光沢、粘度の変動量と予測されたE値の差が0.05以内、光沢の差が0.3以内、粘度の変動量の差が5秒以内の補正配合組成の候補データの中から、最も塗料性状調整用材料添加の総量が小さいものを1つ抽出し、塗料性状調整用の原料の補正添加量及び、塗装条件の補正変動量の予測値を得た。
<Blend prediction using variation response curve and brute force search>
By substituting candidate data for 10 million addition amounts into the variation response curve WL(x)-1 to Tg(x)-1 shown in Table 4, the predicted value of the paint properties of the adjusted
The difference between the target L * , a * , b * values, gloss, and viscosity variation of adjusted
<調整後塗料組成物の塗料性状の取得>
調整前塗料組成物1に、予測された塗料性状調整用の原料の補正配合を加え、調整後塗料組成物1を調整し塗料性状を得た。
<Obtaining paint properties of the adjusted paint composition>
A corrected blend of the predicted raw materials for adjusting the paint properties was added to the
<調整後塗料組成物の再調整>
調整後塗料組成物1の塗料性状が、塗料性状の目標値の合格判定基準を満たしていなかったため不合格とした。
再調整時の調整前塗料組成物の調整前塗料組成物とその性状は、先の調整で不合格となった調整後塗料組成物と調整後塗料組成物性状とした。
前回と同様に、塗料性状調整用の原料の補正配合組成の1,000万通りの候補データを作成し、変動量応答曲線WL(x)-1、KL(x)-1、YL(x)-1、RL(x)-1、ML(x)-1、SL(x)-1、PL(x)-1、TL(x)-1に、塗料性状調整用の原料及び塗装条件の補正配合組成の1,000万通りの候補データを代入し、調整後塗料組成物の塗料性状の予測値を得た。(調整回数は2回)
調整前塗料組成物1と同様の方法で、調整前塗料組成物に、予測された塗料性状調整用材料の補正配合を加え、調整後塗料組成物を調整し塗料性状を得た。この再調整操作を繰り返し、調整後塗料組成物の塗料性状がその目標値の合格判定基準を満たすことを確認し、塗料の調整を終了した。(調整回数2回)
・繰り返し操作1
同様の操作を原色ロットの異なる調整前塗料組成物2種類について実施した。
・繰り返し操作2
同様の操作を調整製前塗料組成物2、3、4について実施し、調整前塗料組成物1も含めた、4種類の塗料、それぞれ2種類の原色ロットについて、合計8種類の塗料組成物の調整回数の平均は1.5回で合格であった。
<Readjustment of paint composition after adjustment>
The paint properties of the adjusted
The pre-adjusted coating composition and its properties of the pre-adjusted coating composition at the time of readjustment were taken as the adjusted coating composition and the properties of the adjusted coating composition that failed in the previous adjustment.
Similar to last time, we created 10 million candidate data for corrected compositions of raw materials for adjusting paint properties, and created variation response curves WL(x)-1, KL(x)-1, YL(x). -1, RL(x)-1, ML(x)-1, SL(x)-1, PL(x)-1, TL(x)-1, correction of raw materials and coating conditions for paint property adjustment By substituting 10 million candidate data for formulation compositions, predicted values of paint properties of the adjusted paint composition were obtained. (The number of adjustments is 2 times)
In the same manner as in
・
Similar operations were carried out for two types of pre-adjustment coating compositions of different primary color lots.
・
Similar operations were carried out for
<実施例2>
・変動量応答曲線による性状予測
表4に示す変動量応答曲線WL(x)-1~TL(x)-1を、それぞれ表5に示す変動量応答曲線WL(x)-1c~TL(x)-1cに変更する以外、実施例1と同様に実施した。8種類の塗料の調整回数の平均は2.8回で合格であった。
<Example 2>
・Property prediction using variation response curve
Except for changing the variation response curves WL(x)-1 to TL(x)-1 shown in Table 4 to the variation response curves WL(x)-1c to TL(x)-1c shown in Table 5, respectively. It was carried out in the same manner as in Example 1. The average number of adjustments for the eight types of paint was 2.8, which passed the test.
