JP2023180724A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2023180724A
JP2023180724A JP2022094266A JP2022094266A JP2023180724A JP 2023180724 A JP2023180724 A JP 2023180724A JP 2022094266 A JP2022094266 A JP 2022094266A JP 2022094266 A JP2022094266 A JP 2022094266A JP 2023180724 A JP2023180724 A JP 2023180724A
Authority
JP
Japan
Prior art keywords
power storage
electrode
storage element
conductive member
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022094266A
Other languages
Japanese (ja)
Inventor
志門 森川
Shimon Morikawa
敦 宮本
Atsushi Miyamoto
光司 前田
Koji Maeda
昭彦 宗田
Akihiko Muneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2022094266A priority Critical patent/JP2023180724A/en
Publication of JP2023180724A publication Critical patent/JP2023180724A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a power storage device that can improve cooling performance while preventing thermal damage to power storage elements in welding a conductive member.SOLUTION: A power storage device comprises: a first power storage element and a second power storage element that have a cylindrical shape and are adjacent to each other; a housing member that has thermal conductivity and houses the first power storage element and the second power storage element; and a conductive member that electrically connects the first power storage element and the second power storage element to each other. The first power storage element has an end face electrode at an axial end. The second power storage element has a peripheral face electrode on an outer peripheral part. The conductive member extends from the end face electrode toward the peripheral face electrode to be connected with the end face electrode and the peripheral face electrode. The conductive member has a thick part at a portion facing the end face electrode, and an end face-side thin part having a smaller thickness than the thick part. The end face-side thin part is connected by welding with the end face electrode. The power storage device has a structure to release heat of the end face electrode to the housing member through the conductive member and the peripheral face electrode.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電装置に関する。 The present invention relates to a power storage device.

例えば、特許文献1には、外部端子を有する蓄電素子と、外部端子に接続されるバスバーと、を備えた蓄電装置が開示されている。バスバーは、外部端子と対向する一部分に薄肉部を有する。薄肉部と外部端子とが溶接されている。 For example, Patent Document 1 discloses a power storage device including a power storage element having an external terminal and a bus bar connected to the external terminal. The bus bar has a thin portion at a portion facing the external terminal. The thin wall portion and the external terminal are welded.

国際公開第2014/050329号International Publication No. 2014/050329

ところで、蓄電装置の低コスト化のために蓄電素子の本数削減が望まれている。しかし、蓄電素子の本数を削減すると、蓄電素子に流れる電流値が大きくなる。すると、蓄電素子の発熱量が上がり、仕様上限温度に達してしまう可能性が高い。そのため、蓄電装置において冷却性能の向上が課題となっている。 Incidentally, in order to reduce the cost of power storage devices, it is desired to reduce the number of power storage elements. However, when the number of power storage elements is reduced, the value of current flowing through the power storage elements increases. Then, the amount of heat generated by the power storage element increases, and there is a high possibility that the temperature will reach the upper limit of the specification. Therefore, improving the cooling performance of power storage devices has become a challenge.

そこで本発明は、導電部材を溶接する際の蓄電素子の熱損傷を抑制しつつ、冷却性能を向上することができる蓄電装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a power storage device that can improve cooling performance while suppressing thermal damage to a power storage element when welding a conductive member.

本発明の一態様に係る蓄電装置は、円柱形状を有し、互いに隣り合う第1蓄電素子及び第2蓄電素子と、熱伝導性を有し、前記第1蓄電素子及び前記第2蓄電素子を収納する収納部材と、前記第1蓄電素子及び前記第2蓄電素子を電気的に接続する導電部材と、を備え、前記第1蓄電素子は、軸方向端部に端面電極を有し、前記第2蓄電素子は、外周部に周面電極を有し、前記導電部材は、前記端面電極から前記周面電極に向かって延びることで、前記端面電極及び前記周面電極に接続されており、前記導電部材は、前記端面電極と対向する部分に厚肉部と、前記厚肉部よりも厚みが薄い端面側薄肉部と、を有し、前記端面側薄肉部は、前記端面電極と溶接接続されており、前記導電部材及び前記周面電極を介して前記端面電極の熱を前記収納部材に逃がす構造とされている。 The power storage device according to one aspect of the present invention has a cylindrical shape, has a first power storage element and a second power storage element that are adjacent to each other, has thermal conductivity, and has a first power storage element and a second power storage element that are adjacent to each other. A storage member for storing the electricity storage element, and a conductive member electrically connecting the first electricity storage element and the second electricity storage element, wherein the first electricity storage element has an end surface electrode at an axial end, and the first electricity storage element has an end surface electrode at an axial end. 2. The electricity storage element has a circumferential electrode on the outer circumference, and the conductive member extends from the end electrode toward the circumferential electrode to be connected to the end electrode and the circumferential electrode, and The conductive member has a thick portion in a portion facing the end electrode, and an end thin portion thinner than the thick portion, and the end thin portion is welded and connected to the end electrode. The structure is such that heat from the end electrode is released to the housing member via the conductive member and the peripheral electrode.

上記態様によれば、導電部材を溶接する際の蓄電素子の熱損傷を抑制しつつ、冷却性能を向上することができる。 According to the above aspect, cooling performance can be improved while suppressing thermal damage to the power storage element when welding the conductive member.

実施形態に係る蓄電装置の分解斜視図。FIG. 1 is an exploded perspective view of a power storage device according to an embodiment. 実施形態に係る蓄電素子及び導電部材の組み立て前の分解斜視図。FIG. 2 is an exploded perspective view of a power storage element and a conductive member according to an embodiment before assembly. 実施形態に係る蓄電素子及び導電部材の組み立て後の斜視図。FIG. 2 is a perspective view of an assembled power storage element and a conductive member according to an embodiment. 実施形態に係る蓄電装置の組み立て後の斜視図。FIG. 2 is a perspective view of the power storage device according to the embodiment after being assembled. 実施形態に係る導電部材の溶接箇所の説明図。FIG. 3 is an explanatory diagram of welding locations of the conductive member according to the embodiment. 実施形態に係る導電部材において端面電極と対向する部分を示す図。FIG. 3 is a diagram showing a portion facing an end electrode in a conductive member according to an embodiment. 実施形態に係る導電部材の側面図。FIG. 2 is a side view of a conductive member according to an embodiment. 実施形態に係る導電部材において周面電極と対向する部分を示す図。FIG. 3 is a diagram showing a portion of the conductive member according to the embodiment that faces a peripheral electrode. 導電部材及び周面電極を介して端面電極の熱を収納部材に逃がす構造を説明するための図。FIG. 3 is a diagram for explaining a structure in which heat from an end electrode is released to a storage member via a conductive member and a peripheral electrode. 実施例の導電部材による冷却効果を比較例と共に示す図。FIG. 7 is a diagram showing the cooling effect of the conductive member of the example together with a comparative example.

以下、本発明の実施形態について図面を参照して説明する。実施形態においては、蓄電装置の一例として、キャパシタ搭載ショベル等の作業機械に適用される蓄電装置を挙げて説明する。キャパシタ搭載ショベルにおいては、コスト削減のために蓄電素子の本数削減が望まれている。 Embodiments of the present invention will be described below with reference to the drawings. In the embodiment, a power storage device applied to a working machine such as a capacitor-equipped shovel will be cited as an example of the power storage device. In excavators equipped with capacitors, it is desired to reduce the number of power storage elements in order to reduce costs.

<蓄電装置>
図1は、実施形態に係る蓄電装置1の分解斜視図である。図2は、実施形態に係る蓄電素子11及び導電部材100の組み立て前の分解斜視図である。図3は、実施形態に係る蓄電素子11及び導電部材100の組み立て後の斜視図である。図4は、実施形態に係る蓄電装置1の組み立て後の斜視図である。
蓄電装置1は、蓄電素子11と、収納部材27と、導電部材100と、冷却機構60と、を備える。図の例では、蓄電装置1は、12個(複数の一例)の蓄電素子11を備える。これらの蓄電素子11は、導電部材100により隣の蓄電素子11と電気的に接続される。実施形態では、12個の蓄電素子11は、全て直列に接続される。
<Power storage device>
FIG. 1 is an exploded perspective view of a power storage device 1 according to an embodiment. FIG. 2 is an exploded perspective view of the power storage element 11 and the conductive member 100 according to the embodiment before assembly. FIG. 3 is a perspective view of the power storage element 11 and the conductive member 100 after being assembled according to the embodiment. FIG. 4 is a perspective view of the power storage device 1 according to the embodiment after being assembled.
Power storage device 1 includes power storage element 11 , storage member 27 , conductive member 100 , and cooling mechanism 60 . In the illustrated example, power storage device 1 includes twelve (one example of a plurality of) power storage elements 11. These power storage elements 11 are electrically connected to adjacent power storage elements 11 through conductive members 100 . In the embodiment, all twelve power storage elements 11 are connected in series.

<蓄電素子>
例えば、蓄電素子11は、大容量で急速充放電特性に優れる電気二重層キャパシタである。蓄電素子11は、円柱形状を有する。以下、蓄電素子11の円柱形状の中心軸に沿う方向を「軸方向」、中心軸と直交する方向を「径方向」、中心軸の周りの方向を「周方向」ともいう。
<Electricity storage element>
For example, the power storage element 11 is an electric double layer capacitor that has a large capacity and excellent rapid charging and discharging characteristics. Power storage element 11 has a cylindrical shape. Hereinafter, the direction along the central axis of the cylindrical shape of the power storage element 11 is also referred to as the "axial direction," the direction perpendicular to the central axis as the "radial direction," and the direction around the central axis as the "circumferential direction."

蓄電素子11は、軸方向端部に端面電極15を有する。実施形態では、端面電極15は正極である。蓄電素子11は、外周部に周面電極17を有する。実施形態では、周面電極17は負極である。蓄電素子11は、有底円筒状のケーシングを有する。ケーシングは、蓄電素子11の円柱形状を構成している。例えば、ケーシングは、アルミニウム板等の金属板を押し出し成型することで形成されている。周面電極17は、ケーシングの筒部により構成されている。 The power storage element 11 has an end surface electrode 15 at the end in the axial direction. In the embodiment, the end electrode 15 is a positive electrode. The power storage element 11 has a circumferential electrode 17 on the outer periphery. In the embodiment, the peripheral electrode 17 is a negative electrode. The power storage element 11 has a cylindrical casing with a bottom. The casing forms the cylindrical shape of the power storage element 11. For example, the casing is formed by extrusion molding a metal plate such as an aluminum plate. The peripheral electrode 17 is constituted by a cylindrical portion of the casing.

なお、ケーシングの底部(蓄電素子11の底面)もケーシングの筒部(蓄電素子11の周面)と一体に成型されているので負極となる。実施形態では、蓄電素子11の底面への電気的接続は行われていない。図示はしないが、端面電極15と周面電極17との間には、絶縁材が介在している。これにより、端面電極15と周面電極17とは、電気的な絶縁が保たれている。 Note that since the bottom of the casing (the bottom surface of the power storage element 11) is also molded integrally with the cylindrical part of the casing (the circumferential surface of the power storage element 11), it serves as a negative electrode. In the embodiment, electrical connection to the bottom surface of the power storage element 11 is not made. Although not shown, an insulating material is interposed between the end surface electrode 15 and the peripheral surface electrode 17. Thereby, electrical insulation between the end surface electrode 15 and the peripheral surface electrode 17 is maintained.

<導電部材>
導電部材100は、隣同士の蓄電素子11を互いに電気的に接続する部材(バスバー)である。例えば、導電部材100は、アルミニウム板等の金属板をプレス成型することで形成されている。導電部材100は、略L字形状を有する。導電部材100において周面電極17と対向する部分120は、周面電極17の外周に沿った形状に曲げ加工が施されており、周面電極17の外周に沿った湾曲形状を有する。導電部材100は、端面電極15と対向する部分から径方向外側に延びた後、屈曲部130を介して周面電極17に向かって延びている。
<Conductive member>
The conductive member 100 is a member (bus bar) that electrically connects adjacent power storage elements 11 to each other. For example, the conductive member 100 is formed by press-molding a metal plate such as an aluminum plate. The conductive member 100 has a substantially L-shape. A portion 120 of the conductive member 100 facing the circumferential electrode 17 is bent into a shape along the outer periphery of the circumferential electrode 17, and has a curved shape along the outer periphery of the circumferential electrode 17. The conductive member 100 extends radially outward from a portion facing the end electrode 15 and then extends toward the circumferential electrode 17 via the bent portion 130 .

