JP2023181602A - Membrane treatment method and device of liquid to be treated - Google Patents

Membrane treatment method and device of liquid to be treated Download PDF

Info

Publication number
JP2023181602A
JP2023181602A JP2022094816A JP2022094816A JP2023181602A JP 2023181602 A JP2023181602 A JP 2023181602A JP 2022094816 A JP2022094816 A JP 2022094816A JP 2022094816 A JP2022094816 A JP 2022094816A JP 2023181602 A JP2023181602 A JP 2023181602A
Authority
JP
Japan
Prior art keywords
membrane
liquid
treated
membrane treatment
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022094816A
Other languages
Japanese (ja)
Inventor
基頼 早水
Motoyori Hayamizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2022094816A priority Critical patent/JP2023181602A/en
Publication of JP2023181602A publication Critical patent/JP2023181602A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a membrane treatment method of liquid to be treated which can perform membrane treatment of the liquid to be treated efficiently at low cost.SOLUTION: A membrane treatment method of liquid to be treated which includes an NF membrane treatment step of passing the liquid to be treated through an NF membrane 11, and an RO membrane treatment step of passing NF membrane permeating liquid which has permeated into the NF membrane 11 at the NF membrane treatment step through an RO membrane 21 includes: a dilution step of causing, as diluent, at least a part of RO membrane permeating liquid which has permeated into the RO membrane 21 to merge into the liquid to be treated before passing through the NF membrane 11, and diluting the liquid; and a salt concentration regulation step of increasing a flow rate of the diluent to the liquid to be treated as electric conductivity of the liquid to be treated after the dilution increases.SELECTED DRAWING: Figure 1

Description

本発明は、被処理液の膜処理方法および装置に関し、より詳しくは、NF膜およびRO膜を利用した被処理液の膜処理方法および装置に関する。 The present invention relates to a method and apparatus for membrane treatment of a liquid to be treated, and more particularly to a method and apparatus for membrane treatment of a liquid to be treated using an NF membrane and an RO membrane.

従来の被処理液の膜処理装置として、特許文献1には、NF膜(ナノろ過膜)またはRO膜(逆浸透膜)を有する第1の膜ろ過装置および第2の膜ろ過装置に原水タンクの原水を順次通水して、純水を製造する装置が開示されている。原水タンクには、第2の膜ろ過装置を透過した純水の一部が、第1の膜ろ過装置の濃縮水の一部と共に還流され、濃縮水の還流量を純水の還流量と同じか少なくすることにより、第1の膜ろ過装置のスケールリスクの抑制が図られている。 As a conventional membrane treatment device for a liquid to be treated, Patent Document 1 describes a first membrane filtration device having an NF membrane (nanofiltration membrane) or an RO membrane (reverse osmosis membrane) and a raw water tank in a second membrane filtration device. An apparatus for manufacturing pure water by sequentially passing raw water through the water is disclosed. A portion of the pure water that has passed through the second membrane filtration device is returned to the raw water tank along with a portion of the concentrated water from the first membrane filtration device, and the amount of concentrated water returned is the same as the amount of purified water returned. By reducing the amount of water, the scale risk of the first membrane filtration device is suppressed.

特開2019-89018号公報JP 2019-89018 Publication

上記特許文献1に開示された装置は、原水タンクに供給される原水の濃度変化には対応できないため、原水の塩濃度が増加した場合には、第1の膜ろ過装置の膜面にスケールが発生し易いだけでなく、高圧での膜処理が必要になるため、エネルギーコストが増加すると共に、膜負荷が増加して耐久性が低下する等の問題が生じる。 The device disclosed in Patent Document 1 cannot cope with changes in the concentration of raw water supplied to the raw water tank, so if the salt concentration of the raw water increases, scale will form on the membrane surface of the first membrane filtration device. Not only is this easy to occur, but it also requires membrane treatment at high pressure, leading to problems such as increased energy costs, increased membrane load, and reduced durability.

そこで、本発明は、被処理液の膜処理を低コストで効率良く行うことができる被処理液の膜処理方法および装置の提供を目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for membrane treatment of a liquid to be treated, which can perform membrane treatment of a liquid to be treated efficiently at low cost.

