JP2023179335A - Surface welded structure of stainless steel plate and galvanized steel plate - Google Patents

Surface welded structure of stainless steel plate and galvanized steel plate Download PDF

Info

Publication number
JP2023179335A
JP2023179335A JP2022104069A JP2022104069A JP2023179335A JP 2023179335 A JP2023179335 A JP 2023179335A JP 2022104069 A JP2022104069 A JP 2022104069A JP 2022104069 A JP2022104069 A JP 2022104069A JP 2023179335 A JP2023179335 A JP 2023179335A
Authority
JP
Japan
Prior art keywords
steel plate
welding
stainless steel
galvanized steel
galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022104069A
Other languages
Japanese (ja)
Other versions
JP7324392B1 (en
Inventor
希 浦崎
Nozomi Urasaki
良彦 西原
Yoshihiko Nishihara
淳 河野
Atsushi Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Pit Co Ltd
Original Assignee
Nihon Pit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Pit Co Ltd filed Critical Nihon Pit Co Ltd
Priority to JP2022104069A priority Critical patent/JP7324392B1/en
Application granted granted Critical
Publication of JP7324392B1 publication Critical patent/JP7324392B1/en
Publication of JP2023179335A publication Critical patent/JP2023179335A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a sound surface welded structure of stainless steel plate and galvanized steel plate by preventing buttering during welding without use of a weld rod to be restricted, accordingly, without suppression of a dilution rate, and without processing a groove, and further, by forming a weld zone of a zinc alloy layer having a strength higher than a base material.SOLUTION: In a surface welded structure of stainless steel plate and carbon steel plate, a galvanized steel plate is used as the carbon steel plate, a weld zone containing zinc is formed at a contact part between a side end surface of the galvanized steel plate and the stainless steel plate by fiber laser welding.SELECTED DRAWING: Figure 1

Description

本発明は、ステンレス鋼板と亜鉛鍍金鋼板との面溶接構造に関する。 The present invention relates to a surface welded structure of a stainless steel plate and a galvanized steel plate.

室内等の床面に設けられる配線ケーブル用或いは給排水用のピットや、屋外の処理施設等に埋設される各種槽には、それらの開放上面(即ち設置面の開口部)を塞いで設置面と上面が略面一となる所謂「配管ピットの開口部の蓋装置」が付設される。 For pits for wiring cables or water supply and drainage installed on the floor of indoor rooms, etc., and various tanks buried in outdoor treatment facilities, etc., close their open tops (i.e., the openings on the installation surface) so that they do not overlap with the installation surface. A so-called "piping pit opening lid device" whose upper surface is substantially flush is attached.

この通称ピット蓋装置は、従来、必要な耐荷を確保するために蓋本体を鋼板より形成していた。蓋本体は、断面L型のステンレス製側枠アングルの間にSS製底板を溶接して上部開放型のボックスを作成し、このボックス内における底板上にモルタルを敷きその上にタイルを貼設して歩行者等の重量を受けても耐えられる剛性にしてある。
従って前記従来のピット蓋装置は、側枠アングルや底板が厚いSS製の重量体になり、しかもこれら部材間の全係合部に溶接棒を用いてアーク溶接しなければならない。
このように従来のピット蓋装置は、製作には多くの工程を要し且つ重筋作業を伴うもので必然的にコストが大幅に嵩むものであった。
これ等の現状から、本発明者等は、製作が極めて簡易であり、しかも軽量化を可能にしながら十分な強度を有し且つ大幅なコストダウンを可能にする蓋装置として、ステンレス鋼板と炭素鋼板との組み合わせで該軽量化と、十分な強度を有し安価に製作が簡易にできる研究を開始した。
Conventionally, the lid body of this so-called pit lid device has been formed from a steel plate in order to ensure the necessary load capacity. The main body of the lid is made by welding an SS bottom plate between the stainless steel side frame angles with an L-shaped cross section to create an open-top box. Mortar is spread on the bottom plate inside this box, and tiles are pasted on top of it. It is designed to be rigid enough to withstand the weight of pedestrians, etc.
Therefore, the conventional pit lid device is a heavy body made of SS with thick side frame angles and a bottom plate, and all the engagement parts between these members must be arc welded using a welding rod.
As described above, the production of conventional pit lid devices requires many steps and involves heavy manual labor, which inevitably results in a significant increase in cost.
Given these current circumstances, the inventors of the present invention have developed stainless steel plates and carbon steel plates as lid devices that are extremely simple to manufacture, have sufficient strength while being lightweight, and can significantly reduce costs. We have started research on how to reduce the weight, have sufficient strength, and make it inexpensive and easy to manufacture in combination with the following.