屈曲部130は、導電部材100において端面電極15と対向する部分111(以下「端面側対向部111」ともいう。)と周面電極17と対向する部分120(以下「周面側対向部120」ともいう。)との間に設けられている。これにより、導電部材100の端面側対向部111を隣の蓄電素子11の端面電極15に溶接接続する際に、位置ずれがあっても屈曲部130で吸収することができる。加えて、組み立て後の蓄電装置1全体に外部から振動が加わっても、端面側対向部111と端面電極15との溶接接続部分に加わる応力を屈曲部130で緩和することができる。したがって、振動により端面側対向部111と端面電極15との溶接部分が外れる可能性を低減することができ、良好な耐振動性が得られる。 The bent portion 130 includes a portion 111 of the conductive member 100 that faces the end surface electrode 15 (hereinafter also referred to as the “end surface side facing portion 111”) and a portion 120 that faces the peripheral surface electrode 17 (hereinafter referred to as the “surrounding surface side facing portion 120”). ). Thereby, even if there is a positional shift when welding and connecting the end surface side facing portion 111 of the conductive member 100 to the end surface electrode 15 of the adjacent power storage element 11, it can be absorbed by the bent portion 130. In addition, even if vibrations are applied to the entire power storage device 1 after assembly from the outside, the stress applied to the welded connection portion between the end face side facing portion 111 and the end face electrode 15 can be alleviated by the bent portion 130. Therefore, it is possible to reduce the possibility that the welded portion between the end face side facing portion 111 and the end face electrode 15 will come off due to vibration, and good vibration resistance can be obtained.

実施形態では、導電部材100の周面側対向部120は、蓄電素子11の周面電極17の外周に合致する形状とされている。このため、周面側対向部120と周面電極17とを合致させた状態で溶接接続することにより、信頼性に優れ、かつ、電気的、機械的な接続が可能となる。 In the embodiment, the peripheral surface side facing portion 120 of the conductive member 100 has a shape that matches the outer periphery of the peripheral surface electrode 17 of the power storage element 11 . Therefore, by welding and connecting the circumferential surface-side facing portion 120 and the circumferential electrode 17 in a state where they match, it is possible to achieve highly reliable electrical and mechanical connection.

実施形態では、導電部材100を周面側対向部120で溶接接続した複数の蓄電素子11に対し、隣の蓄電素子11の端面電極15と、導電部材100の端面側対向部111とを溶接接続することにより、1列につき6個の蓄電素子11が直列接続される。例えば、この溶接は、各蓄電素子11の端面電極15が隣の導電部材100の端面側対向部111と接するように正確に位置決めができる治具を用いて行っている。実施形態では、6個の蓄電素子11が直列接続された構成を2列用いることで、12個の蓄電素子11が全て直列接続される。そのために、図1に示す後列右端の導電部材100は、前列右端の端面電極15上に重なるように方向を90度回転させた状態で溶接接続している。 In the embodiment, for a plurality of power storage elements 11 in which a conductive member 100 is welded and connected at a circumferential side facing part 120, an end face electrode 15 of an adjacent power storage element 11 and an end face side facing part 111 of the conductive member 100 are welded and connected. By doing so, six power storage elements 11 per column are connected in series. For example, this welding is performed using a jig that can accurately position the end face electrode 15 of each power storage element 11 to be in contact with the end face facing portion 111 of the adjacent conductive member 100. In the embodiment, all 12 power storage elements 11 are connected in series by using two rows of six power storage elements 11 connected in series. For this purpose, the conductive member 100 at the right end of the rear row shown in FIG. 1 is welded and connected with its direction rotated by 90 degrees so as to overlap the end surface electrode 15 at the right end of the front row.

なお、蓄電素子11において、図1に示す後列左端の端面電極15には、隣の導電部材100が存在しない。そのため、図1に示す後列左端の端面電極15には、全蓄電素子11の電力入出力用の正極端子25を溶接接続している。正極端子25は、導電部材100の周面側対向部120を端面側対向部111として機能させるための板形状を有する。例えば、正極端子25は、導電部材100と同様、アルミニウム板等の金属板をプレス成型することで形成されている。 Note that in the power storage element 11, the adjacent conductive member 100 does not exist on the end face electrode 15 at the left end of the rear row shown in FIG. Therefore, the positive electrode terminal 25 for power input/output of all the power storage elements 11 is welded and connected to the end face electrode 15 at the left end of the rear row shown in FIG. The positive electrode terminal 25 has a plate shape for causing the circumferential surface side facing portion 120 of the conductive member 100 to function as the end surface side facing portion 111. For example, like the conductive member 100, the positive electrode terminal 25 is formed by press-molding a metal plate such as an aluminum plate.

一方、蓄電素子11における図1の前列左端の導電部材100には、隣の端面電極15が存在しない。そのため、この導電部材100は、全蓄電素子11の電力入出力用の負極端子26として機能させている。 On the other hand, the adjacent end surface electrode 15 does not exist on the conductive member 100 at the left end of the front row in FIG. 1 in the power storage element 11 . Therefore, this conductive member 100 functions as the negative electrode terminal 26 for power input/output of all the power storage elements 11.

<収納部材>
収納部材27は、熱伝導性を有する。例えば、収納部材27は、アルミニウム等の金属で形成されている。収納部材27は、複数の蓄電素子11を収納するための部材(ホルダ)である。収納部材27は、蓄電素子11からの熱を外部に発散することで冷却を行うヒートシンクとしても機能する。
<Storage components>
The storage member 27 has thermal conductivity. For example, the storage member 27 is made of metal such as aluminum. The storage member 27 is a member (holder) for storing the plurality of power storage elements 11. The storage member 27 also functions as a heat sink that performs cooling by dissipating heat from the power storage element 11 to the outside.

収納部材27は、金属製の直方体に、蓄電素子11の周面の一部を収納する円弧状の凹面29を複数箇所(実施形態では12個所)設けた構成を有する。収納部材27は、固定板39をネジ止めするための固定板ネジ穴31と、ケース47をネジ止めするためのケースネジ穴33と、を有する。 The storage member 27 has a configuration in which a metal rectangular parallelepiped is provided with a plurality of arcuate concave surfaces 29 (12 in the embodiment) for storing a portion of the circumferential surface of the power storage element 11 . The storage member 27 has a fixing plate screw hole 31 for screwing the fixing plate 39 and a case screw hole 33 for screwing the case 47.

凹面29は、図1の収納部材27を上面から見たとき、略半円形状になるように形成されている。例えば、収納部材27は、押し出し成型又は切削加工等により形成される。 The concave surface 29 is formed to have a substantially semicircular shape when the storage member 27 in FIG. 1 is viewed from above. For example, the storage member 27 is formed by extrusion molding, cutting, or the like.

実施形態では、凹面29は、蓄電素子11が俵積み状にならないように設けられている。これにより、収納部材27の熱容量を大きくすることができる。加えて、互いに隣り合う2つの蓄電素子11の間に収納部材27の一部が介在するので、蓄電素子11の間隔が広がる。このため、他の蓄電素子11の発熱の影響を互いに受けにくくすることができる。その結果、良好な放熱性が得られる。 In the embodiment, the concave surface 29 is provided so that the power storage elements 11 are not stacked in bales. Thereby, the heat capacity of the storage member 27 can be increased. In addition, since a part of the storage member 27 is interposed between two adjacent power storage elements 11, the interval between the power storage elements 11 is widened. For this reason, it is possible to make each of the power storage elements 11 less susceptible to the effects of heat generation from other power storage elements 11 . As a result, good heat dissipation is obtained.

収納部材27の凹面29には、蓄電素子11の周面の一部が収納される。例えば、蓄電素子11の周面のうち凹面29に収納される部分と、収納部材27の凹面29とは、絶縁性を有する接合材35(以下「絶縁性接合材35」ともいう。)で接合されている。これにより、金属製の収納部材27に複数の蓄電素子11を収納した際に、互いの周面電極17が電気的に短絡することを防ぐことができる。 A portion of the circumferential surface of the power storage element 11 is accommodated in the concave surface 29 of the storage member 27 . For example, the portion of the circumferential surface of the power storage element 11 that is accommodated in the concave surface 29 and the concave surface 29 of the storage member 27 are bonded using a bonding material 35 having insulation properties (hereinafter also referred to as "insulating bonding material 35"). has been done. Thereby, when a plurality of power storage elements 11 are stored in the metal storage member 27, it is possible to prevent the circumferential electrodes 17 from being electrically short-circuited.

例えば、絶縁性接合材35としては、両面テープが挙げられる。例えば、蓄電素子11において凹面29に収納される周面部分に両面テープを貼付した後、これを収納部材27に収納することで、蓄電素子11の周面を凹面29と接合させることができる。図1の例では、蓄電素子11の周面の約半分の面積が凹面29と絶縁性接合材35とで固定される。なお、収納部材27の凹面29に両面テープを貼付した後、これに蓄電素子11を収納する構成としてもよい。 For example, the insulating bonding material 35 may be double-sided tape. For example, the circumferential surface of the power storage element 11 can be joined to the concave surface 29 by pasting double-sided tape on the circumferential surface of the power storage element 11 that is accommodated in the concave surface 29 and then storing it in the storage member 27. In the example of FIG. 1, approximately half of the area of the circumferential surface of the power storage element 11 is fixed by the concave surface 29 and the insulating bonding material 35. Note that a double-sided tape may be attached to the concave surface 29 of the storage member 27, and then the power storage element 11 may be stored therein.

実施形態では、絶縁性接合材35により接合した後の蓄電素子11の周面と収納部材27の凹面29との隙間には、全体的に絶縁性接合材35が埋め込まれる。これにより、蓄電素子11の熱は絶縁性接合材35を介して収納部材27に伝わる。このため、効率的な放熱が可能となる。さらに実施形態では、蓄電素子11に比べて熱容量の大きな金属製の収納部材27により放熱を行う。このため、頻繁に蓄電素子11を充放電しても、蓄電装置1の中央部分等に配置される特定の蓄電素子11が過熱される可能性を低減できる。 In the embodiment, the insulating bonding material 35 is entirely embedded in the gap between the circumferential surface of the power storage element 11 and the concave surface 29 of the storage member 27 after bonding with the insulating bonding material 35 . Thereby, the heat of the power storage element 11 is transmitted to the storage member 27 via the insulating bonding material 35. Therefore, efficient heat radiation becomes possible. Further, in the embodiment, heat is radiated by a metal storage member 27 having a larger heat capacity than the power storage element 11. Therefore, even if the power storage element 11 is frequently charged and discharged, the possibility that a specific power storage element 11 disposed in the central portion of the power storage device 1 or the like will be overheated can be reduced.

絶縁性接合材35としての両面テープは、基材と、基材の両面に形成された粘着部と、の積層構造を有する。例えば、基材は、弾性を有する樹脂(例えば箔状のゴム)であることが好ましい。これにより、半径の異なる蓄電素子11と凹面29との間に形成される隙間全体を両面テープで埋めることができる。このため、効率的な放熱が可能となる。 The double-sided tape as the insulating bonding material 35 has a laminated structure of a base material and adhesive parts formed on both sides of the base material. For example, the base material is preferably an elastic resin (eg, foil-like rubber). Thereby, the entire gap formed between the power storage element 11 and the concave surface 29 having different radii can be filled with the double-sided tape. Therefore, efficient heat radiation becomes possible.

例えば、粘着部は、アルミナやシリカ等のセラミックス製の絶縁性を持つ熱伝導性フィラを含有することが好ましい。これにより、蓄電素子11が凹面29に強く押し込まれたり、劣化が進行することにより基材が切断されたりした場合でも、粘着部に含有された絶縁性を持つ熱伝導性フィラが蓄電素子11の周面と凹面29との間に介在する。このため、蓄電素子11の周面が凹面29と直接接触することで短絡する可能性を低減できる。したがって、高放熱性と高信頼性とを両立できる。 For example, it is preferable that the adhesive part contains an insulating and thermally conductive filler made of ceramic such as alumina or silica. As a result, even if the power storage element 11 is strongly pushed into the concave surface 29 or the base material is cut due to progressing deterioration, the insulating and thermally conductive filler contained in the adhesive part will protect the power storage element 11. It is interposed between the peripheral surface and the concave surface 29. Therefore, it is possible to reduce the possibility of a short circuit caused by the peripheral surface of the power storage element 11 coming into direct contact with the concave surface 29. Therefore, both high heat dissipation and high reliability can be achieved.