本発明の前記目的は、被処理液をNF膜に通水するNF膜処理工程と、前記NF膜処理工程により前記NF膜を透過したNF膜透過液をRO膜に通水するRO膜処理工程とを備える被処理液の膜処理方法であって、前記RO膜を透過したRO膜透過液の少なくとも一部を、前記NF膜に通水する前の被処理液に希釈液として合流させて希釈する希釈工程と、希釈後の被処理液の電気伝導度が増加すると被処理液に対する希釈液の流量割合を増加させる塩濃度調整工程とを備える被処理液の膜処理方法により達成される。 The object of the present invention is to provide an NF membrane treatment step in which a liquid to be treated is passed through an NF membrane, and an RO membrane treatment step in which an NF membrane permeated liquid that has passed through the NF membrane in the NF membrane treatment step is passed through an RO membrane. A method for membrane treatment of a liquid to be treated, comprising: diluting at least a part of the RO membrane permeate that has passed through the RO membrane by joining the liquid to be treated as a diluent before passing through the NF membrane; This is achieved by a method for membrane treatment of a liquid to be treated, which includes a dilution step of increasing the electrical conductivity of the liquid to be treated after dilution, and a salt concentration adjustment step of increasing the flow rate of the diluent to the liquid to be treated as the electrical conductivity of the diluted liquid increases.

前記RO膜処理工程は、前記RO膜を備えるRO膜ユニットを複数配置して、前段の前記RO膜ユニットのRO膜濃縮液を後段の前記RO膜ユニットに順次通水する工程を備えることが好ましく、前記希釈工程は、最後段の前記RO膜ユニットのRO膜透過液の少なくとも一部を希釈液として使用することが好ましい。 Preferably, the RO membrane treatment step includes a step of arranging a plurality of RO membrane units each including the RO membrane, and sequentially passing the RO membrane concentrate from the preceding RO membrane unit to the subsequent RO membrane unit. Preferably, in the dilution step, at least a portion of the RO membrane permeate of the last stage RO membrane unit is used as a diluent.

また、本発明の前記目的は、被処理液をNF膜に通水するNF膜処理装置と、前記NF膜処理装置の前記NF膜を透過したNF膜透過液をRO膜に通水するRO膜処理装置とを備える被処理液の膜処理装置であって、前記RO膜を透過したRO膜透過液の少なくとも一部を、前記NF膜に通水する前の被処理液に希釈液として合流させて希釈する希釈流路と、希釈後の被処理液の電気伝導度を測定する電気伝導度計と、希釈後の被処理液の電気伝導度が増加すると被処理液に対する希釈液の流量割合を増加させる制御装置とを備える被処理液の膜処理装置により達成される。 Further, the object of the present invention is to provide an NF membrane treatment device for passing a liquid to be treated through an NF membrane, and an RO membrane for passing an NF membrane permeated liquid that has passed through the NF membrane of the NF membrane treatment device to an RO membrane. A membrane treatment device for a liquid to be treated, comprising: a treatment device, wherein at least a part of the RO membrane permeate that has passed through the RO membrane is combined with the liquid to be treated as a diluted liquid before passing through the NF membrane. A dilution channel that dilutes the liquid to be treated, an electrical conductivity meter that measures the electrical conductivity of the liquid to be treated after dilution, and an electric conductivity meter that measures the flow rate of the diluted liquid to the liquid to be treated when the electrical conductivity of the liquid to be treated after dilution increases. This is achieved by a membrane treatment device for the liquid to be treated, which is equipped with a control device for increasing the amount of water.

この被処理液の膜処理装置は、希釈後の被処理液を加圧して前記NF膜処理装置に供給する高圧ポンプを更に備えることが好ましく、前記制御装置は、前記NF膜に通水する被処理液の圧力に基づき前記高圧ポンプの流量をインバータ制御することが好ましい。 Preferably, the membrane treatment device for the liquid to be treated further includes a high-pressure pump that pressurizes the diluted liquid to be treated and supplies it to the NF membrane treatment device, and the control device is configured to control the membrane treatment device for supplying the diluted liquid to the NF membrane treatment device. Preferably, the flow rate of the high-pressure pump is controlled by an inverter based on the pressure of the processing liquid.

