JP2023181823A - Rail breakage detection device - Google Patents

Rail breakage detection device Download PDF

Info

Publication number
JP2023181823A
JP2023181823A JP2022095174A JP2022095174A JP2023181823A JP 2023181823 A JP2023181823 A JP 2023181823A JP 2022095174 A JP2022095174 A JP 2022095174A JP 2022095174 A JP2022095174 A JP 2022095174A JP 2023181823 A JP2023181823 A JP 2023181823A
Authority
JP
Japan
Prior art keywords
state
rail
rate
line
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022095174A
Other languages
Japanese (ja)
Inventor
友普 金谷
Tomohiro Kanaya
俊輔 白井
Shunsuke Shirai
尚知 中原
Naotomo Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2022095174A priority Critical patent/JP2023181823A/en
Publication of JP2023181823A publication Critical patent/JP2023181823A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a rail breakage detection device that can detect the presence or absence of a rail breakage state or a train on rail by applying an inspection signal different from a return-wire current to a rail track circuit unnecessary for impedance bond by shunting anytime the left and right rails of a pair of rails forming rail tracks of a railroad.SOLUTION: A rail breakage detection device comprises: a shunt line 22 etc. at the end of a section, attached to a pair of rails 11 and 12 etc.; a shunt line 21aa etc. within the section; a circuit forming member 30 connected to the line; a transmission unit 40 for transmitting an inspection signal to the line; a measurement unit 81 etc. for measuring a divided signal k1 etc. of the inspection signal from the line 21aa etc.; and unbalancing means 25. A determination unit 82 etc. includes: calculating an unbalance rate α based on the measurement values of a pair of divided signals k1 and k2 etc.; calculating a change rate γ per unit time from the change over time of the unbalance rate α; and choosing one from among an on-rail state, an off-rail state, and a rail breakage state according to the changes of α and γ.SELECTED DRAWING: Figure 1

Description

この発明は、列車が走行するためのレールについてその破断状態と列車等の在線状態とを検出するレール破断検知装置に関する。
詳しくは、レール対からなる鉄道の軌道における通電区間の通電状態に基づいて該当区間に係るレール破断状態や列車在線状態を判別するレール破断検知装置に関する。
更に詳しくは、レール対の左右レールを適宜通電可能にしてインピーダンスボンドを不要にした軌道回路に対して電車走行時の帰線電流(電車電流,電気車電流)とは異なる検査信号を流してレールの破断状態に加え列車在線の有無をも検出しうるレール破断検知装置に関する。
The present invention relates to a rail breakage detection device for detecting the breakage state of a rail on which a train runs and the presence of a train or the like on the rail.
Specifically, the present invention relates to a rail breakage detection device that determines a rail breakage state or a train presence state in a corresponding section based on the energization state of the energized section on a railway track consisting of a pair of rails.
More specifically, a test signal different from the return current (train current, electric car current) when the train is running is applied to the track circuit, which enables the left and right rails of the rail pair to be energized appropriately and eliminates the need for impedance bonds. The present invention relates to a rail breakage detection device that can detect the presence or absence of a train on the track in addition to the breakage state of the rail.

なお、レール破断状態を示す情報としては、左右のレール(海側レール/山側レール,)に係る二つの測定値について「差を和で割った不平衡率α」や「電圧比をデシベルで表した平衡度」が典型的であるが、軌道回路の平衡状態・不平衡状態の具合・程度を表す物理量・数値であれば例えば両測定値の差など他の算出値であっても良いので、それらを総称して本願では「平衡状態値」や「平衡状態値k0」などと呼ぶ。 In addition, the information indicating the rail fracture condition includes the "unbalance factor α, which is the difference divided by the sum" and the "voltage ratio expressed in decibels" for the two measured values of the left and right rails (sea side rail/mountain side rail). Typically, the value is ``degree of equilibrium,'' but other calculated values such as the difference between the two measured values may be used as long as they are physical quantities or numerical values that represent the condition or degree of the equilibrium state or unbalanced state of the track circuit. These are collectively referred to as "equilibrium state value" or "equilibrium state value k0" in this application.

軌道回路を使用した従来のレール破断検知装置は(例えば非特許文献1参照)、帰線電流の流れていない夜間や架線停電時でもレール破断を検出することができるという利点があるものの、軌道の検知対象区間に対して一方の区間端から信号を送信して該信号を左右レールで一巡的に伝達させながら他方の区間端で受信することで軌間電圧の有無すなわち左右レール間の電圧の有無を調べてレール破断検知を行うものなので、左右のレールを単純に短絡することが出来ないという制約がある。
そのため、無線の使用等にて軌道回路を用いないで列車検知を行う列車制御システムを導入する際には、インピーダンスボンドの無い又は不要な無絶縁軌道回路に対しても使用することができるレール破断検知装置が望ましい。
Conventional rail breakage detection devices using track circuits (see, for example, Non-Patent Document 1) have the advantage of being able to detect rail breaks even at night when no return current is flowing or during overhead line power outages. By transmitting a signal from one section end to the detection target section, transmitting the signal in a circular manner between the left and right rails, and receiving it at the other section end, the presence or absence of gauge voltage, that is, the presence or absence of voltage between the left and right rails, can be detected. Since the method involves inspecting and detecting rail breakage, there is a limitation in that it is not possible to simply short-circuit the left and right rails.
Therefore, when introducing a train control system that detects trains without using track circuits using wireless technology, etc., it is possible to use rail breakage that can be used even for uninsulated track circuits that do not have or do not require an impedance bond. A detection device is preferred.

そこで、左右のレールを帰線電流に対して適宜短絡してインピーダンスボンドを不要にした軌道回路に帰線電流とは異なる検査信号を流してレール破断状態を検出しうるレール破断検知装置を実現することが望まれていた。
もっとも、無線等利用にてインピーダンスボンド不要になった列車制御システムであっても、制御対象から外れがちな保守用車の置き忘れなども防ぐことが望まれることから、レール破断状態の検出にとどまらず、列車や保守用車の在線の有無をも簡便かつ適切に検出できるようにすることも望まれる。
Therefore, we have realized a rail breakage detection device that can detect a rail breakage state by passing a test signal different from the return current through a track circuit that eliminates the need for an impedance bond by appropriately shorting the left and right rails against the return current. That was what was hoped for.
However, even with train control systems that no longer require impedance bonds due to the use of wireless, etc., it is desirable to prevent maintenance vehicles from being left behind, which tend to be excluded from the control target, so it is not limited to detecting rail breakage. It is also desirable to be able to easily and appropriately detect the presence or absence of trains and maintenance vehicles on the line.

そして、そのような要望を解決するものとして、レール破断の有無に加えて列車在線の有無をも簡便に検出しうるレール破断検知装置が開発されている(例えば特許文献1,2参照)。
本願発明は、そのようなレール破断検知装置の更なる改良に係るものなので、本欄においては、先ず、従前の改良を施した単線用の公知なレール破断検知装置20を説明し(例えば特許文献1,2の実施例1も参照)、次いで、やはり従前の改良を施した複線用の公知なレール破断検知装置70を説明する(例えば特許文献1の実施例5や特許文献2の実施例4も参照)。
As a solution to such demands, a rail breakage detection device has been developed that can easily detect the presence or absence of a train on the track in addition to the presence or absence of a rail breakage (see, for example, Patent Documents 1 and 2).
Since the present invention relates to further improvement of such a rail breakage detection device, in this section, we will first explain a known rail breakage detection device 20 for single track that has been improved from the previous one (for example, as disclosed in patent document 2). 1 and 2), and then a known rail breakage detection device 70 for double tracks which is also an improvement on the previous one will be explained (for example, Example 5 of Patent Document 1 and Example 4 of Patent Document 2). (see also).

[単線用の公知改良例1]
単線用の公知改良例1であるレール破断検知装置20について、その具体的な構成を、図面を引用して説明する。
[Known improvement example 1 for single wire]
The specific configuration of the rail breakage detection device 20, which is a known improvement example 1 for single track, will be explained with reference to the drawings.

図6(a)は、鉄道の軌道の典型例である複線10における四本のレール11~14の配置例を示している。また、図6(b)は、下りの単線部分(11&12)に設置されたレール破断検知装置20に係る概要ブロック図であり、図6(c)は、その計測部50と判定部60とに係る詳細ブロック図である。さらに、図7は、分流信号i1,i2の測定値k1,k2に基づいて得られる平衡状態値k0を軌道回路の不平衡率α(=|k1-k2|/(k1+k2)×100%)で示す模式図である。 FIG. 6(a) shows an example of the arrangement of four rails 11 to 14 on a double track 10, which is a typical example of a railway track. Further, FIG. 6(b) is a schematic block diagram of the rail breakage detection device 20 installed in the down single track section (11 & 12), and FIG. FIG. 2 is a detailed block diagram. Furthermore, FIG. 7 shows that the equilibrium state value k0 obtained based on the measured values k1 and k2 of the shunt signals i1 and i2 is expressed as the unbalance rate α (=|k1-k2|/(k1+k2)×100%) of the track circuit. FIG.

レール破断検知装置20の設置先である鉄道の軌道は、下り線と上り線とが少し離れて並走する複線10が典型的なものであり(図6(a)参照)、そのうち下り線は、山側(進行列車からは左側)のレール11と海側(進行列車からは右側)のレール12とが並走するレール対11&12からなり、上り線は、山側(進行列車からは右側)のレール13と海側(進行列車からは左側)のレール14とが並走する別レール対13&14からなる。なお、単線では、何れか一方のレール対だけが設けられていて、それが上り下りに共用され、複々線等ではより多くのレール対が設けられていて、それらが使い分けられる。 The railway track on which the rail breakage detection device 20 is installed is typically a double track 10 in which the down and up tracks run parallel to each other with some distance between them (see FIG. 6(a)). , consists of a pair of rails 11 & 12, in which rail 11 on the mountain side (left side from the oncoming train) and rail 12 on the sea side (on the right side from the oncoming train) run in parallel, and the up line is the rail on the mountain side (on the right side from the oncoming train). It consists of another pair of rails 13 & 14, in which rail 13 and rail 14 on the sea side (left side from the advancing train) run in parallel. In addition, in a single track, only one pair of rails is provided and it is shared for up and down, whereas in a double track, more rail pairs are provided, and they are used selectively.

レール破断検知装置20は(図6(b)参照)、複線10のうちレール対11&12に対して適用された基本構成のものであり、レール対11&12の複数箇所に例えば1kmといった適宜距離だけ離れて付設された複数の区間端短絡ライン21,22と、そのうちの区間端短絡ライン21に付設された不平衡化手段25と、一端が区間端短絡ライン21に接続され他端が区間端短絡ライン22に接続された巡回電路形成部材30と、この巡回電路形成部材30に対して検査信号i0を送出する送信部40と、巡回電路形成部材30を接続された区間端短絡ライン22のうち巡回電路形成部材30の接続箇所22cで両側に分けられる部分ライン22a,22bそれぞれについて検査信号i0に係る一対の分流信号i1,i2を測定する計測部50と、それらの測定値k1,k2から算出された平衡状態値k0に基づいてレール破断に係る判定を行う判定部60とを備えている。 The rail breakage detection device 20 (see FIG. 6(b)) has a basic configuration applied to the rail pair 11 & 12 of the double track 10, and is installed at multiple locations on the rail pair 11 & 12 at an appropriate distance, such as 1 km. A plurality of attached section end short circuit lines 21 and 22, an unbalancing means 25 attached to the section end short circuit line 21, one end of which is connected to the section end short circuit line 21, and the other end of which is connected to the section end short circuit line 22. A circuit forming member 30 connected to the circuit forming member 30, a transmitting unit 40 that sends an inspection signal i0 to the circuit forming member 30, and a circuit forming member 30 connected to the circuit forming member 30, A measurement unit 50 that measures a pair of shunt signals i1 and i2 related to the inspection signal i0 for each of the partial lines 22a and 22b divided on both sides at the connection point 22c of the member 30, and an equilibrium calculated from those measured values k1 and k2. A determination unit 60 is provided that makes a determination regarding rail breakage based on the state value k0.

区間端短絡ライン21は(図6(b)参照)、電線や銅板などの良導体からなり、一端が区間端11aの所でレール11に接続され、他端が区間端12aの所でレール12に接続されていて、区間端11a,12aの所で左右レール11,12を短絡するものとなっている。この区間端短絡ライン21には接続箇所21cの所で巡回電路形成部材30の一端が接続されていて、区間端短絡ライン21は、レール11の区間端11a寄りの部分ライン21aと、レール12の区間端12a寄りの部分ライン21bとに分けられる。 The section end shorting line 21 (see FIG. 6(b)) is made of a good conductor such as an electric wire or a copper plate, and one end is connected to the rail 11 at the section end 11a, and the other end is connected to the rail 12 at the section end 12a. The left and right rails 11 and 12 are connected to each other, and the left and right rails 11 and 12 are short-circuited at the section ends 11a and 12a. One end of the circuit forming member 30 is connected to this section end short-circuit line 21 at a connection point 21c, and the section end short-circuit line 21 connects a partial line 21a of the rail 11 near the section end 11a, and a partial line 21a of the rail 12 near the section end 11a. It is divided into a partial line 21b closer to the section end 12a.

区間端短絡ライン22は(図6(b)参照)、これも良導体からなり、一端が区間端11bの所でレール11に接続され、他端が区間端12bの所でレール12に接続されていて、区間端11b,12bの所で左右レール11,12を短絡するものとなっている。この区間端短絡ライン22には接続箇所22cの所で巡回電路形成部材30の他端が接続されていて、区間端短絡ライン22は、レール11の区間端11b寄りの部分ライン22aと、レール12の区間端12b寄りの部分ライン22bとに分けられる。 The section end shorting line 22 (see FIG. 6(b)) is also made of a good conductor and has one end connected to the rail 11 at the section end 11b and the other end connected to the rail 12 at the section end 12b. Thus, the left and right rails 11 and 12 are short-circuited at the section ends 11b and 12b. The other end of the circuit forming member 30 is connected to this section end short-circuit line 22 at a connection point 22c, and the section end short-circuit line 22 connects the partial line 22a of the rail 11 near the section end 11b, and the rail 12 It is divided into a partial line 22b closer to the section end 12b.

巡回電路形成部材30は(図6(b)参照)、絶縁被覆された電線からなり、中間部位に送信部40の出力部が接続されている。その接続箇所で巡回電路形成部材30を二つの巡回電路形成ライン31,32に分けて、巡回電路形成部材30の両端部の接続状態を説明し直すと、一方の巡回電路形成ライン31は、上述した接続箇所21cの所で区間端短絡ライン21に接続され、他方の巡回電路形成ライン32は、上述した接続箇所22cの所で区間端短絡ライン22に接続されている。 The circuit forming member 30 (see FIG. 6(b)) is made of an electrical wire coated with insulation, and the output part of the transmitting part 40 is connected to the intermediate part. If we divide the circuit circuit forming member 30 into two circuit circuit forming lines 31 and 32 at the connection point and re-explain the connection state of both ends of the circuit circuit forming member 30, one circuit circuit forming line 31 will be divided into two circuit circuit forming lines 31 and 32. It is connected to the section end short circuit line 21 at the connection point 21c mentioned above, and the other circuit forming line 32 is connected to the section end short circuit line 22 at the connection point 22c mentioned above.