そこで、一般に金属の溶接方法は「融接」「固相溶接」および「ろう接」の3つに分類される。融接(ゆうせつ)は溶接界面が液相と液相の接触による溶接(Welding)被溶接金属の溶接部を加熱し、溶融させて溶接する方法であり、代表的なものとして電気・ガス・レーザ溶接がある。固相溶接(こそうせつごう)は溶接界面が固相と固相の接触による溶接(SolidStateBonding)で被溶接金属に機械的圧力を加え、溶接界面に局部的な塑性変形を生じさせ、溶接する方法であり、拡散溶接や超音波金属溶接が挙げられる。ろう接(ろうせつ)は溶接界面が液相と固相の接触による溶接(Brazing:ブレージング)で被溶接金属よりも融点の低いロウ材を溶接界面に流し、溶接する方法であり、各種ロウ付けがこれに当たる。 Therefore, metal welding methods are generally classified into three types: "fusion welding," "solid phase welding," and "brazing." Fusion welding is a method of welding by heating and melting the welding part of the metal to be welded, where the welding interface is caused by contact between liquid phases. Typical examples include electricity, gas, There is laser welding. Solid state bonding is a welding process in which the welding interface is in contact with a solid phase.Mechanical pressure is applied to the metal to be welded, causing local plastic deformation at the welding interface, and welding is performed. These methods include diffusion welding and ultrasonic metal welding. Brazing is a method of welding in which the welding interface is caused by contact between a liquid phase and a solid phase, and a brazing material with a melting point lower than that of the metal to be welded is poured onto the welding interface. corresponds to this.

そしてこのような金属溶接の選択は、材質、形状の他に表面状態や表面処理によって最適な溶接工法を選択することが必要である。
而してステンレス鋼板と炭素鋼板の溶接は即ち、異種金属溶接方法は材質によって融点・硬度・電気抵抗値等の違いがあり、材質によってはその特性を把握できていないと、非常に困難である。必要なのは、材質の特性の把握を行い、適切な溶接方法の選択が必要である。
更に、溶接の信頼性、コスト等による工法の選択についても重要な要素となる。
When selecting such metal welding, it is necessary to select the optimal welding method based on the material, shape, surface condition, and surface treatment.
Therefore, welding stainless steel plates and carbon steel plates, that is, dissimilar metal welding methods, differs depending on the material in terms of melting point, hardness, electrical resistance, etc., and it is extremely difficult to weld the material depending on the material, unless the characteristics of the material are understood. . What is necessary is to understand the characteristics of the material and select an appropriate welding method.
Furthermore, the selection of the welding method based on welding reliability, cost, etc. is also an important factor.

本発明は前述しように「ステンレス鋼と亜鉛鍍金炭素鋼板との面溶接構造」であるがステンレス鋼と炭素鋼板との溶接自体に従来からいろいろな問題点が指摘されおり単純にはいかない。
即ち、溶接材料の選定を誤ると、溶接により炭素鋼板の希釈を受けるので、溶接金ステンレス中のNi、Cr含有量が減少し、脆く割れやすい組織になる。そこで、一般的にはNi、Cr含有量の多い309系溶材を限定的に使用していた。
例えば309系溶接材料を用いて炭素鋼による希釈(溶接条件)をコントロールすればステンレス鋼板とほぼ同等の成分となるため、高温割れの生じない安定した溶接金属を得ることが出来るといわれている。
As mentioned above, the present invention is a "surface welded structure of stainless steel and galvanized carbon steel plates," but various problems have been pointed out in the past in welding stainless steel and carbon steel plates, and it is not simple.
That is, if the welding material is incorrectly selected, the carbon steel plate will be diluted by welding, and the Ni and Cr contents in the weld stainless steel will decrease, resulting in a brittle and easily cracked structure. Therefore, in general, 309 series welding materials with high Ni and Cr contents have been used in a limited manner.
For example, if a 309 series welding material is used and the dilution with carbon steel (welding conditions) is controlled, the composition will be almost the same as that of a stainless steel plate, so it is said that a stable weld metal without hot cracking can be obtained.