本発明の被処理液の膜処理方法および装置によれば、被処理液の膜処理を低コストで効率良く行うことができる。 According to the method and apparatus for membrane treatment of a liquid to be treated of the present invention, membrane treatment of a liquid to be treated can be performed efficiently at low cost.

本発明の一実施形態に係る被処理液の膜処理装置の概略構成図である。1 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to an embodiment of the present invention.

以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る被処理液の膜処理装置(以下、単に「膜処理装置」という)の概略構成図である。図1に示すように、膜処理装置1は、被処理液をNF膜(ナノろ過膜)に通水するNF膜処理装置10と、NF膜処理装置10のNF膜を透過したNF膜透過液を高圧ポンプ2の作動によりRO膜(逆浸透膜)に通水するRO膜処理装置20と、RO膜処理装置20のRO膜を透過したRO膜透過液の少なくとも一部を被処理液に希釈液として合流させて希釈する希釈流路30とを備えており、希釈液により希釈された被処理液が、高圧ポンプ3の作動によりNF膜処理装置10に供給されるように構成されている。希釈流路30には流量調整弁40が設けられており、流量調整弁40の操作により希釈液の流量を調整することができる。 Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a membrane treatment apparatus for a liquid to be treated (hereinafter simply referred to as a "membrane treatment apparatus") according to an embodiment of the present invention. As shown in FIG. 1, the membrane treatment device 1 includes an NF membrane treatment device 10 that passes a liquid to be treated through an NF membrane (nanofiltration membrane), and an NF membrane permeated liquid that has passed through the NF membrane of the NF membrane treatment device 10. An RO membrane treatment device 20 that passes water through an RO membrane (reverse osmosis membrane) by the operation of a high-pressure pump 2, and dilutes at least a portion of the RO membrane permeate that has passed through the RO membrane of the RO membrane treatment device 20 into a liquid to be treated. It is provided with a dilution flow path 30 for diluting the liquid by merging it as a liquid, and is configured such that the liquid to be treated diluted by the diluent is supplied to the NF membrane processing apparatus 10 by the operation of the high-pressure pump 3. A flow rate adjustment valve 40 is provided in the dilution channel 30, and the flow rate of the diluent can be adjusted by operating the flow rate adjustment valve 40.

NF膜処理装置10は、ケーシング内にNF膜11が配置された単一のNF膜ユニットを備えており、NF膜11を透過しない非透過液がNF膜濃縮液として排出される。NF膜濃縮液を排出する排出ラインには、流量調整弁41が設けられている。NF膜処理装置10は、2段以上の複数段のNF膜ユニットを備えることも可能であり、前段のNF膜ユニットでNF膜を透過しないNF膜濃縮液を後段のNF膜ユニットのNF膜に通水し、各段のNF膜ユニットのNF膜透過液をRO膜処理装置20に供給するように構成してもよい。 The NF membrane processing apparatus 10 includes a single NF membrane unit in which an NF membrane 11 is disposed within a casing, and a non-permeated liquid that does not pass through the NF membrane 11 is discharged as an NF membrane concentrated liquid. A flow rate adjustment valve 41 is provided in the discharge line for discharging the NF membrane concentrate. The NF membrane processing device 10 can also include two or more stages of NF membrane units, and the NF membrane concentrate that does not pass through the NF membrane in the NF membrane unit in the former stage is transferred to the NF membrane in the NF membrane unit in the latter stage. It may be configured such that water is passed through the NF membrane unit and the NF membrane permeated liquid from each stage of the NF membrane unit is supplied to the RO membrane processing apparatus 20.