そして、巡回電路形成部材30の一方31と区間端短絡ライン21の部分ライン21aとレール11と区間端短絡ライン22の部分ライン22aと巡回電路形成部材30の他方32とによって、検査信号i0のうち分流信号i1を流す一巡電路が形成されて、レール11のうち区間端11a,11bの間に位置する部分が検査区間11cになる。
また、巡回電路形成部材30の一方31と区間端短絡ライン21の部分ライン21bとレール12と区間端短絡ライン22の部分ライン22bと巡回電路形成部材30の他方32とによって、検査信号i0のうち分流信号i2を流す一巡電路が形成されて、レール12のうち区間端12a,12bの間に位置する部分が検査区間12cになる。
Then, one part 31 of the circuit forming member 30, the partial line 21a of the section end short-circuit line 21, the rail 11, the partial line 22a of the section end short-circuit line 22, and the other 32 of the circuit circuit forming member 30 form part of the test signal i0. A circuit path is formed through which the shunt signal i1 flows, and a portion of the rail 11 located between the section ends 11a and 11b becomes an inspection section 11c.
Furthermore, one part 31 of the circuit forming member 30, the partial line 21b of the section end short-circuit line 21, the rail 12, the partial line 22b of the section end short-circuit line 22, and the other 32 of the circuit circuit forming member 30 cause the inspection signal i0 to be A circuit path through which the shunt signal i2 flows is formed, and a portion of the rail 12 located between the section ends 12a and 12b becomes an inspection section 12c.

送信部40は(図6(b)参照)、帰線電流とは異なる検査信号i0を巡回電路形成部材30に対して送出するものであるが、検査信号i0が巡回電路形成部材30の先で二つの分流信号i1,i2に分かれるので、レール11側の一巡電路(31,21a,11c,22a,32)に分流信号i1を流すとともに、レール12側の一巡電路(31,21b,12c,22b,32)に分流信号i2を流すものとなっている。
架線は直流電化か交流電化(商用周波数)しかないため、帰線電流には直流や商用周波数(50Hz,60Hz)の交流が用いられるので、それよりも周波数が高くて周波数弁別が容易な交流信号が検査信号i0に適しているが、検査信号i0は、それに限定される訳でなく、帰線電流から弁別可能に異なるものであれば良い。
The transmitter 40 (see FIG. 6(b)) sends a test signal i0 different from the return current to the circuit forming member 30, but when the test signal i0 is transmitted beyond the circuit forming member 30, Since it is divided into two shunt signals i1 and i2, the shunt signal i1 is sent to the one circuit circuit (31, 21a, 11c, 22a, 32) on the rail 11 side, and the one circuit circuit (31, 21b, 12c, 22b) on the rail 12 side. , 32) to send the shunt signal i2.
Since overhead lines are only electrified with direct current or alternating current (commercial frequency), direct current or alternating current with commercial frequency (50Hz, 60Hz) is used for the return current, so it is possible to use an alternating current signal with a higher frequency and easier frequency discrimination. is suitable for the test signal i0, but the test signal i0 is not limited thereto, and may be any signal that is distinguishable from the return current.

計測部50は(図6(b),(c)参照)、巡回電路形成部材30を接続された区間端短絡ライン22のうち接続箇所22cからレール11へ至る側の部分ライン22aに付設されていて部分ライン22aひいてはレール11側の一巡電路(31,21a,11c,22a,32)を流れる分流信号i1を測定する電流プローブ51(電流センサ,カレントトランスなど)と、区間端短絡ライン22のうち接続箇所22cからレール12へ至る側の部分ライン22bに付設されていて部分ライン22bひいてはレール12側の一巡電路(31,21b,12c,22b,32)を流れる分流信号i2を測定する電流プローブ52(電流センサ,カレントトランスなど)と、電流プローブ51の測定値k1(測定信号)と電流プローブ52の測定値k2(測定信号)とから平衡状態値k0(算出値)を求める算出部53~57とを具備したものである。 The measuring unit 50 (see FIGS. 6(b) and 6(c)) is attached to the partial line 22a on the side extending from the connection point 22c to the rail 11 of the section end short-circuit line 22 to which the circuit forming member 30 is connected. A current probe 51 (current sensor, current transformer, etc.) that measures the shunt signal i1 flowing through the partial line 22a and the one-circuit circuit (31, 21a, 11c, 22a, 32) on the rail 11 side, and the section end short-circuit line 22. A current probe 52 that is attached to the partial line 22b on the side leading from the connection point 22c to the rail 12 and measures the shunt signal i2 flowing through the partial line 22b and the circuit circuit (31, 21b, 12c, 22b, 32) on the rail 12 side. (current sensor, current transformer, etc.), calculation units 53 to 57 that calculate the equilibrium state value k0 (calculated value) from the measured value k1 (measured signal) of the current probe 51 and the measured value k2 (measured signal) of the current probe 52. It is equipped with the following.

さらに、それらのうち算出部53~57は(図6(c)参照)、測定信号の状態で即ち検波等で交流を直流化する前のアナログ信号のまま処理することで測定値k1,k2の和電流を生成する加算部53と、やはり測定信号の状態で測定値k1,k2の差電流を生成する減算部54と、加算部53の和電流から検波等の処理を行って測定値k1,k2の加算値である和(k1+k2)を得る受信部55と、減算部54の差電流から検波等の処理を行って測定値k1,k2の減算値の絶対値である差|k1-k2|を得る受信部56と、上記の差|k1-k2|を上記の和(k1+k2)で割るという演算を行って平衡状態値k0(軌道回路の平衡度)の典型例である不平衡率αを算出する平衡状態値算出部57とを具備している。 Furthermore, among them, the calculation units 53 to 57 (see FIG. 6(c)) calculate the measured values k1 and k2 by processing the measured signals as they are, that is, as analog signals before converting alternating current to direct current through detection, etc. An addition section 53 that generates a sum current; a subtraction section 54 that also generates a difference current between measurement values k1 and k2 in the state of the measurement signal; and processing such as detection from the sum current of the addition section 53 to obtain measurement values k1, The receiving unit 55 obtains the sum (k1+k2), which is the added value of k2, and the subtracting unit 54 performs processing such as detection from the difference current, and calculates the difference |k1-k2| which is the absolute value of the subtracted value of the measured values k1 and k2. The receiving unit 56 calculates the unbalance rate α, which is a typical example of the equilibrium state value k0 (balance degree of the track circuit), by dividing the above difference |k1−k2| by the above sum (k1+k2). It also includes an equilibrium state value calculation section 57 that calculates the equilibrium state value.

判定部60は(図6(c)参照)、それらの測定値k1,k2から得られた平衡状態値k0具体的には不平衡率αを用いてレール破断と列車在線とに係る判定を行うために、分流信号i1,i2に係る不平衡状態がどのようになっているのかを判別する状態判別部61と、平衡状態も含む不平衡状態に係る現在の状態や直前から現在への状態遷移などに応じて「レール破断の有無」及び「列車在線の有無」に係る決定を行う決定部62とを具備している。これらの決定部62や状態判別部61更には上述の平衡状態値算出部57の具現化は、アナログ回路でもデジタル回路でもマイクロプロセッサ組込回路でも良い。 The determination unit 60 (see FIG. 6(c)) uses the equilibrium state value k0 obtained from the measured values k1 and k2, specifically, the unbalance rate α, to determine whether the rail is broken or the train is on the track. For this purpose, a state determination unit 61 that determines the unbalanced state related to the shunt signals i1 and i2, and a state determination unit 61 that determines the current state of the unbalanced state including the balanced state and the state transition from immediately before to the current state. The system includes a determining unit 62 that determines whether there is a rail break or not and whether a train is on the track. The determining section 62, the state determining section 61, and the above-mentioned equilibrium state value calculating section 57 may be realized by an analog circuit, a digital circuit, or a microprocessor embedded circuit.

不平衡化手段25は(図6(b)参照)、対をなす分流信号i1,i2に係る平衡状態・不平衡状態がレール破断も列車在線も無い状態では所定の設定不平衡状態になるようにしておくためのものであり、区間端短絡ライン21の接続状態を不均等にする手法や区間端短絡ライン21にインピーダンス部材を介挿するといった公知のもので足りるので(例えば特許文献1の図3や特許文献2の図2参照)、ここでは図示を割愛したが、コイル等のインダクタンス部材の介挿が実施し易い。この手段による不平衡化の程度は、レール11,12の長さや材質などに起因して生じたレール11の検査区間11cのインピーダンスとレール12の検査区間12cのインピーダンスとの差による内在的な不平衡状態よりも大きくされる。 The unbalancing means 25 (see FIG. 6(b)) adjusts the balanced state and unbalanced state of the pair of shunt signals i1 and i2 to a predetermined unbalanced state when there is no rail breakage or train presence. This is because a known method such as making the connection state of the section end short-circuit line 21 uneven or inserting an impedance member into the section end short-circuit line 21 is sufficient (for example, as shown in the figure of Patent Document 1). 3 and FIG. 2 of Patent Document 2), although not shown here, it is easy to insert an inductance member such as a coil. The degree of unbalance caused by this means is due to the inherent unbalance caused by the difference between the impedance of the inspection section 11c of the rail 11 and the impedance of the inspection section 12c of the rail 12, which is caused by the length and material of the rails 11 and 12. is made larger than the equilibrium state.

このような不平衡化手段25を具備したレール破断検知装置20における判定部60の判定手法について詳述する。図7は、分流信号i1,i2の測定値k1,k2に基づいて得られる平衡状態値k0を、より具体的には軌道回路の不平衡率α={|k1-k2|/(k1+k2)}を、百分率(パーセント%)で表示したものである。また、図7に示された複数の不平衡状態については、それぞれが幅を持つとともに、隣り合う不平衡状態の間には或る程度の間隙が確保されている。後者の間隙は、それを越えて他の不平衡状態に入るまでは状態遷移を認めないことで、状態遷移の認定・判定にヒステリシス特性を持たせ、それによって状態遷移の過剰検出を抑制可能にするためのものである。 The determination method of the determination unit 60 in the rail breakage detection device 20 equipped with such an unbalancing means 25 will be described in detail. FIG. 7 shows the equilibrium state value k0 obtained based on the measured values k1 and k2 of the shunt signals i1 and i2, more specifically, the unbalance rate α of the track circuit = {|k1-k2|/(k1+k2)} is expressed as a percentage (%%). Moreover, each of the plurality of unbalanced states shown in FIG. 7 has a width, and a certain amount of gap is ensured between adjacent unbalanced states. By not allowing state transitions until the latter gap is crossed and the system enters another unbalanced state, it is possible to provide hysteresis characteristics to the recognition and judgment of state transitions, thereby suppressing excessive detection of state transitions. It is for the purpose of

数値例を交えて具体的に説明すると、レール破断が全く無く列車在線も無い状態では、不平衡化手段25の設定に対応した分だけ分流信号i1が分流信号i2より小さくなり、やはりその不平衡化設定対応分だけ測定値k1が測定値k2より小さくなり、平衡状態値k0が約12%になるので(図7の太い実線のうち列車非在線時に該当する左右両側部分を参照)、それを含む10.6%~14.4%の範囲に不平衡率α(平衡状態値k0)が入ると、「不平衡化手段25の不平衡化に対応した設定不平衡状態」になったと決定する。 To explain concretely using a numerical example, in a state where there is no rail breakage and no trains on the track, the shunt signal i1 becomes smaller than the shunt signal i2 by the amount corresponding to the setting of the unbalance means 25, and the unbalance also occurs. The measured value k1 becomes smaller than the measured value k2 by the amount corresponding to the current setting, and the equilibrium state value k0 becomes approximately 12% (refer to the left and right parts of the thick solid line in Fig. 7 that correspond to when no train is on the line). When the unbalance rate α (equilibrium state value k0) falls within the range of 10.6% to 14.4% including .

その後は、不平衡率α(平衡状態値k0)が15.1%以上になって「設定不平衡状態よりも不平衡度合の大きい大不平衡状態」へ遷移した場合はレール破断とし、不平衡率α(平衡状態値k0)が9.9%以下になって「設定不平衡状態よりも不平衡度合の小さい小不平衡状態」へ遷移した場合は列車在線と判定するようになっている。 After that, if the unbalance rate α (equilibrium state value k0) becomes 15.1% or more and transitions to a "large unbalanced state with a higher degree of unbalance than the set unbalanced state", it will be considered a rail rupture, and the unbalanced When the rate α (equilibrium state value k0) becomes 9.9% or less and the state transitions to a "small unbalanced state where the degree of unbalance is smaller than the set unbalanced state", it is determined that a train is on the line.

その状態で例えばレール12の検査区間12cにレール破断が発生して、レール破断が有り列車在線が無い状態になった場合は、上述の不平衡化設定対応分を超えて大きく分流信号i1が分流信号i2を上回り、同様に測定値k1が測定値k2を大きく上回って、不平衡率α(平衡状態値k0)が約40%を超えるので(図7の一点鎖線のうち列車非在線時に該当する左右両側部分を参照)、その場合は上述の「大不平衡状態」になったと決定するようになっている。 In this state, for example, if a rail break occurs in the inspection section 12c of the rail 12, and there is a rail break and there is no train on the track, the shunt signal i1 will be shunted to a greater extent than the amount corresponding to the unbalance setting described above. Similarly, the measured value k1 greatly exceeds the measured value k2, and the unbalance rate α (equilibrium state value k0) exceeds about 40% (corresponds to the one-dot chain line in Fig. 7 when no train is on the line). (see left and right sides), in that case it is determined that the above-mentioned "large imbalance state" has occurred.

また、図示は割愛したが、レール11の検査区間11cが破断したときには、上述の不平衡化設定対応分を超えて分流信号i2が分流信号i1より大きくなり、不平衡率α(平衡状態値k0)の値が約30%になるので(図7の二点鎖線のうち列車非在線時に該当する左右両側部分を参照)、やはり上述した「大不平衡状態」になったと決定するようになっている。
なお、レール11,12が共に破断したときには、分流信号i1,i2の和である検査信号i0が一定値など所定値に達しないため、測定値k1,k2の和k1+k2も所定値から外れてしまうので、それを別に検出することで判別することができる。
Although not shown in the figure, when the inspection section 11c of the rail 11 breaks, the shunt signal i2 becomes larger than the shunt signal i1 by exceeding the amount corresponding to the unbalance setting described above, and the unbalance rate α (equilibrium state value k0 ) is about 30% (refer to the left and right parts of the two-dot chain line in Figure 7 that correspond to when no trains are on the line), so it is determined that the above-mentioned "large unbalanced state" has occurred. There is.
Note that when both rails 11 and 12 break, the inspection signal i0, which is the sum of the shunt signals i1 and i2, does not reach a predetermined value such as a constant value, so the sum k1+k2 of the measured values k1 and k2 also deviates from the predetermined value. Therefore, it can be determined by separately detecting it.

以上は列車在線が無い状態におけるレール破断の状況に応じた判定手法であるが、列車15が検査区間11c,12cに存在しているときには、以下のように判定するようになっている。
先ず、レール破断が無いときは、不平衡化手段25による影響を緩和する向きに列車15の車軸を介して迂回電流idが流れて、分流信号i1と分流信号i2との差が小さくなり、測定値k1,k2が近づいて、平衡状態値k0が約5%になるので(図7の太い実線のうち列車在線時に該当する中央部分を参照)、それを含む0%~9.9%の範囲に不平衡率α(平衡状態値k0)が入ると、上述した「小不平衡状態」になったと決定する。
The above judgment method is based on the rail breakage situation when there is no train on the track, but when the train 15 is present in the inspection sections 11c and 12c, the judgment is made as follows.
First, when there is no rail breakage, the detour current id flows through the axle of the train 15 in a direction that alleviates the influence of the unbalancing means 25, and the difference between the shunt signal i1 and the shunt signal i2 becomes small, and the measurement As the values k1 and k2 approach each other, the equilibrium state value k0 becomes approximately 5% (refer to the central part of the thick solid line in Figure 7 that corresponds to when a train is on the line), so the range that includes this is 0% to 9.9%. When the unbalance rate α (equilibrium state value k0) enters, it is determined that the above-mentioned "small unbalanced state" has occurred.