実施形態では、収納部材27に収納された蓄電素子11は、さらに固定板39によっても保持されている。例えば、固定板39は、樹脂製である。固定板39は、蓄電素子11の円柱形状の周面の一部を収納し、保持するための保持部41を有する。保持部41は、6箇所の円弧状の凹面を有する。保持部41は、凹面に収納された蓄電素子11を保持した状態で、収納部材27と固定板39との間に僅かな隙間を介在させるように形成されている。 In the embodiment, the power storage element 11 housed in the housing member 27 is further held by a fixing plate 39. For example, the fixing plate 39 is made of resin. The fixing plate 39 has a holding part 41 for storing and holding a part of the cylindrical circumferential surface of the power storage element 11. The holding portion 41 has six arcuate concave surfaces. The holding portion 41 is formed so as to provide a slight gap between the storage member 27 and the fixing plate 39 while holding the power storage element 11 housed in the concave surface.

例えば、収納部材27を固定板39に取り付ける際に、収納部材27と固定板39との隙間がなくなるように、8個の固定板ネジ43を固定板ネジ穴31に締め込む。これにより、固定板39の樹脂が有する弾性により、蓄電素子11を収納部材27側に押し込むようにして保持する。その結果、蓄電素子11は両面テープで収納部材27と接合されるとともに、固定板39の弾性によって強固に保持される。したがって、振動が顕著な用途(例えば、ハイブリッド建設機械等)に蓄電装置1を適用したとしても、蓄電素子11が外れたり、導電部材100の接続が切断されたりする可能性が低減され、良好な耐振動性が得られる。 For example, when attaching the storage member 27 to the fixing plate 39, eight fixing plate screws 43 are tightened into the fixing plate screw holes 31 so that there is no gap between the storing member 27 and the fixing plate 39. Thereby, the elasticity of the resin of the fixing plate 39 holds the power storage element 11 so as to push it into the storage member 27 side. As a result, the power storage element 11 is joined to the storage member 27 with double-sided tape and is firmly held by the elasticity of the fixing plate 39. Therefore, even if the power storage device 1 is applied to applications where vibration is noticeable (for example, hybrid construction machinery, etc.), the possibility that the power storage element 11 will come off or the connection of the conductive member 100 will be cut is reduced, and a good Provides vibration resistance.

実施形態では、固定板39の保持部41における下端部には、底板44が一体形成されている。このため、蓄電素子11の底部は、底板44により外部と遮断される構成となる。例えば、底板44は、蓄電素子11を保持部41で保持した際に、蓄電素子11の底部が当接しない位置になるように形成されている。これにより、蓄電素子11の高さにバラツキがあっても、蓄電素子11の底部と底板44との隙間で前記バラツキを吸収することができる。 In the embodiment, a bottom plate 44 is integrally formed at the lower end of the holding portion 41 of the fixed plate 39. Therefore, the bottom of the power storage element 11 is configured to be isolated from the outside by the bottom plate 44. For example, the bottom plate 44 is formed at a position where the bottom of the power storage element 11 does not come into contact with the power storage element 11 when the power storage element 11 is held by the holding portion 41 . Thereby, even if there is variation in the height of the power storage element 11, the variation can be absorbed by the gap between the bottom of the power storage element 11 and the bottom plate 44.

実施形態では、固定板39において保持部41とは反対面(すなわち外壁面)には、フィン45が一体に形成されている。これにより、固定板39の機械的強度を増すことができる。加えて、フィン45の分だけ外壁の表面積が増えるため、固定板39からの放熱性を改善することができる。なお、図1の例では、固定板39の中央部の1箇所にフィン45が設けられているが、これに限らない。例えば、固定板39の複数箇所にフィン45が設けられていてもよい。例えば、フィン45の形状は、図1の水平方向に限らず、垂直方向等に延びる形状を有していてもよい。 In the embodiment, fins 45 are integrally formed on the opposite surface of the fixing plate 39 from the holding portion 41 (ie, the outer wall surface). Thereby, the mechanical strength of the fixed plate 39 can be increased. In addition, since the surface area of the outer wall increases by the amount of the fins 45, heat dissipation from the fixed plate 39 can be improved. In the example of FIG. 1, the fin 45 is provided at one location in the center of the fixed plate 39, but the present invention is not limited to this. For example, the fins 45 may be provided at multiple locations on the fixed plate 39. For example, the shape of the fins 45 is not limited to the horizontal direction in FIG. 1, but may extend in the vertical direction.

実施形態では、固定板39が収納部材27に固定された状態で、収納部材27の上部にはケース47が固定される。例えば、ケース47を介してケース固定ネジ49をケースネジ穴33に締め込むことで、収納部材27の上部にケース47を固定している。これにより、蓄電素子11において両面テープが貼付されていない上部がケース47により覆われる。その結果、蓄電素子11の上部を外部と遮断でき、塵埃等の付着を低減できる。 In the embodiment, the case 47 is fixed to the upper part of the storage member 27 with the fixing plate 39 fixed to the storage member 27. For example, the case 47 is fixed to the upper part of the storage member 27 by tightening the case fixing screw 49 into the case screw hole 33 through the case 47. As a result, the upper part of the power storage element 11 to which the double-sided tape is not attached is covered by the case 47. As a result, the upper part of the power storage element 11 can be isolated from the outside, and the adhesion of dust and the like can be reduced.

本実施形態では、蓄電素子11の全体が、凹面29、保持部41、底板44及びケース47により、外部と遮断される。このため、蓄電素子11や導電部材100への塵埃や粒子状浮遊物等の不純物の付着を低減することができる。したがって、不純物による蓄電素子11や導電部材100の腐食可能性が低減されるので、高信頼性が得られる。 In this embodiment, the entire power storage element 11 is isolated from the outside by the concave surface 29, the holding portion 41, the bottom plate 44, and the case 47. Therefore, adhesion of impurities such as dust and suspended particles to the power storage element 11 and the conductive member 100 can be reduced. Therefore, the possibility of corrosion of the power storage element 11 and the conductive member 100 due to impurities is reduced, so that high reliability can be obtained.

例えば、ケース47は、樹脂製である。ケース47の上面には、複数の孔51が設けられている。これらの孔51を介して、導電部材100であるバスバーに一体に形成された端子(以下「バスバー端子」ともいう。)をケース47の上面から突出させる。ケース47の上面には、回路基板53が設けられる。例えば、回路基板53に設けた端子穴(不図示)にバスバー端子を挿入し、半田付けする。これにより、回路基板53とバスバー端子とが電気的に接続される。その結果、回路基板53は、各蓄電素子11の電気的接続点における電圧を検出することができる。 For example, the case 47 is made of resin. A plurality of holes 51 are provided on the upper surface of the case 47. Terminals (hereinafter also referred to as "busbar terminals") formed integrally with the busbar, which is the conductive member 100, are made to protrude from the upper surface of the case 47 through these holes 51. A circuit board 53 is provided on the upper surface of the case 47. For example, bus bar terminals are inserted into terminal holes (not shown) provided in the circuit board 53 and soldered. This electrically connects the circuit board 53 and the bus bar terminals. As a result, circuit board 53 can detect the voltage at the electrical connection point of each power storage element 11.

例えば、回路基板53は、検出した電圧に応じて、各蓄電素子11の両端電圧を揃えるバランス回路を内蔵していてもよい。例えば、バランス回路による各蓄電素子11の電圧の制御は、バスバー端子を介して行ってもよい。例えば、回路基板53には、電圧検出回路やバランス回路を構成する複数の電子部品が実装されていてもよい。 For example, circuit board 53 may have a built-in balance circuit that equalizes the voltage across each power storage element 11 according to the detected voltage. For example, the voltage of each power storage element 11 may be controlled by the balance circuit via a busbar terminal. For example, a plurality of electronic components constituting a voltage detection circuit or a balance circuit may be mounted on the circuit board 53.

本実施形態では、回路基板53は、6個の回路基板固定ネジ55により、ケース47に固定される。正極端子25及び負極端子26は、外部の充放電回路(不図示)に接続される。例えば、電力仕様に応じて、複数の蓄電装置1を使用する場合は、各蓄電装置1の正極端子25と負極端子26とを互いに直列又は並列に接続すればよい。 In this embodiment, the circuit board 53 is fixed to the case 47 by six circuit board fixing screws 55. The positive terminal 25 and the negative terminal 26 are connected to an external charging/discharging circuit (not shown). For example, if a plurality of power storage devices 1 are used depending on the power specifications, the positive terminal 25 and negative terminal 26 of each power storage device 1 may be connected in series or in parallel with each other.

例えば、複数の蓄電装置1を使用する場合は、熱容量の大きい金属製の台座に収納部材27が接するように固定する構成が望ましい。これにより、収納部材27の熱が速やかに台座に伝達されるため、さらに効率的な放熱が可能になる。加えて、台座自体を水冷にする構成とした場合は、より一層の高放熱性が得られる。 For example, when using a plurality of power storage devices 1, it is desirable to fix the storage member 27 to a metal pedestal with a large heat capacity so that it is in contact with the base. As a result, the heat of the storage member 27 is quickly transferred to the pedestal, making it possible to dissipate heat even more efficiently. In addition, when the pedestal itself is configured to be water-cooled, even higher heat dissipation performance can be obtained.

実施形態では、収納部材27の下部には冷却機構60が固定される。例えば、冷却機構60の冷却板を介して冷却板固定ネジ(不図示)を収納部材27下部のネジ穴(不図示)に締め込むことで、収納部材27の下部に冷却機構60を固定している。例えば、冷却機構60は、冷却水を流通可能な水路61を有する。これにより、水冷により収納部材27の熱が速やかに伝達されるため、さらに効率的な放熱が可能となる。 In the embodiment, a cooling mechanism 60 is fixed to the lower part of the storage member 27. For example, the cooling mechanism 60 can be fixed to the lower part of the storage member 27 by tightening a cooling plate fixing screw (not shown) into a screw hole (not shown) at the lower part of the storage member 27 via the cooling plate of the cooling mechanism 60. There is. For example, the cooling mechanism 60 has a water channel 61 through which cooling water can flow. Thereby, the heat of the storage member 27 is quickly transferred by water cooling, so that more efficient heat dissipation is possible.

<導電部材の構成>
図5は、実施形態に係る導電部材100の溶接箇所の説明図である。図6は、実施形態に係る導電部材100において端面電極15と対向する部分111を示す図である。図7は、実施形態に係る導電部材100の側面図である。図8は、実施形態に係る導電部材100において周面電極17と対向する部分120を示す図である。
導電部材100は、端面電極15から隣り合う蓄電素子11の周面電極17に向かって延びることで、端面電極15及び周面電極17に接続されている。蓄電装置1は、導電部材100及び周面電極17を介して、端面電極15の熱を収納部材27に逃がす構造とされている。
<Configuration of conductive member>
FIG. 5 is an explanatory diagram of welding locations of the conductive member 100 according to the embodiment. FIG. 6 is a diagram showing a portion 111 facing the end electrode 15 in the conductive member 100 according to the embodiment. FIG. 7 is a side view of the conductive member 100 according to the embodiment. FIG. 8 is a diagram showing a portion 120 facing the peripheral electrode 17 in the conductive member 100 according to the embodiment.
The conductive member 100 is connected to the end surface electrode 15 and the peripheral surface electrode 17 by extending from the end surface electrode 15 toward the peripheral surface electrode 17 of the adjacent power storage element 11 . Power storage device 1 has a structure in which heat from end surface electrode 15 is released to storage member 27 via conductive member 100 and peripheral surface electrode 17 .