<実施例3>
ブルート・フォース・サーチ法を数理最適化法に変更し、E値、光沢、粘度の差が最も小さいものを補正添加量、塗装条件の補正変動量の予測値として得る以外、実施例1と同様に実施した。8種類の塗料の調整回数の平均は2.3回で合格であった。
<Example 3>
Same as Example 1, except that the brute force search method was changed to a mathematical optimization method, and the one with the smallest difference in E value, gloss, and viscosity was obtained as the predicted value of the corrected addition amount and the corrected variation amount of coating conditions. It was carried out in The average number of adjustments for the eight types of paints was 2.3, which passed the test.
<比較例1>
着色剤を所定の配合で混合した際の基本となる分光反射率(プライマリデータ)を用いて、顔料の吸収係数と散乱計数、顔料、塗膜の屈折率とクベルカ・ムンクの理論、ダンカンの理論、サンダーソン補正式を用いて、着色剤の任意の混合比の色彩を予測計算し、着色剤の混合比が既知の調色前塗料組成物の色彩の絶対値と、目標の色彩の絶対値から理論的に算出した目標となる塗料組成物の着色剤の混合比との差異を埋めるように、調色前塗料組成物に添加する着色剤の補正添加量の予測値を算出し調整したが、5回の調整でも合格基準に達しなった。
また、塗料性状として光沢、粘度、パラメータとして、光沢調整剤、粘度調整剤は、そもそも理論式が確立されていないため、算出できなかった。
<Comparative example 1>
Using the basic spectral reflectance (primary data) when colorants are mixed in a predetermined composition, we can calculate absorption coefficients and scattering coefficients of pigments, refractive indices of pigments and coatings, Kubelka-Munk theory, and Duncan theory. , the Sanderson correction formula is used to predict and calculate the color of an arbitrary mixing ratio of colorants, and calculate the absolute value of the color of a pre-mixing paint composition with a known mixing ratio of colorants and the absolute value of the target color. The predicted value of the corrected amount of colorant to be added to the paint composition before toning was calculated and adjusted to compensate for the difference between the target colorant mixing ratio of the paint composition and the theoretically calculated value. , even after 5 adjustments, it did not reach the passing standard.
Furthermore, gloss and viscosity as paint properties, and gloss modifier and viscosity modifier as parameters, could not be calculated because theoretical formulas had not been established in the first place.
<比較例2>
27色の塗料種(調整前塗料性状:L*値24~94、a*値-3~10、b*値-2~37、光沢3~55、粘度130~280秒)の色彩、光沢、粘度の変動を、約6,000回の塗料性状調整用材料と塗装条件と塗料性状の変動の結果からニューラルネットワークを用いて学習し、色彩予測の人工知能を作成し、ブルート・フォース・サーチ法で補正添加量、塗装条件の補正変動量の予測値として得る以外、実施例1と同様に実施した。8種類の塗料の調整回数の平均は5.2回で合格基準に達しなかった。
<Comparative example 2>
Colors , gloss , A neural network was used to learn about viscosity changes based on the results of approximately 6,000 changes in paint property adjustment materials, coating conditions, and paint property changes, and artificial intelligence for color prediction was created using the brute force search method. It was carried out in the same manner as in Example 1, except that the corrected addition amount and the corrected variation amount of coating conditions were obtained as predicted values. The average number of adjustments for the eight types of paint was 5.2, which did not meet the passing standard.
<評価方法>
各実施例及び比較例で求める各塗料性状は、下記の方法で測定した。
1)色彩データの測定
前記塗膜の製造方法で得られた各種塗膜について、分光光度計LabScan XE(HunterLab社製)を用いて色彩(L*、a*、b*値又は、目標とする標準板とのL*、a*、b*値差)を測定した。
2)光沢データの測定
前記塗膜の製造方法で得られた各種塗膜について、光沢計VG7000(日本電色工業社製)を用いて60°光沢度を測定した。
3)粘度データの測定
前記塗料組成物の調製例で得られた各種塗料組成物について、フォードカップNo.4を用いて、25℃で測定したときの秒数を粘度の値とした。
<Evaluation method>
Each coating property determined in each Example and Comparative Example was measured by the following method.