ステンレス鋼ステンレス304(18Cr-8Ni)と軟鋼(SS41)の異材溶接をD309溶接棒を用いて継手溶接を行った場合、図3にあるシェフラーの状態図により、溶接金属の組成を推定することができる。ステンレス304(18Cr-8Ni)と軟鋼(SS41)のNi当量(%Ni+30×%C+0.5×%Mn)とCr当量(%Cr+%Mo+1.5×%Si+0.5×%Nb)をそれぞれ算出し、図3にプロット(A,B)する。両点を直線で結んだ中央が溶接点(C)となる。When joint welding of stainless steel 304 (18Cr-8Ni) and mild steel (SS41) is performed using a D309 welding rod, the composition of the weld metal can be estimated using the Schaeffler phase diagram shown in Figure 3. can. Calculate the Ni equivalent (%Ni+30×%C+0.5×%Mn) and Cr equivalent (%Cr+%Mo+1.5×%Si+0.5×%Nb) of stainless steel 304 (18Cr-8Ni) and mild steel (SS41), respectively. , plotted in Figure 3 (A,B). The center of the two points connected by a straight line is the welding point (C).

さらに、D309溶接棒のNi当量、Cr当量をそれぞれ算出し、図3にプロット(D)すると、ここでD点とC点の直線上が溶接金属組成の存在するラインとなる。母材への希釈が少ない段階では、溶接金属はD309の組成に近いオーステナイト+フェライトの混合領域があり、希釈の増加に伴ってその組成はオーステナイト単層の預域を経て、オーステナイト+マルテンサイトの混合領域へと変化していく。
ここで、溶接時の割れを防止するには、溶接金属の組成をオーステナイト+フェライト混合領域にすることが有効であるので、この観点から溶接時の希釈をE点より右側(希釈率約30%以下)になるようにする必要がある。実際の施工においては、磁気吹きの影響で軟鋼側の方がステンレス鋼側よりも希釈を受け、図3中のC点は軟鋼(B点)側に移動するので、希釈をさらに低めに抑える必要がある。一般的には、高温割れ防止の観点から溶接金属中のフェライト量を最低でも約3%以上確保することが必要とされている。軟鋼の炭素鋼板の板厚が厚い場合には、炭素鋼板の開先面に309系溶材にてバタリングを行い、溶接を行った方が耐割れ性の点から有効であると言われている。
Furthermore, when the Ni equivalent and Cr equivalent of the D309 welding rod are calculated and plotted in FIG. 3 (D), the straight line between point D and point C becomes the line where the weld metal composition exists. At a stage where there is little dilution into the base metal, the weld metal has a mixed region of austenite + ferrite similar to the composition of D309, and as the dilution increases, the composition changes from a deposited region of a single layer of austenite to a mixture of austenite + martensite. It is changing to a mixed area.
Here, in order to prevent cracking during welding, it is effective to make the composition of the weld metal a mixed region of austenite and ferrite, so from this point of view, dilution during welding should be made to the right of point E (dilution rate approximately 30%). below). In actual construction, the mild steel side is diluted more than the stainless steel side due to the influence of magnetic blowing, and point C in Figure 3 moves to the mild steel (point B) side, so it is necessary to keep the dilution to an even lower level. There is. Generally, from the viewpoint of preventing hot cracking, it is necessary to ensure that the amount of ferrite in the weld metal is at least about 3% or more. When the thickness of a mild carbon steel plate is thick, it is said to be more effective in terms of crack resistance to batter the grooved surface of the carbon steel plate with 309 series welding metal and then weld it.

このように従来からステンレス鋼と炭素鋼との異種金属溶接は簡単にはいかない。
本発明は、前記のように制限される溶接棒を用いることなく、従って希釈率を抑えることなく、オーステナイト+フェライトの混合領域にすることなくしかも開先を加工することなく、溶接中のバタリングを防止して、溶接時の割れ、歪が無い健全な溶接を迅速簡単にしかも安価に可能にして、しかも、製作が極めて簡易であり、軽量化を有利に可能にしながら十分な溶接状態を有する「ステンレス鋼板と亜鉛鍍金鋼板との面溶接構造」を提供する。
As described above, dissimilar metal welding of stainless steel and carbon steel has traditionally not been easy.
The present invention eliminates battering during welding without using a welding rod that is limited as described above, without suppressing the dilution rate, without creating a mixed region of austenite + ferrite, and without processing a groove. This method enables sound welding without cracking or distortion during welding, quickly, easily, and inexpensively. Furthermore, it is extremely simple to manufacture, advantageously enables weight reduction, and has sufficient welding condition. We provide surface welded structures of stainless steel sheets and galvanized steel sheets.