また、レール破断が有っても列車15が破断箇所と計測側(22)との間に在線しているときには、破断側の分流信号i2が列車15の車軸を介して他のレール11に流れて他の分流信号i1へ合流する。このように分流信号i1,i2が不平衡化手段25を迂回して流れるため、分流信号i1,i2ひいては測定値k1,k2に大差が生じないので、上述の「小不平衡状態」になる。
これに対し、列車15が破断箇所と非計測側(21)との間に在線しているときには、破断側の分流信号i2の流れが阻害されるので、上述の「大不平衡状態」になる。
Furthermore, even if there is a rail break, when the train 15 is on the track between the break point and the measurement side (22), the shunt signal i2 on the break side flows to the other rail 11 via the axle of the train 15. and merges into another branch signal i1. Since the shunt signals i1 and i2 thus flow around the unbalancing means 25, there is no large difference between the shunt signals i1 and i2 and the measured values k1 and k2, resulting in the above-mentioned "small unbalanced state".
On the other hand, when the train 15 is on the line between the break point and the non-measurement side (21), the flow of the shunt signal i2 on the break side is obstructed, resulting in the above-mentioned "large unbalanced state". .

そして、このような場合分けに基づいて、判定部60は、分流信号i1,i2の値から求めた不平衡率α(平衡状態値k0)が「設定不平衡状態」にあると判別したときにはレール対11&12の検査区間11c,12cが『レール破断が無く列車在線も無い状態』にあると決定し、分流信号i1,i2の値が「大不平衡状態」にあると判別したときにはレール対11&12の検査区間11c,12cが『レール破断が有り列車在線が不明な状態』にあると決定し、分流信号i1,i2の値が「小不平衡状態」にあると判別したときにはレール対11&12の検査区間11c,12cが『列車が在線している状態』にあると決定するようになっている。 Then, based on such case classification, when the determination unit 60 determines that the unbalance rate α (equilibrium state value k0) obtained from the values of the shunt signals i1 and i2 is in the "set unbalanced state", the determination unit 60 When it is determined that the inspection sections 11c and 12c of the pair 11 & 12 are in a state where there is no rail breakage and no trains on the track, and the values of the shunt signals i1 and i2 are in a "large unbalanced state", the inspection sections 11c and 12c of the rail pair 11 and 12 are When it is determined that the inspection sections 11c and 12c are in a "state where there is a rail break and the train location is unknown" and the values of the diversion signals i1 and i2 are in a "slightly unbalanced state", the inspection section of the rail pair 11 & 12 is determined. 11c and 12c are determined to be in a ``state where the train is on the line''.

このような構成からなる単線用の公知改良例1のレール破断検知装置20について、その使用態様及び動作を説明する。 The manner of use and operation of the rail breakage detection device 20 of the known improved example 1 for single track having such a configuration will be explained.

列車がレール対11&12の検査区間11c,12cに在線していない場合のうち、レール破断の無い正常状態では、左右のレールに元から存在していたインピーダンスのバラツキによる謂わば内在不平衡より不平衡化手段25の不平衡化の方が明確に大きくて、分流信号i1,i2から得られた不平衡率α(平衡状態値k0)が12%近傍の「設定不平衡状態」になるので(図7の太い実線のうち列車非在線時に該当する左右両側部分を参照)、『レール破断が無く列車在線も無い状態』という的確な判定が出る。 When the train is not on the inspection sections 11c and 12c of rail pairs 11 & 12, under normal conditions with no rail breakage, the imbalance is due to the so-called inherent imbalance caused by the impedance variation that originally existed between the left and right rails. The unbalance of the converting means 25 is clearly larger, and the unbalance rate α (equilibrium state value k0) obtained from the shunt signals i1 and i2 becomes the "set unbalance state" of around 12% (Fig. (Refer to the left and right sides of the thick solid line 7 that correspond to when no trains are on the line), it is accurately determined that there is no rail breakage and no trains are on the line.

列車がレール対11&12の検査区間11c,12cに在線していない場合のうち、レールが破断した状態では、レール破断の発生したレール12には僅かな電流しか流れないため、不平衡化手段25の不平衡化を超える大きな不平衡が発現して、分流信号i1,i2から得られた不平衡率α(平衡状態値k0)が30%や40%を超える「大不平衡状態」になるので(図7の一点鎖線や二点鎖線のうち列車非在線時に該当する左右両側部分を参照)、『レール破断が有る状態』というレール破断確定の判定が出る。 When the train is not on the inspection section 11c, 12c of the rail pair 11 & 12, in a state where the rail is broken, only a small amount of current flows through the rail 12 where the rail breakage has occurred. A large unbalance that exceeds the imbalance occurs, resulting in a "large unbalanced state" in which the unbalance rate α (equilibrium state value k0) obtained from the shunt signals i1 and i2 exceeds 30% or 40% ( (Refer to the left and right side portions of the one-dot chain line and the two-dot chain line in Fig. 7 that correspond to when no train is on the line), a determination is made that the rail break is confirmed as ``a state in which there is a rail break.''

列車がレール対11&12の検査区間11c,12cに在線している場合のうち、レール破断の無い正常状態では、列車15の車軸による左右レールの短絡によって分流信号i1,i2の値が近づき、それから得られた不平衡率α(平衡状態値k0)が5%近傍の「小不平衡状態」になるので(図7の太い実線のうち列車在線時に該当する中央部分を参照)、『列車が在線している状態』という列車在線確定の判定が出る。 When a train is on the inspection sections 11c and 12c of rail pairs 11 & 12, under normal conditions without rail breakage, the values of the shunt signals i1 and i2 approach each other due to a short circuit between the left and right rails by the axle of the train 15, and then Since the unbalance rate α (equilibrium state value k0) obtained by The train is confirmed to be on the line.

列車がレール対11&12の検査区間11c,12cに在線している場合のうち、レール破断の有る状態では、繰り返しとなる詳細な説明は割愛するが、要するに列車位置とレール破断位置との関係に応じて上述した「小不平衡状態」か「大不平衡状態」になり(図7の一点鎖線や二点鎖線のうち列車在線時に該当する中央部分を参照)、「小不平衡状態」のときには『列車が在線している状態』という判定が出、「大不平衡状態」のときには『レール破断が有る状態』という判定が出る。
このようにして列車在線有りの判定かレール破断有りの判定が出た場合は、保守用車の置き忘れの有無を確認したり、レール破断箇所を探索したりして、安全を確認する。
When a train is on the inspection sections 11c and 12c of rail pairs 11 & 12, and there is a rail break, a repetitive detailed explanation will be omitted, but in short, it will depend on the relationship between the train position and the rail break position. Then, the above-mentioned "small unbalanced state" or "large unbalanced state" will occur (refer to the center part of the dashed-dotted line and the dashed-double-dotted line in Figure 7, which corresponds to when a train is on the track), and when in the "slightly unbalanced state", A determination is made that the train is on the track, and in the case of a ``large unbalanced condition,'' a determination is made that there is a rail break.
In this way, when it is determined that a train is on the track or that a rail is broken, safety is confirmed by checking whether a maintenance vehicle has been left behind or by searching for a broken rail.

[複線用の公知改良例2]
複線用の公知改良例2であるレール破断検知装置70について、その具体的な構成を、図8を引用して説明する。
[Known improvement example 2 for double track]
The specific configuration of the rail breakage detection device 70, which is a second known improvement example for double tracks, will be described with reference to FIG.

このレール破断検知装置70が上述した公知改良例1のレール破断検知装置20と相違するのは、レール対11&12に係る検査区間11c,12cに検査区間11e,12eが加えられた点と、別レール対13&14に検査区間13c,14cと検査区間13e,14eとが加えられた点である。これらを第1改造点と呼ぶ。また、レール破断検知装置70がレール破断検知装置20と相違する第2改造点は、別レール対13&14の一方のレール13の検査区間13cに加えて他方のレール14の検査区間14cも巡回電路形成部材30に組み込まれている点と、別レール対13&14について計測部50及び判定部60と同様の計測部50a及び判定部60aが設置されている点である。 This rail breakage detection device 70 is different from the rail breakage detection device 20 of the known improvement example 1 described above in that inspection sections 11e and 12e are added to the inspection sections 11c and 12c related to the rail pair 11 & 12, and This is the point where test sections 13c and 14c and test sections 13e and 14e are added to the pair 13&14. These are called first modification points. A second modification point in which the rail breakage detection device 70 is different from the rail breakage detection device 20 is that in addition to the inspection section 13c of one rail 13 of the separate rail pair 13 & 14, the inspection section 14c of the other rail 14 is also formed as a circuit circuit. The two points are that it is incorporated into the member 30, and that a measuring section 50a and a determining section 60a similar to the measuring section 50 and determining section 60 for the separate rail pair 13 & 14 are installed.

第1改造点を詳述すると、レール11については、区間端11aから区間中央位置になった送信点11aaを挟んで区間端11bと検査区間11cとの反対側に区間端11dと検査区間11eとが設定され、レール12については、区間端12aから区間中央位置になった送信点12aaを挟んで区間端12bと検査区間12cとの反対側に区間端12dと検査区間12eとが設定され、レール13については、区間中央位置の送信点13aaを挟んで区間端13bと検査区間13cとの反対側に区間端13dと検査区間13eとが設定され、レール14については、区間中央点の送信点14aaを挟んで区間端14bと検査区間14cとの反対側に区間端14dと検査区間14eとが設定されている。また、それらに随伴して、送信点11aaと送信点12aaとを結ぶ短絡ライン21は区間内短絡ライン21aaになり、送信点13aaと送信点14aaとを結ぶ接続線23は区間内短絡ライン23aaになっている。 To explain the first modification point in detail, the rail 11 has a section end 11d and an inspection section 11e on the opposite side of the section end 11b and the inspection section 11c across the transmission point 11aa, which is located at the section center position from the section end 11a. is set, and for the rail 12, a section end 12d and an inspection section 12e are set on the opposite side of the section end 12b and inspection section 12c across the transmission point 12aa, which is located at the section center position from the section end 12a. For rail 13, a section end 13d and an inspection section 13e are set on the opposite side of the section end 13b and inspection section 13c across the transmission point 13aa at the section center position, and for rail 14, a section end 13d and an inspection section 13e are set on the opposite side of the section end 13b and inspection section 13c. A section end 14d and an inspection section 14e are set on opposite sides of the section end 14b and inspection section 14c. Along with these, the short line 21 connecting the transmission point 11aa and the transmission point 12aa becomes the intra-section short line 21aa, and the connection line 23 connecting the transmission point 13aa and the transmission point 14aa becomes the intra-section short line 23aa. It has become.

さらに、区間端11dと区間端12dとが区間端短絡ライン26にて接続されてそこでも左右レール11,12が短絡されるとともに、区間端13dと区間端14dとが区間端短絡ライン27にて接続されてそこでも左右レール13,14が短絡され、更に区間端13bと区間端14bとが区間端短絡ライン24にて接続されてそこでも左右レール13,14が短絡される。また、巡回電路形成ライン33の一端が接続箇所22cの所で区間端短絡ライン22に接続され他端が接続箇所24cの所で区間端短絡ライン24に接続されるとともに、巡回電路形成ライン34の一端が接続箇所26cの所で区間端短絡ライン26に接続され他端が接続箇所27cの所で区間端短絡ライン27に接続されている。 Furthermore, the section end 11d and the section end 12d are connected by the section end short circuit line 26, and the left and right rails 11, 12 are also short-circuited there, and the section end 13d and the section end 14d are connected by the section end short circuit line 27. When connected, the left and right rails 13 and 14 are also short-circuited, and further, the section end 13b and the section end 14b are connected by the section end short-circuit line 24, and the left and right rails 13 and 14 are also short-circuited there. Further, one end of the circuit forming line 33 is connected to the section end short-circuit line 22 at the connection point 22c, and the other end is connected to the section end short-circuit line 24 at the connection point 24c. One end is connected to the section end short-circuit line 26 at a connection point 26c, and the other end is connected to the section end short-circuit line 27 at a connection point 27c.

そして、それらの区間端短絡ライン26,27に対しても、やはり上述した不平衡化手段25と同様の不平衡化手段が付設されている(なお、図では同じ符号“25”を付している)。
また、区間端短絡ライン21に付設されていた不平衡化手段25は、区間端短絡ライン22に移設されている。
さらに、電流プローブ51,52の接続先が、区間端短絡ライン22から、区間端短絡ライン21から位置付けの変わった区間内短絡ライン21aaへ、変更されている。
Further, unbalancing means similar to the above-mentioned unbalancing means 25 are also attached to these section end short-circuit lines 26 and 27 (in addition, the same reference numeral "25" is attached in the figure). ).
Moreover, the unbalancing means 25 attached to the section end short-circuit line 21 is relocated to the section end short-circuit line 22.
Furthermore, the connection destinations of the current probes 51 and 52 have been changed from the section end short circuit line 22 to the intra section short circuit line 21aa whose position has been changed from the section end short circuit line 21.

第2改造点を詳述すると、レール13の送信点13aaとレール14の送信点14aaとが区間内短絡ライン23aaによって短絡されるとともに、巡回電路形成ライン32の接続先が区間内短絡ライン23aaの中間の接続箇所23cになっている。
しかも、区間端短絡ライン22と同様の区間端短絡ライン24が区間端短絡ライン22の近くで別レール対13&14に対して接続されて、レール13の区間端13bとレール14の区間端14bとが区間端短絡ライン24によって短絡されるとともに、巡回電路形成ライン33の接続先が区間端短絡ライン24の中間の接続箇所24cになっている。
To explain the second modification point in detail, the transmission point 13aa of the rail 13 and the transmission point 14aa of the rail 14 are short-circuited by the intra-section short-circuit line 23aa, and the connection destination of the circuit forming line 32 is connected to the intra-section short-circuit line 23aa. This is an intermediate connection point 23c.
Moreover, a section end short-circuit line 24 similar to the section end short-circuit line 22 is connected to another rail pair 13 & 14 near the section end short-circuit line 22, so that the section end 13b of the rail 13 and the section end 14b of the rail 14 are connected. It is short-circuited by the section end short-circuit line 24, and the circuit forming line 33 is connected to a connection point 24c in the middle of the section end short-circuit line 24.

これにより、レール14の検査区間14cもレール13の検査区間13cと並列状態で巡回電路形成部材30に組み込まれるとともに、別レール対13&14の左右レールについても帰線電流が短絡されることになる。
また、上述した区間端短絡ライン24に対しても、上述した不平衡化手段25と同様の不平衡化手段が付設されている(図示に際しては同じ符号“25”を付している)。
As a result, the inspection section 14c of the rail 14 is also incorporated into the circuit forming member 30 in parallel with the inspection section 13c of the rail 13, and the return current is also short-circuited for the left and right rails of the separate rail pair 13 & 14.
Furthermore, an unbalancing means similar to the above-mentioned unbalancing means 25 is attached to the above-mentioned section end short-circuit line 24 (the same reference numeral "25" is given in the illustration).

さらに、区間内短絡ライン23aaのうち巡回電路形成ライン32の接続箇所23cよりもレール13の送信点13aa寄り部分には電流プローブ58(電流センサ,カレントトランスなど)が付設されて、レール13の検査区間13cを流れる分流信号i3が測定されるとともに、区間端短絡ライン23のうち接続箇所23cよりもレール14の区間端14a寄り部分には電流プローブ59(電流センサ,カレントトランスなど)が付設されて、レール14の検査区間14cを流れる分流信号i4が測定されるようになっている。分流信号i3の測定値k3や分流信号i4の測定値k4に基づき計測部50aと判定部60aによって別レール対13&14の破断に係る判定を行うようにもなっている。 Furthermore, a current probe 58 (current sensor, current transformer, etc.) is attached to a portion of the intra-section short-circuit line 23aa closer to the transmission point 13aa of the rail 13 than the connection point 23c of the circuit forming line 32 to inspect the rail 13. A shunt signal i3 flowing through the section 13c is measured, and a current probe 59 (current sensor, current transformer, etc.) is attached to a portion of the section end short circuit line 23 closer to the section end 14a of the rail 14 than the connection point 23c. , a shunt signal i4 flowing through the inspection section 14c of the rail 14 is measured. Based on the measured value k3 of the shunt signal i3 and the measured value k4 of the shunt signal i4, the measuring section 50a and the determining section 60a determine whether the separate rail pair 13 & 14 has broken.