1) Measurement of color data For the various coating films obtained by the above coating film manufacturing method, the color (L * , a * , b * value or target value) was measured using a spectrophotometer LabScan The differences in L * , a * , b * values from the standard plate were measured.
2) Measurement of Gloss Data The 60° glossiness of the various coating films obtained by the above coating film manufacturing method was measured using a gloss meter VG7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.).
3) Measurement of viscosity data Regarding the various coating compositions obtained in the above coating composition preparation examples, Ford Cup No. 4, and the number of seconds measured at 25°C was taken as the value of viscosity.
なお、本開示において、各用語は以下の内容を意味する。
「性状調整可否」とは、前記塗料調整の合格判定基準において、塗料性状である色彩、光沢及び粘度のそれぞれが、その合格判定基準に達するか否か、すなわち各性状を調整可能であるか否かを意味し、調整が可能である場合を「可」、調整ができない場合を「不可」とした。
「調整回数」とは、4種類の塗色の塗料組成物の、それぞれ2種類の原色ロット合計8種類の塗料組成物を用意して、それぞれ調整した際に、前記塗料調整の合格判定基準に達するまでの平均値を示す。ここで調整回数が少ないことは、予測精度が高いことを意味する。
「限界調整色差」とは、目標の色彩に近づけることのできる限界値を意味し、例えば、限界調整色差が0.03とは、目標の色彩との色差が0.03まで自動調色が可能であることを意味する。
「製造量率」とは、目的とする塗料組成物の予定された製造量を1とした場合の調整後の製造量の割合を示す。ここで製造量率が100%を大きく超えないことは、塗料性状予測システムの予測の精度及び補正配合組成の算出方法の精度が高く、且つ多少の誤差を許容しつつも、必要量以上の塗料組成物を製造しない効率的なシステムであることを意味する。
「必要データ数」とは、変動量応答曲線取得や機械学習による人工知能の取得のためにあらかじめ取得する必要となるデータ数を意味する。
「必要塗装回数」とは、必要データ数を確保するため、塗装及び測定をした回数を示す。なお、計算により変動量応答曲線データを作成する場合にも、計算用塗料組成物を塗装して分光反射率を測定する際に塗装及び測定が必要となる。
In addition, in this disclosure, each term means the following content.
"Property adjustment possible" means whether each of the paint properties (color, gloss, and viscosity) reaches the acceptance criteria for the paint adjustment, that is, whether each property can be adjusted. If adjustment is possible, it is ``possible,'' and if adjustment is not possible, it is ``impossible.''
"Number of adjustments" means that when a total of 8 types of paint compositions of 4 types of paint colors are prepared, each with 2 types of primary color lots, and each paint composition is adjusted, the pass criteria for the paint adjustment is met. Shows the average value until reaching the target value. Here, a small number of adjustments means that the prediction accuracy is high.
"Limit adjustment color difference" means the limit value that can bring the color closer to the target color. For example, a limit adjustment color difference of 0.03 means that automatic toning is possible until the color difference from the target color is 0.03. It means that.
The "manufacturing rate" refers to the ratio of the adjusted manufacturing amount when the planned manufacturing amount of the target coating composition is set to 1. Here, the fact that the production rate does not greatly exceed 100% means that the prediction accuracy of the paint property prediction system and the calculation method of the corrected composition are high, and even if some errors are allowed, the amount of paint that exceeds the required amount is high. This means that it is an efficient system that does not produce compositions.
The “necessary amount of data” means the amount of data that needs to be acquired in advance to acquire a variation response curve or to acquire artificial intelligence by machine learning.
The "necessary number of coatings" indicates the number of times coating and measurement are performed in order to secure the required number of data. Note that even when creating variation response curve data by calculation, painting and measurement are required when applying the calculation coating composition and measuring the spectral reflectance.