本発明は前述の課題を解決するものでありその技術的特徴は次の(1)~(2)の通りである。
(1)、ステンレス鋼板と炭素鋼板との面溶接構造において、前記炭素鋼板を亜鉛鍍金鋼板とし、この亜鉛鍍金鋼板の側端面と前記ステンレス鋼板との当接部にファイバーレーザー溶接による溶接部を形成してなることを特徴とするステンレス鋼板と亜鉛鍍金鋼板との面溶接構造。
(2)、より好ましい具体的な技術条件は、前記亜鉛鍍金鋼板は、炭素≦7%、厚み2.5~4.5mm、亜鉛目付量100~120g/mmの条件とし、前記ステンレス鋼板は、鉄(Fe)50%以上を主成分としクロム(Cr)を10.5%以上含み、炭素≦3%、厚み:2.5~5mmの条件にすることにより、前記ファイバーレーザー面溶接による前記亜鉛合金層の溶接部は、適正良好な溶接ビードとなり引張強度が前記亜鉛鍍金鋼板の母材のそれよりも高く得られることが可能である。特に前記亜鉛鍍金鋼板の厚みと目付量との関係でバランスがあり範囲を外れると溶接ビード及び引張強度ともに低下することが実験から判明した。
The present invention solves the above-mentioned problems, and its technical features are as follows (1) and (2).
(1) In a surface welded structure of a stainless steel plate and a carbon steel plate, the carbon steel plate is a galvanized steel plate, and a welded portion is formed by fiber laser welding at the abutting portion between the side end surface of the galvanized steel plate and the stainless steel plate. A surface welded structure of a stainless steel plate and a galvanized steel plate.
(2) More preferable specific technical conditions are that the galvanized steel sheet has carbon ≦7%, thickness 2.5 to 4.5 mm, and zinc area weight 100 to 120 g/ mm2 , and the stainless steel sheet , the main component is 50% or more of iron (Fe), 10.5% or more of chromium (Cr), carbon ≦ 3%, and thickness: 2.5 to 5 mm. The welded portion of the zinc alloy layer has a proper weld bead, and it is possible to obtain a tensile strength higher than that of the base metal of the zinc-plated steel sheet. In particular, it has been found through experiments that there is a balance between the thickness and area weight of the galvanized steel sheet, and when the thickness is out of range, both the weld bead and tensile strength decrease.

本発明において使用するファイバーレーザー溶接とは一般に非接触で局所的な加熱が可能ビームの小径スポットによる高いエネルギー密度溶接スピードが高速CW(連続発振)溶接による連側照射ファイバーレーザーによる非接触溶接である。
つまりステンレス鋼板と単なる炭素鋼板との溶接に比して、亜鉛鍍金鋼板の側端面と前記ステンレス鋼板との面接触部を、非接触の高速の連側照射で溶接することにより形成される溶接部とその近傍は焼けや歪みが殆ど無く、薄物でもきれいで滑らかな溶接ビードを実現し外観が美しく仕上がると共にZnを微量に含むせいか「ステンレス鋼板と亜鉛鍍金の無い単なる炭素鋼板とのファイバーレーザー面溶接」では全く得られない「母材よりも高い引張強度等が得られる」新規な作用効果を得ることができた。
このため溶接工程の大幅な削減を可能にした。また溶接の際に発生するスパッタ(溶融金属の飛散)の発生が極端に少なくしたがってスパッタの固着の問題も皆無に近い、更に溶接部表面にくぼみができないため、仕上げ処理も不要である。
このようなステンレス鋼板と亜鉛鍍金鋼板との初のファイバーレーザー面溶接による作用効果の出現は業界初の発見である。
The fiber laser welding used in the present invention is generally a non-contact welding method that enables localized heating in a non-contact manner.It is a high energy density welding speed using a small diameter spot of the beam.It is a non-contact welding using a continuous irradiation fiber laser using high-speed CW (continuous wave) welding. .
In other words, compared to welding a stainless steel plate and a simple carbon steel plate, the weld is formed by welding the surface contact area between the side end face of the galvanized steel plate and the stainless steel plate using non-contact, high-speed continuous irradiation. There is almost no burning or distortion in the area around the area, and even on thin materials, a clean and smooth weld bead is achieved, resulting in a beautiful appearance. Perhaps due to the presence of a small amount of Zn, the fiber laser surface of a stainless steel plate and a plain carbon steel plate without zinc plating is We were able to obtain new effects such as ``obtaining higher tensile strength than the base metal,'' which cannot be obtained by welding.
This has made it possible to significantly reduce the number of welding processes. In addition, the occurrence of spatter (scattering of molten metal) during welding is extremely low, so there is almost no problem of spatter sticking, and since no depressions are formed on the surface of the weld, no finishing treatment is required.
The appearance of the effects of fiber laser surface welding of stainless steel sheets and galvanized steel sheets is a first in the industry.