RO膜処理装置20は、2段のRO膜ユニット20-1,20-2を備える。各RO膜ユニット20-1,20-2は、それぞれケーシング内にRO膜21-1,21-2を備えており、前段のRO膜ユニット20-1でRO膜21-1を透過しない非透過液を、後段のRO膜ユニット20-2のRO膜21-2に通水し、各段のRO膜ユニット20-1,20-2からRO膜透過液を排出する。後段のRO膜21-2を透過しない非透過液は、RO膜濃縮液として回収される。回収したRO膜濃縮液は、例えば蒸発や膜濃縮等により製塩に利用することができる。RO膜処理装置20は、単一のRO膜ユニットにより構成してもよく、あるいは3段以上のRO膜ユニットにより構成してもよい。 The RO membrane processing apparatus 20 includes two stages of RO membrane units 20-1 and 20-2. Each RO membrane unit 20-1, 20-2 is equipped with an RO membrane 21-1, 21-2 inside the casing, and the RO membrane unit 20-1 in the previous stage is a non-permeable membrane that does not pass through the RO membrane 21-1. The liquid is passed through the RO membrane 21-2 of the RO membrane unit 20-2 at the subsequent stage, and the RO membrane permeated liquid is discharged from the RO membrane units 20-1 and 20-2 at each stage. The non-permeate liquid that does not pass through the subsequent RO membrane 21-2 is recovered as an RO membrane concentrate. The recovered RO membrane concentrate can be used for salt production, for example, by evaporation or membrane concentration. The RO membrane processing apparatus 20 may be configured with a single RO membrane unit, or may be configured with three or more stages of RO membrane units.

NF膜11およびRO膜21-1,21-2の材質は特に限定されるものではなく、公知のものを適宜使用することができる。NF膜11およびRO膜21-1,21-2の形状についても特に限定されず、平膜や中空糸膜等を例示することができる。 The materials for the NF membrane 11 and the RO membranes 21-1 and 21-2 are not particularly limited, and known materials can be used as appropriate. The shapes of the NF membrane 11 and the RO membranes 21-1 and 21-2 are not particularly limited either, and examples include flat membranes and hollow fiber membranes.

また、膜処理装置1は、電気伝導度計50,51と、流量計60,61,62,63と、制御装置70とを更に備えている。電気伝導度計50,51は、希釈流路30を通過する希釈液(RO膜透過液)、および、希釈後の被処理液の電気伝導度を、それぞれ計測する。流量計60,61,62,63は、希釈液、希釈後の被処理液、NF膜濃縮液、NF膜透過液の流量を、それぞれ測定する。電気伝導度計50,51および流量計60,61,62,63の測定値は、制御装置70に入力される。制御装置70は、流量調整弁40,41および高圧ポンプ2,3の作動を制御する。 The membrane processing apparatus 1 further includes electrical conductivity meters 50 and 51, flowmeters 60, 61, 62, and 63, and a control device 70. The electrical conductivity meters 50 and 51 measure the electrical conductivity of the diluted liquid (RO membrane permeated liquid) passing through the dilution channel 30 and the diluted liquid to be treated, respectively. The flowmeters 60, 61, 62, and 63 measure the flow rates of the diluted liquid, the diluted liquid to be treated, the NF membrane concentrated liquid, and the NF membrane permeated liquid, respectively. The measured values of the electrical conductivity meters 50, 51 and the flow meters 60, 61, 62, 63 are input to the control device 70. The control device 70 controls the operation of the flow rate regulating valves 40 and 41 and the high pressure pumps 2 and 3.

次に、上記の構成を備える膜処理装置1を用いた被処理液の膜処理方法を説明する。まず、被処理液を高圧ポンプ3の作動により昇圧してNF膜処理装置10に供給し、NF膜11に通水するNF膜処理工程を行う。高圧ポンプ3は、流量や圧力を省電力で容易に制御することができるインバータ制御が可能なポンプであることが好ましく、NF膜11に通水する被処理液の圧力を高圧ポンプ3の下流側に設けられた圧力計4により検出し、圧力計4の検出圧力が所定値以下に維持されるように制御装置70によりインバータ制御されることで、NF膜処理工程を安全に行うことができる。 Next, a method for membrane treatment of a liquid to be treated using the membrane treatment apparatus 1 having the above configuration will be described. First, the NF membrane treatment step of increasing the pressure of the liquid to be treated by operating the high pressure pump 3 and supplying it to the NF membrane treatment device 10 and passing water through the NF membrane 11 is performed. It is preferable that the high-pressure pump 3 is a pump capable of inverter control that can easily control the flow rate and pressure with power saving, and the pressure of the liquid to be treated passing through the NF membrane 11 is controlled on the downstream side of the high-pressure pump 3. The NF membrane treatment process can be performed safely by detecting the pressure with the pressure gauge 4 installed in the pressure gauge 4 and controlling the inverter by the control device 70 so that the detected pressure of the pressure gauge 4 is maintained below a predetermined value.

NF膜11は、主に一価イオンを透過させる一方で、二価以上の多価イオンは透過しない性質を有することから、一価イオンおよび多価イオンを含む被処理液に対してNF膜処理工程を行うことで、一価イオンを含むNF膜透過液を選択的に回収することができる。被処理液としては、海水やかん水を好ましく例示することができるが、その他の無機塩溶液等であってもよい。本実施形態では、取水後の海水を前処理によりろ過したろ過海水を被処理液としている。 The NF membrane 11 mainly allows monovalent ions to pass through it, but does not allow multivalent ions of two or more valences to pass through. Therefore, the NF membrane treatment is not possible for the liquid to be treated containing monovalent ions and multivalent ions. By performing this step, the NF membrane permeate containing monovalent ions can be selectively recovered. Preferred examples of the liquid to be treated include seawater and brine, but other inorganic salt solutions may also be used. In this embodiment, filtered seawater obtained by filtering seawater after water intake through pretreatment is used as the liquid to be treated.

ついで、上記のNF膜処理工程によりNF膜11を透過したNF膜透過液を高圧ポンプ2の作動により昇圧してRO膜処理装置20に供給し、RO膜21-1,21-2に通水するRO膜処理工程を行う。 Next, the NF membrane permeate that has passed through the NF membrane 11 in the above NF membrane treatment step is pressurized by the operation of the high-pressure pump 2 and is supplied to the RO membrane treatment device 20, and water is passed through the RO membranes 21-1 and 21-2. Perform the RO membrane treatment step.

この後、上記のRO膜処理工程によりRO膜21-1,21-2を透過したRO膜透過液の一部を希釈流路30に通過させて、NF膜11に通水する前の被処理液に希釈液として合流させて希釈する希釈工程を行う。希釈液として使用しないRO膜透過液の残部は、例えば製造水として使用することができる。希釈工程においては、必要に応じて、RO膜処理工程で生成されたRO膜透過液の全部を希釈液として使用してもよい。希釈工程により被処理液の塩濃度が低下するため、上記のNF膜処理工程において、NF膜11でのスケール発生が抑制されるだけでなく、低圧での膜処理を可能にして、エネルギーコストの低減、膜透過性の向上、膜負荷の軽減による長寿命化等を図ることができる。 After this, a part of the RO membrane permeate that has passed through the RO membranes 21-1 and 21-2 in the above RO membrane treatment process is passed through the dilution flow path 30 to be treated before passing through the NF membrane 11. A dilution process is performed in which the liquid is combined with the liquid as a diluent to dilute the liquid. The remainder of the RO membrane permeate that is not used as a diluent can be used, for example, as manufactured water. In the dilution step, the entire RO membrane permeate generated in the RO membrane treatment step may be used as a diluent, if necessary. The dilution process reduces the salt concentration of the liquid to be treated, which not only suppresses scale generation on the NF membrane 11 in the NF membrane treatment process described above, but also enables membrane treatment at low pressure, reducing energy costs. It is possible to achieve longer life by reducing the amount of carbon dioxide, improving membrane permeability, and reducing membrane load.

希釈流路30により被処理液に合流させる希釈液は、本実施形態では、2つのRO膜21-1,21-2の透過液を合流させたものとしているが、2つのRO膜21-1,21-2のいずれ一方の透過液であってもよい。通常は、前段のRO膜21-1の透過液の水質よりも後段のRO膜21-2の透過液の水質が悪いことから、希釈液は、少なくとも後段のRO膜21-2の透過液を含むことが好ましい。RO膜処理装置20が3段以上のRO膜ユニットを備える場合には、希釈液は、少なくとも最後段のRO膜ユニットのRO膜透過液を含むことが好ましい。 In this embodiment, the diluted liquid to be combined with the liquid to be treated through the dilution channel 30 is the combined permeate of the two RO membranes 21-1 and 21-2. , 21-2 may be used. Normally, the water quality of the permeate through the rear RO membrane 21-2 is worse than the water quality of the permeate through the front RO membrane 21-1. It is preferable to include. When the RO membrane processing apparatus 20 includes three or more stages of RO membrane units, it is preferable that the diluent contains at least the RO membrane permeate of the last stage RO membrane unit.

希釈流路30を通過する希釈液の被処理液に対する流量割合は、制御装置70が流量計60,61,62,63の出力から必要な測定値を用いてリアルタイムに演算することにより、常時一定となるように制御することができる。但し、被処理液の塩濃度が上昇した場合には、上記の流量制御によっては、NF膜処理装置10に供給される被処理液の塩濃度を十分低減できないおそれがある。 The flow rate ratio of the diluted liquid to the treated liquid passing through the dilution channel 30 is kept constant at all times by being calculated in real time by the control device 70 using necessary measured values from the outputs of the flow meters 60, 61, 62, and 63. It can be controlled so that However, if the salt concentration of the liquid to be treated increases, there is a possibility that the above flow control may not be able to sufficiently reduce the salt concentration of the liquid to be treated that is supplied to the NF membrane processing apparatus 10.

そこで、本実施形態の被処理液の膜処理方法は、希釈液による希釈後の被処理液の電気伝導度が増加すると、被処理液に対する希釈液の流量割合を増加させる塩濃度調整工程を備えており、これによって、被処理液の塩濃度が上昇した場合でも、NF膜処理装置10に供給される被処理液の塩濃度の上昇を抑制することができる。上記の塩濃度調整工程においては、希釈液による希釈後の被処理液の電気伝導度が低下すると、被処理液に対する希釈液の流量割合を減少させることが好ましく、これによって系外でのRO膜透過液の利用率を高めることができる。 Therefore, the membrane treatment method for a liquid to be treated according to the present embodiment includes a salt concentration adjustment step of increasing the flow rate ratio of the diluent to the liquid to be treated when the electrical conductivity of the liquid to be treated increases after being diluted with the diluent. As a result, even if the salt concentration of the liquid to be treated increases, it is possible to suppress the increase in the salt concentration of the liquid to be treated that is supplied to the NF membrane processing apparatus 10. In the above salt concentration adjustment step, when the electrical conductivity of the liquid to be treated after dilution with the diluent decreases, it is preferable to reduce the flow rate ratio of the diluted liquid to the liquid to be treated, so that the RO membrane outside the system is reduced. The utilization rate of permeate can be increased.

本実施形態においては、制御装置70が、電気伝導度計51による希釈後の被処理液の電気伝導度の検出に基づいて、流量調整弁40の開度調整を行うことにより、上記の塩濃度調整工程を自動で行うことができる。流量調整弁40の操作による希釈液の流量割合の調整は、希釈後の被処理液の電気伝導度が所望の値になるように、電気伝導度計51の検出に加えて、電気伝導度計50による希釈液の電気伝導度の検出に基づいて行ってもよい。 In this embodiment, the control device 70 adjusts the opening degree of the flow rate regulating valve 40 based on the detection of the electrical conductivity of the diluted liquid to be treated by the electrical conductivity meter 51, thereby controlling the salt concentration. The adjustment process can be performed automatically. Adjustment of the flow rate ratio of the diluted liquid by operating the flow rate adjustment valve 40 is performed by detecting the electric conductivity meter 51 in addition to the detection by the electric conductivity meter 51 so that the electric conductivity of the diluted liquid to be treated becomes a desired value. The method may also be based on detection of the electrical conductivity of the diluent using the method 50.

また、制御装置70は、電気伝導度計51により検出された希釈後の被処理液の電気伝導度に基づき、流量調整弁41の開度調整を行ってもよく、流量計62により検出されるNF膜濃縮液の流量が所望の値になるように制御することができる。例えば、希釈後の被処理液の電気伝導度が増加すると、流量調整弁41の開度を大きくしてNF膜透過液の流量を減少させる一方、希釈後の被処理液の電気伝導度が低下すると、流量調整弁41の開度を小さくしてNF膜透過液の流量を増加させることができる。 Further, the control device 70 may adjust the opening degree of the flow rate regulating valve 41 based on the electrical conductivity of the diluted liquid to be treated detected by the electrical conductivity meter 51, and The flow rate of the NF membrane concentrate can be controlled to a desired value. For example, when the electrical conductivity of the diluted liquid to be treated increases, the opening degree of the flow rate adjustment valve 41 is increased to reduce the flow rate of the NF membrane permeated liquid, while the electrical conductivity of the diluted liquid to be treated decreases. Then, the opening degree of the flow rate regulating valve 41 can be reduced to increase the flow rate of the NF membrane permeate liquid.

本発明の被処理液の膜処理方法および装置は、海水の淡水化、製塩、濃縮等の用途に好適であるが、必ずしもこの用途に限定されるものではなく、例えば、被処理液からの有価物の回収や、被処理液の減容化等、種々の用途に使用することができる。 The membrane treatment method and device for a liquid to be treated of the present invention are suitable for uses such as seawater desalination, salt production, and concentration, but are not necessarily limited to these uses. It can be used for various purposes such as recovering materials and reducing the volume of liquid to be treated.

1 膜処理装置
10 NF膜処理装置
11 NF膜
20 RO膜処理装置
21-1,21-2 RO膜
30 希釈流路
50,51 電気伝導度計
60,61,62,63 流量計
70 制御装置
1 Membrane treatment device 10 NF membrane treatment device 11 NF membrane 20 RO membrane treatment device 21-1, 21-2 RO membrane 30 Dilution channel 50, 51 Electrical conductivity meter 60, 61, 62, 63 Flow meter 70 Control device

Claims (4)

被処理液をNF膜に通水するNF膜処理工程と、
前記NF膜処理工程により前記NF膜を透過したNF膜透過液をRO膜に通水するRO膜処理工程とを備える被処理液の膜処理方法であって、
前記RO膜を透過したRO膜透過液の少なくとも一部を、前記NF膜に通水する前の被処理液に希釈液として合流させて希釈する希釈工程と、
希釈後の被処理液の電気伝導度が増加すると被処理液に対する希釈液の流量割合を増加させる塩濃度調整工程とを備える被処理液の膜処理方法。
an NF membrane treatment step of passing the liquid to be treated through the NF membrane;
An RO membrane treatment step of passing the NF membrane permeated liquid that has passed through the NF membrane in the NF membrane treatment step through an RO membrane, the method comprising:
a dilution step of diluting at least a portion of the RO membrane permeate that has passed through the RO membrane by combining it with the liquid to be treated as a diluent before passing through the NF membrane;
A method for membrane treatment of a liquid to be treated, comprising a salt concentration adjustment step of increasing the flow rate ratio of the diluent to the liquid to be treated when the electrical conductivity of the liquid to be treated increases after dilution.
前記RO膜処理工程は、前記RO膜を備えるRO膜ユニットを複数配置して、前段の前記RO膜ユニットのRO膜濃縮液を後段の前記RO膜ユニットに順次通水する工程を備え、
前記希釈工程は、最後段の前記RO膜ユニットのRO膜透過液の少なくとも一部を希釈液として使用する請求項1に記載の被処理液の膜処理方法。
The RO membrane treatment step includes a step of arranging a plurality of RO membrane units including the RO membrane and sequentially passing the RO membrane concentrate of the RO membrane unit in the preceding stage to the RO membrane unit in the succeeding stage,
2. The method for membrane treatment of a liquid to be treated according to claim 1, wherein the dilution step uses at least a portion of the RO membrane permeate of the last stage RO membrane unit as a diluent.
被処理液をNF膜に通水するNF膜処理装置と、
前記NF膜処理装置の前記NF膜を透過したNF膜透過液をRO膜に通水するRO膜処理装置とを備える被処理液の膜処理装置であって、
前記RO膜を透過したRO膜透過液の少なくとも一部を、前記NF膜に通水する前の被処理液に希釈液として合流させて希釈する希釈流路と、
希釈後の被処理液の電気伝導度を測定する電気伝導度計と、
希釈後の被処理液の電気伝導度が増加すると被処理液に対する希釈液の流量割合を増加させる制御装置とを備える被処理液の膜処理装置。
an NF membrane treatment device that passes the liquid to be treated through the NF membrane;
A membrane treatment device for a liquid to be treated, comprising: an RO membrane treatment device for passing the NF membrane permeated liquid that has permeated through the NF membrane of the NF membrane treatment device to an RO membrane;
a dilution channel for diluting at least a portion of the RO membrane permeate that has passed through the RO membrane by joining it as a diluent with the liquid to be treated before passing through the NF membrane;
an electrical conductivity meter that measures the electrical conductivity of the liquid to be treated after dilution;
A membrane treatment device for a liquid to be treated, comprising: a control device that increases the flow rate ratio of the diluent to the liquid to be treated when the electrical conductivity of the diluted liquid increases.
希釈後の被処理液を加圧して前記NF膜処理装置に供給する高圧ポンプを更に備え、
前記制御装置は、前記NF膜に通水する被処理液の圧力に基づき前記高圧ポンプの流量をインバータ制御する請求項3に記載の被処理液の膜処理装置。
further comprising a high-pressure pump that pressurizes the diluted liquid to be treated and supplies it to the NF membrane treatment device,
4. The membrane treatment apparatus for a liquid to be treated according to claim 3, wherein the control device controls the flow rate of the high-pressure pump using an inverter based on the pressure of the liquid to be treated passing through the NF membrane.
JP2022094816A 2022-06-13 2022-06-13 Membrane treatment method and device of liquid to be treated Pending JP2023181602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022094816A JP2023181602A (en) 2022-06-13 2022-06-13 Membrane treatment method and device of liquid to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022094816A JP2023181602A (en) 2022-06-13 2022-06-13 Membrane treatment method and device of liquid to be treated

Publications (1)

Publication Number Publication Date
JP2023181602A true JP2023181602A (en) 2023-12-25

Family

ID=89308915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022094816A Pending JP2023181602A (en) 2022-06-13 2022-06-13 Membrane treatment method and device of liquid to be treated

Country Status (1)

Country Link
JP (1) JP2023181602A (en)

Similar Documents

Publication Publication Date Title
JP5050996B2 (en) Reverse osmosis membrane device
JP2018069198A (en) Concentration method and concentrator
JP6737661B2 (en) Reverse osmosis membrane treatment system and method of operating reverse osmosis membrane treatment system
WO2018183687A1 (en) Method for reducing monovalent ions in concentrate of nanofiltration system and the nanofiltration system
JP2017042702A (en) Controller for energy producing apparatus
JPH06277665A (en) Producing apparatus for high purity water
JP6040856B2 (en) Water treatment system
JP2024061911A (en) METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED
JP2015104710A (en) Seawater desalination system
JP2002085941A (en) Fresh water making process and fresh water maker
JP2023181602A (en) Membrane treatment method and device of liquid to be treated
CN115010212B (en) Water treatment method and water treatment device
JP6907745B2 (en) Membrane separation device
JP2021016823A (en) Water treatment method and water treatment apparatus
JP2000218135A (en) Membrane separation apparatus and method
US20190209968A1 (en) Method and system for liquid treatment
CN115916381A (en) Membrane separation device and concentration method
WO2022044363A1 (en) Concentration method, concentration apparatus, water treatment method, and water treatment apparatus
JP7109505B2 (en) Ultrapure water production equipment
JP2022186382A (en) Water treatment method and water treatment apparatus
JP7487812B1 (en) Method for controlling reverse osmosis membrane device in pure water production system
KR20140128496A (en) desalination system capable of recovering osmotic energy for ultra-high salinity water bodies and method thereof
JP7293079B2 (en) Water treatment system and water treatment method
JPH09234349A (en) Membrane separation apparatus
JP2013066840A (en) Water treatment system