表6に示したように、実施例1~3によれば、限界調整色差が0.05という非常に高精度な調色が可能であった。また、実施例1~3では、調整回数が3回未満となり、少ない工数での調整が可能であった。更に、実施例1~3では、多くのデータ数を必要とせず、大幅な工数の低減ができた。
一方、比較例1は、理論式算出法を用いた例であるが、限界調整色差が0.3であり、高精度の調色ができなかった。また、光沢及び粘度の理論的な調整方法は塗料組成物については確立されておらず、合格判定基準に達することができなかった。また、比較例2は、機械学習法させた人工知能を用いた例であるが、限界調整色差が0.1と、ある程度の高精度の調色は可能であるが、調整回数は5.2回と多く、且つデータ数が6,000と非常に多く必要となるため、工数が非常に多くなってしまう。
As shown in Table 6, according to Examples 1 to 3, very highly accurate color toning with a limit adjustment color difference of 0.05 was possible. Furthermore, in Examples 1 to 3, the number of adjustments was less than three, making it possible to make adjustments with fewer man-hours. Furthermore, in Examples 1 to 3, a large amount of data was not required, and the number of man-hours could be significantly reduced.
On the other hand, Comparative Example 1 is an example using the theoretical formula calculation method, but the limit adjustment color difference was 0.3, and highly accurate color matching was not possible. In addition, a theoretical method for adjusting gloss and viscosity has not been established for coating compositions, and the acceptance criteria could not be achieved. In addition, Comparative Example 2 is an example using artificial intelligence using machine learning method, and the limit adjustment color difference is 0.1, which allows for a certain degree of highly accurate color matching, but the number of adjustments is 5.2. Since a large number of times and 6,000 pieces of data are required, the number of man-hours becomes extremely large.
10;自動調整システム、
11:コンピュータ、
12:取得部、
13:計算部
10; automatic adjustment system;
11: Computer,
12: Acquisition Department;
13: Calculation part
Claims (14)
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する、変動量応答曲線データ取得工程と、
前記コンピュータの前記計算部により、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算する、計算工程と、を含み、
前記計算工程において、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法を用いて計算することを特徴とする、自動調整方法。 When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the unadjusted paint composition suitable for obtaining the target paint properties and/or the adjustment of suitable manufacturing conditions. An automatic adjustment method for a paint composition, in which the amount of variation is calculated by a calculation unit of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. a fluctuation amount response curve data acquisition step of acquiring fluctuation amount response curve data indicating the
Target data including at least one of the color of the target, the gloss of the target, and the viscosity of the target, and the variation response curve obtained in the variation response curve data acquisition step by the calculation unit of the computer. a calculation step of calculating the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment and/or the amount of variation in suitable manufacturing conditions using the data;
In the calculation step, the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a brute force search method. Features an automatic adjustment method.
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する、変動量応答曲線データ取得工程と、
前記コンピュータの前記計算部により、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算する、計算工程と、を含み、
前記計算工程において、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、数理最適化法を用いて計算することを特徴とする、自動調整方法。 When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the unadjusted paint composition suitable for obtaining the target paint properties and/or the adjustment of suitable manufacturing conditions. An automatic adjustment method for a paint composition, in which the amount of variation is calculated by a calculation unit of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. a fluctuation amount response curve data acquisition step of acquiring fluctuation amount response curve data indicating the
Target data including at least one of the color of the target, the gloss of the target, and the viscosity of the target, and the variation response curve obtained in the variation response curve data acquisition step by the calculation unit of the computer. a calculation step of calculating the amount of variation in the addition ratio of the paint property adjusting material to the paint composition before adjustment and/or the amount of variation in suitable manufacturing conditions using the data;
In the calculation step, the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a mathematical optimization method. Automatic adjustment method.
前記変動量応答曲線データを用いて、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかを変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出し、
算出した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、請求項1又は2に記載の方法。 In the calculation step,
Using the variation response curve data, determine the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifier, the addition ratio of the one or more types of viscosity modifier, and the manufacturing conditions. Calculating the amount of change in at least one of color, gloss, and viscosity when at least one of them is changed,
At least one of the color, the gloss, and the viscosity after a change that has been changed by the calculated amount of change in at least one of the color, the gloss, and the viscosity, the target color, the target gloss, and the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifiers, and the addition of the one or more types of viscosity modifiers such that the difference from at least one of the target viscosity is small. The method according to claim 1 or 2, wherein the amount of variation in at least one of the ratio and the manufacturing conditions is calculated.