この場合、レール対11&12の検査区間11c(12c)についてレール破断の有無や列車在線の有無に係る検出が行えるのに加えて同じレール対11&12の別の検査区間11e(12e)や別レール対13&14の検査区間13c(14c),13e(14e)についてもレール破断の有無や列車在線の有無に係る検出が行える。
そして、それに要する設備については、計測部と判定部はレール対11&12用の一セット(50&60)と別レール対13&14用の一セット(50a&60a)とで計二セット設置されるが、送信部40は送信パワーの大きな一台で済ませる。
そのため、設備費も設置作業費も節約することができる。
In this case, in addition to detecting the presence or absence of rail breakage and the presence or absence of a train on the inspection section 11c (12c) of the rail pair 11 & 12, it is also possible to detect the presence or absence of a rail break or the presence or absence of a train on the track, as well as another inspection section 11e (12e) of the same rail pair 11 & 12 or another inspection section 13 & 14 of the same rail pair 11 & 12. Regarding the inspection sections 13c (14c) and 13e (14e), it is also possible to detect the presence or absence of rail breakage and the presence or absence of trains on the track.
Regarding the equipment required for this, a total of two sets of measurement units and determination units are installed, one set (50 & 60) for rail pair 11 & 12 and one set (50 a & 60 a) for another rail pair 13 & 14, but transmitting unit 40 is All you need is one device with high transmitting power.
Therefore, equipment costs and installation work costs can be saved.

このようなレール破断検知装置70の動作を説明するが(図9,図10参照)、説明の明瞭化や簡素化のため検査信号i0等の伝達を双方向の片側だけ述べる。そうすると、送信部40から巡回電路形成部材30に送出された検査信号i0が、巡回電路形成ライン31と区間内短絡ライン21aaを経て、レール11の検査区間11cの分流信号i1とレール12の検査区間12cの分流信号i2の組と、レール11の検査区間11eの分流信号i5とレール12の検査区間12eの分流信号i6の組とに分かれる。 The operation of such a rail breakage detection device 70 will be described (see FIGS. 9 and 10), but for clarity and simplicity of explanation, only one side of the bidirectional transmission of the inspection signal i0, etc. will be described. Then, the test signal i0 sent from the transmitter 40 to the circuit forming member 30 passes through the circuit circuit forming line 31 and the intra-section short-circuit line 21aa, and then becomes the shunt signal i1 of the test section 11c of the rail 11 and the test signal i1 of the test section of the rail 12. 12c, a set of shunt signals i5 for the test section 11e of the rail 11, and a set of shunt signals i6 for the test section 12e of the rail 12.

それから分流信号i1,i2の組が巡回電路形成ライン33で合わさってから再びレール13の検査区間13cの分流信号i3とレール14の検査区間14cの分流信号i4とに分かれ、分流信号i5,i6の組が巡回電路形成ライン34で合わさってから再びレール13の検査区間13eの分流信号i7とレール14の検査区間14eの分流信号i8とに分かれる。
それから、それらi3,i4,i7,i8は、区間内短絡ライン23aaで合わさり、電路形成ライン32では検査信号i0になって送信部40に戻る。
Then, the pair of shunt signals i1 and i2 are combined at the circuit forming line 33, and then split again into the shunt signal i3 of the inspection section 13c of the rail 13 and the shunt signal i4 of the test section 14c of the rail 14, and the shunt signals i5 and i6 are After the sets are combined at the circuit forming line 34, they are separated again into a shunt signal i7 for the test section 13e of the rail 13 and a shunt signal i8 for the test section 14e of the rail 14.
Then, these signals i3, i4, i7, and i8 are combined at the intra-section short circuit line 23aa, and return to the transmitter 40 as a test signal i0 at the electric path forming line 32.

そのような信号伝達状態において、レール破断がどこにも無く列車在線も無ければ(図9(a)を参照)、分流信号i1と分流信号i2とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になり(図7の実線グラフの両端部を参照)、分流信号i3と分流信号i4とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になり、分流信号i5と分流信号i6とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になり、分流信号i7と分流信号i8とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になる。 In such a signal transmission state, if there are no rail breaks anywhere and no trains on the track (see Figure 9(a)), the diversion signal i1 and the diversion signal i2 will extend to the corresponding equilibrium state value (unbalance rate α) becomes the set unbalanced state (see both ends of the solid line graph in Fig. 7), and the shunt signal i3 and the shunt signal i4 extend, and the corresponding equilibrium state value (unbalance rate α) becomes the set unbalanced state. Then, the shunt signal i5 and the shunt signal i6 extend to the corresponding equilibrium state value (unbalance rate α) to the set unbalanced state, and the shunt signal i7 and the shunt signal i8 extend to the corresponding equilibrium state. value (unbalance rate α) becomes the set unbalanced state.

そして、分流信号i1,i5の和電流(i1+i5)と分流信号i2,i6の和電流(i2+i6)とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になり、分流信号i3,i7の和電流(i3+i7)と分流信号i4,i8の和電流(i4+i8)とが延いては該当する平衡状態値(不平衡率α)が設定不平衡状態になる。 Then, as the sum current (i1+i5) of the shunt signals i1, i5 and the sum current (i2+i6) of the shunt signals i2, i6 extend, the corresponding equilibrium state value (unbalance rate α) becomes the set unbalanced state, and the shunt The sum current (i3+i7) of the signals i3 and i7 and the sum current (i4+i8) of the shunt signals i4 and i8 are extended, and the corresponding equilibrium state value (unbalance rate α) becomes the set unbalanced state.

そうすると、和電流(i1+i5)の測定値k1と和電流(i2+i6)の測定値k2とに係る平衡状態値(不平衡率α)が設定不平衡状態になるため、判定部60によって、レール11の検査区間11c,11e及びレール12の検査区間12c,12eについては、「設定不平衡状態」になるので、『レール破断が無く列車在線も無い状態』という判定が出る。 Then, the equilibrium state value (unbalance rate α) related to the measured value k1 of the sum current (i1+i5) and the measured value k2 of the sum current (i2+i6) becomes the set unbalanced state, so the determination unit 60 determines that the rail 11 is Regarding the inspection sections 11c and 11e and the inspection sections 12c and 12e of the rail 12, they are in a "setting unbalanced state", so a determination is made that "there is no rail breakage and there is no train on the track".

また、和電流(i3+i7)の測定値k3と和電流(i4+i8)の測定値k4とに係る平衡状態値(不平衡率α)が設定不平衡状態になるため、判定部60aによって、レール13の検査区間13c,13e及びレール14の検査区間14c,14eについても、「設定不平衡状態」になるので、『レール破断が無く列車在線も無い状態』という判定が出る。 Further, since the balanced state value (unbalance rate α) related to the measured value k3 of the sum current (i3+i7) and the measured value k4 of the sum current (i4+i8) becomes the set unbalanced state, the determination unit 60a determines that the rail 13 is The inspection sections 13c and 13e and the inspection sections 14c and 14e of the rail 14 are also in the "setting imbalance state", so a determination is made that "there is no rail breakage and there is no train on the track".

これに対し、レール対11&12に係る何れかの検査区間11c,11e,12c,12eの何処か例えば検査区間12eにレール破断12xが発生すると(図9(b)参照)、繰り返しとなる煩雑な説明は割愛するが、平衡状態値(不平衡率α)が大不平衡状態になるので(図5において海側レール12の破断に対応している一点鎖線グラフの両端部を参照)、『レール破断が有る』との判定が出る。
また、レール対11&12に係る何れかの検査区間11c,11e,12c,12eの何処か例えば検査区間11e,12eに列車が進入すると、やはり簡潔に述べると、平衡状態値(不平衡率α)が小不平衡状態になるので(図7の実線グラフのうち列車進入位置と送信点との中間部分を参照)、『列車在線が有る』といった判定が出る。
On the other hand, if a rail breakage 12x occurs somewhere in any of the inspection sections 11c, 11e, 12c, 12e related to the rail pair 11 & 12, for example, in the inspection section 12e (see FIG. 9(b)), the explanation becomes repetitive and complicated. Although omitted, since the equilibrium state value (unbalance rate α) becomes a large unbalanced state (see both ends of the dashed-dotted line graph corresponding to the breakage of the sea side rail 12 in Fig. 5), it is assumed that the "rail breakage" The judgment is that there is.
Furthermore, when a train enters any inspection section 11c, 11e, 12c, 12e related to rail pair 11 & 12, for example, inspection section 11e, 12e, the equilibrium state value (unbalance rate α) Since a small unbalanced state occurs (see the intermediate part between the train approach position and the transmission point in the solid line graph in FIG. 7), a determination is made that ``there is a train on the line''.

このように、レール破断検知装置70(複線用の公知改良例2)にあっては、複線10の検査区間11c,11e,12c,12e,13c,13e,14c,14eについてレール破断の有無や列車在線の有無を検出することができる。
また、レール破断検知装置70(複線用の公知改良例2)は、検査信号i0の送受信に直接的に関わる巡回電路形成ライン31,32と区間内短絡ライン21aa,23aaとが検査区間の外端(11b,11dなど)でなく内側(11aa,12aaなど)に位置しているので、レール長手方向へ繋げて設置するのが容易なものにもなっている。
In this way, the rail breakage detection device 70 (known improvement example 2 for double track) detects the presence or absence of rail breakage and the train It is possible to detect the presence or absence of a line.
Furthermore, in the rail breakage detection device 70 (known improvement example 2 for double track), the circuit forming lines 31 and 32 directly involved in the transmission and reception of the inspection signal i0 and the intra-section short circuit lines 21aa and 23aa are located at the outer ends of the inspection section. Since it is located inside (11aa, 12aa, etc.) rather than (11b, 11d, etc.), it is also easy to connect and install in the longitudinal direction of the rail.

特開2021-046163号公報JP 2021-046163 Publication 特開2021-066353号公報Japanese Patent Application Publication No. 2021-066353

鉄道技術者のための信号概論「軌道回路」 社団法人「日本鉄道電気技術協会」出版、平成17年5月20日 改訂版2刷発行、p.3~5Introduction to signals for railway engineers "Track circuits" Published by "Japan Railway Electrical Technology Association", May 20, 2005, 2nd revised edition published, p. 3-5

複線用の公知改良例2として上述したレール破断検知装置70は、要約すると、「鉄道の軌道をなすレール対11&12,13&14の複数箇所に付設されて夫々の付設箇所で前記レール対の左右レールについて帰線電流を短絡させる複数の区間端短絡ライン22,26,24,27及び区間内短絡ライン21aa,23aaと、前記区間端短絡ライン及び前記区間内短絡ラインに接続されて前記レール対と共に巡回する電路を形成する巡回電路形成部材30(31,32,33,34)と、前記巡回電路形成部材30を介して前記区間内短絡ライン21aa,23aaに対して帰線電流とは異なる検査信号を送出する送信部40と、前記区間内短絡ライン21aa,23aaについて巡回電路形成部材30の接続箇所の両側で前記検査信号に係る一対の分流信号k1&k2,k3&k4を測定する計測部50,50aと、対をなす前記分流信号の釣り合い状態をレール破断の無い状態では平衡状態から遠ざける又は不平衡状態にする不平衡化手段25と、対をなす前記分流信号の測定値に基づいてレール破断と列車在線とに係る判定を行う判定部60,60aとを備えているレール破断検知装置」と言える。 In summary, the rail breakage detection device 70 described above as a known improvement example 2 for double track is ``attached to multiple locations of the rail pairs 11 & 12, 13 & 14 forming the railway track, and detects the left and right rails of the rail pair at each attached location. A plurality of section end short circuit lines 22, 26, 24, 27 and intra section short circuit lines 21aa, 23aa that short circuit the return current are connected to the section end short circuit line and the intra section short circuit line and circulate together with the rail pair. A test signal different from the return current is sent to the intra-section short-circuit lines 21aa and 23aa through the circuit circuit forming member 30 (31, 32, 33, 34) that forms the circuit and the circuit circuit formation member 30. a pair of measuring units 50, 50a that measure a pair of shunt signals k1 & k2, k3 & k4 related to the test signal on both sides of the connection point of the circuit forming member 30 for the intra-section short circuit lines 21aa, 23aa; an unbalancing means 25 that moves the balanced state of the shunt signal away from the balanced state or into an unbalanced state in a state where there is no rail breakage; It can be said that the rail breakage detection device is equipped with determination units 60 and 60a that perform such determination.

更に、前記判定部が、対をなす前記分流信号について平衡状態にあるのか不平衡状態にあるのかを判別して、前記不平衡化手段の不平衡化に対応した設定不平衡状態にあると判別したときにはレール破断が無く列車在線も無い状態であると決定し、前記不平衡化手段の不平衡化に対応した設定不平衡状態よりも不平衡度合の大きい大不平衡状態にあると判別したときにはレール破断が有ると決定し、前記不平衡化手段の不平衡化に対応した設定不平衡状態よりも不平衡度合の小さい小不平衡状態にあると判別したときには列車が在線していると決定することで、レール破断等に係る判定が出されるようになっている。 Furthermore, the determination unit determines whether the pair of branch signals are in a balanced state or an unbalanced state, and determines that the divided signals are in a set unbalanced state corresponding to the unbalanced state of the unbalanced means. When it is determined that there is no rail breakage and no train on the track, and when it is determined that the state is in a large unbalanced state where the degree of unbalance is greater than the set unbalanced state corresponding to the unbalanced state of the unbalanced means. When it is determined that there is a rail breakage and it is determined that the train is in a small unbalanced state where the degree of unbalance is smaller than the set unbalanced state corresponding to the unbalanced state of the unbalanced means, it is determined that the train is on the line. As a result, a judgment regarding rail breakage, etc. is issued.

そのようなレール破断検知装置70を試作して複線10に設置し、そこに列車や保守用車を走行させて模試や実験を行ったところ、新幹線や特急といった高速電車の走行速度に匹敵する高速走行時であれ、それより遅い保守用車の走行速度に該当する低速走行時であれ、不平衡率α(平衡状態値k0)が大不平衡状態なのか小不平衡状態なのかそれらの中間の設定不平衡状態なのかに応じてレール破断状態なのか列車走行状態なのか何れでも無い通常状態なのかを分別することができた(図7参照)。 When such a rail break detection device 70 was prototyped and installed on the double track 10, and a train or a maintenance vehicle was run on it for mock tests and experiments, it was found that it was able to detect high speeds comparable to the running speed of high-speed trains such as Shinkansen and limited express trains. Whether the unbalance rate α (equilibrium state value k0) is a large unbalanced state, a small unbalanced state, or an intermediate state, whether the unbalance rate α (equilibrium state value k0) is a large unbalanced state or a small unbalanced state, whether it is during running or at a low speed corresponding to the slower running speed of a maintenance vehicle. Depending on whether the setting was unbalanced or not, it was possible to distinguish whether the rail was in a broken state, a train was running, or a normal state (see FIG. 7).

ところが、設定条件を種々変えながら実験を繰り返したところ、列車走行中に短時間ではあるが一時的に不平衡率αが小不平衡状態から設定不平衡状態になることが判明した。
しかし、例え設定不平衡状態への遷移は一時的なものであっても不所望な誤検知を招きかねない。そして更なる状況把握のため、列車走行速度を下げてみたところ設定不平衡状態に遷移している状態の継続時間が長くなり、さらには、該当箇所に列車を停止させると不所望な遷移状態(設定不平衡状態)が継続してしまうことも判明した。
However, after repeating experiments while changing various setting conditions, it was found that the unbalance rate α temporarily changed from a small unbalanced state to a set unbalanced state, albeit for a short time while the train was running.
However, even if the transition to the setting imbalance state is temporary, it may lead to undesirable false detection. In order to further understand the situation, we tried lowering the train running speed, but found that the duration of the transition to the set unbalanced state became longer, and furthermore, when the train was stopped at the relevant location, an undesirable transition state ( It was also found that the setting imbalance state) continued.