複数の蓄電素子11は、円柱形状を有し、互いに隣り合う第1蓄電素子11A及び第2蓄電素子11Bを含む。導電部材100は、第1蓄電素子11A及び第2蓄電素子11Bを電気的に接続する。第1蓄電素子11Aは、軸方向端部に端面電極15を有する。第2蓄電素子11Bは、外周部に周面電極17を有する。導電部材100は、第1方向V1に沿って端面電極15と対向する部分111から径方向外側に延びた後、屈曲部130を介して、第2方向V2に沿って周面電極17に向かって延びている。ここで、第1方向V1は、第1蓄電素子11Aの軸方向と直交する方向に相当する。第2方向V2は、第1蓄電素子11Aの軸方向と平行な方向に相当する。 The plurality of power storage elements 11 have a cylindrical shape and include a first power storage element 11A and a second power storage element 11B that are adjacent to each other. The conductive member 100 electrically connects the first power storage element 11A and the second power storage element 11B. The first power storage element 11A has an end surface electrode 15 at the end in the axial direction. The second power storage element 11B has a circumferential electrode 17 on the outer periphery. The conductive member 100 extends radially outward from the portion 111 facing the end electrode 15 along the first direction V1, and then extends toward the circumferential electrode 17 along the second direction V2 via the bent portion 130. It is extending. Here, the first direction V1 corresponds to a direction orthogonal to the axial direction of the first power storage element 11A. The second direction V2 corresponds to a direction parallel to the axial direction of the first power storage element 11A.

導電部材100は、第1蓄電素子11Aの端面電極15と対向する部分111に厚肉部101と、厚肉部101よりも厚みが薄い端面側薄肉部102と、を有する。厚肉部101は、導電部材100において第1方向V1に延びる部分110と第2方向V2に延びる部分120とにわたって設けられる。端面側薄肉部102は、第1蓄電素子11Aの端面電極15と溶接接続されている(図5に示す端面側薄肉部102と端面電極15との溶接部分J1)。例えば、端面側薄肉部102は、レーザ溶接により第1蓄電素子11Aの端面電極15と溶接接続されている。 The conductive member 100 has a thick portion 101 in a portion 111 facing the end electrode 15 of the first power storage element 11A, and an end-side thin portion 102 that is thinner than the thick portion 101. The thick portion 101 is provided in the conductive member 100 over a portion 110 extending in the first direction V1 and a portion 120 extending in the second direction V2. The end face side thin wall portion 102 is welded and connected to the end face electrode 15 of the first power storage element 11A (welded portion J1 between the end face side thin wall portion 102 and the end face electrode 15 shown in FIG. 5). For example, the end face side thin wall portion 102 is welded and connected to the end face electrode 15 of the first power storage element 11A by laser welding.

例えば、厚肉部101の厚み101tは、0.6mm以上3mm以下の厚みに設定される。例えば、端面側薄肉部102の厚み102tは、0.3mm以上1mm以下の厚みに設定される。実施形態では、厚肉部101の厚み101tは2mmであり、端面側薄肉部102の厚み102tは0.6mmである。なお、厚肉部101及び端面側薄肉部102の厚みは、上記に限らず、要求仕様に応じて変更可能である。 For example, the thickness 101t of the thick portion 101 is set to a thickness of 0.6 mm or more and 3 mm or less. For example, the thickness 102t of the end face side thin wall portion 102 is set to a thickness of 0.3 mm or more and 1 mm or less. In the embodiment, the thickness 101t of the thick portion 101 is 2 mm, and the thickness 102t of the end face side thin portion 102 is 0.6 mm. Note that the thicknesses of the thick portion 101 and the end face side thin portion 102 are not limited to those described above, and can be changed according to required specifications.

一般に導電部材(バスバー)は狭小な部分に設置されるため、導電部材の厚肉部は例えば0.2mm程度に薄くされる。このように厚肉部が薄いと、熱の流れにおける導電部材の断面積(伝熱面積)が小さくなり、電気抵抗が増加し、ジュール熱が増加する可能性が高い。 Since a conductive member (bus bar) is generally installed in a narrow area, the thick portion of the conductive member is made thin, for example, to about 0.2 mm. When the thick portion is thin in this way, the cross-sectional area (heat transfer area) of the conductive member in the flow of heat becomes small, which increases the electrical resistance and is likely to increase Joule heat.

これに対し実施形態では、導電部材100の厚肉部101の厚み101tは2mmであり、熱の流れにおける導電部材100の断面積(伝熱面積)を可及的に増加させることができる。そのため、電気抵抗低減によるジュール熱低減と、伝熱面積増加による冷却性能増加とを両立させることができる。 In contrast, in the embodiment, the thickness 101t of the thick portion 101 of the conductive member 100 is 2 mm, and the cross-sectional area (heat transfer area) of the conductive member 100 in the flow of heat can be increased as much as possible. Therefore, it is possible to achieve both reduction in Joule heat due to reduction in electrical resistance and increase in cooling performance due to increase in heat transfer area.

例えば、導電部材100の断面積S1と端面側薄肉部102及び端面電極15の溶接面積S2との比S1/S2は、0.3以上1.1以下に設定される。ここで、導電部材100の断面積S1は、熱の流れにおける導電部材100の断面積(伝熱面積)に相当する。端面側薄肉部102及び端面電極15の溶接面積S2は、第2方向V2から見て2箇所の端面側薄肉部102を足し合わせた面積に相当する。導電部材100において第1方向V1に延びる部分110では、導電部材100の断面積S1は第1方向V1と直交する面で切断した場合の導電部材100の断面積に相当する。実施形態では、比S1/S2は0.7である。なお、比S1/S2は、上記に限らず、要求仕様に応じて変更可能である。 For example, the ratio S1/S2 between the cross-sectional area S1 of the conductive member 100 and the welding area S2 of the end face side thin wall portion 102 and the end face electrode 15 is set to 0.3 or more and 1.1 or less. Here, the cross-sectional area S1 of the conductive member 100 corresponds to the cross-sectional area (heat transfer area) of the conductive member 100 in the flow of heat. The welding area S2 of the end face side thin wall portion 102 and the end face electrode 15 corresponds to the total area of the end face side thin wall portions 102 at two locations when viewed from the second direction V2. In the portion 110 of the conductive member 100 extending in the first direction V1, the cross-sectional area S1 of the conductive member 100 corresponds to the cross-sectional area of the conductive member 100 when cut along a plane orthogonal to the first direction V1. In an embodiment, the ratio S1/S2 is 0.7. Note that the ratio S1/S2 is not limited to the above, and can be changed according to required specifications.

厚肉部101は、導電部材100が延びる方向において一様の厚みを有する。ここで、厚肉部101の厚み101tは、端面電極15と対向する部分111は第1蓄電素子11Aの軸方向における厚肉部101の板厚に相当し、周面電極17と対向する部分120は第2蓄電素子11Bの径方向における厚肉部101の板厚に相当する。厚肉部101は、端面電極15と対向する部分111において第1方向V1に一様の厚みを有するとともに、周面電極17と対向する部分120において第2方向V2に一様の厚みを有する。 The thick portion 101 has a uniform thickness in the direction in which the conductive member 100 extends. Here, the thickness 101t of the thick portion 101 corresponds to the thickness of the thick portion 101 in the axial direction of the first power storage element 11A in the portion 111 facing the end electrode 15, and the thickness 120 in the portion facing the peripheral electrode 17. corresponds to the thickness of the thick portion 101 in the radial direction of the second power storage element 11B. The thick portion 101 has a uniform thickness in the first direction V1 at a portion 111 facing the end electrode 15, and a uniform thickness in the second direction V2 at a portion 120 facing the peripheral electrode 17.

厚肉部101の厚み101tは、周面電極17の厚み17tよりも厚い。ここで、周面電極17の厚み17tは、第2蓄電素子11Bの径方向における周面電極17の厚み17tに相当する。例えば、周面電極17の厚み17tは、0.4mm以上1mm以下の厚みに設定される。実施形態では、厚肉部101の厚み101tは2mmであり、周面電極17の厚み17tは0.7mmである。なお、厚肉部101及び周面電極17の厚みは、上記に限らず、要求仕様に応じて変更可能である。 The thickness 101t of the thick portion 101 is thicker than the thickness 17t of the peripheral electrode 17. Here, the thickness 17t of the circumferential electrode 17 corresponds to the thickness 17t of the circumferential electrode 17 in the radial direction of the second power storage element 11B. For example, the thickness 17t of the peripheral electrode 17 is set to a thickness of 0.4 mm or more and 1 mm or less. In the embodiment, the thickness 101t of the thick portion 101 is 2 mm, and the thickness 17t of the peripheral electrode 17 is 0.7 mm. Note that the thicknesses of the thick portion 101 and the peripheral electrode 17 are not limited to those described above, and can be changed according to required specifications.

第1蓄電素子11Aの軸方向から見て、厚肉部101において端面電極15と対向する部分111は、端面側薄肉部102よりも面積が大きい。ここで、厚肉部101において端面電極15と対向する部分111の面積は、第2方向V2から見て厚肉部101が端面電極15と重なる部分の面積に相当する。端面側薄肉部102の面積は、第2方向V2から見て端面側薄肉部102が端面電極15と重なる部分の面積(2箇所の端面側薄肉部102を足し合わせた面積)に相当する。 When viewed from the axial direction of the first power storage element 11A, a portion 111 of the thick wall portion 101 that faces the end surface electrode 15 has a larger area than the end surface side thin wall portion 102. Here, the area of the portion 111 of the thick portion 101 that faces the end electrode 15 corresponds to the area of the portion where the thick portion 101 overlaps the end electrode 15 when viewed from the second direction V2. The area of the end face side thin wall portion 102 corresponds to the area of the portion where the end face side thin wall portion 102 overlaps the end face electrode 15 (the area of the two end face side thin wall portions 102) when viewed from the second direction V2.

第1蓄電素子11Aの軸方向から見て、厚肉部101において端面電極15と対向する部分111は、厚肉部101において端面電極15と対向する部分111から径方向外側に延びる部分112よりも幅が広い。ここで、厚肉部101において端面電極15と対向する部分111の幅111wは、第2方向V2から見て厚肉部101における第1方向V1と直交する方向の最大長さに相当する。厚肉部101において端面電極15と対向する部分111から径方向外側に延びる部分112の幅112wは、第2方向V2から見て厚肉部101における第1方向V1と直交する方向の最小長さに相当する。 When viewed from the axial direction of the first power storage element 11A, the portion 111 of the thick portion 101 facing the end electrode 15 is longer than the portion 112 extending radially outward from the portion 111 of the thick portion 101 facing the end electrode 15. It's wide. Here, the width 111w of the portion 111 facing the end electrode 15 in the thick portion 101 corresponds to the maximum length of the thick portion 101 in the direction perpendicular to the first direction V1 when viewed from the second direction V2. The width 112w of the portion 112 extending radially outward from the portion 111 facing the end electrode 15 in the thick portion 101 is the minimum length of the thick portion 101 in the direction perpendicular to the first direction V1 when viewed from the second direction V2. corresponds to

第2方向V2から見て、厚肉部101において端面電極15と対向する部分111は、第1方向V1において一様の幅を有した後、径方向外側に延びる部分112に向かって徐々に幅が狭くなっている。第2方向V2から見て、厚肉部101において端面電極15と対向する部分111のうち径方向外側に延びる部分112とは反対側の部分は、端面電極15の外周に沿うように弧状に湾曲している。 When viewed from the second direction V2, the portion 111 of the thick portion 101 facing the end electrode 15 has a uniform width in the first direction V1, and then gradually increases in width toward the portion 112 extending radially outward. is getting narrower. When viewed from the second direction V2, a portion of the thick portion 101 facing the end electrode 15 that is opposite to the portion 112 extending radially outward is curved in an arc along the outer periphery of the end electrode 15. are doing.

第2方向V2から見て、厚肉部101において端面電極15と対向する部分111から径方向外側に延びる部分112は、第1方向V1において一様の幅を有する。第2方向V2から見て、厚肉部101において端面電極15と対向する部分111から径方向外側に延びる部分112のうち周面電極17に隣接する部分(屈曲部130)は、周面電極17の外周に沿うように弧状に湾曲している。 When viewed from the second direction V2, a portion 112 of the thick portion 101 that extends radially outward from the portion 111 facing the end electrode 15 has a uniform width in the first direction V1. When viewed from the second direction V2, a portion (bent portion 130) adjacent to the circumferential electrode 17 of the portion 112 extending radially outward from the portion 111 facing the end electrode 15 in the thick portion 101 is connected to the circumferential electrode 17. It is curved in an arc along the outer circumference.