前記計算工程では、予め取得した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、請求項1又は2に記載の方法。 Prior to the calculation step, the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifier, and the addition of the one or more types of viscosity modifier using the fluctuation amount response curve data. Obtaining in advance data on the amount of variation in at least one of color, gloss, and viscosity when varying at least one of the ratio and the manufacturing conditions,
In the calculation step, at least one of the color, the gloss, and the viscosity after a change is changed by the amount of change in at least one of the color, the gloss, and the viscosity obtained in advance, and the target color. , an addition ratio of the plurality of types of colorants such that the difference from at least one of the target gloss and the target viscosity is small, an addition ratio of the one or more types of gloss modifiers, and the one or more types of gloss modifiers. The method according to claim 1 or 2, wherein the amount of change in at least one of the addition ratio of the viscosity modifier and the manufacturing conditions is calculated.
前記目標の光沢及び/又は前記目標の粘度のデータと前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、前記光沢調整剤及び/又は前記粘度調整剤の適した添加割合の変動量を計算する、第1の計算サブ工程と、
前記第1の計算サブ工程で得られた前記光沢調整剤及び/又は前記粘度調整剤の最適な添加割合の変動量と、前記変動量応答曲線データとを用いて、前記第1の計算サブ工程で得られた前記適した添加割合の変動量の分の前記光沢調整剤及び/又は前記粘度調整剤を添加することにより生じる、色彩の変動量を計算する、第2の計算サブ工程と、
前記第2の計算サブ工程で得られた前記色彩の変動量と、前記変動量応答曲線データとを用いて、前記着色剤の適した添加割合の変動量を計算する、第3の計算サブ工程と、を含む、請求項1又は2に記載の方法。 The calculation step is
Using the data of the target gloss and/or the target viscosity and the fluctuation amount response curve data obtained in the fluctuation amount response curve data acquisition step, the suitability of the gloss modifier and/or the viscosity modifier is determined. a first calculation sub-step of calculating the amount of variation in the addition ratio;
The first calculation sub-step using the variation amount of the optimal addition ratio of the gloss modifier and/or the viscosity modifier obtained in the first calculation sub-step and the variation response curve data. a second calculation sub-step of calculating the amount of variation in color caused by adding the gloss modifier and/or the viscosity modifier by the amount of variation in the appropriate addition ratio obtained in step 1;
A third calculation sub-step of calculating the amount of change in the appropriate addition ratio of the colorant using the amount of variation in the color obtained in the second calculation sub-step and the variation response curve data. The method according to claim 1 or 2, comprising:
設定された前記数値生成範囲内で生成された前記着色剤の添加割合、前記光沢調整剤の添加割合、前記粘度調整剤の添加割合、及び前記製造条件のうち少なくともいずれかの各変動量を組み合わせてなる、種々の前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は前記製造条件の変動量のデータ群を用意する工程と、を更に含み、
前記計算工程では、
前記変動量応答曲線データを用いて、用意した種々の前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は前記製造条件の変動量のデータ群の数値の分だけ前記調整前塗料組成物に対する塗料性状調整用材料の添加割合及び/又は前記製造条件を変動させた場合の、色彩、光沢、及び粘度の少なくともいずれかの変動量を算出し、
算出した前記色彩、前記光沢、及び前記粘度の少なくともいずれかの変動量の分だけ変動した変動後の前記色彩、前記光沢、及び前記粘度の少なくともいずれかと、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかとの差が小さくなるような、前記複数の種類の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び前記製造条件の少なくともいずれかの変動量を算出する、請求項3に記載の方法。 setting a numerical value generation range for the amount of variation in at least one of the addition ratio of the colorant, the addition ratio of the gloss modifier, the addition ratio of the viscosity modifier, and the manufacturing conditions;
Combining the amount of variation in at least any of the addition ratio of the colorant, the addition ratio of the gloss modifier, the addition ratio of the viscosity modifier, and the manufacturing conditions that are generated within the set numerical value generation range. further comprising the step of preparing a data group of the amount of variation in the addition ratio of the paint property adjusting material to the various pre-adjustment coating compositions and/or the amount of variation in the manufacturing conditions,
In the calculation step,
Using the variation response curve data, the variation amount of the addition ratio of the paint property adjusting material to the prepared various pre-adjustment coating compositions and/or the variation amount of the production conditions is calculated by the numerical value of the data group. Calculating the amount of change in at least one of color, gloss, and viscosity when changing the addition ratio of the paint property adjusting material to the pre-adjustment paint composition and/or the manufacturing conditions,
At least one of the color, the gloss, and the viscosity after a change that has been changed by the calculated amount of change in at least one of the color, the gloss, and the viscosity, the target color, the target gloss, and the addition ratio of the plurality of types of colorants, the addition ratio of the one or more types of gloss modifiers, and the addition of the one or more types of viscosity modifiers such that the difference from at least one of the target viscosity is small. 4. The method according to claim 3, wherein the amount of variation in at least one of the ratio and the manufacturing conditions is calculated.