本発明の「ステンレス鋼板と亜鉛鍍金鋼板との面溶接構造」のサンプル1と2の片側溶接部の縦断面説明図例を(1)に示し、サンプル3と4の両側溶接部の縦断面説明図例を(2)に示す。An example of a vertical cross-sectional explanatory diagram of the one-sided welded part of Samples 1 and 2 of the "area welded structure of a stainless steel plate and a galvanized steel plate" of the present invention is shown in (1), and a longitudinal cross-sectional explanation of the both-side welded part of Samples 3 and 4 is shown. An example diagram is shown in (2). 前記各溶接部縦断面の顕微鏡写真(1)とその拡大スケッチ図(2)Micrograph (1) of the vertical cross section of each welded part and its enlarged sketch (2) シェフラーの状態図Schaeffler state diagram

発明を実施するための形態を以下に紹介の図1~図2に示す実施例と共に詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A mode for carrying out the invention will be described in detail below along with examples shown in FIGS. 1 and 2.

本例の面溶接構造例はサンプル1~4であり、その詳細仕様内容を表1に示し、構造を図1の(1)と(2)に示す。 Samples 1 to 4 are examples of surface welded structures in this example, and their detailed specifications are shown in Table 1, and their structures are shown in (1) and (2) of FIG. 1.

Figure 2023179335000002
すなわち本例の面溶接構造で図1(1)に示すサンプル1~2は、ステンレス鋼板100の平面に亜鉛鍍金鋼板200の側端面を当接してT字型に組み、亜鉛鍍金鋼板200の側端面の片側のみをステンレス鋼板100の平面にファイバーレーザー溶接した例の縦断面図である。201・202は亜鉛鍍金鋼板200の表・裏面亜鉛鍍金層である。
Figure 2023179335000002
That is, Samples 1 to 2 shown in FIG. 1 (1) with the surface welded structure of this example are assembled in a T-shape with the side end surface of the galvanized steel plate 200 in contact with the plane of the stainless steel plate 100, and the side edge of the galvanized steel plate 200 is assembled in a T-shape. FIG. 2 is a longitudinal cross-sectional view of an example in which only one side of the end face is fiber laser welded to a flat surface of a stainless steel plate 100. 201 and 202 are galvanized layers on the front and back surfaces of the galvanized steel sheet 200.

図1(2)に示すサンプル3~4は、ステンレス鋼板100の平面に亜鉛鍍金鋼板200の側端面を当接してT字型に組み、亜鉛鍍金鋼板200の側端面の両側をステンレス鋼板100の平面にファイバーレーザー溶接した例の縦断面図である。201・202は亜鉛鍍金鋼板200の表・裏面亜鉛鍍金層である。
前記ステンレス鋼板100は、(18Cr-8Ni)製であり、厚み3.0mm、引張強度42kg/mm、硬度(ブリネルリネル硬さ:HBW換算)≦187)にしてある。
前記亜鉛鍍金鋼板200は。母材SS400の厚み3.2mm、引張強度39N/mm、硬度(ブリネル硬さ:HBW換算)120-400、亜鉛目付量120g/mにしてある。
Samples 3 to 4 shown in FIG. 1(2) are assembled in a T-shape by abutting the side end surface of the galvanized steel sheet 200 against the flat surface of the stainless steel sheet 100, and both sides of the side end surface of the galvanized steel sheet 200 are attached to the stainless steel sheet 100. FIG. 3 is a longitudinal cross-sectional view of an example of fiber laser welding on a flat surface. 201 and 202 are galvanized layers on the front and back surfaces of the galvanized steel sheet 200.
The stainless steel plate 100 is made of (18Cr-8Ni), has a thickness of 3.0 mm, a tensile strength of 42 kg/mm 2 , and a hardness (Brinell hardness: HBW equivalent)≦187).
The galvanized steel sheet 200 is. The base material SS400 has a thickness of 3.2 mm, a tensile strength of 39 N/mm, a hardness (Brinell hardness: HBW conversion) of 120-400, and a zinc basis weight of 120 g/m 2 .