端面側薄肉部102は、導電部材100が延びる方向に沿って延びている。端面側薄肉部102は、第2方向V2から見て、第1方向V1に長手を有する長方形状に形成されている。端面側薄肉部102は、第2方向V2から見て、第1方向V1と直交する方向に間隔をあけて2つ設けられている。2つの端面側薄肉部102は、第2方向V2から見て互いに同じ形状を有する。なお、端面側薄肉部102の形状や設置数は、上記に限らず、要求仕様に応じて変更可能である。 The end face side thin wall portion 102 extends along the direction in which the conductive member 100 extends. The end face side thin wall portion 102 is formed in a rectangular shape having a longitudinal direction in the first direction V1 when viewed from the second direction V2. Two end face side thin parts 102 are provided at intervals in a direction perpendicular to the first direction V1 when viewed from the second direction V2. The two end face side thin parts 102 have the same shape when viewed from the second direction V2. Note that the shape and number of end face side thin-walled portions 102 are not limited to those described above, and can be changed according to required specifications.

導電部材100は、周面電極17と対向する部分120に厚肉部101と、厚肉部101よりも厚みが薄い周面側薄肉部103と、を有する。周面側薄肉部103は、周面電極17と溶接接続されている(図5に示す周面側薄肉部103と周面電極17との溶接部分J2)。例えば、周面側薄肉部103は、レーザ溶接により周面電極17と溶接接続されている。 The conductive member 100 has a thick portion 101 in a portion 120 facing the peripheral electrode 17 and a peripheral thin portion 103 thinner than the thick portion 101 . The circumferential thin wall portion 103 is welded to the circumferential electrode 17 (welded portion J2 between the circumferential thin wall portion 103 and the circumferential electrode 17 shown in FIG. 5). For example, the circumferential thin wall portion 103 is welded and connected to the circumferential electrode 17 by laser welding.

例えば、周面側薄肉部103の厚みは、0.3mm以上1mm以下の厚みに設定される。実施形態では、厚肉部101の厚み101tは2mmであり、周面側薄肉部103の厚みは0.6mmである。なお、厚肉部101及び周面側薄肉部103の厚みは、上記に限らず、要求仕様に応じて変更可能である。 For example, the thickness of the circumferential thin wall portion 103 is set to 0.3 mm or more and 1 mm or less. In the embodiment, the thickness 101t of the thick portion 101 is 2 mm, and the thickness of the peripheral thin portion 103 is 0.6 mm. Note that the thicknesses of the thick portion 101 and the peripheral thin portion 103 are not limited to those described above, and can be changed according to required specifications.

周面側薄肉部103は、導電部材100が延びる方向に沿って延びている。周面側薄肉部103は、第1方向V1から見て、第2方向V2に長手を有する長方形状に形成されている。周面側薄肉部103は、第1方向V1から見て、第2方向V2と直交する方向に間隔をあけて3つ設けられている。3つの周面側薄肉部103は、第1方向V1から見て互いに同じ形状を有する。なお、周面側薄肉部103の形状や設置数は、上記に限らず、要求仕様に応じて変更可能である。 The peripheral thin wall portion 103 extends along the direction in which the conductive member 100 extends. The peripheral thin wall portion 103 is formed in a rectangular shape having a longitudinal direction in the second direction V2 when viewed from the first direction V1. Three circumferential thin portions 103 are provided at intervals in a direction perpendicular to the second direction V2 when viewed from the first direction V1. The three circumferential thin portions 103 have the same shape when viewed from the first direction V1. Note that the shape and number of peripheral thin-walled portions 103 are not limited to those described above, and can be changed according to required specifications.

<蓄電装置の組み立て方法の一例>
まず、蓄電素子11の周面電極17と導電部材100の周面側薄肉部103とをレーザ溶接で溶接接続する。次に、両面テープが貼付されるとともに導電部材100が溶接接続された蓄電素子11を、固定板39の保持部41に並べる。その際、各蓄電素子11の高さ方向の位置決めを行うために、図示しない治具により、導電部材100が隣の端面電極15に接するように並べる。
<An example of how to assemble a power storage device>
First, the circumferential electrode 17 of the power storage element 11 and the thin circumferential portion 103 of the conductive member 100 are welded together by laser welding. Next, the power storage elements 11 to which the double-sided tape is attached and to which the conductive member 100 is welded are arranged on the holding portion 41 of the fixing plate 39 . At this time, in order to position each power storage element 11 in the height direction, the electrically conductive members 100 are arranged so as to be in contact with the adjacent end surface electrodes 15 using a jig (not shown).

次に、固定板39及び治具により並べられた蓄電素子11の端面電極15と、導電部材100の端面側薄肉部102とを溶接接続する。
次に、両面テープの保護シート(不図示)を剥がし、収納部材27の凹面29に蓄電素子11が収納されるように、固定板39を固定板ネジ43で収納部材27に固定する。2列の蓄電素子11を収納部材27に固定する。その後、図1の後列右端の蓄電素子11に接続した導電部材100と、前列右端の蓄電素子11の端面電極15とを溶接接続する。さらに、後列左端の端面電極15に正極端子25を溶接接続する。
Next, the end surface electrodes 15 of the power storage elements 11 arranged by the fixing plate 39 and the jig are welded and connected to the thin end surface portion 102 of the conductive member 100.
Next, the protective sheet (not shown) of the double-sided tape is peeled off, and the fixing plate 39 is fixed to the accommodating member 27 with the fixing plate screws 43 so that the power storage element 11 is accommodated in the concave surface 29 of the accommodating member 27. Two rows of power storage elements 11 are fixed to a storage member 27. Thereafter, the conductive member 100 connected to the power storage element 11 at the right end of the rear row in FIG. 1 is welded and connected to the end surface electrode 15 of the power storage element 11 at the right end of the front row. Furthermore, a positive electrode terminal 25 is welded and connected to the end surface electrode 15 at the left end of the rear row.

次に、ケース47をケース固定ネジ49で収納部材27に固定する。その後、回路基板53をバスバー端子と電気的に接続する。また、回路基板53を回路基板固定ネジ55でケース47に機械的に接続する。
なお、上記の組み立て方法は一例であり、上記以外にも、先に蓄電素子11を収納部材27に固定する等、蓄電装置1を組み立て可能な順序であれば、どのような方法であっても構わない。
Next, the case 47 is fixed to the storage member 27 with case fixing screws 49. Thereafter, the circuit board 53 is electrically connected to the bus bar terminals. Further, the circuit board 53 is mechanically connected to the case 47 using the circuit board fixing screws 55.
Note that the above assembly method is an example, and any method other than the above may be used as long as the power storage device 1 can be assembled in an order such as first fixing the power storage element 11 to the storage member 27. I do not care.

例えば、絶縁性接合材35は両面テープであることに限らず、熱伝導性フィラを含有した接着剤であってもよい。この構成によれば、接着剤自体が可塑性を有するため、蓄電素子11を凹面29に押し込むことで接着層が薄くなり、良好な熱伝導性が得られる。さらに、接着剤は蓄電素子11の周面と凹面29との隙間にも満遍なく行き渡らせることができ、強固な保持も可能となる。 For example, the insulating bonding material 35 is not limited to double-sided tape, but may be an adhesive containing thermally conductive filler. According to this configuration, since the adhesive itself has plasticity, the adhesive layer becomes thinner by pushing the power storage element 11 into the concave surface 29, and good thermal conductivity can be obtained. Furthermore, the adhesive can be evenly spread over the gap between the circumferential surface of the power storage element 11 and the concave surface 29, and firm holding is also possible.

例えば、蓄電素子11の周面電極17において導電部材100が接続される部位以外の周面に、絶縁チューブ等の絶縁部が設けられていてもよい。これにより、蓄電素子11の周面は絶縁チューブによって絶縁されるため、収納部材27との接合材35は絶縁性である必要がなくなる。そのため、例えば両面テープを用いる場合は粘着部に熱伝導性フィラとして金属製の導電性フィラを含有することができ、熱伝導性が改善される。 For example, an insulating portion such as an insulating tube may be provided on the circumferential surface of the circumferential electrode 17 of the power storage element 11 other than the portion to which the conductive member 100 is connected. As a result, the circumferential surface of the power storage element 11 is insulated by the insulating tube, so the bonding material 35 with the storage member 27 does not need to be insulating. Therefore, for example, when using a double-sided tape, a metal conductive filler can be contained in the adhesive part as a heat conductive filler, and the heat conductivity is improved.

<解析結果>
蓄電装置(例えばキャパシタAssy)においては、蓄電素子内部の温度が許容電流を決めるうえで重要な要素となっている。そのため本発明者は、キャパシタサブモジュール単位での熱解析を行った。本発明者は、鋭意検討の結果、蓄電素子内部の発熱が蓄電素子側面に逃げる経路としては、互いに隣り合う2つの蓄電素子同士を電気的に接続する導電部材(バスバー)が一定の割合を占めていることを見出した。
<Analysis results>
In a power storage device (for example, a capacitor assembly), the temperature inside the power storage element is an important factor in determining the allowable current. Therefore, the inventor conducted a thermal analysis for each capacitor submodule. As a result of extensive studies, the inventor has determined that a conductive member (bus bar) that electrically connects two adjacent power storage elements accounts for a certain percentage of the path through which heat generated inside the power storage element escapes to the side surface of the power storage element. I found out that

そのため実施形態では、導電部材100の厚肉部101の厚み101tを増加することで、低電気抵抗化によるジュール熱低減と、低熱抵抗化による隣の蓄電素子11への放熱量増加を狙う構成とした。ただし、導電部材100の厚みを一様に増すと蓄電素子11との溶接が困難となるため、溶接部分J1,J2のみ局所的に厚みを薄くすることで溶接を可能としている。 Therefore, in the embodiment, the thickness 101t of the thick portion 101 of the conductive member 100 is increased to reduce Joule heat by lowering electrical resistance and increasing the amount of heat dissipated to the adjacent power storage element 11 by lowering the thermal resistance. did. However, if the thickness of the conductive member 100 is uniformly increased, welding with the power storage element 11 becomes difficult, so welding is made possible by locally reducing the thickness of only the welding portions J1 and J2.

図9は、導電部材100及び周面電極17を介して端面電極15の熱を収納部材27に逃がす構造を説明するための図である。
蓄電装置1は、蓄電素子11内部の熱が、端面電極15、導電部材100、周面電極17及び収納部材27を介して冷却機構60の水路61に逃げる構造とされている。具体的に、互いに隣り合う第1蓄電素子11A及び第2蓄電素子11Bのうちの第1蓄電素子11Aの内部で発生した熱は、第1蓄電素子11Aの端面電極15、導電部材100、第1蓄電素子11Aの隣にある第2蓄電素子11Bの周面電極17、収納部材27の順に伝わり、冷却機構60の水路61に逃げる(熱の流れの一例)。
FIG. 9 is a diagram for explaining a structure in which heat from the end electrode 15 is released to the storage member 27 via the conductive member 100 and the peripheral electrode 17.
Power storage device 1 has a structure in which heat inside power storage element 11 escapes to water channel 61 of cooling mechanism 60 via end surface electrode 15 , conductive member 100 , peripheral surface electrode 17 , and storage member 27 . Specifically, the heat generated inside the first power storage element 11A among the first power storage element 11A and the second power storage element 11B that are adjacent to each other is transferred to the end surface electrode 15 of the first power storage element 11A, the conductive member 100, and the first power storage element 11A. The heat is transmitted to the circumferential electrode 17 of the second power storage element 11B next to the power storage element 11A, and then to the storage member 27, and then escapes to the water channel 61 of the cooling mechanism 60 (an example of heat flow).