(a)前記塗料の粘度及び加熱残分のいずれか1つ以上、
(b)被塗物に塗料組成物を塗布する工程における、ロール周速、スプレー吐出量、電着塗装電圧、塗着圧及び塗料の流量のいずれか1つ以上、
(c)焼付け工程における被塗物の最高到達温度、焼付け温度及び焼付け時間のいずれか1つ以上、並びに
(d)製造ラインの環境温度及び湿度、塗料の温度のいずれか1つ以上、
の(a)~(d)うちのいずれか1つ以上を含む、請求項1又は2に記載の方法。 The manufacturing conditions are:
(a) one or more of the viscosity and heating residue of the paint;
(b) any one or more of roll circumferential speed, spray discharge amount, electrodeposition coating voltage, coating pressure, and paint flow rate in the process of applying the coating composition to the object to be coated;
(c) any one or more of the maximum temperature of the object to be coated, baking temperature, and baking time in the baking process, and (d) any one or more of the environmental temperature and humidity of the production line, and the temperature of the paint;
The method according to claim 1 or 2, comprising any one or more of (a) to (d).
前記目標の塗料性状は、前記目標の色彩を含み、
前記調整前塗料組成物は、前記1種類以上の前記着色剤を含み、
前記変動量応答曲線データ取得工程は、1種類の着色剤の添加割合を種々変化させて、前記色彩を予め得ておき、前記1種類の着色剤の添加割合の変動量と前記色彩の変動量との関係を示す前記変動量応答曲線データを取得することを含み、
前記計算工程は、前記目標の色彩と、前記変動量応答曲線データ取得工程で得られた前記変動量応答曲線データとを用いて、適した前記着色剤の添加割合の変動量を計算することを含む、請求項1又は2に記載の方法。 The paint property adjusting material includes the plurality of types of colorants,
The target paint properties include the target color,
The pre-adjustment coating composition includes the one or more coloring agents,
In the fluctuation amount response curve data acquisition step, the color is obtained in advance by variously changing the addition ratio of one type of colorant, and the fluctuation amount of the addition ratio of the one type of colorant and the fluctuation amount of the color are obtained. and obtaining the fluctuation amount response curve data indicating the relationship between
The calculation step includes calculating an appropriate amount of variation in the addition ratio of the colorant using the target color and the variation response curve data obtained in the variation response curve data acquisition step. 3. The method according to claim 1 or 2, comprising:
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する取得部をさらに備え、
前記計算部は、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するように構成され、
前記計算部は、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、ブルート・フォース・サーチ法を用いて計算することを特徴とする、自動調整システム。 When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the unadjusted paint composition suitable for obtaining the target paint properties and/or the adjustment of suitable manufacturing conditions. An automatic adjustment system for a paint composition in which the amount of variation is calculated by a calculation unit of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. further comprising an acquisition unit that acquires fluctuation amount response curve data indicating the
The calculation unit calculates the appropriate pre-adjustment paint using target data including at least one of the target color, the target gloss, and the target viscosity, and the obtained variation response curve data. configured to calculate the amount of variation in the addition ratio of the paint property adjusting material to the composition and/or the amount of variation in suitable manufacturing conditions,
The calculation unit calculates the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment coating composition and/or the amount of variation in suitable manufacturing conditions using a brute force search method. Features an automatic adjustment system.