そこで、送信点からの距離を横軸に採り縦軸に不平衡率αを採ったグラフにて確認したところ(図10参照)、列車走行時に送信点近傍で不平衡率αが本来の小不平衡状態から不所望な設定不平衡状態へ遷移してしまう「列車検知不可能区間」が存在する、ということが判明した。
そして、そのような送信点近傍の列車検知不可能区間に保守用車等が止まり続けると、その状況は通常では考えられないが完全には否定できないので念のため考慮すると、線路上への車両等の置き忘れといった不所望な事態の見逃しを招くことにもなりかねない。
Therefore, when we checked a graph in which the distance from the transmission point was plotted on the horizontal axis and the unbalance rate α was plotted on the vertical axis (see Figure 10), we found that when the train was running, the unbalance rate α was smaller than the original one in the vicinity of the transmission point. It has been found that there is a ``train detection impossible section'' where the train transitions from an equilibrium state to an undesirable setting imbalance state.
If maintenance vehicles, etc. continue to stop in areas where trains cannot be detected near such transmission points, this situation is normally unthinkable, but cannot be completely ruled out. This may lead to undesirable situations such as misplacing items such as items.

このため、上述の列車検知不可能区間についても列車等停止状態まで含めて列車走行状態なのか通常状態なのかを分別できるように改良することが基本的な技術課題となる。
しかも、その際、コストアップ等の回避や抑制のため計測部等の拡張を回避しつつ、判定部の機能の変更や拡張にて改良を具現化することも更なる技術課題となる。
そして、そのような技術課題の解決に役立ちそうな判定材料として着目した事象が、区間端の列車進入出位置と区間内の送信点とにおける小不平衡状態と設定不平衡状態との状態遷移状況の相違である。
Therefore, a basic technical challenge is to improve the above-mentioned section where trains cannot be detected so that it can be distinguished whether the train is running or the normal condition, including the stationary state.
Moreover, in this case, it becomes a further technical problem to realize improvements by changing or expanding the functions of the determination section while avoiding expansion of the measurement section and the like in order to avoid or suppress cost increases.
The event that we focused on as a judgment material that would be useful in solving such technical issues was the state transition situation between the small unbalanced state and the set unbalanced state at the train entry/exit position at the end of the section and the transmission point within the section. This is the difference.

そのような判定材料の具体例を図10のグラフで示すと、列車走行時の白抜き実線グラフにおける列車進入点・進出点と列車検知不可能区間とに係る非水平部分の斜度の相違が該当する。
しかしながら、その斜度は、変位(距離の差)当たりの不平衡率αの変化率β(以下、変位当たり変化率βという)であり、その変位当たり変化率βは列車進入点・進出点や列車検知不可能区間とにおける非水平部分における縦軸方向の不平衡率の差Δαを横軸方向の距離の差Δmで除して得られるものである。
A specific example of such judgment material is shown in the graph of FIG. 10. The difference in slope of the non-horizontal portion between the train approach point/departure point and the train detection impossible section in the white solid line graph when the train is running is shown in Figure 10. Applicable.
However, the slope is the rate of change β of the unbalance rate α per displacement (difference in distance) (hereinafter referred to as the rate of change per displacement β), and the rate of change per displacement β is the change rate β of the unbalance rate α per displacement (difference in distance). It is obtained by dividing the difference Δα in the unbalance rate in the vertical axis direction between the non-horizontal portion and the train detection impossible section by the difference Δm in the distance in the horizontal axis direction.

そのため、走行体の精密な位置情報も速度情報も持たないレール破断検知装置にとっては、変位当たり変化率βは算出することが困難である。
そこで、そのような物理量(β)でなく計測や算出の可能な他の物理量を用いることにより、列車等が送信点近傍の列車検知不可能区間に留まっているのか検査区間から出たのかをレール破断検知装置が判別できるように改良することが具体的な技術課題となる。
Therefore, it is difficult for a rail breakage detection device that does not have precise position information or speed information of the traveling object to calculate the rate of change β per displacement.
Therefore, by using other physical quantities that can be measured and calculated instead of such a physical quantity (β), it is possible to determine whether a train, etc. is staying in an undetectable section near the transmission point or has left the inspection section. A specific technical challenge is to improve the fracture detection device so that it can discriminate.

本発明のレール破断検知装置は(解決手段1)、このような課題を解決するために創案されたものであり、
鉄道の軌道をなすレール対の複数箇所に付設されて夫々の付設箇所で前記レール対の左右レールについて帰線電流を短絡させる複数の区間端短絡ライン及び区間内短絡ラインと、前記区間端短絡ライン及び前記区間内短絡ラインに接続されて前記レール対と共に巡回する電路を形成する巡回電路形成部材と、前記巡回電路形成部材を介して前記区間内短絡ラインに対して帰線電流とは異なる検査信号を送出する送信部と、前記区間内短絡ラインについて巡回電路形成部材の接続箇所の両側で前記検査信号に係る一対の分流信号を測定する計測部と、対をなす前記分流信号の釣り合い状態をレール破断の無い状態では平衡状態から遠ざける又は不平衡状態にする不平衡化手段と、対をなす前記分流信号の測定値に基づいてレール破断と列車在線とに係る判定を行う判定部とを備えているレール破断検知装置において、
前記不平衡状態の度合いを比率で示す不平衡率を前記分流信号の測定値から算出する手段と、前記不平衡率の経時変化に基づいてその時間当たり変化率を算出する手段とを具備し、前記判定手段が前記不平衡率と前記時間当たり変化率との変化に応じて在線状態と非在線状態とレール破断状態とのうち何れか一つの状態を選択するようになっていることを特徴とする。
The rail breakage detection device of the present invention (solution means 1) was devised to solve these problems,
A plurality of section end short-circuit lines and intra-section short-circuit lines that are attached to a plurality of locations on a rail pair forming a railway track and short-circuit the return current for the left and right rails of the rail pair at each attached location, and the section end short-circuit line and a circuit path forming member that is connected to the intra-section short-circuit line and forms an electric path that circulates together with the rail pair, and a test signal different from a return current to the intra-section short-circuit line via the circuit circuit formation member. a transmitting unit that transmits a signal, a measuring unit that measures a pair of shunt signals related to the test signal on both sides of the connecting point of the circulating circuit forming member for the intra-section short-circuit line, and a measuring unit that measures a pair of shunt signals related to the test signal, In a state where there is no break, it is provided with an unbalancer that moves away from an equilibrium state or brings it into an unbalanced state, and a determination unit that makes a determination regarding a rail break and a train on the track based on the measured values of the paired shunt signals. In the rail breakage detection device,
comprising means for calculating an unbalance rate indicating the degree of the unbalanced state as a ratio from the measured value of the shunt signal, and means for calculating a rate of change per hour based on a change in the unbalance rate over time, The determining means is configured to select one of a track presence state, a non-track state, and a rail broken state according to changes in the unbalance rate and the rate of change per hour. do.

また、本発明のレール破断検知装置は(解決手段2)、上記解決手段1のレール破断検知装置であって、前記判定手段が、動作開始時には、前記不平衡率に係る大中小の分類に応じて前記在線状態と前記非在線状態と前記レール破断状態とから何れか一つを選出して初期状態に採用するようになっている、ことを特徴とする。 Moreover, the rail breakage detection device of the present invention (solution means 2) is the rail breakage detection device of the above-mentioned solution means 1, in which the determination means, at the start of operation, The present invention is characterized in that one of the on-track state, the non-on-track state, and the rail broken state is selected and adopted as the initial state.

さらに、本発明のレール破断検知装置は(解決手段3)、上記解決手段2のレール破断検知装置であって、前記判定手段が、前記不平衡率に係る大中小の分類に加えて、前記時間当たり変化率に係る大小の分類も、遷移先状態の選択要因とするものである、ことを特徴とする。 Furthermore, the rail breakage detection device of the present invention (solution means 3) is the rail breakage detection device of the above-mentioned solution means 2, in which the judgment means is configured to classify the unbalance rate into large, medium and small, and It is characterized in that the size classification related to the winning rate of change is also used as a factor in selecting the transition destination state.

また、本発明のレール破断検知装置は(解決手段4)、上記解決手段3のレール破断検知装置であって、前記判定手段が、前記在線状態のときには、前記不平衡率の分類が小の間は前記在線状態を維持し、前記不平衡率の分類が中になっても前記時間当たり変化率が小であれば前記在線状態を維持し、前記不平衡率の分類が中になり而も前記時間当たり変化率が大になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする。 Moreover, the rail breakage detection device of the present invention (solution means 4) is the rail breakage detection device of the above-mentioned solution means 3, in which the determination means determines that when the track is present, the classification of the unbalance rate is small. maintains the line presence state, and even if the unbalance rate classification becomes medium, if the hourly change rate is small, maintains the line presence state; When the rate of change per hour becomes large, the state transitions to the non-track state, and when the classification of the unbalance rate becomes large, the state transitions to the rail broken state. .

また、本発明のレール破断検知装置は(解決手段5)、上記解決手段3のレール破断検知装置であって、前記判定手段が、前記非在線状態のときには、前記不平衡率の分類が中の間は前記非在線状態を維持し、前記不平衡率の分類が小になっても前記時間当たり変化率が小であれば前記非在線状態を維持し、前記不平衡率の分類が小になり而も前記時間当たり変化率が大になったときには前記在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする。 Moreover, the rail breakage detection device of the present invention (solution means 5) is the rail breakage detection device of the above-mentioned solution means 3, in which the determination means determines that when the line is not present, the unbalance rate classification is medium. If the line-free state is maintained, and even if the unbalance rate classification becomes small, the hourly change rate is small, the line-free state is maintained, and the imbalance rate classification becomes small. When the rate of change per hour becomes large, the state transitions to the track presence state, and when the classification of the unbalance rate becomes large, the state changes to the rail broken state. .

また、本発明のレール破断検知装置は(解決手段6)、上記解決手段3のレール破断検知装置であって、前記判定手段が、
前記レール破断状態のときには、前記不平衡率の分類が大の間は前記レール破断状態を維持し、前記不平衡率の分類が中になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が小になったときには前記在線状態に状態遷移し、
前記在線状態のときには、前記不平衡率の分類が小の間は前記在線状態を維持し、前記不平衡率の分類が中になっても前記時間当たり変化率が小であれば前記在線状態を維持し、前記不平衡率の分類が中になり而も前記時間当たり変化率が大になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移し、
前記非在線状態のときには、前記不平衡率の分類が中の間は前記非在線状態を維持し、前記不平衡率の分類が小になっても前記時間当たり変化率が小であれば前記非在線状態を維持し、前記不平衡率の分類が小になり而も前記時間当たり変化率が大になったときには前記在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする。
Moreover, the rail breakage detection device of the present invention (solution means 6) is the rail breakage detection device of the above-mentioned solution means 3, in which the determination means includes:
When the rail is in the broken state, the rail broken state is maintained as long as the unbalance rate classification is high, and when the unbalance rate is medium, the state transitions to the non-track state, and the unbalanced state is maintained. When the rate classification becomes small, the state transitions to the on-line state,
When in the line presence state, the line presence state is maintained as long as the unbalance rate classification is small, and even if the imbalance rate classification is medium, if the hourly rate of change is small, the line presence state is maintained. When the classification of the imbalance rate becomes medium and the rate of change per hour becomes large, the state transitions to the non-track state, and when the classification of the imbalance rate becomes large, the rail breaks. State transition to state,
When in the non-track state, the non-track state is maintained while the unbalance rate classification is medium, and even if the unbalance rate classification becomes small, if the hourly rate of change is small, the non-track state is maintained. is maintained, and when the classification of the unbalance rate becomes small and the rate of change per hour becomes large, the state transitions to the on-track state, and when the classification of the unbalance rate becomes large, the rail breaks. It is characterized by a state transition from state to state.

このような本発明のレール破断検知装置にあっては(解決手段1)、元々利用可能な不平衡率(α)から算出しうる時間当たり変化率(γ)を用いて状態判別がなされるようにしたことにより、算出困難な変位当たり変化率(β)を用いなくても、列車等が送信点近傍の列車検知不可能区間に留まっているのか検査区間から出たのかをレール破断検知装置が判別できる。
したがって、この発明によれば、上述の具体的な技術課題を解決することができる。
In such a rail breakage detection device of the present invention (solution 1), the state is determined using the rate of change per time (γ) that can be calculated from the originally available unbalance rate (α). By doing so, the rail breakage detection device can determine whether a train, etc. remains in the undetectable section near the transmission point or has left the inspection section, without using the rate of change per displacement (β), which is difficult to calculate. Can be distinguished.
Therefore, according to the present invention, the above-mentioned specific technical problem can be solved.

また、本発明のレール破断検知装置にあっては(解決手段2)、動作開始時の一瞬だけは、不平衡率(α)の経時変化に基づく時間当たり変化率(γ)が取得できないので、不平衡率(α)だけで初期状態が仮決めされるが、時間当たり変化率(γ)は在線状態(小不平衡状態)と非在線状態(設定不平衡状態)との選別のために導入されたものであり最も重要なレール破断状態(大不平衡状態)の選別には影響しないので、課題解決手段を簡便に具現化することができる。 In addition, in the rail breakage detection device of the present invention (solution means 2), the rate of change per hour (γ) based on the change over time of the unbalance rate (α) cannot be obtained only for a moment at the start of operation. The initial state is tentatively determined only by the unbalance rate (α), but the rate of change per hour (γ) is introduced to distinguish between the on-line state (small unbalanced state) and the off-line state (set unbalanced state). Since it does not affect the selection of the most important rail broken state (large unbalanced state), the problem solving means can be easily implemented.

さらに、本発明のレール破断検知装置にあっては(解決手段3)、時間当たり変化率(γ)に基づく分類は、送信点を含む列車検知不可能区間と送信点から離れた区間端とに係る物性値の違いを利用するものであるから、遷移先状態の選択には大小の分類で足りるので、課題解決手段を簡便に具現化することができる。 Furthermore, in the rail breakage detection device of the present invention (solution 3), classification based on the rate of change per hour (γ) is performed on sections where trains cannot be detected, including the transmission point, and section ends distant from the transmission point. Since the difference in physical property values is utilized, classification of the transition destination state by size is sufficient for selecting the transition destination state, so the problem solving means can be easily implemented.

また、本発明のレール破断検知装置にあっては(解決手段4)、在線状態にあるときの状態遷移については、不平衡率(α)が小の間は従来通り在線状態を維持し、不平衡率(α)が大になったときにも従来通りレール破断状態へ遷移するが、不平衡率(α)が中になったときには、従来のように直ちに非在線状態へ遷移するのでなく、更に時間当たり変化率(γ)の確認も行われて、時間当たり変化率(γ)が大のときには非在線状態へ遷移する一方、時間当たり変化率(γ)が小のときには従来と異なり状態変化無しとみなして在線状態を維持するようになっている。
これにより、時間当たり変化率(γ)が小になる列車検知不可能区間に列車が入っているときにも、正しく在線状態が維持される。そのため、このレール破断検知装置にあっては、列車等が送信点近傍の列車検知不可能区間に留まっていても在線状態が正しく判別される。
In addition, in the rail breakage detection device of the present invention (Solution 4), regarding the state transition when the track is in the track state, the track track state is maintained as before while the unbalance rate (α) is small, and the track is not in the track state. When the balance ratio (α) becomes large, the rail breaks state as before, but when the unbalance ratio (α) becomes medium, instead of immediately transitioning to the non-track state as in the past, Furthermore, the rate of change per hour (γ) is also confirmed, and when the rate of change per hour (γ) is large, the state transitions to a non-line state, whereas when the rate of change per hour (γ) is small, the state changes unlike before. It is assumed that there is no line and maintains the line status.
As a result, even when a train is in an undetectable section where the rate of change per hour (γ) is small, the on-track state is maintained correctly. Therefore, with this rail breakage detection device, even if a train or the like remains in a section where trains cannot be detected near the transmission point, the on-track status can be correctly determined.

また、本発明のレール破断検知装置にあっては(解決手段5)、非在線状態にあるときの状態遷移については、不平衡率(α)が中の間は従来通り非在線状態を維持し、不平衡率(α)が大になったときにも従来通りレール破断状態へ遷移するが、不平衡率(α)が小になったときには、従来のように直ちに在線状態へ遷移するのでなく、更に時間当たり変化率(γ)の確認も行われて、時間当たり変化率(γ)が大のときには在線状態へ遷移する一方、時間当たり変化率(γ)が小のときには従来と異なり状態変化無しとみなして非在線状態を維持するようになっている。これにより、列車検知不可能区間も含めて検査区間の中に列車が存在していなければ非在線状態が維持される。そのため、このレール破断検知装置にあっては、列車等が検査区間に留まっていないことが正しく判別される。 In addition, in the rail breakage detection device of the present invention (Solution 5), regarding the state transition when the track is not present, as long as the unbalance rate (α) is in the middle, the non-track state is maintained as before, and the track is not present. When the balance rate (α) becomes large, the state transitions to the rail broken state as before, but when the unbalance rate (α) becomes small, instead of immediately transitioning to the track status as in the past, the state changes further. The rate of change per hour (γ) is also confirmed, and when the rate of change per hour (γ) is large, the state transitions to the on-line state, but when the rate of change per hour (γ) is small, the state is not changed, unlike in the past. It is designed to maintain a non-located state. As a result, if there are no trains in the inspection section, including the section where trains cannot be detected, the non-track state is maintained. Therefore, this rail breakage detection device correctly determines that the train or the like does not remain in the inspection section.

また、本発明のレール破断検知装置にあっては(解決手段6)、上述したように不平衡率(α)と時間当たり変化率(γ)とに基づいて在線状態と非在線状態とを的確に判別することができるのに加えて、不平衡率(α)に基づいてレール破断状態も的確に判別することができる。 Moreover, in the rail breakage detection device of the present invention (solution means 6), the track presence state and the non-track state can be accurately determined based on the unbalance rate (α) and the rate of change per hour (γ), as described above. In addition to being able to determine whether the rail is broken or not, it is also possible to accurately determine the rail fracture state based on the unbalance rate (α).

本発明の実施例1について、レール破断検知装置の構造を示し、(a)が鉄道の軌道の典型例である複線部分に設置されたレール破断検知装置に係る概要ブロック図であり、(b)がレール破断検知装置の判定部の機能を示す状態遷移図である。Regarding Example 1 of the present invention, the structure of the rail breakage detection device is shown, and (a) is a schematic block diagram related to the rail breakage detection device installed on a double track section that is a typical example of a railway track, and (b) FIG. 3 is a state transition diagram showing the function of the determination section of the rail breakage detection device. (a),(b)何れも晴天時の高速走行に係る特性グラフであり、(a)は、高速な列車の通過時の不平衡率αを縦軸にとり、経過時間tを横軸にとって、不平衡率αの経時変化を示したグラフであり、(b)は、その際における「不平衡率αの時間当たり変化率γ」を縦軸にとり、送信点からの距離を横軸にとって、時間当たり変化率γの遷移状態を走行位置基準で示したグラフである。(a) and (b) are both characteristic graphs related to high-speed running in clear weather; (a) shows the unbalance rate α when a high-speed train passes on the vertical axis, and the elapsed time t on the horizontal axis; It is a graph showing the change in the unbalance rate α over time, and (b) shows the change over time, with the vertical axis representing the “change rate γ per hour of the unbalance rate α” and the horizontal axis representing the distance from the transmission point. It is a graph showing the transition state of the hit change rate γ based on the traveling position. 同様に(a)が不平衡率αの経時変化を示すとともに(b)が時間当たり変化率γの走行位置毎の変化を示すが、何れも雨天時の高速走行に係る特性グラフである。Similarly, (a) shows the change over time in the unbalance rate α, and (b) shows the change in the hourly change rate γ for each driving position, both of which are characteristic graphs related to high-speed driving in rainy weather. 同様に(a)が不平衡率αの経時変化を示すとともに(b)が時間当たり変化率γの走行位置毎の変化を示すが、何れも晴天時の低速走行に係る特性グラフである。Similarly, (a) shows the change over time in the unbalance rate α, and (b) shows the change in the hourly change rate γ for each driving position, both of which are characteristic graphs related to low-speed driving on a clear day. 同様に(a)が不平衡率αの経時変化を示すとともに(b)が時間当たり変化率γの走行位置毎の変化を示すが、何れも雨天時の低速走行に係る特性グラフである。Similarly, (a) shows the change over time in the unbalance rate α, and (b) shows the change in the hourly change rate γ for each driving position, both of which are characteristic graphs related to low-speed driving in rainy weather. 背景技術を示す従来のレール破断検知装置のうち単線用の公知改良例1に係り、(a)が鉄道の軌道の典型例である複線におけるレールの配置例を示し、(b)が単線部分に設置されたレール破断検知装置に係る概要ブロック図であり、(c)が計測部と判定部とに係る詳細ブロック図である。Regarding the known improvement example 1 for single track among conventional rail breakage detection devices showing the background art, (a) shows an example of rail arrangement on a double track, which is a typical example of a railway track, and (b) shows an example of rail arrangement on a single track section. It is a schematic block diagram concerning the installed rail breakage detection device, and (c) is a detailed block diagram concerning a measurement part and a judgment part. 軌道回路の平衡状態を不平衡率で示す模式図である。It is a schematic diagram which shows the equilibrium state of a track circuit by an unbalance rate. 背景技術を示す従来のレール破断検知装置のうち複線用の公知改良例2に係り、レール破断検知装置の構造を示すブロック図である。It is a block diagram which shows the structure of the rail breakage detection apparatus concerning the publicly known improvement example 2 for double tracks among the conventional rail breakage detection apparatuses which show background art. 上記の公知改良例2に係り、レール破断検知装置の動作状態を示し、(a)が通常状態(設定不平衡状態)であり、(b)がレール破断状態(大不平衡状態)であり、(c)が列車検知状態の(小不平衡状態)である。Regarding the above-mentioned known improvement example 2, the operating state of the rail breakage detection device is shown, (a) is the normal state (set unbalanced state), (b) is the rail broken state (large unbalanced state), (c) is the train detection state (small imbalance state). 上記の公知改良例2に係り、送信点からの距離を横軸に採り縦軸に不平衡率を採ったグラフである。It is a graph in which the distance from the transmission point is plotted on the horizontal axis and the unbalance rate is plotted on the vertical axis, according to the above-mentioned known improvement example 2.

このような本発明のレール破断検知装置について、これを実施するための具体的な形態を、以下の実施例1により説明する。
図1~5に示した実施例1は、上述した解決手段1~6(出願当初の請求項1~6)を総て具現化したものである。
なお、それらの図示に際しては、詳細で煩雑な回路の図示は割愛し、簡明化等のため、ブロック図を多用して、発明の説明に必要なものや関連するものを中心に図示した。
A specific form for implementing the rail breakage detection device of the present invention will be described with reference to Example 1 below.
Embodiment 1 shown in FIGS. 1 to 5 embodies all of the above-mentioned solutions 1 to 6 (claims 1 to 6 originally filed).
Note that when illustrating these figures, detailed and complicated circuits are omitted, and block diagrams are frequently used for the sake of simplification, etc., and only those necessary for explaining the invention and those related to the invention are illustrated.

本発明のレール破断検知装置の実施例1について、その具体的な構成を、図1を引用して説明する。
図1(a)は、レール破断検知装置80の構造を示し、鉄道の軌道の典型例である複線部分11~14に設置されたレール破断検知装置80に係る概要ブロック図である。
図1(b)は、該装置80のうち判定部82の機能を示す状態遷移図である。
The specific configuration of Example 1 of the rail breakage detection device of the present invention will be described with reference to FIG.
FIG. 1(a) shows the structure of a rail breakage detection device 80, and is a schematic block diagram of the rail breakage detection device 80 installed on double track sections 11 to 14, which are a typical example of a railway track.
FIG. 1(b) is a state transition diagram showing the function of the determination unit 82 of the device 80.

図2(a)~図5(a)は、何れも、不平衡率αを縦軸にとり、経過時間tを横軸にとって、列車通過時の不平衡率αの経時変化を示したグラフである。
図2(b)~図5(b)は、不平衡率αの時間当たり変化率γを縦軸にとり、送信点からの距離を横軸にとって、時間当たり変化率γの遷移状態を走行位置基準で示したグラフである。
それらのうち、図2は晴天下で高速走行したときのものであり、図3は雨天下で高速走行したときのものであり、図4は晴天下で低速走行したときのものであり、図5は雨天下で低速走行したときのものである。
2(a) to 5(a) are graphs showing changes over time in the unbalance rate α when a train passes, with the unbalance rate α taken as the vertical axis and the elapsed time t taken as the horizontal axis. .
Figures 2(b) to 5(b) show the transition state of the hourly rate of change γ with the vertical axis representing the rate of change γ of the unbalance rate α, the distance from the transmission point as the horizontal axis, and the traveling position reference. This is the graph shown in .
Of these, Figure 2 shows the results when driving at high speed under clear skies, Figure 3 shows the results when driving at high speed under rainy weather, Figure 4 shows the results when driving at low speed under clear skies, and Figure 4 shows the results when driving at low speed under clear skies. 5 is when driving at low speed in rainy weather.

レール破断検知装置80は(図1(a)参照)、既述した複線用の公知改良例2であるレール破断検知装置70の一部を改造したものであり、そのレール破断検知装置70と相違するのは、既述の計測部50,51aがそれぞれ計測部81,81aになった点と、既述の判定部60,60aがそれぞれ判定部82,82aになった点である。
また、計測部81や判定部82と計測部81aや判定部82aとの相違点も、既述のレール破断検知装置70と同様であり、計測対象や判定対象がレール対11&12なのか別レール対13&14なのかという点である。
そこで、繰り返しとなる説明は割愛し、計測部81と判定部82について詳述する。
The rail breakage detection device 80 (see FIG. 1(a)) is a partially modified version of the rail breakage detection device 70, which is the publicly known improved example 2 for double tracks, and is different from the rail breakage detection device 70. The above-mentioned measurement units 50 and 51a have become measurement units 81 and 81a, respectively, and the above-mentioned judgment units 60 and 60a have become judgment units 82 and 82a, respectively.
Furthermore, the differences between the measuring section 81 and the determining section 82 and the measuring section 81a and the determining section 82a are the same as those of the rail breakage detection device 70 described above. The question is whether it is 13 & 14.
Therefore, the measurement section 81 and the determination section 82 will be explained in detail without repeating the explanation.

計測部81は(図1(a)参照)、不平衡状態の度合いを比率で示す不平衡率αを既述の計測部50と同じく分流信号i1,i2の測定値k1,k2から式[|k1-k2|/(k1+k2)×100%]で算出することに加え、不平衡率αの経時変化度である時間当たり変化率γも算出するようになっている。その時間当たり変化率γは、理論的には不平衡率αの時間微分であるが、実用的には不平衡率αの時間差分で算出される。その際に、局所的な移動平均といった種々のノイズ対策も施されるが、その具体的な手法は公知のものでも足りるので、詳細な説明は割愛する。また、既述のように変位当たり変化率βが不平衡率αの距離微分なのに対し、時間当たり変化率γは不平衡率αの時間微分なので、時間当たり変化率γは、列車等の精密な位置情報や速度情報が無くても毎時の不平衡率αから容易に算出することができる。 The measuring unit 81 (see FIG. 1(a)) calculates the unbalance rate α, which indicates the degree of unbalanced state as a ratio, from the measured values k1 and k2 of the shunt signals i1 and i2 using the formula [| k1−k2|/(k1+k2)×100%], and also calculates the rate of change γ per hour, which is the degree of change over time of the unbalance rate α. The rate of change per hour γ is theoretically the time differential of the unbalance rate α, but is practically calculated as the time difference of the unbalance rate α. At this time, various noise countermeasures such as local moving averages are also taken, but since the specific methods are well known, a detailed explanation will be omitted. Furthermore, as mentioned above, the rate of change per displacement β is the distance differential of the unbalance rate α, whereas the rate of change per hour γ is the time differential of the unbalance rate α. Even without position information or speed information, it can be easily calculated from the hourly unbalance rate α.

判定部82は(図1(a)参照)、下り線のレール対11&12の検査区間11c,12c,11e,12eに列車が存在しない非在線状態と、それらの検査区間11c~12eの何処かに列車が存在している在線状態と、それらの検査区間11c~12eの何れかのレールに破断が存在しているレール破断状態とを切り分けるようになっている。また、不平衡率αの変化に応じて状態遷移を行うだけでなく、時間当たり変化率γの変化にも応じて状態遷移を行うことにより、不平衡率αと時間当たり変化率γとの組データの変化に応じて在線状態と非在線状態とレール破断状態とのうち何れか一つの状態を選択するようになっている。なお、状態遷移の認定・判定に際しては既述のようにヒステリシス特性が考慮されるようにもなっているが、ここでは、説明の煩雑化を回避するために、該特性には言及しない。 The determination unit 82 (see FIG. 1(a)) determines whether a train is not present in the inspection sections 11c, 12c, 11e, and 12e of the down-line rail pairs 11 & 12, and whether there is a train in any of the inspection sections 11c to 12e. It is designed to distinguish between a state where a train is on the track and a state where a rail is broken, where a rail is broken in any of the inspection sections 11c to 12e. In addition, by performing state transitions not only according to changes in the unbalance rate α, but also according to changes in the per-hour change rate γ, the combination of the unbalance rate α and the per-time change rate γ can be Depending on the change in data, one of the following states is selected: a track presence state, a non-track state, and a rail broken state. Note that, although the hysteresis characteristic is taken into consideration as described above when recognizing and determining state transitions, this characteristic will not be mentioned here in order to avoid complicating the explanation.

また、そのような判定部82の機能は、状態遷移図にて簡潔かつ明瞭に示すことができるので(図1(b)参照)、その図を参照しながら判定部82の機能を詳述する。
先ず、動作開始時には、不平衡率αは直ちに取得できるが、不平衡率αの時間差分にて算出される時間当たり変化率γの取得は一瞬だが遅れるので、不平衡率αの値に応じて初期状態が振り分けられる。具体的には(図7と図1(b)とを参照)、不平衡率αが例えば9.9%未満の小不平衡状態(以下、単に「小」と約す)のときには検査区間11c~12eの状態が「在線状態」とされ、不平衡率αが例えば10.0%~15.0%の設定不平衡状態(以下、単に「中」と約す)のときには検査区間11c~12eの状態が「非在線状態」とされ、不平衡率αが例えば15.1%超の大不平衡状態(以下、単に「大」と約す)のときには検査区間11c~12eの状態が「レール破断状態」とされるようになっている。
Furthermore, since the function of the determination unit 82 can be shown concisely and clearly in a state transition diagram (see FIG. 1(b)), the function of the determination unit 82 will be described in detail with reference to that diagram. .
First, at the start of operation, the unbalance rate α can be obtained immediately, but the acquisition of the hourly rate of change γ, which is calculated by the time difference of the unbalance rate α, is momentarily delayed. The initial state is assigned. Specifically (see FIG. 7 and FIG. 1(b)), when the unbalance rate α is in a small unbalanced state (hereinafter simply referred to as "small") where the unbalance rate α is less than 9.9%, the inspection interval 11c is The state from 11c to 12e is considered to be a "on-line state", and when the unbalance rate α is in a set unbalanced state (hereinafter simply referred to as "medium") of 10.0% to 15.0%, the inspection section 11c to 12e When the unbalance rate α is a large unbalanced state (hereinafter simply referred to as "large") where the unbalance rate α exceeds 15.1%, the state of the inspection sections 11c to 12e is considered to be a "non-rail state". It is said to be in a "broken state".

その後は(図1(b)参照)、不平衡率αが大になると時間当たり変化率γが大小いずれであろうと検査区間11c~12eの状態がレール破断状態とされる。この「レール破断状態」のときには、不平衡率αが大のうちは検査区間11c~12eの状態がレール破断状態とされ続け、不平衡率αが中になると検査区間11c~12eの状態が非在線状態に遷移し、不平衡率αが小になると、検査区間11c~12eの状態が在線状態に遷移するようになっている。そのため、列車等がレール破断箇所より送信点11aa,12aaに近づいたときには列車等の在線検出が優先されるとともに、レール破断状態が線路の修理等にて解消されたときには、そのレール状態に対して自動で対応できるものとなっている。 Thereafter (see FIG. 1(b)), when the unbalance rate α becomes large, the state of the inspection sections 11c to 12e becomes a rail broken state regardless of whether the rate of change per time γ is large or small. In this "rail broken state", the state of the inspection sections 11c to 12e continues to be in the rail broken state as long as the unbalance rate α is large, and when the unbalance rate α becomes medium, the state of the inspection sections 11c to 12e becomes non-balanced. When the state changes to the on-line state and the unbalance rate α becomes small, the states of the inspection sections 11c to 12e change to the on-line state. Therefore, when a train, etc. approaches the transmission points 11aa, 12aa from the rail breakage point, priority is given to detecting the presence of the train, etc., and when the rail breakage condition is resolved by track repair, etc., the rail condition It can be handled automatically.

そのようなレール破断状態と異なり、在線状態と非在線状態では、状態遷移先の判定に際して、上述のような不平衡率αに係る大中小の分類に加えて、時間当たり変化率γに係る大小の分類も、遷移先状態の選択要因となっている(図1(b)参照)。
具体的には、想定される晴雨等の環境条件や列車等の走行速度といった変動要因をも考慮して、列車進入出位置における時間当たり変化率γの最低値(図3のγ=5.3参照)と送信点における時間当たり変化率γの最高値(図2のγ=4.5参照)との中間値(例えば4.9)に対する大小比較が先ず行われ、それから時間当たり変化率γの値が中間値(=4.9)より大きければその時間当たり変化率γは「大」に分類され、時間当たり変化率γの値が中間値(=4.9)より小さければその時間当たり変化率γは「小」に分類されるようになっている。
Unlike such a rail fracture state, in the on-track state and non-on-track state, when determining the state transition destination, in addition to the above-mentioned classification of large, medium, and small according to the unbalance rate α, large and small according to the hourly rate of change γ The classification is also a factor in selecting the transition destination state (see FIG. 1(b)).
Specifically, the minimum value of the hourly rate of change γ at the train entry/exit position (γ in Figure 3 = 5.3 ) and the highest value of the hourly rate of change γ at the transmission point (see γ = 4.5 in Figure 2) with respect to an intermediate value (for example, 4.9). If the value is larger than the median value (=4.9), the hourly rate of change γ is classified as "large," and if the value of the hourly rate of change γ is smaller than the median value (=4.9), the hourly change is The rate γ is now classified as "small."

なお、時間当たり変化率γの最低値(γ=5.3)について詳述すると、これには、晴天時の高速走行に係る図2におけるγ=6.4や6.5と、雨天時の高速走行に係る図3におけるγ=5.3や5.4と、晴天時の低速走行に係る図4におけるγ=6.4や6.5と、雨天時の低速走行に係る図5におけるγ=5.3や5.4とのうち、最も小さな値である図3の「5.3」が該当する。
また、時間当たり変化率γの最高値(γ=4.5)には、図2におけるγ=4.5と、図3におけるγ=4.2と、図4におけるγ=2.3と、図5におけるγ=2.1とのうち、最も大きな値である図2の「4.5」が該当する。
In addition, to explain in detail the lowest value of the hourly rate of change γ (γ = 5.3), this includes γ = 6.4 and 6.5 in Figure 2 related to high-speed driving on a clear day, and γ = 6.5 on a rainy day. γ = 5.3 and 5.4 in Figure 3 for high-speed driving, γ = 6.4 and 6.5 in Figure 4 for low-speed driving on sunny days, and γ in Figure 5 for low-speed driving on rainy days. =5.3 or 5.4, the smallest value, "5.3" in FIG. 3, corresponds to this value.
Further, the highest value of the rate of change γ per hour (γ = 4.5) is γ = 4.5 in Fig. 2, γ = 4.2 in Fig. 3, and γ = 2.3 in Fig. 4. Among γ=2.1 in FIG. 5, "4.5" in FIG. 2, which is the largest value, corresponds to this.

そして、「非在線状態」では、不平衡率αが中のうちは検査区間11c~12eの状態が非在線状態とされ続けるが、不平衡率αが大になると検査区間11c~12eの状態がレール破断状態とされる。さらに、不平衡率αが小になったときには、それだけで直ちに状態遷移するのでなく、時間当たり変化率γの大小も調べて、時間当たり変化率γが小のときには、時間当たり変化率γが送信点通過時の値に該当していて状態変化が無いとみなせることから、状態遷移せずに非在線状態を維持する。そして、不平衡率αが小になるとともに時間当たり変化率γが大になったときに在線状態へ状態を遷移させるようになっている。 In the "non-track state", the state of the inspection sections 11c to 12e continues to be the non-track state while the imbalance rate α is medium, but when the imbalance rate α becomes large, the state of the inspection sections 11c to 12e changes. The rail is considered broken. Furthermore, when the unbalance rate α becomes small, the state does not just change immediately, but also checks the magnitude of the time change rate γ, and when the time change rate γ is small, the time change rate γ is transmitted. Since the value corresponds to the value at the time of passing the point and it can be considered that there is no change in state, the non-line state is maintained without a state transition. Then, when the unbalance rate α becomes small and the rate of change per hour γ becomes large, the state is changed to the on-line state.

これに対し、「在線状態」では、不平衡率αが小のうちは検査区間11c~12eの状態が在線状態とされ続けるが、不平衡率αが大になると検査区間11c~12eの状態がレール破断状態とされる。さらに、不平衡率αが中になったときには、それだけで直ちに状態遷移するのでなく、時間当たり変化率γの大小も調べて、時間当たり変化率γが小のときには、やはり時間当たり変化率γが送信点通過時の値に該当していて状態変化が無いとみなせることから、状態遷移せずに在線状態を維持する。そして、不平衡率αが中になるとともに時間当たり変化率γが大になったときに在線状態へ状態を遷移させるようになっている。 On the other hand, in the "on-line state", as long as the unbalance rate α is small, the inspection sections 11c to 12e continue to be on the line, but when the unbalance rate α becomes large, the inspection sections 11c to 12e change. The rail is considered broken. Furthermore, when the unbalance rate α becomes medium, the state does not just change immediately, but also examines the magnitude of the rate of change per hour γ, and when the rate of change per hour γ is small, the rate of change per hour γ is also Since it corresponds to the value at the time of passing the transmission point and it can be considered that there is no change in state, the on-line state is maintained without any state transition. Then, when the unbalance rate α becomes medium and the rate of change per hour γ becomes large, the state is changed to the on-line state.

この実施例1のレール破断検知装置80について、その使用態様及び動作を、図面を引用して説明する。
上述したように図2(a)~図5(a)は列車通過時の不平衡率αの経時変化を示したグラフであり、図3(b)~図5(b)は時間当たり変化率γの遷移状態を走行位置基準で示したグラフであり、更に、図2は晴天下で高速走行したときのものであり、図3は雨天下で高速走行したときのものであり、図4は晴天下で低速走行したときのものであり、図5は雨天下で低速走行したときのものである。
The usage and operation of the rail breakage detection device 80 of this first embodiment will be explained with reference to the drawings.
As mentioned above, Figures 2(a) to 5(a) are graphs showing the change over time in the unbalance rate α when a train passes, and Figures 3(b) to 5(b) are graphs showing the rate of change per hour. These are graphs showing the transition state of γ based on the driving position.Furthermore, Fig. 2 shows the graph when driving at high speed under clear skies, Fig. 3 shows the graph when driving at high speed under rainy weather, and Fig. 4 shows the graph when driving at high speed under rainy weather. Figure 5 shows the results when driving at low speed under clear skies, and Figure 5 shows the results when driving at low speed under rainy weather.

なお、高速走行時の速度は新幹線等の260km/h超を想定しており、低速時の速度はその半分程度を想定しており、何れも保守用車より高速である。そのため、保守用車が新幹線等の監視システムの対象外であっても、レール破断検知装置80なら保守用車の在線・非在線まで検出することが可能である。以下、場合分けして詳述する。 Note that the speed at high speed is assumed to be over 260 km/h, such as the Shinkansen, and the speed at low speed is assumed to be about half that, both of which are faster than maintenance vehicles. Therefore, even if a maintenance vehicle is not subject to a monitoring system such as a bullet train, the rail breakage detection device 80 can detect whether or not the maintenance vehicle is on the track. The details will be explained in detail below.

先ず、レール破断が無く且つ列車走行も無い通常状態の場合、不平衡率αが中を維持し時間当たり変化率γが小を維持し続けるので、判定部82から非在線状態という的確な判定が出される(図1(b)参照)。
これに対し、列車走行が無くて非在線状態だったときにレール破断が発生した場合、不平衡率αが中から大に変化するので、判定部82からレール破断状態という的確な判定が出される(図1(b)参照)。なお、そのレール破断が修理されると、不平衡率αが中に戻るので、判定部82の判定が適切な在線状態になる(図1(b)参照)。
First, in the normal state where there is no rail breakage and no train running, the unbalance rate α remains medium and the rate of change per hour γ continues to be small, so the determining unit 82 accurately determines that the track is not on the track. (See Figure 1(b)).
On the other hand, if a rail break occurs when there is no train running and the track is not on the track, the unbalance rate α changes from medium to large, so the judgment unit 82 makes an accurate judgment that the rail is broken. (See Figure 1(b)). Note that when the rail breakage is repaired, the unbalance rate α returns to the inside, so that the determination unit 82 determines that the rail is in an appropriate state (see FIG. 1(b)).

また、列車が検査区間内に居て在線状態だったときにレール破断が発生した場合も、不平衡率αが小から大に変化するので、判定部82からレール破断状態という的確な判定が出される(図1(b)参照)。詳述すると、送信点から見て在線位置より手前の位置で破断したときには直ちに破断が検知され、送信点から見て在線位置より後方で破断したときには、直ちにではないが、列車が送信点を通過すると、不平衡率αが小から大に変化するので、そこで破断が検知される。
そして、レール破断が存在するうちは不平衡率αが大のままで判定部82からレール破断状態という判定が出続けるが、レール破断が修理されると、列車在線のままであれば不平衡率αが小に戻るため判定部82の判定が適切な在線状態に戻り、列車が既に片付けられていれば不平衡率αが中に戻るため判定部82の判定が適切な非在線状態に戻る(図1(b)参照)。
Furthermore, even if a rail break occurs while the train is in the inspection section and is on the track, the unbalance rate α changes from small to large, so the judgment unit 82 makes an accurate judgment that the rail is broken. (See Figure 1(b)). To be more specific, if a break occurs at a position before the track position when viewed from the transmission point, the break is immediately detected, and when a break occurs at a position behind the track position when viewed from the transmission point, the train passes the transmission point, although not immediately. Then, the unbalance rate α changes from small to large, and a break is detected at that point.
As long as the rail breakage exists, the unbalance rate α remains high and the determining unit 82 continues to issue a judgment that the rail is in a broken state, but once the rail break is repaired, if the train remains on the track, the unbalance rate Since α returns to small, the determination by the determining unit 82 returns to the appropriate on-track state, and if the train has already been cleared, the unbalance rate α returns to medium, so the determination by the determining unit 82 returns to the appropriate non-on-track state ( (See Figure 1(b)).

さらに、レール破断が無い状態で列車が検査区間に進入した場合、高速走行であれ低速走行であれ晴天時であれ雨天時であれ何れの状況下でも(図2~図5参照)、先ず検査区間への列車進入時に、不平衡率αが中から小に変化するとともに(各図の(a)の左端部を参照)、時間当たり変化率γが上述の中間値(=4.9)より大きな値になるので(各図の(b)の左端部を参照)、判定部82の判定が適切な在線状態になる(図1(b)参照)。
そして、列車が列車進入位置と列車検知不可能区間との間にいるうちは、前進ばかりか一時停止や後退があっても、不平衡率αが小のままなので、判定部82の判定が適切な在線状態を維持する(図1(b)参照)。
Furthermore, when a train enters an inspection section without any rail breakage, regardless of whether it is running at high speed or low speed, on sunny or rainy days (see Figures 2 to 5), the inspection section must first be inspected. When the train approaches the value (see the left end of (b) in each figure), the determination unit 82 determines that the line is in an appropriate state (see FIG. 1(b)).
As long as the train is between the train approach position and the train-undetectable section, the unbalance rate α remains small even if the train not only moves forward but also temporarily stops or retreats, so the judgment by the judgment unit 82 is appropriate. (See Figure 1(b)).

それから、列車が列車検知不可能区間に進入すると、不平衡率αが中になるが(図2(a)~図5(a)の中央部を参照)、時間当たり変化率γが小のままなので、判定部82の判定が適切な在線状態を維持する(図1(b)参照)。そして、列車が列車検知不可能区間から出ると、そのときの進行方向が前進であれ後退であれ、不平衡率αが小に戻るので(図2(a)~図5(a)における中央部と両端部との中間部分を参照)、判定部82の判定が適切な在線状態を維持する(図1(b)参照)。 Then, when the train enters the section where trains cannot be detected, the unbalance rate α becomes medium (see the middle parts of Figures 2(a) to 5(a)), but the hourly rate of change γ remains small. Therefore, the judgment by the judgment unit 82 maintains an appropriate on-line state (see FIG. 1(b)). When the train leaves the undetectable section, the unbalance rate α returns to small regardless of whether the train is moving forward or backward (the central part in Figures 2(a) to 5(a) and both ends), and the determination by the determining unit 82 maintains an appropriate on-line state (see FIG. 1(b)).

さらに、列車が進行して区間端11b,12b又は11d,12dに到達し更に検査区間11c,12c又は11e,12eから出ると、不平衡率αが小から中に変化するとともに(図2(a)~図5(a)の両端部を参照)、時間当たり変化率γが上述の中間値(=4.9)より大きな値になるので(各図の(b)の両端部を参照)、判定部82の判定が適切な非在線状態になる(図1(b)参照)。 Furthermore, as the train progresses and reaches the section ends 11b, 12b or 11d, 12d and further exits the inspection section 11c, 12c or 11e, 12e, the unbalance rate α changes from small to medium (Fig. 2(a) ) to both ends of Figure 5(a)), the rate of change per time γ becomes a value larger than the above-mentioned intermediate value (=4.9) (see both ends of (b) of each figure), The determination unit 82 determines that the line is not in an appropriate state (see FIG. 1(b)).

こうして、このレール破断検知装置80にあっては、下り線のレール対11&12の検査区間11c~12eに係るレール破断状態に加えて列車在線状態ひいては保守用車の残置まで検出することができる。
また、繰り返しとなる煩雑な説明は割愛するが、上り線の別レール対13&14の検査区間13c~14eに係るレール破断状態に加えて列車在線状態ひいては保守用車の残置まで検出することもできる。
In this way, this rail breakage detection device 80 can detect not only the rail breakage state related to the inspection sections 11c to 12e of the down-line rail pair 11 & 12, but also the train presence state and even the maintenance vehicle.
In addition, although a repetitive and complicated explanation will be omitted, in addition to the rail breakage state related to the inspection sections 13c to 14e of the separate rail pair 13 & 14 on the up line, it is also possible to detect the train presence state and even the maintenance vehicle maintenance vehicle.

[その他]
上記の判定部82(図1(b)参照)では、開始時にたまたま列車等が列車検知不可能区間に存在していた場合には初期状態として非在線状態が選択されてしまう可能性があるが、その場合には、列車検知不可能区間の列車在線状態を確認させる警報を出したり、その確認結果の操作入力等に応じて必要なら非在線状態から在線状態へ状態を遷移させる、といった拡張機能もレール破断検知装置80に装備するのが望ましい。
もっとも、そのような拡張機能を実装していない場合でも、開始時には先ず線路の状態や安全を確認するための保守用車などを要員監視下で一巡走行させれば、それによって自動的に、判定部82の状態が適切な状態に設定し直される。
[others]
In the above-described determination unit 82 (see FIG. 1(b)), if a train or the like happens to exist in an undetectable section at the time of start, there is a possibility that the non-track state will be selected as the initial state. In that case, advanced functions such as issuing a warning to confirm the train presence status in the section where trains cannot be detected, and transitioning the state from the non-train presence state to the track presence state if necessary according to the operation input of the confirmation result, etc. It is also desirable that the rail breakage detection device 80 be equipped with the same.
However, even if such an extended function is not implemented, at the beginning, if a maintenance vehicle or the like is driven around the track under the supervision of personnel to check the condition and safety of the track, the judgment will be made automatically. The state of section 82 is reset to an appropriate state.

上記の公知改良例ひいては実施例では、計測部50が測定値k1,k2の加算や減算を測定信号の状態で専用回路にて行ってから受信するようになっていたが(図1(c)参照)、それらの測定信号をそれぞれ先に受信し、その後に適宜な専用演算回路や汎用プロセッサ等にて処理するようにしても良い。また、計測部50と判定部60が別ブロックになっていたが、両部の機能を発揮することができれば、ハードウェアが分かれている必要は無く、例えば判定部60と平衡状態値算出部57とが一プロセッサで具現化されていても良く、それら60,57に加えて加算部53や減算部54さらには受信部55,56まで一プロセッサで具現化されていても良い。 In the above-mentioned known improvement example and further in the embodiment, the measurement unit 50 adds or subtracts the measurement values k1 and k2 in the state of the measurement signal using a dedicated circuit, and then receives the measurement signal (see FIG. 1(c)). ), these measurement signals may be received first and then processed by an appropriate dedicated arithmetic circuit, general-purpose processor, or the like. Furthermore, although the measurement section 50 and the determination section 60 are separate blocks, if the functions of both sections can be performed, there is no need for separate hardware; for example, the determination section 60 and the equilibrium state value calculation section 57 may be realized by one processor, and in addition to these 60 and 57, the addition section 53, the subtraction section 54, and even the reception sections 55 and 56 may be realized by one processor.

10 複線(鉄道)
11&12 レール対(左右レール,軌道)
11,12 レール
12x レール破断
13&14 別レール対(左右レール,軌道)
13,14 レール(別レール)
11a,12a,13a,14a 区間端
11aa,12aa,13aa,14aa 送信点(区間内)
11b,12b,13b,14b 区間端
11c,12c,13c,14c 検査区間
11d,12d,13d,14d 区間端
11e,12e,13e,14e 検査区間
15 列車
20 レール破断検知装置
21,22,24,26,27 区間端短絡ライン(接続線)
21aa(21),23aa(23) 区間内短絡ライン(送信線)
21a,21b,22a,22b 部分ライン
21c,22c,23c,24c,26c,27c 接続箇所(分流点・合流点)
25,25a,25b,25c 不平衡化手段
30 巡回電路形成部材
31,32,33,34 巡回電路形成ライン(接続線)
40 送信部
50,50a 計測部
51,52 電流プローブ
53 加算部
54 減算部
55,56 受信部
57 平衡状態値算出部
58,59 電流プローブ
60,60a 判定部
61 状態判別部
62 決定部
70 レール破断検知装置
80 レール破断検知装置
81,81a 計測部
82,82a 判定部
i0 検査信号
i1,i2,i3,i4,i5,i6,i7,i8 分流信号
k1,k2,k3,k4 測定値(測定信号)
k0 平衡状態値(算出値)
α 不平衡率(算出値)
β 変位当たり変化率(算出値)
γ 時間当たり変化率(算出値)
10 Double track (railway)
11 & 12 Rail pair (left and right rails, track)
11, 12 Rail 12x Rail fracture 13 & 14 Separate rail pair (left and right rails, track)
13,14 Rail (separate rail)
11a, 12a, 13a, 14a Section end 11aa, 12aa, 13aa, 14aa Transmission point (within section)
11b, 12b, 13b, 14b Section end 11c, 12c, 13c, 14c Inspection section 11d, 12d, 13d, 14d Section end 11e, 12e, 13e, 14e Inspection section 15 Train 20 Rail breakage detection device 21, 22, 24, 26 , 27 Section end short circuit line (connection line)
21aa (21), 23aa (23) Intra-section short circuit line (transmission line)
21a, 21b, 22a, 22b Partial line 21c, 22c, 23c, 24c, 26c, 27c Connection point (divergent point/merging point)
25, 25a, 25b, 25c Unbalancing means 30 Circuit forming member 31, 32, 33, 34 Circuit forming line (connection line)
40 Transmitting section 50, 50a Measuring section 51, 52 Current probe 53 Adding section 54 Subtracting section 55, 56 Receiving section 57 Equilibrium state value calculating section 58, 59 Current probe 60, 60a Judging section 61 State determining section 62 Determining section 70 Rail breakage Detection device 80 Rail breakage detection device 81, 81a Measurement section 82, 82a Judgment section i0 Inspection signal i1, i2, i3, i4, i5, i6, i7, i8 Diversion signal k1, k2, k3, k4 Measured value (measured signal)
k0 Equilibrium state value (calculated value)
α Unbalance rate (calculated value)
β Rate of change per displacement (calculated value)
γ Rate of change per hour (calculated value)

Claims (6)

鉄道の軌道をなすレール対の複数箇所に付設されて夫々の付設箇所で前記レール対の左右レールについて帰線電流を短絡させる複数の区間端短絡ライン及び区間内短絡ラインと、前記区間端短絡ライン及び前記区間内短絡ラインに接続されて前記レール対と共に巡回する電路を形成する巡回電路形成部材と、前記巡回電路形成部材を介して前記区間内短絡ラインに対して帰線電流とは異なる検査信号を送出する送信部と、前記区間内短絡ラインについて巡回電路形成部材の接続箇所の両側で前記検査信号に係る一対の分流信号を測定する計測部と、対をなす前記分流信号の釣り合い状態をレール破断の無い状態では平衡状態から遠ざける又は不平衡状態にする不平衡化手段と、対をなす前記分流信号の測定値に基づいてレール破断と列車在線とに係る判定を行う判定部とを備えているレール破断検知装置において、
前記不平衡状態の度合いを比率で示す不平衡率を前記分流信号の測定値から算出する手段と、前記不平衡率の経時変化に基づいてその時間当たり変化率を算出する手段とを具備し、前記判定手段が前記不平衡率と前記時間当たり変化率との変化に応じて在線状態と非在線状態とレール破断状態とのうち何れか一つの状態を選択するようになっている、ことを特徴とするレール破断検知装置。
A plurality of section end short-circuit lines and intra-section short-circuit lines that are attached to a plurality of locations on a rail pair forming a railway track and short-circuit the return current for the left and right rails of the rail pair at each attached location, and the section end short-circuit line and a circuit path forming member that is connected to the intra-section short-circuit line and forms an electric path that circulates together with the rail pair, and a test signal different from a return current to the intra-section short-circuit line via the circuit circuit formation member. a transmitting unit that transmits a signal, a measuring unit that measures a pair of shunt signals related to the test signal on both sides of the connecting point of the circulating circuit forming member for the intra-section short-circuit line, and a measuring unit that measures a pair of shunt signals related to the test signal, In a state where there is no break, it is provided with an unbalancer that moves away from an equilibrium state or brings it into an unbalanced state, and a determination unit that makes a determination regarding a rail break and a train on the track based on the measured values of the paired shunt signals. In the rail breakage detection device,
comprising means for calculating an unbalance rate indicating the degree of the unbalanced state as a ratio from the measured value of the shunt signal, and means for calculating a rate of change per hour based on a change in the unbalance rate over time, The determining means is configured to select any one of a track presence state, a non-track state, and a rail broken state according to changes in the unbalance rate and the rate of change per hour. Rail breakage detection device.
前記判定手段が、動作開始時には、前記不平衡率に係る大中小の分類に応じて前記在線状態と前記非在線状態と前記レール破断状態とから何れか一つを選出して初期状態に採用するようになっている、ことを特徴とする請求項1記載のレール破断検知装置。 At the start of operation, the determining means selects any one of the track presence state, the non-track state, and the rail broken state according to the classification of large, medium, and small according to the unbalance rate, and adopts it as an initial state. The rail breakage detection device according to claim 1, wherein the rail breakage detection device is configured as follows. 前記判定手段が、前記不平衡率に係る大中小の分類に加えて、前記時間当たり変化率に係る大小の分類も、遷移先状態の選択要因とするものである、ことを特徴とする請求項2記載のレール破断検知装置。 Claim characterized in that the determination means uses, in addition to the classification of large, medium, and small according to the unbalance rate, the classification of large and small according to the rate of change per hour as a factor for selecting the transition destination state. 2. The rail breakage detection device according to 2. 前記判定手段が、前記在線状態のときには、前記不平衡率の分類が小の間は前記在線状態を維持し、前記不平衡率の分類が中になっても前記時間当たり変化率が小であれば前記在線状態を維持し、前記不平衡率の分類が中になり而も前記時間当たり変化率が大になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする請求項3記載のレール破断検知装置。 When the determining means is in the on-line state, it maintains the on-line state as long as the unbalance rate classification is small, and even if the unbalance rate classification is medium, even if the hourly rate of change is small. If the on-line state is maintained, and the unbalance rate classification becomes medium, but the rate of change per hour becomes large, the state transitions to the non-on-the-line state, and the unbalance rate classification becomes large. 4. The rail breakage detection device according to claim 3, wherein the rail breakage detection device changes to the rail breakage state when the rail breakage occurs. 前記判定手段が、前記非在線状態のときには、前記不平衡率の分類が中の間は前記非在線状態を維持し、前記不平衡率の分類が小になっても前記時間当たり変化率が小であれば前記非在線状態を維持し、前記不平衡率の分類が小になり而も前記時間当たり変化率が大になったときには前記在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする請求項3記載のレール破断検知装置。 When the determining means is in the off-line state, the off-line state is maintained as long as the unbalance rate classification is medium, and even if the unbalance rate classification becomes small, even if the hourly rate of change is small. If the non-line state is maintained, and even if the unbalance rate classification becomes small, but the hourly rate of change becomes large, the state transitions to the on-line state, and the unbalance rate classification becomes large. 4. The rail breakage detection device according to claim 3, wherein the rail breakage detection device changes to the rail breakage state when the rail breakage occurs. 前記判定手段が、前記レール破断状態のときには、前記不平衡率の分類が大の間は前記レール破断状態を維持し、前記不平衡率の分類が中になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が小になったときには前記在線状態に状態遷移し、
前記在線状態のときには、前記不平衡率の分類が小の間は前記在線状態を維持し、前記不平衡率の分類が中になっても前記時間当たり変化率が小であれば前記在線状態を維持し、前記不平衡率の分類が中になり而も前記時間当たり変化率が大になったときには前記非在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移し、
前記非在線状態のときには、前記不平衡率の分類が中の間は前記非在線状態を維持し、前記不平衡率の分類が小になっても前記時間当たり変化率が小であれば前記非在線状態を維持し、前記不平衡率の分類が小になり而も前記時間当たり変化率が大になったときには前記在線状態に状態遷移し、前記不平衡率の分類が大になったときには前記レール破断状態に状態遷移するようになっている、ことを特徴とする請求項3記載のレール破断検知装置。
When the determining means is in the rail broken state, the rail broken state is maintained as long as the unbalance rate is classified as high, and when the unbalance rate is classified as medium, the state transitions to the non-track state. When the classification of the unbalance rate becomes small, the state transitions to the on-line state,
When in the line presence state, the line presence state is maintained as long as the unbalance rate classification is small, and even if the imbalance rate classification is medium, if the hourly rate of change is small, the line presence state is maintained. When the classification of the imbalance rate becomes medium and the rate of change per hour becomes large, the state transitions to the non-track state, and when the classification of the imbalance rate becomes large, the rail breaks. State transition to state,
When in the non-track state, the non-track state is maintained while the unbalance rate classification is medium, and even if the unbalance rate classification becomes small, if the hourly rate of change is small, the non-track state is maintained. is maintained, and when the classification of the unbalance rate becomes small but the rate of change per hour becomes large, the state transitions to the on-track state, and when the classification of the unbalance rate becomes large, the rail breaks. 4. The rail breakage detection device according to claim 3, wherein the rail breakage detection device is configured to make a state transition.
JP2022095174A 2022-06-13 2022-06-13 Rail breakage detection device Pending JP2023181823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022095174A JP2023181823A (en) 2022-06-13 2022-06-13 Rail breakage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022095174A JP2023181823A (en) 2022-06-13 2022-06-13 Rail breakage detection device

Publications (1)

Publication Number Publication Date
JP2023181823A true JP2023181823A (en) 2023-12-25

Family

ID=89309076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022095174A Pending JP2023181823A (en) 2022-06-13 2022-06-13 Rail breakage detection device

Country Status (1)

Country Link
JP (1) JP2023181823A (en)

Similar Documents

Publication Publication Date Title
US20180162429A1 (en) Broken Rail Detection System for Communications-Based Train Control
CA1162630A (en) Dual signal frequency motion monitor and broken rail detector
KR100961899B1 (en) Detecting apparatus and the method of rail damage
CN104260755B (en) Track section occupancy monitoring system and method
CN108819986B (en) System and method for fault detection of track line
US10029717B2 (en) Railroad track circuits
US10427700B2 (en) Railroad track circuit for determining the occupancy status of a portion of a railroad
JP2003072431A (en) Feeder circuit failure spotting device
JP2023181823A (en) Rail breakage detection device
JP7279990B2 (en) Rail break detector
KR100651193B1 (en) A sensing-system of electric feeder in electrical railway
JP7311854B2 (en) Control section length measuring device and control section length measuring system for railroad crossing controller
JP7312514B2 (en) Rail break detector
EP3686079B1 (en) Railway track section with a train detection system, and associated method for detecting presence of a railway vehicle on a track section
KR102369916B1 (en) Rail fracture decision system and method for deciding rail fracture using the same
KR20180038931A (en) System and method for monitoring breakage railroad under atp level 3
JP7212429B2 (en) Rail break detector
US2214924A (en) Railway signaling system
JP7474015B2 (en) Train detection device with fault diagnosis function and fault location determination method
JP7014945B2 (en) Rail breakage detector
JP2022112052A (en) Control section length measuring method for electronic train detector
JP2007282337A (en) Device for determining line wire grounded circuit in direct-current electric railroad
JPS58177765A (en) Method of detecting length of coupling of car
JP2016165956A (en) Abrasion determining system
JP5094774B2 (en) Train control ground device and train control system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240404