図9の例では、熱の流れにおいて温度を測定するために、5つの温度測定点P1~P5を設定している。5つの温度測定点P1~P5は、第1蓄電素子11Aの上部(素子上部)の温度を測定するための第1の温度測定点P1、導電部材100(バスバー)の温度を測定するための第2の温度測定点P2、第2蓄電素子11Bの周面電極17(隣セル側面)の温度を測定するための第3の温度測定点P3、収納部材27(ヒートシンク)の温度を測定するための第4の温度測定点P4、及び、冷却機構60(冷却板)の温度を測定するための第5の温度測定点P5を含む。 In the example of FIG. 9, five temperature measurement points P1 to P5 are set in order to measure the temperature in the flow of heat. The five temperature measurement points P1 to P5 are a first temperature measurement point P1 for measuring the temperature of the upper part of the first power storage element 11A (element upper part), and a first temperature measurement point P1 for measuring the temperature of the conductive member 100 (bus bar). 2 temperature measurement point P2, a third temperature measurement point P3 for measuring the temperature of the peripheral surface electrode 17 (side surface of the adjacent cell) of the second power storage element 11B, and a third temperature measurement point P3 for measuring the temperature of the storage member 27 (heat sink). It includes a fourth temperature measurement point P4 and a fifth temperature measurement point P5 for measuring the temperature of the cooling mechanism 60 (cooling plate).

図10は、実施例の導電部材100による冷却効果を比較例と共に示す図である。ここで、本実施形態の導電部材100(厚肉部101の厚み101tが2.0mmである導電部材100)を実施例とし、一様な厚みの導電部材(導電部材の厚みが0.6mmであり、薄肉部を有しない導電部材)を比較例とする。なお、実施例は、本発明が適用された具体的な一例であり、本発明を限定するものではない。 FIG. 10 is a diagram showing the cooling effect of the conductive member 100 of the example together with a comparative example. Here, the conductive member 100 of the present embodiment (the conductive member 100 in which the thickness 101t of the thick portion 101 is 2.0 mm) is taken as an example, and the conductive member with a uniform thickness (the conductive member in which the thickness of the conductive member is 0.6 mm) is used as an example. A conductive member with no thin wall portion) is used as a comparative example. Note that the examples are specific examples to which the present invention is applied, and do not limit the present invention.

図10に示すように、素子上部から冷却板に向かって熱が流れる過程で、実施例の導電部材100は厚肉部101の厚み増加により温度勾配が改善されることが確認された。特に、素子上部から隣セル側面との間においては、実施例の温度勾配は比較例よりも緩やかであることが確認された。これにより、実施例は比較例に比べて冷却能力が高く、温度が伝わりやすいことが分かった。 As shown in FIG. 10, it was confirmed that in the process of heat flowing from the top of the element toward the cooling plate, the temperature gradient of the conductive member 100 of the example was improved by increasing the thickness of the thick portion 101. In particular, it was confirmed that the temperature gradient in the example was gentler than in the comparative example between the top of the element and the side surface of the adjacent cell. As a result, it was found that the example had a higher cooling capacity than the comparative example, and that the temperature was easily transmitted.

<作用効果>
以上説明したように、本実施形態の蓄電装置1は、円柱形状を有し、互いに隣り合う第1蓄電素子11A及び第2蓄電素子11Bと、熱伝導性を有し、第1蓄電素子11A及び第2蓄電素子11Bを収納する収納部材27と、第1蓄電素子11A及び第2蓄電素子11Bを電気的に接続する導電部材100と、を備える。第1蓄電素子11Aは、軸方向端部に端面電極15を有する。第2蓄電素子11Bは、外周部に周面電極17を有する。導電部材100は、端面電極15から隣り合う蓄電素子11の周面電極17に向かって延びることで、端面電極15及び周面電極17に接続されている。導電部材100は、端面電極15と対向する部分111に厚肉部101と、厚肉部101よりも厚みが薄い端面側薄肉部102と、を有する。端面側薄肉部102は、端面電極15と溶接接続されている。蓄電装置1は、導電部材100及び周面電極17を介して端面電極15の熱を収納部材27に逃がす構造とされている。
この構成によれば、導電部材100のうち厚肉部101よりも厚みが薄い端面側薄肉部102が端面電極15と溶接接続されることで、溶接時の蓄電素子11への入熱量を減らすことができる。そのため、溶接時の蓄電素子11の熱損傷を抑制することができる。加えて、導電部材100及び周面電極17を介して端面電極15の熱を収納部材27に逃がす構造とされることで、蓄電素子11の冷却経路として蓄電素子11の半径方向だけでなく、軸方向端部からも熱を逃がすことができる。すなわち、蓄電素子11の軸方向端部にある端面電極15からの冷却経路を強化することで、冷却性能を向上することができる。したがって、導電部材100を溶接する際の蓄電素子11の熱損傷を抑制しつつ、冷却性能を向上することができる。
<Effect>
As described above, the power storage device 1 of the present embodiment has a cylindrical shape, has thermal conductivity, and has a first power storage element 11A and a second power storage element 11B that are adjacent to each other. It includes a storage member 27 that stores the second power storage element 11B, and a conductive member 100 that electrically connects the first power storage element 11A and the second power storage element 11B. The first power storage element 11A has an end surface electrode 15 at the end in the axial direction. The second power storage element 11B has a circumferential electrode 17 on the outer periphery. The conductive member 100 is connected to the end surface electrode 15 and the peripheral surface electrode 17 by extending from the end surface electrode 15 toward the peripheral surface electrode 17 of the adjacent power storage element 11 . The conductive member 100 has a thick portion 101 in a portion 111 facing the end electrode 15 and an end thin portion 102 thinner than the thick portion 101 . The end face side thin wall portion 102 is connected to the end face electrode 15 by welding. Power storage device 1 has a structure in which heat from end surface electrode 15 is released to storage member 27 via conductive member 100 and peripheral surface electrode 17 .
According to this configuration, the end face side thin part 102, which is thinner than the thick part 101 of the conductive member 100, is welded and connected to the end face electrode 15, thereby reducing the amount of heat input to the power storage element 11 during welding. Can be done. Therefore, thermal damage to power storage element 11 during welding can be suppressed. In addition, by having a structure in which the heat of the end electrode 15 is released to the storage member 27 via the conductive member 100 and the peripheral electrode 17, the cooling path for the power storage element 11 is not only radial but also axial. Heat can also be released from the directional ends. That is, by strengthening the cooling path from the end surface electrode 15 at the axial end of the power storage element 11, the cooling performance can be improved. Therefore, cooling performance can be improved while suppressing thermal damage to power storage element 11 when welding conductive member 100.

本実施形態では、厚肉部101は、導電部材100が延びる方向V1,V2において一様の厚みを有する。
この構成によれば、導電部材100が延びる方向V1,V2に熱が流れる場合、厚肉部101は一様な断面積を持つため、円滑に熱を逃がすことができる。
In this embodiment, the thick portion 101 has a uniform thickness in the directions V1 and V2 in which the conductive member 100 extends.
According to this configuration, when heat flows in the directions V1 and V2 in which the conductive member 100 extends, the thick portion 101 has a uniform cross-sectional area, so that the heat can be smoothly dissipated.

本実施形態では、厚肉部101の厚み101tは、周面電極17の厚み17tよりも厚い。
この構成によれば、厚肉部101の厚み101tが周面電極17の厚み17t以下の場合と比較して、熱の流れにおける導電部材100の断面積(伝熱面積)を増加させることができる。そのため、電気抵抗低減によるジュール熱低減と、伝熱面積増加による冷却性能増加とを両立させることができる。
In this embodiment, the thickness 101t of the thick portion 101 is thicker than the thickness 17t of the peripheral electrode 17.
According to this configuration, the cross-sectional area (heat transfer area) of the conductive member 100 in the flow of heat can be increased compared to the case where the thickness 101t of the thick portion 101 is less than or equal to the thickness 17t of the peripheral electrode 17. . Therefore, it is possible to achieve both reduction in Joule heat due to reduction in electrical resistance and increase in cooling performance due to increase in heat transfer area.

本実施形態では、第1蓄電素子11Aの軸方向から見て、厚肉部101において端面電極15と対向する部分111は、端面側薄肉部102よりも面積が大きい。
この構成によれば、厚肉部101において端面電極15と対向する部分111と端面電極15との接触面積を増加させることができる。そのため、導電部材100の接続部位として端面側薄肉部102だけでなく、厚肉部101と端面電極15との接触により、より伝熱性能を向上することができる。
In this embodiment, when viewed from the axial direction of the first power storage element 11A, a portion 111 of the thick portion 101 that faces the end surface electrode 15 has a larger area than the end surface side thin portion 102.
According to this configuration, the contact area between the end electrode 15 and the portion 111 of the thick portion 101 that faces the end electrode 15 can be increased. Therefore, the heat transfer performance can be further improved by contacting not only the end face side thin wall part 102 but also the thick wall part 101 and the end face electrode 15 as connection parts of the conductive member 100.

本実施形態では、第1蓄電素子11Aの軸方向から見て、厚肉部101において端面電極15と対向する部分111は、厚肉部101において端面電極15と対向する部分111から径方向外側に延びる部分112よりも幅が広い。
この構成によれば、導電部材100において端面電極15と対向する部分111に端面側薄肉部102がある場合でも、厚肉部101において端面電極15と対向する部分111により伝熱面積を十分に増加させることができる。したがって、電気抵抗低減によるジュール熱低減と、伝熱面積増加による冷却性能増加とを両立させることができる。
In this embodiment, when viewed from the axial direction of the first power storage element 11A, the portion 111 of the thick wall portion 101 facing the end surface electrode 15 is radially outward from the portion 111 of the thick wall portion 101 facing the end surface electrode 15. It is wider than the extending portion 112.
According to this configuration, even if the end face side thin wall portion 102 is present in the portion 111 facing the end face electrode 15 in the conductive member 100, the heat transfer area is sufficiently increased by the portion 111 facing the end face electrode 15 in the thick wall portion 101. can be done. Therefore, it is possible to simultaneously reduce Joule heat by reducing electrical resistance and increase cooling performance by increasing heat transfer area.

本実施形態では、端面側薄肉部102は、導電部材100が延びる方向V1に沿って延びている。
例えば、導電部材100が延びる方向V1と交差する方向に端面側薄肉部102が延びている構成では、導電部材100が延びる方向V1に熱が流れる場合、熱の流れにおいて端面側薄肉部102が邪魔になる可能性がある。これに対し本構成によれば、端面側薄肉部102は、導電部材100が延びる方向V1に沿って延びていることで、導電部材100が延びる方向V1に熱が流れる場合、熱の流れにおいて端面側薄肉部102が邪魔にならない。したがって、円滑に熱を逃がすことができる。
In this embodiment, the end face thin portion 102 extends along the direction V1 in which the conductive member 100 extends.
For example, in a configuration in which the end face side thin wall portion 102 extends in a direction intersecting the direction V1 in which the conductive member 100 extends, when heat flows in the direction V1 in which the conductive member 100 extends, the end face side thin wall portion 102 becomes an impediment to the flow of heat. There is a possibility that it will become. On the other hand, according to this configuration, the end face side thin wall portion 102 extends along the direction V1 in which the conductive member 100 extends, so that when heat flows in the direction V1 in which the conductive member 100 extends, the end face side thin part 102 The thin side portion 102 does not get in the way. Therefore, heat can be smoothly released.

本実施形態では、導電部材100は、周面電極17と対向する部分120に厚肉部101と、厚肉部101よりも厚みが薄い周面側薄肉部103と、を有する。周面側薄肉部103は、周面電極17と溶接接続されている。
この構成によれば、導電部材100のうち厚肉部101よりも厚みが薄い周面側薄肉部103が周面電極17と溶接接続されることで、溶接時の蓄電素子11への入熱量を減らすことができる。そのため、溶接時の蓄電素子11の熱損傷を抑制することができる。加えて、導電部材100は端面電極15と対向する部分111に加え周面電極17と対向する部分120にも厚肉部101を有することで、蓄電素子11の軸方向端部にある端面電極15からの冷却経路を更に強化することができ、冷却性能を更に向上することができる。したがって、導電部材100を溶接する際の蓄電素子11の熱損傷を抑制しつつ、冷却性能を更に向上することができる。
In this embodiment, the conductive member 100 has a thick portion 101 in a portion 120 facing the circumferential electrode 17 and a circumferential thin portion 103 thinner than the thick portion 101 . The peripheral thin wall portion 103 is connected to the peripheral electrode 17 by welding.
According to this configuration, the circumferential thin wall portion 103, which is thinner than the thick wall portion 101 of the conductive member 100, is welded and connected to the circumferential electrode 17, thereby reducing the amount of heat input to the power storage element 11 during welding. can be reduced. Therefore, thermal damage to power storage element 11 during welding can be suppressed. In addition, the conductive member 100 has the thick portion 101 not only in the portion 111 facing the end electrode 15 but also in the portion 120 facing the circumferential electrode 17, so that the end electrode 15 at the axial end of the power storage element 11 It is possible to further strengthen the cooling path from the ground, and the cooling performance can be further improved. Therefore, cooling performance can be further improved while suppressing thermal damage to power storage element 11 when welding conductive member 100.

本実施形態では、周面側薄肉部103は、導電部材100が延びる方向V2に沿って延びている。
例えば、導電部材100が延びる方向V2と交差する方向に周面側薄肉部103が延びている構成では、導電部材100が延びる方向V2に熱が流れる場合、熱の流れにおいて周面側薄肉部103が邪魔になる可能性がある。これに対し本構成によれば、周面側薄肉部103は、導電部材100が延びる方向V2に沿って延びていることで、導電部材100が延びる方向V2に熱が流れる場合、熱の流れにおいて周面側薄肉部103が邪魔にならない。したがって、円滑に熱を逃がすことができる。
In this embodiment, the peripheral thin wall portion 103 extends along the direction V2 in which the conductive member 100 extends.
For example, in a configuration in which the circumferential thin wall portion 103 extends in a direction intersecting the direction V2 in which the conductive member 100 extends, when heat flows in the direction V2 in which the conductive member 100 extends, the circumferential thin wall portion 103 extends in the direction V2 in which the conductive member 100 extends. may become a hindrance. On the other hand, according to the present configuration, the circumferential thin wall portion 103 extends along the direction V2 in which the conductive member 100 extends, so that when heat flows in the direction V2 in which the conductive member 100 extends, The peripheral thin wall portion 103 does not get in the way. Therefore, heat can be smoothly released.

本実施形態では、導電部材100は、端面電極15と対向する部分111から径方向外側に延びた後、屈曲部130を介して周面電極17に向かって延びている。
この構成によれば、導電部材100を隣の蓄電素子11の端面電極15に溶接接続する際に、位置ずれがあっても屈曲部130で吸収することができる。加えて、組み立て後の蓄電装置1全体に外部から振動が加わっても、導電部材100と端面電極15との溶接接続部分に加わる応力を屈曲部130で緩和することができる。したがって、振動により導電部材100と端面電極15との溶接部分が外れる可能性を低減することができ、良好な耐振動性が得られる。
In this embodiment, the conductive member 100 extends radially outward from the portion 111 facing the end electrode 15 and then extends toward the circumferential electrode 17 via the bent portion 130 .
According to this configuration, even if there is a positional shift when welding and connecting the conductive member 100 to the end surface electrode 15 of the adjacent power storage element 11, it can be absorbed by the bent portion 130. In addition, even if vibrations are applied to the entire power storage device 1 after assembly from the outside, the stress applied to the welded connection portion between the conductive member 100 and the end electrode 15 can be alleviated by the bent portion 130. Therefore, the possibility that the welded portion between the conductive member 100 and the end electrode 15 comes off due to vibration can be reduced, and good vibration resistance can be obtained.

<その他の実施形態>
上述した実施形態では、厚肉部は、導電部材が延びる方向において一様の厚みを有する例を挙げて説明したが、これに限らない。例えば、厚肉部は、導電部材が延びる方向において一様の厚みを有しなくてもよい。例えば、厚肉部は、導電部材が延びる方向において第1の厚みを有する第1厚み部と、第1厚み部よりも厚みが大きい第2の厚みを有する第2厚み部と、を有していてもよい。例えば、導電部材が延びる方向における厚肉部の厚みの態様は、要求仕様に応じて変更することができる。
<Other embodiments>
In the embodiments described above, the thick portion has been described as having a uniform thickness in the direction in which the conductive member extends, but the thick portion is not limited to this. For example, the thick portion may not have a uniform thickness in the direction in which the conductive member extends. For example, the thick portion includes a first thickness portion having a first thickness in the direction in which the conductive member extends, and a second thickness portion having a second thickness that is thicker than the first thickness portion. It's okay. For example, the thickness of the thick portion in the direction in which the conductive member extends can be changed depending on required specifications.

上述した実施形態では、厚肉部の厚みは、周面電極の厚みよりも厚い例を挙げて説明したが、これに限らない。例えば、厚肉部の厚みは、周面電極の厚み以下であってもよい。例えば、厚肉部及び周面電極の厚みの関係は、要求仕様に応じて変更することができる。 In the embodiment described above, the thickness of the thick portion is explained by giving an example where it is thicker than the thickness of the peripheral electrode, but the thickness is not limited to this. For example, the thickness of the thick portion may be less than or equal to the thickness of the peripheral electrode. For example, the relationship between the thickness of the thick portion and the peripheral electrode can be changed depending on required specifications.

上述した実施形態では、第1蓄電素子の軸方向から見て、厚肉部において端面電極と対向する部分は、端面側薄肉部よりも面積が大きい例を挙げて説明したが、これに限らない。例えば、第1蓄電素子の軸方向から見て、厚肉部において端面電極と対向する部分は、端面側薄肉部よりも面積が小さくてもよい。例えば、厚肉部において端面電極と対向する部分及び端面側薄肉部の面積の関係は、要求仕様に応じて変更することができる。 In the above-described embodiment, the area of the thick portion facing the end electrode is larger than the thin wall portion of the end surface when viewed from the axial direction of the first energy storage element, but the present invention is not limited to this. . For example, when viewed from the axial direction of the first power storage element, the area of the thick portion facing the end surface electrode may be smaller than that of the end surface side thin wall portion. For example, the relationship between the areas of the thick portion facing the end electrode and the end thin portion can be changed depending on the required specifications.

上述した実施形態では、第1蓄電素子の軸方向から見て、厚肉部において端面電極と対向する部分は、厚肉部において端面電極と対向する部分から径方向外側に延びる部分よりも幅が広い例を挙げて説明したが、これに限らない。例えば、第1蓄電素子の軸方向から見て、厚肉部において端面電極と対向する部分は、厚肉部において端面電極と対向する部分から径方向外側に延びる部分よりも幅が狭くてもよい。例えば、第1蓄電素子の軸方向から見て、厚肉部において端面電極と対向する部分は、厚肉部において端面電極と対向する部分から径方向外側に延びる部分よりも幅が等しくてもよい。例えば、厚肉部において端面電極と対向する部分及び径方向外側に延びる部分の幅の関係は、要求仕様に応じて変更することができる。 In the embodiment described above, when viewed from the axial direction of the first energy storage element, the portion of the thick wall portion facing the end surface electrode is wider than the portion of the thick wall portion that extends radially outward from the portion facing the end surface electrode. Although the explanation has been given using a wide range of examples, the invention is not limited to this. For example, when viewed from the axial direction of the first energy storage element, the portion of the thick wall portion that faces the end electrode may be narrower than the portion of the thick wall portion that extends radially outward from the portion that faces the end electrode. . For example, when viewed from the axial direction of the first energy storage element, the portion of the thick wall portion that faces the end electrode may have a width equal to that of the portion of the thick wall portion that extends radially outward from the portion that faces the end electrode. . For example, the relationship between the widths of the portion of the thick portion that faces the end electrode and the portion that extends outward in the radial direction can be changed depending on the required specifications.

上述した実施形態では、端面側薄肉部は、導電部材が延びる方向に沿って延びている例を挙げて説明したが、これに限らない。例えば、端面側薄肉部は、導電部材が延びる方向と交差する方向に延びていてもよい。例えば、端面側薄肉部が延びる態様は、要求仕様に応じて変更することができる。 In the above-described embodiment, the end face side thin wall portion has been described with reference to an example extending along the direction in which the conductive member extends, but the present invention is not limited to this. For example, the end face side thin portion may extend in a direction intersecting the direction in which the conductive member extends. For example, the manner in which the thin end face portion extends can be changed depending on required specifications.

上述した実施形態では、導電部材は、周面電極と対向する部分に厚肉部と、厚肉部よりも厚みが薄い周面側薄肉部と、を有する例を挙げて説明したが、これに限らない。例えば、導電部材は、周面電極と対向する部分に周面側薄肉部のみを有していてもよい。例えば、導電部材は、周面電極と対向する部分に厚肉部のみを有していてもよい。この場合は、厚肉部が周面電極と溶接接続されていてもよい。例えば、導電部材において周面電極と対向する部分の構成態様は、要求仕様に応じて変更することができる。 In the above-described embodiment, the conductive member has been described with reference to an example in which the portion facing the circumferential electrode has a thick portion and a thin portion on the circumferential side that is thinner than the thick portion. Not exclusively. For example, the conductive member may have only a circumferential thin wall portion in a portion facing the circumferential electrode. For example, the conductive member may have only a thick portion in a portion facing the peripheral electrode. In this case, the thick portion may be connected to the peripheral electrode by welding. For example, the configuration of the portion of the conductive member that faces the peripheral electrode can be changed depending on required specifications.

上述した実施形態では、周面側薄肉部は、導電部材が延びる方向に沿って延びている例を挙げて説明したが、これに限らない。例えば、周面側薄肉部は、導電部材が延びる方向と交差する方向に延びていてもよい。例えば、周面側薄肉部が延びる態様は、要求仕様に応じて変更することができる。 In the above-described embodiments, the thin wall portion on the circumferential surface side has been described using an example in which the thin wall portion extends along the direction in which the conductive member extends, but the present invention is not limited to this. For example, the peripheral thin wall portion may extend in a direction intersecting the direction in which the conductive member extends. For example, the manner in which the peripheral thin wall portion extends can be changed depending on required specifications.

上述した実施形態では、導電部材は、端面電極と対向する部分から径方向外側に延びた後、屈曲部を介して周面電極に向かって延びている例を挙げて説明したが、これに限らない。例えば、導電部材は、端面電極と対向する部分から径方向外側に延びた後、屈曲部を介さずに周面電極に向かって延びていてもよい。例えば、導電部材は、端面電極と対向する部分から径方向外側に延びた後、湾曲部を介して周面電極に向かって延びていてもよい。例えば、導電部材が延びる態様は、要求仕様に応じて変更することができる。 In the above-described embodiment, the conductive member extends radially outward from the portion facing the end electrode, and then extends toward the circumferential electrode via the bent portion. However, the present invention is not limited to this. do not have. For example, the conductive member may extend radially outward from a portion facing the end electrode, and then extend toward the circumferential electrode without passing through the bent portion. For example, the conductive member may extend radially outward from a portion facing the end electrode, and then extend toward the circumferential electrode via the curved portion. For example, the manner in which the conductive member extends can be changed depending on required specifications.

上述した実施形態では、導電部材がレーザ溶接によって蓄電素子の電極に溶接接続されている例を挙げて説明したが、これに限らない。例えば、導電部材は、アーク溶接やガス溶接等によって蓄電素子の電極に溶接接続されていてもよい。例えば、導電部材の溶接態様は、要求仕様に応じて変更することができる。 In the embodiment described above, an example has been described in which the conductive member is welded and connected to the electrode of the power storage element by laser welding, but the present invention is not limited to this. For example, the conductive member may be welded and connected to the electrode of the power storage element by arc welding, gas welding, or the like. For example, the manner in which the conductive member is welded can be changed depending on required specifications.

上述した実施形態では、蓄電素子が電気二重層キャパシタである例を挙げて説明したが、これに限らない。例えば、蓄電素子は、電気化学キャパシタ等の他のキャパシタや二次電池であってもよい。例えば、蓄電素子の態様は、要求仕様に応じて変更することができる。 Although the above-described embodiment has been described using an example in which the electricity storage element is an electric double layer capacitor, the present invention is not limited to this. For example, the power storage element may be another capacitor such as an electrochemical capacitor or a secondary battery. For example, the aspect of the power storage element can be changed according to required specifications.