前記塗料性状調整用材料は、複数の種類の着色剤、1種類以上の光沢調整剤、及び1種類以上の粘度調整剤の少なくともいずれかを含み、前記目標の塗料性状は、目標の色彩、目標の光沢、及び目標の粘度の少なくともいずれかを含み、
変動前塗料組成物に基づいて、前記1種類以上の着色剤の添加割合、前記1種類以上の光沢調整剤の添加割合、前記1種類以上の粘度調整剤の添加割合、及び各前記製造条件のうちのいずれか1つのパラメータのみを種々変化させた際の前記塗料性状の情報を予め得ておくことを各パラメータについて行い、各前記パラメータの変動量と前記塗料性状の情報の変動量との関係を示す変動量応答曲線データを取得する取得部をさらに備え、
前記計算部は、前記目標の色彩、前記目標の光沢、及び前記目標の粘度の少なくともいずれかを含む目標データと、得られた前記変動量応答曲線データとを用いて、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量を計算するように構成され、
前記計算部は、適した前記調整前塗料組成物に対する塗料性状調整用材料の添加割合の変動量及び/又は適した製造条件の変動量は、数理最適化法を用いて計算することを特徴とする。 When adjusting a paint composition under predetermined manufacturing conditions, the amount of variation in the addition ratio of the paint property adjusting material to the unadjusted paint composition suitable for obtaining the target paint properties and/or the adjustment of suitable manufacturing conditions. An automatic adjustment system for a paint composition in which the amount of variation is calculated by a calculation unit of a computer,
The paint property adjusting material includes at least one of a plurality of types of colorants, one or more types of gloss modifiers, and one or more types of viscosity modifiers, and the target paint property is determined by the target color, the target color, and the target paint property. and a target viscosity,
Based on the coating composition before variation, the addition ratio of the one or more colorants, the addition ratio of the one or more gloss modifiers, the addition ratio of the one or more viscosity modifiers, and each of the manufacturing conditions. Information on the paint properties when only one of the parameters is varied in various ways is obtained for each parameter in advance, and the relationship between the amount of variation in each parameter and the amount of variation in the information on the paint properties is determined. further comprising an acquisition unit that acquires fluctuation amount response curve data indicating the
The calculation unit calculates the appropriate pre-adjustment paint using target data including at least one of the target color, the target gloss, and the target viscosity, and the obtained variation response curve data. configured to calculate the amount of variation in the addition ratio of the paint property adjusting material to the composition and/or the amount of variation in suitable manufacturing conditions,
The calculation unit is characterized in that the amount of variation in the addition ratio of the paint property adjusting material to the suitable pre-adjustment paint composition and/or the amount of variation in suitable manufacturing conditions is calculated using a mathematical optimization method. do.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022095327A JP7429456B2 (en) | 2022-06-13 | 2022-06-13 | Automatic adjustment method and automatic adjustment system |
PCT/JP2023/017333 WO2023243257A1 (en) | 2022-06-13 | 2023-05-08 | Automatic adjustment method and automatic adjustment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022095327A JP7429456B2 (en) | 2022-06-13 | 2022-06-13 | Automatic adjustment method and automatic adjustment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023181928A true JP2023181928A (en) | 2023-12-25 |
JP7429456B2 JP7429456B2 (en) | 2024-02-08 |
Family
ID=89191009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022095327A Active JP7429456B2 (en) | 2022-06-13 | 2022-06-13 | Automatic adjustment method and automatic adjustment system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7429456B2 (en) |
WO (1) | WO2023243257A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310727A (en) * | 1997-05-09 | 1998-11-24 | Nisshinbo Ind Inc | Obtaining blending ratio of colorant and brightening material in computer color mixing for metallic/pearl-based coating material or mixed amount of brightening material |
JPH10324829A (en) * | 1997-05-22 | 1998-12-08 | Nippon Paint Co Ltd | Color-matching machine for automotive repair paint |
JP2006218426A (en) * | 2005-02-14 | 2006-08-24 | Kansai Paint Co Ltd | Coating method, coating control unit and coating equipment |
JP2007508937A (en) * | 2003-10-24 | 2007-04-12 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Method and use thereof for predicting and applying coating parameters |