前記図1(1)と(2)におけるサンプル1~4において使用のファイバーレーザー溶接機の仕様概要は、レーザーの定格出力(CW)500W、発信制御モード:パルスモード・ショート/ロング、パルス幅(CW):50.0~900.0ms(ショート)10.0~99.99s(ロング)の連続波、レーザー波長:1075nm±10nm、電源:単相 AC200V±10%である。
表2にファイバーレーザー溶接機の詳細仕様例を示す。
The specifications of the fiber laser welding machine used in samples 1 to 4 in Figures 1 (1) and (2) are as follows: Laser rated output (CW) 500W, transmission control mode: pulse mode short/long, pulse width ( CW): continuous wave of 50.0 to 900.0 ms (short), 10.0 to 99.99 s (long), laser wavelength: 1075 nm ± 10 nm, power supply: single phase AC 200 V ± 10%.
Table 2 shows examples of detailed specifications for fiber laser welding machines.

Figure 2023179335000003
Figure 2023179335000003

表1で明らかなように前記溶接部Z1~Z3の各引っ張り強度はいずれも母材の亜鉛鍍金鋼板200よりも高い引っ張り強度を有していた。 As is clear from Table 1, each of the welded portions Z1 to Z3 had a tensile strength higher than that of the base metal galvanized steel sheet 200.

図2(1)に、前記サンプル1におけるファイバーレーザー溶接部Z1の顕微鏡写真を示し、この拡大スケッチ図を図2(2)に示す。
図2(2)には溶接部Z1における各成分測定点A~Fを示し、これらにおける成分測定値を表3に記載してある。
この表3からはファイバーレーザー溶接部Z1における成分測定点C~Eでは微量の亜鉛が含まれている。
そしてこの溶接部Z1は表3に示すように、母材の亜鉛鍍金鋼板200よりも高い引っ張り強度を有している。
FIG. 2(1) shows a micrograph of the fiber laser welded part Z1 in the sample 1, and FIG. 2(2) shows an enlarged sketch of this.
FIG. 2(2) shows the measurement points A to F of each component in the weld zone Z1, and the component measurement values at these points are listed in Table 3.
From Table 3, trace amounts of zinc are included at component measurement points C to E in the fiber laser welded part Z1.
As shown in Table 3, this welded portion Z1 has a tensile strength higher than that of the base material, the galvanized steel sheet 200.

Figure 2023179335000004
Figure 2023179335000004

このように、核ファイバーレーザー溶接部は高引っ張り強度であり、またその近傍は焼けや歪みが殆ど無く、薄物でもきれいで滑らかな溶接ビードを実現し外観が美しく仕上がり、溶接工程の時間と労力を大幅に削減することができた。また溶接の際に発生するスパッタ(溶融金属の飛散)の発生が極端に少なく、溶接部表面にくぼみができなく、スパッタの固着の問題も皆無に近いので仕上げ処理も不要である。等の優れた新規な作用効果を得ることができた。 In this way, the nuclear fiber laser welded part has high tensile strength, and there is almost no burning or distortion in the vicinity, creating a clean and smooth weld bead even on thin materials, giving a beautiful appearance, and saving time and effort in the welding process. We were able to reduce this significantly. In addition, there is extremely little spatter (scattering of molten metal) that occurs during welding, no depressions are formed on the surface of the weld, and there is almost no problem of spatter sticking, so finishing treatment is not necessary. We were able to obtain excellent new effects such as:

本発明は、前述の効果及び実施例に記載のとおり優れた作用効果を呈するものであり、金属加工業界等に貢献すること多大なものがある。 The present invention exhibits excellent effects as described in the above-mentioned effects and examples, and will greatly contribute to the metal processing industry and the like.

100:ステンレス鋼板
200:亜鉛鍍金鋼板
201・202:表裏面亜鉛鍍金層
Z1~Z3:ファイバーレーザー溶接部
100: Stainless steel plate 200: Galvanized steel plate 201, 202: Front and back galvanized layers Z1 to Z3: Fiber laser welded part

Claims (1)

ステンレス鋼板と炭素鋼板との面溶接構造において、前記炭素鋼板を亜鉛鍍金鋼板とし、この亜鉛鍍金鋼板の側端面と前記ステンレス鋼板との当接部にファイバーレーザー溶接による溶接部を形成してなることを特徴とするステンレス鋼板と亜鉛鍍金鋼板との面溶接構造。 In a surface welded structure of a stainless steel plate and a carbon steel plate, the carbon steel plate is a galvanized steel plate, and a welded part is formed by fiber laser welding at the abutment area between the side end face of the galvanized steel plate and the stainless steel plate. Surface welded structure of stainless steel plate and galvanized steel plate.
JP2022104069A 2022-06-07 2022-06-07 Surface welded structure of stainless steel plate and galvanized steel plate Active JP7324392B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022104069A JP7324392B1 (en) 2022-06-07 2022-06-07 Surface welded structure of stainless steel plate and galvanized steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022104069A JP7324392B1 (en) 2022-06-07 2022-06-07 Surface welded structure of stainless steel plate and galvanized steel plate

Publications (2)

Publication Number Publication Date
JP7324392B1 JP7324392B1 (en) 2023-08-10
JP2023179335A true JP2023179335A (en) 2023-12-19

Family

ID=87519579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022104069A Active JP7324392B1 (en) 2022-06-07 2022-06-07 Surface welded structure of stainless steel plate and galvanized steel plate

Country Status (1)

Country Link
JP (1) JP7324392B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105163A1 (en) * 2007-02-28 2008-09-04 Osaka University Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite
JP2015069167A (en) * 2013-09-30 2015-04-13 ブラザー工業株式会社 Developing device, blade unit, and method of manufacturing developing device
JP2015147234A (en) * 2014-02-06 2015-08-20 株式会社神戸製鋼所 Conjugate manufacturing method, and high energy beam welding junction member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105163A1 (en) * 2007-02-28 2008-09-04 Osaka University Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite
JP2015069167A (en) * 2013-09-30 2015-04-13 ブラザー工業株式会社 Developing device, blade unit, and method of manufacturing developing device
JP2015147234A (en) * 2014-02-06 2015-08-20 株式会社神戸製鋼所 Conjugate manufacturing method, and high energy beam welding junction member

Also Published As

Publication number Publication date
JP7324392B1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
KR101728769B1 (en) Welded blank assembly and method
Rowe et al. Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds
US20030052110A1 (en) Controlled composition welding method
Zhang et al. Effect of microstructure on mechanical properties in weld-repaired high strength low alloy steel
Sun et al. Fiber laser butt joining of aluminum to steel using welding-brazing method
RU2486996C2 (en) Method of hidden arc welding of steel material using multiple electrodes
CN105108278B (en) A kind of method for improving welding by both sides welding efficiency
JP2008212992A (en) T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
Xu et al. Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg–steel joint
CN110202245B (en) Mechanical property improvement of aluminum-steel welding seam by limiting deformation of steel plate
Chattopadhyay et al. Hybrid electroslag cladding (H-ESC): an innovation in high speed electroslag strip cladding
CN114734125A (en) Preheating-free welding method suitable for 500 HB-grade wear-resistant steel
JP2023179335A (en) Surface welded structure of stainless steel plate and galvanized steel plate
Singh et al. High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints
Zhao et al. High-deposition laser brazing with enhanced surface quality, bridge performance and mechanical properties
JP6105993B2 (en) Molded product made of stainless steel foil joined by resistance heat
JP7316516B1 (en) pit equipment
JP2019118946A (en) Steel plate, butt welding member, hot press-formed product, steel pipe, hollow quench-formed product, and method of manufacturing steel plate
JP5720592B2 (en) Welded joint
CN111570979A (en) Connecting method of dissimilar metal welding test plates
Huda et al. Mechanical properties of aluminum to steel dissimilar spot joints produced by cold metal transfer weld-brazing
JP2006281303A (en) Submerged arc welding method for high strength steel sheet
JP5146268B2 (en) Arc welding method for steel sheet coated with antioxidant
CN110839341A (en) Welded member of plated steel sheet having excellent weld porosity resistance and fatigue characteristics, and method for producing same
CN105127567B (en) Welding method of chrome-molybdenum vanadium steel for super-thick pressure vessels

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7324392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150