(付記1)
円柱形状を有し、互いに隣り合う第1蓄電素子及び第2蓄電素子と、
熱伝導性を有し、前記第1蓄電素子及び前記第2蓄電素子を収納する収納部材と、
前記第1蓄電素子及び前記第2蓄電素子を電気的に接続する導電部材と、を備え、
前記第1蓄電素子は、軸方向端部に端面電極を有し、
前記第2蓄電素子は、外周部に周面電極を有し、
前記導電部材は、前記端面電極から前記周面電極に向かって延びることで、前記端面電極及び前記周面電極に接続されており、
前記導電部材は、前記端面電極と対向する部分に厚肉部と、前記厚肉部よりも厚みが薄い端面側薄肉部と、を有し、
前記端面側薄肉部は、前記端面電極と溶接接続されており、
前記導電部材及び前記周面電極を介して前記端面電極の熱を前記収納部材に逃がす構造とされている、
蓄電装置。
(Additional note 1)
A first power storage element and a second power storage element that have a cylindrical shape and are adjacent to each other;
a storage member that has thermal conductivity and stores the first power storage element and the second power storage element;
a conductive member that electrically connects the first power storage element and the second power storage element,
The first power storage element has an end electrode at an axial end,
The second electricity storage element has a peripheral electrode on the outer peripheral part,
The conductive member is connected to the end electrode and the peripheral electrode by extending from the end electrode toward the peripheral electrode,
The conductive member has a thick portion in a portion facing the end electrode, and an end side thin portion that is thinner than the thick portion,
The end surface side thin wall portion is welded and connected to the end surface electrode,
The structure is such that heat from the end electrode is released to the storage member through the conductive member and the peripheral electrode.
Power storage device.

(付記2)
前記厚肉部は、前記導電部材が延びる方向において一様の厚みを有する、
付記1に記載の蓄電装置。
(Additional note 2)
The thick portion has a uniform thickness in the direction in which the conductive member extends.
The power storage device according to Supplementary Note 1.

(付記3)
前記厚肉部の厚みは、前記周面電極の厚みよりも厚い、
付記1又は2に記載の蓄電装置。
(Additional note 3)
The thickness of the thick portion is greater than the thickness of the peripheral electrode.
The power storage device according to Supplementary Note 1 or 2.

(付記4)
前記第1蓄電素子の軸方向から見て、前記厚肉部において前記端面電極と対向する部分は、前記端面側薄肉部よりも面積が大きい、
付記1から3の何れか一つに記載の蓄電装置。
(Additional note 4)
When viewed from the axial direction of the first power storage element, a portion of the thick wall portion facing the end surface electrode has a larger area than the end surface side thin wall portion.
The power storage device according to any one of Supplementary Notes 1 to 3.

(付記5)
前記第1蓄電素子の軸方向から見て、前記厚肉部において前記端面電極と対向する部分は、前記厚肉部において前記端面電極と対向する部分から径方向外側に延びる部分よりも幅が広い、
付記1から4の何れか一つに記載の蓄電装置。
(Appendix 5)
When viewed from the axial direction of the first power storage element, a portion of the thick wall portion that faces the end electrode is wider than a portion of the thick wall portion that extends radially outward from the portion that faces the end electrode. ,
The power storage device according to any one of Supplementary Notes 1 to 4.

(付記6)
前記端面側薄肉部は、前記導電部材が延びる方向に沿って延びている、
付記1から5の何れか一つに記載の蓄電装置。
(Appendix 6)
The end face side thin wall portion extends along the direction in which the conductive member extends.
The power storage device according to any one of Supplementary Notes 1 to 5.

(付記7)
前記導電部材は、前記周面電極と対向する部分に前記厚肉部と、前記厚肉部よりも厚みが薄い周面側薄肉部と、を有し、
前記周面側薄肉部は、前記周面電極と溶接接続されている、
付記1から6の何れか一つに記載の蓄電装置。
(Appendix 7)
The conductive member has the thick portion and a peripheral thin portion thinner than the thick portion in a portion facing the peripheral electrode,
The circumferential thin wall portion is welded to the circumferential electrode,
The power storage device according to any one of Supplementary Notes 1 to 6.

(付記8)
前記周面側薄肉部は、前記導電部材が延びる方向に沿って延びている、
付記7に記載の蓄電装置。
(Appendix 8)
The peripheral thin wall portion extends along the direction in which the conductive member extends.
The power storage device according to appendix 7.

(付記9)
前記導電部材は、前記端面電極と対向する部分から径方向外側に延びた後、屈曲部を介して前記周面電極に向かって延びている、
付記1から8の何れか一つに記載の蓄電装置。
(Appendix 9)
The conductive member extends radially outward from a portion facing the end electrode, and then extends toward the peripheral electrode via a bent portion.
The power storage device according to any one of Supplementary Notes 1 to 8.

以上、本発明の実施形態を説明したが、本発明はこれらに限定されることはなく、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能であり、上述した実施形態を適宜組み合わせることも可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these, and additions, omissions, substitutions, and other changes to the configuration are possible without departing from the spirit of the present invention. It is also possible to combine the embodiments described above as appropriate.

1…蓄電装置、11A…第1蓄電素子、11B…第2蓄電素子、15…端面電極、17…周面電極、17t…周面電極の厚み、27…収納部材、100…導電部材、101…厚肉部、101t…厚肉部の厚み、102…端面側薄肉部、103…周面側薄肉部、111…厚肉部において端面電極と対向する部分、111w…厚肉部において端面電極と対向する部分の幅、112…厚肉部において径方向外側に延びる部分、112w…厚肉部において径方向外側に延びる部分の幅、130…屈曲部、V1…第1方向(導電部材が延びる方向)、V2…第2方向(導電部材が延びる方向)

DESCRIPTION OF SYMBOLS 1... Power storage device, 11A... 1st power storage element, 11B... 2nd power storage element, 15... End surface electrode, 17... Circumferential surface electrode, 17t... Thickness of circumferential surface electrode, 27... Storage member, 100... Conductive member, 101... Thick part, 101t... Thickness of the thick part, 102... Thin wall part on the end surface side, 103... Thin wall part on the peripheral surface side, 111... Portion facing the end electrode in the thick part, 111w... Opposing the end electrode in the thick part. 112...A portion extending radially outward in the thick wall portion, 112w...Width of a portion extending radially outward in the thick wall portion, 130...Bending portion, V1...First direction (direction in which the conductive member extends) , V2...second direction (direction in which the conductive member extends)

Claims (9)

円柱形状を有し、互いに隣り合う第1蓄電素子及び第2蓄電素子と、
熱伝導性を有し、前記第1蓄電素子及び前記第2蓄電素子を収納する収納部材と、
前記第1蓄電素子及び前記第2蓄電素子を電気的に接続する導電部材と、を備え、
前記第1蓄電素子は、軸方向端部に端面電極を有し、
前記第2蓄電素子は、外周部に周面電極を有し、
前記導電部材は、前記端面電極から前記周面電極に向かって延びることで、前記端面電極及び前記周面電極に接続されており、
前記導電部材は、前記端面電極と対向する部分に厚肉部と、前記厚肉部よりも厚みが薄い端面側薄肉部と、を有し、
前記端面側薄肉部は、前記端面電極と溶接接続されており、
前記導電部材及び前記周面電極を介して前記端面電極の熱を前記収納部材に逃がす構造とされている、
蓄電装置。
A first power storage element and a second power storage element that have a cylindrical shape and are adjacent to each other;
a storage member that has thermal conductivity and stores the first power storage element and the second power storage element;
a conductive member that electrically connects the first power storage element and the second power storage element,
The first power storage element has an end electrode at an axial end,
The second electricity storage element has a peripheral electrode on the outer peripheral part,
The conductive member is connected to the end electrode and the peripheral electrode by extending from the end electrode toward the peripheral electrode,
The conductive member has a thick portion in a portion facing the end electrode, and an end side thin portion that is thinner than the thick portion,
The end surface side thin wall portion is welded and connected to the end surface electrode,
The structure is such that heat from the end electrode is released to the storage member through the conductive member and the peripheral electrode.
Power storage device.
前記厚肉部は、前記導電部材が延びる方向において一様の厚みを有する、
請求項1に記載の蓄電装置。
The thick portion has a uniform thickness in the direction in which the conductive member extends.
The power storage device according to claim 1.
前記厚肉部の厚みは、前記周面電極の厚みよりも厚い、
請求項1又は2に記載の蓄電装置。
The thickness of the thick portion is greater than the thickness of the peripheral electrode.
The power storage device according to claim 1 or 2.
前記第1蓄電素子の軸方向から見て、前記厚肉部において前記端面電極と対向する部分は、前記端面側薄肉部よりも面積が大きい、
請求項1又は2に記載の蓄電装置。
When viewed from the axial direction of the first power storage element, a portion of the thick wall portion facing the end surface electrode has a larger area than the end surface side thin wall portion.
The power storage device according to claim 1 or 2.
前記第1蓄電素子の軸方向から見て、前記厚肉部において前記端面電極と対向する部分は、前記厚肉部において前記端面電極と対向する部分から径方向外側に延びる部分よりも幅が広い、
請求項1又は2に記載の蓄電装置。
When viewed from the axial direction of the first power storage element, a portion of the thick wall portion that faces the end electrode is wider than a portion of the thick wall portion that extends radially outward from the portion that faces the end electrode. ,
The power storage device according to claim 1 or 2.
前記端面側薄肉部は、前記導電部材が延びる方向に沿って延びている、
請求項1又は2に記載の蓄電装置。
The end face side thin wall portion extends along the direction in which the conductive member extends.
The power storage device according to claim 1 or 2.
前記導電部材は、前記周面電極と対向する部分に前記厚肉部と、前記厚肉部よりも厚みが薄い周面側薄肉部と、を有し、
前記周面側薄肉部は、前記周面電極と溶接接続されている、
請求項1又は2に記載の蓄電装置。
The conductive member has the thick portion and a peripheral thin portion thinner than the thick portion in a portion facing the peripheral electrode,
The circumferential thin wall portion is welded to the circumferential electrode,
The power storage device according to claim 1 or 2.
前記周面側薄肉部は、前記導電部材が延びる方向に沿って延びている、
請求項7に記載の蓄電装置。
The peripheral thin wall portion extends along the direction in which the conductive member extends.
The power storage device according to claim 7.
前記導電部材は、前記端面電極と対向する部分から径方向外側に延びた後、屈曲部を介して前記周面電極に向かって延びている、
請求項1又は2に記載の蓄電装置。
The conductive member extends radially outward from a portion facing the end electrode, and then extends toward the peripheral electrode via a bent portion.
The power storage device according to claim 1 or 2.
JP2022094266A 2022-06-10 2022-06-10 Power storage device Pending JP2023180724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022094266A JP2023180724A (en) 2022-06-10 2022-06-10 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022094266A JP2023180724A (en) 2022-06-10 2022-06-10 Power storage device

Publications (1)

Publication Number Publication Date
JP2023180724A true JP2023180724A (en) 2023-12-21

Family

ID=89307007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022094266A Pending JP2023180724A (en) 2022-06-10 2022-06-10 Power storage device

Country Status (1)

Country Link
JP (1) JP2023180724A (en)

Similar Documents

Publication Publication Date Title
JP5451211B2 (en) Power storage unit
US20190198952A1 (en) Battery module and manufacturing method thereof
JP5037537B2 (en) Electrical connection member, battery module and battery system
KR101346403B1 (en) Battery block
CN210123771U (en) Battery module and battery pack
JP6459207B2 (en) Power storage device
WO2012035683A1 (en) Battery block and battery module
JP5546885B2 (en) Battery pack
JP2008091183A (en) Square battery and battery pack
JP2010282811A (en) Battery pack
BRPI0516071B1 (en) electrode connector containing card and battery module containing the same
JP2012523083A (en) Voltage detection member and battery module including the same
JP2010225337A (en) Battery pack
US10608302B2 (en) Battery pack
KR102116187B1 (en) Battery pack of improved holder for energy storage system
JP2010061998A (en) Battery, and battery pack
JP2010067515A (en) Battery pack
KR20230028527A (en) Cell lead-out pieces, batteries, and electric vehicles
KR102116188B1 (en) Battery pack for energy storage system
JP2006092935A (en) Battery pack
JP2023180724A (en) Power storage device
KR102508169B1 (en) Battery pack
JP2015050164A (en) Battery module
JP2012186342A (en) Power storage device
WO2018180254A1 (en) Battery pack