JP2008111116A (en) * | 2007-10-12 | 2008-05-15 | Nippon Paint Co Ltd | Computer-aided color matching method for liquid coating and method for producing coating using the same |
JP2021107781A (en) * | 2019-12-27 | 2021-07-29 | 関西ペイント株式会社 | Production method of coating material and prediction method of color data |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2921365B2 (en) * | 1993-11-30 | 1999-07-19 | トヨタ自動車株式会社 | Paint color reproduction method and paint color selection method |
-
2022
- 2022-06-13 JP JP2022095327A patent/JP7429456B2/en active Active
-
2023
- 2023-05-08 WO PCT/JP2023/017333 patent/WO2023243257A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310727A (en) * | 1997-05-09 | 1998-11-24 | Nisshinbo Ind Inc | Obtaining blending ratio of colorant and brightening material in computer color mixing for metallic/pearl-based coating material or mixed amount of brightening material |
JPH10324829A (en) * | 1997-05-22 | 1998-12-08 | Nippon Paint Co Ltd | Color-matching machine for automotive repair paint |
JP2007508937A (en) * | 2003-10-24 | 2007-04-12 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Method and use thereof for predicting and applying coating parameters |
JP2006218426A (en) * | 2005-02-14 | 2006-08-24 | Kansai Paint Co Ltd | Coating method, coating control unit and coating equipment |
JP2008111116A (en) * | 2007-10-12 | 2008-05-15 | Nippon Paint Co Ltd | Computer-aided color matching method for liquid coating and method for producing coating using the same |
JP2021107781A (en) * | 2019-12-27 | 2021-07-29 | 関西ペイント株式会社 | Production method of coating material and prediction method of color data |
Also Published As
Publication number | Publication date |
---|---|
JP7429456B2 (en) | 2024-02-08 |
WO2023243257A1 (en) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7116266B1 (en) | Prediction method of paint properties, prediction method of correction composition composition, prediction system of paint properties, prediction system of correction composition correction, and paint manufacturing method | |
EP3353247B1 (en) | Reduced point of sale bases for multi-finish paint line and methods for same | |
CN1784592B (en) | Method of producing matched coating composition and device used therefor | |
CN102165294B (en) | Method for color matching | |
CN101784871B (en) | Learning method for producing color formulas | |
CN1802556B (en) | Recipe calculation method for matt color shades | |
MXPA05011527A (en) | Method for identifying effect pigments in a paint film for field color matching. | |
CN104145178A (en) | Colour recipe calculating method for matt colour standards | |
CN115244149A (en) | Paint manufacturing method, color data prediction method and computer color mixing system | |
US11175184B2 (en) | Multi-angle coating composition color strength measurement | |
JP7429456B2 (en) | Automatic adjustment method and automatic adjustment system | |
CN104136913A (en) | Method for predicting the metallic lustre of coatings obtained from coating components using wet colour measurements | |
CN116583570B (en) | Paint property prediction method, correction formula composition prediction method, paint property prediction system, correction formula composition prediction system, and paint manufacturing method | |
AU2023290761A1 (en) | Automatic adjustment method and automatic adjustment system | |
WO2024143003A1 (en) | Method for producing coating | |
WO2022270506A1 (en) | Prediction method and prediction system for amount of change in coating film properties, prediction method and prediction system for amount of change in coated object production conditions, and production method for coated object | |
JP2012050938A (en) | Coating composition and coating film-forming method | |
KR20110003527A (en) | Method for producing color formulas comprising effect pigments | |
JPH11276983A (en) | Formation of laminated coating film and evaluation of color difference | |
BR112019024790B1 (en) | METHOD FOR MEASURING THE COLOR INTENSITY OF A BATCH OF COLOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230823 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7429456 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |