JP2023179328A - Grinding stone upper slip detection method and device - Google Patents

Grinding stone upper slip detection method and device Download PDF

Info

Publication number
JP2023179328A
JP2023179328A JP2022092599A JP2022092599A JP2023179328A JP 2023179328 A JP2023179328 A JP 2023179328A JP 2022092599 A JP2022092599 A JP 2022092599A JP 2022092599 A JP2022092599 A JP 2022092599A JP 2023179328 A JP2023179328 A JP 2023179328A
Authority
JP
Japan
Prior art keywords
grinding wheel
slip
grinding
workpiece
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022092599A
Other languages
Japanese (ja)
Inventor
和也 岩本
Kazuya Iwamoto
智 五十君
Satoshi Isogimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2022092599A priority Critical patent/JP2023179328A/en
Publication of JP2023179328A publication Critical patent/JP2023179328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

To provide a grinding stone upper slip detection method and device which can correctly detect the occurrence of upper slip of a grinding stone by using an AE signal being the vibration generated due to crushing of abrasive grains and a vitrified bond in grinding processing.SOLUTION: A grinding stone upper slip detection device comprises: a frequency analysis unit 50 which frequency-analyzes an AE signal SAE generated in the time of grinding to a grinding object material 12 from a grinding wheel 20; and an upper slip detection unit 56 which detects upper slip of the grinding wheel 20 on the basis of the magnitude of a periodical change amount synchronized with rotation of the grinding object material 12 of the signal intensity of a prescribed frequency band of the signal intensities of the frequency spectra that are frequency-analyzed by the frequency analysis unit 50. With this, the device can correctly detect the occurrence of upper slip of the grinding wheel 20 on the basis of the magnitude of the periodical change amount synchronized with rotation of the grinding object material 12 of the signal intensity SP of the prescribed frequency band obtained by frequency-analyzing the AE signal SAE.SELECTED DRAWING: Figure 1

Description

本発明は、被削材の外周面を研削する研削加工中に得られたAE信号から、研削砥石の上すべりを検出する、研削砥石の上すべり検出方法および装置に関するものである。 The present invention relates to a grinding wheel top slip detection method and apparatus for detecting a grinding wheel top slip from an AE signal obtained during a grinding process for grinding the outer peripheral surface of a workpiece.

例えば、円筒状の被削材の外周面を研削砥石を用いて研削する過程で、研削砥石の砥粒が被削材を削らず被削材の表面を上すべりする現象がある。たとえばチタン合金のような熱がこもり易い難削材の研削に際して、高硬度の研削砥石を用いて切れ込み量が微小な低研磨能率で研削する場合に、そのような研削砥石の上すべり現象が発生し易い。上すべりが発生すると、研削面のうちの上すべりの箇所に、被削材の表面の金属組織変化を示す模様が観察される。 For example, in the process of grinding the outer circumferential surface of a cylindrical workpiece using a grinding wheel, there is a phenomenon in which the abrasive grains of the grinding wheel slide upward on the surface of the workpiece without cutting the workpiece. For example, when grinding difficult-to-cut materials that easily trap heat, such as titanium alloys, when grinding with a high hardness grinding wheel at a low polishing efficiency with a minute depth of cut, such a grinding wheel top-slip phenomenon occurs. Easy to do. When top slip occurs, a pattern indicating a change in the metallographic structure of the surface of the workpiece is observed at the top slip location on the ground surface.

このような上すべりの検出としては、例えば、研削砥石を回転駆動する電動機の消費電力値の変化や動力計による研削抵抗値の変化を用いて推定することが、行なわれているが、上すべりの発生タイミングや大きさの程度を精度よく捉えることができないという問題があった。 To detect such top slip, for example, estimation is performed using changes in the power consumption value of the electric motor that rotates the grinding wheel or changes in the grinding resistance value measured by a dynamometer. There was a problem in that it was not possible to accurately determine the timing and magnitude of the occurrence.

これに対して、特許文献1には、研削加工中に切込み台の移動量を求める切込み台移動量検出手段と、ワークの研削残量を検出するインプロセスゲージの変化量を求めるインプロセスゲージ変化量検出手段と、得られた切込み台移動量およびインプロセスゲージの変化量に基づいてかつぎ量を求めるかつぎ量算出手段とを備え、インプロセスゲージによって検出されたワークの1回転に伴う変動量が加工初期段階での値に比べて所定値以上小さくなったときに、切込み台移動量およびインプロセスゲージ変化量をゼロにリセットし、かつぎ量(=切込み台移動量-インプロセスゲージ変化量)を求めるかつぎ量計測装置が、提案されている。 On the other hand, Patent Document 1 discloses a cutting table movement amount detection means for determining the amount of movement of the cutting table during grinding, and an in-process gauge change for determining the amount of change in the in-process gauge for detecting the amount of remaining grinding of the workpiece. and a cutting amount calculation means for calculating the cutting amount based on the obtained cutting table movement amount and the change amount of the in-process gauge, and the variation amount associated with one rotation of the workpiece detected by the in-process gauge is When the value becomes smaller than the predetermined value compared to the value at the initial stage of machining, the cutting table movement amount and in-process gauge change amount are reset to zero, and the switching amount (= cutting table movement amount - in-process gauge change amount) is A device for measuring the amount of hooks to be determined has been proposed.

特開2008-119803号公報Japanese Patent Application Publication No. 2008-119803

しかしながら、このような特許文献1に記載のかつぎ量計測装置により求められた研削残量の変化量では、工具の切れ味の影響と区別できず、研削砥石の上すべりを正確に検出することができないという、問題があった。 However, the amount of change in the remaining amount of grinding determined by the grinding amount measuring device described in Patent Document 1 cannot be distinguished from the effect of the sharpness of the tool, and it is not possible to accurately detect the upward slippage of the grinding wheel. There was a problem.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、研削加工中の砥粒やビトリファイドボンドの破砕に起因して発生する振動であるAE信号を用いて、研削砥石の上すべりの発生を正確に検出できる、研削砥石の上すべり検出方法および装置を提供することにある。 The present invention has been made against the background of the above circumstances, and its purpose is to use an AE signal, which is a vibration generated due to the crushing of abrasive grains and vitrified bond during grinding, to An object of the present invention is to provide a method and device for detecting top slip of a grinding wheel, which can accurately detect the occurrence of top slip of a grinding wheel.

本発明者等は、以上の事情を背景として、円筒プランジ研削により被削材を研削加工する過程で得られたAE信号を周波数解析して検討を重ねるうち、被削材の回転周期よりも十分に短いサンプリング周期でA/D変換するA/D変換器を用いてデジタル化したAE信号を周波数解析すると、周波数解析された周波数スペクトルにおいて、破砕の発生に由来すると推定される第1の信号強度の山に続く、所定の周波数帯たとえば45~75kHzの周波数帯の第2の信号強度の山が観察され、その第2の信号強度の山を構成する信号強度積分値の時間変化を波形で表わすと、局所的に低くなる谷形波形が周期的に複数個含まれており、その複数の谷形波形は被削材の回転周期に対応していること、研削砥石を回転駆動する電動機の消費電力値を示す時間経過波形にはそのような谷型波形が存在していないこと、さらに、研削砥石の回転速度を低下させると、その谷形波形の深さが小さくなることに気付いた。そして、これらの3つの事実を検討すると、上記谷形波形の大きさは、研削砥石の上すべり現象の程度を示しているという結論に至った。本発明は、斯かる知見に基づいて為されたものである。 Against the background of the above circumstances, the present inventors conducted frequency analysis of the AE signal obtained during the process of grinding the workpiece by cylindrical plunge grinding, and found that the When frequency analysis is performed on the digitized AE signal using an A/D converter that performs A/D conversion at a short sampling period, the first signal intensity estimated to be derived from the occurrence of fracture is found in the frequency-analyzed frequency spectrum. A second peak of signal strength in a predetermined frequency band, for example, a frequency band of 45 to 75 kHz, following the peak of , is observed, and the time change of the integrated value of the signal strength constituting the second peak of signal strength is expressed as a waveform. , there are periodically multiple valley waveforms that become locally low, and the multiple valley waveforms correspond to the rotation period of the workpiece, and the consumption of the electric motor that rotates the grinding wheel. It was noticed that such a valley-shaped waveform does not exist in the time-lapse waveform indicating the power value, and that the depth of the valley-shaped waveform becomes smaller when the rotational speed of the grinding wheel is decreased. Considering these three facts, we came to the conclusion that the size of the valley waveform described above indicates the degree of the top-slip phenomenon of the grinding wheel. The present invention has been made based on this knowledge.

すなわち、第1発明の要旨とするところは、(a)被削材の外周面を研削する研削砥石の上すべりを検出する研削砥石の上すべり検出方法であって、(b)前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析工程と、(c)前記周波数解析工程により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出工程とを、含むことにある。 That is, the gist of the first invention is (a) a method for detecting the top slip of a grinding wheel that grinds the outer circumferential surface of a workpiece, and (b) a method for detecting the top slip of a grinding wheel that grinds the outer peripheral surface of a workpiece. (c) a frequency analysis step of frequency-analyzing the AE signal generated during grinding of the work material; and (c) determining the integrated value of the signal intensity in a predetermined frequency band of the signal intensity of the frequency spectrum frequency-analyzed in the frequency analysis step. The method further includes a top-slip detection step of detecting top-slip of the grinding wheel based on the magnitude of a periodic variation that is synchronized with the rotation of the workpiece.

第2発明の要旨とするところは、第1発明において、前記上すべり検出工程は、前記信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度積分値の移動標準偏差値により表わすことにある。 The gist of the second invention is that in the first invention, the top slip detection step detects the magnitude of a periodic variation of the signal intensity integral value in synchronization with the rotation of the workpiece. The object of the present invention is to represent a moving standard deviation value of a plurality of signal strength integral values obtained within a moving section exceeding one rotation period of the signal strength.

第3発明の要旨とするところは、第2発明において、前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて前記研削砥石の上すべりを判定する上すべり判定工程を、さらに含むことにある。 The gist of the third invention is that, in the second invention, a top slip determination step of determining top slip of the grinding wheel based on the fact that the movement standard deviation value exceeds a preset determination threshold value is further provided. It consists in including.

第4発明の要旨とするところは、第3発明において、前記上すべり判定工程により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御工程を、さらに含むことにある。 The gist of the fourth invention is that in the third invention, when the top slip of the grinding wheel is determined in the top slip determination step, rotation speed reduction control that reduces the rotation speed of the grinding wheel by a predetermined value. The method further includes a step.

第5発明の要旨とするところは、(a)被削材の外周面を研削する研削砥石の上すべりを検出する研削砥石の上すべり検出装置であって、(b)前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析部と、(c)前記周波数解析部により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出部とを、含むことにある。 The gist of the fifth invention is (a) a grinding wheel top slip detection device for detecting top slip of a grinding wheel grinding the outer peripheral surface of a workpiece, (b) (c) a frequency analysis unit that frequency-analyzes an AE signal generated during grinding of a material to be cut; and a top-slip detection section that detects top-slip of the grinding wheel based on the magnitude of a periodic variation synchronized with the rotation of the material.

第6発明の要旨とするところは、第5発明において、前記上すべり検出部は、前記信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度積分値の移動標準偏差値により表わすことにある。 The gist of the sixth invention is that in the fifth invention, the top slip detection section detects the magnitude of a periodic variation of the signal intensity integral value in synchronization with the rotation of the workpiece. The object of the present invention is to represent a moving standard deviation value of a plurality of signal strength integral values obtained within a moving section exceeding one rotation period of the signal strength.

第7発明の要旨とするところは、第6発明において、前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて、前記研削砥石の上すべりを判定する上すべり判定部を、さらに含むことにある。 The gist of the seventh invention is that, in the sixth invention, a top slip determination unit that determines top slip of the grinding wheel based on the movement standard deviation value exceeding a preset determination threshold; It also includes:

第8発明の用紙とするところは、第7発明において、前記上すべり判定部により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御部を、さらに含むことにある。 The paper according to an eighth aspect of the invention is characterized in that, in the seventh aspect, when the top slip determination unit determines that the grinding wheel is top slip, the rotation speed reduction control reduces the rotation speed of the grinding wheel by a predetermined value. It further includes a section.

第1発明の研削砥石の上すべり検出方法によれば、前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析工程と、前記周波数解析工程により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出工程とが、含まれている。これにより、AE信号を周波数解析することにより得られた所定周波数帯の信号強度の前記被削材の回転に同期する周期的変化量の大きさに基づいて、研削砥石の上すべりの発生を正確に検出できる。 According to the top slip detection method of a grinding wheel of the first invention, there is provided a frequency analysis step of frequency-analyzing an AE signal generated from the grinding wheel when grinding the work material, and a frequency spectrum subjected to frequency analysis in the frequency analysis step. a top slip detection step of detecting top slip of the grinding wheel based on the magnitude of a periodic change in signal strength in a predetermined frequency band of the signal strength of the grinding wheel in synchronization with the rotation of the workpiece. ing. As a result, the occurrence of top slip of the grinding wheel can be accurately detected based on the magnitude of the periodic change in signal strength in a predetermined frequency band, which is obtained by frequency analysis of the AE signal, in synchronization with the rotation of the workpiece. can be detected.

第2発明の研削砥石の上すべり検出方法によれば、前記上すべり検出工程は、前記信号強度の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度値の移動標準偏差値により表わすので、移動標準偏差値の大きさに基づいて、研削砥石の上すべりの発生を正確に且つ定量的に検出できる。 According to the top slip detection method of the grinding wheel of the second invention, the top slip detection step detects the magnitude of a periodic change in the signal intensity that is synchronized with the rotation of the work material. Since it is expressed by the moving standard deviation value of the plurality of signal intensity values obtained within the movement section exceeding the rotation period, the occurrence of top slip of the grinding wheel can be accurately and quantified based on the magnitude of the moving standard deviation value. can be detected.

第3発明の研削砥石の上すべり検出方法によれば、前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて前記研削砥石の上すべりを判定する上すべり判定工程が、さらに含まれるので、上すべり判定工程により、研削砥石の上すべりの発生が正確に判定される。 According to the grinding wheel top slip detection method of the third invention, the top slip determination step of determining the top slip of the grinding wheel based on the movement standard deviation value exceeding a preset determination threshold value further comprises: Therefore, the occurrence of top slip of the grinding wheel can be accurately determined in the top slip determination step.

第4発明の研削砥石の上すべり検出方法によれば、前記すべり判定工程により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御工程が、さらに含まれるので、研削砥石の上すべりが判定された場合には研削砥石の回転速度が低下させられて、自動的に上すべりが解消される。 According to the grinding wheel top slip detection method of the fourth invention, when the top slip of the grinding wheel is determined in the slip determination step, the rotation speed reduction control step of reducing the rotation speed of the grinding wheel by a predetermined value. is further included, so that when upward slip of the grinding wheel is determined, the rotational speed of the grinding wheel is reduced and upward slip is automatically eliminated.

第5発明の研削砥石の上すべり検出装置によれば、前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析部と、前記周波数解析工程により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出部とが、含まれている。これにより、AE信号を周波数解析することにより得られた所定周波数帯の信号強度の前記被削材の回転に同期する周期的変化量の大きさに基づいて、研削砥石の上すべりの発生を正確に検出できる。 According to the grinding wheel top slip detection device of the fifth invention, there is provided a frequency analysis section that frequency-analyzes an AE signal generated from the grinding wheel during grinding of the work material, and a frequency spectrum subjected to frequency analysis in the frequency analysis step. a top slip detection unit that detects top slip of the grinding wheel based on the magnitude of a periodic change in signal strength in a predetermined frequency band of the signal strength of the grinding wheel in synchronization with the rotation of the workpiece. ing. As a result, the occurrence of top slip of the grinding wheel can be accurately detected based on the magnitude of the periodic change in signal strength in a predetermined frequency band, which is obtained by frequency analysis of the AE signal, in synchronization with the rotation of the workpiece. can be detected.

第6発明の研削砥石の上すべり検出装置によれば、前記上すべり検出部は、前記信号強度の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度値の移動標準偏差値により表わすので、移動標準偏差値の大きさに基づいて、研削砥石の上すべりの発生を正確に且つ定量的に検出できる。 According to the grinding wheel top slip detection device of the sixth aspect of the invention, the top slip detection section detects the magnitude of a periodic change amount of the signal intensity that is synchronized with the rotation of the workpiece material. Since it is expressed by the moving standard deviation value of the plurality of signal intensity values obtained within the movement section exceeding the rotation period, the occurrence of top slip of the grinding wheel can be accurately and quantified based on the magnitude of the moving standard deviation value. can be detected.

第7発明の研削砥石の上すべり検出装置によれば、前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて前記研削砥石の上すべりを判定する上すべり判定部が、さらに含まれるので、上すべり判定部により、研削砥石の上すべりの発生が正確に判定される。 According to the grinding wheel top slip detection device of the seventh invention, the top slip determination section that determines the top slip of the grinding wheel based on the movement standard deviation value exceeding a preset determination threshold value further comprises: Therefore, the occurrence of top slip of the grinding wheel can be accurately determined by the top slip determining section.

第8発明の研削砥石の上すべり検出装置によれば、前記上すべり判定部により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御部が、さらに含まれるので、研削砥石の上すべりが判定された場合には研削砥石の回転速度が低下させられて、自動的に上すべりが解消される。 According to the grinding wheel top slip detection device of the eighth aspect of the invention, when the top slip determining section determines that the grinding wheel is top slip, the rotation speed reduction control is performed to reduce the rotation speed of the grinding wheel by a predetermined value. Since the grinding wheel further includes a section, when upward slip of the grinding wheel is determined, the rotational speed of the grinding wheel is reduced and upward slip is automatically eliminated.

本発明の一実施例の、研削加工中に研削砥石の上すべりを検出する研削砥石上すべり検出装置を備えた研削加工装置の構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of a grinding device including a grinding wheel upward slip detection device for detecting upward slip of a grinding wheel during grinding according to an embodiment of the present invention. 図1の研削加工装置による研削加工中に、研削砥石の研削点から発生するAE信号の発生メカニズムを説明する図である。2 is a diagram illustrating a generation mechanism of an AE signal generated from a grinding point of a grinding wheel during a grinding process by the grinding apparatus shown in FIG. 1. FIG. 図1のAEセンサにより検出されたAE信号SAEを周波数解析部により周波数解析して得られた周波数スペクトルの一例を示す図である。FIG. 2 is a diagram showing an example of a frequency spectrum obtained by frequency analysis of the AE signal SAE detected by the AE sensor of FIG. 1 by a frequency analysis section. 図1の研削加工装置において、研削砥石を回転駆動する電動機の消費電力値の時間変化の一例を示す図である。2 is a diagram illustrating an example of a temporal change in the power consumption value of an electric motor that rotationally drives a grinding wheel in the grinding apparatus of FIG. 1. FIG. 図3の周波数スペクトルのうちの所定の周波数帯B2内の信号強度(積分)値SPIを示す波形の一例を示す図である。4 is a diagram showing an example of a waveform showing a signal strength (integral) value SPI within a predetermined frequency band B2 of the frequency spectrum of FIG. 3. FIG. 図5の所定周波数帯B2内の信号強度(積分)値SPIの時間変化を示す波形に複数個連続して含まれる山形波形および谷形波形を、時間軸を拡大して示す図である。FIG. 6 is an enlarged view of a time axis showing a plurality of consecutive mountain waveforms and valley waveforms included in a waveform showing a temporal change in the signal strength (integral) value SPI within a predetermined frequency band B2 in FIG. 5; 図6の波形に含まれる山形波形間の周期を説明する図である。7 is a diagram illustrating cycles between chevron waveforms included in the waveforms of FIG. 6. FIG. 図1の研削加工装置において、研削砥石の回転速度を図6の場合よりも低下させた場合に得られた信号強度(積分)値SPIの波形を、図6よりも時間軸を拡大して示す図6に相当する図である。The waveform of the signal strength (integral) value SPI obtained when the rotational speed of the grinding wheel is lowered than in the case of FIG. 6 in the grinding apparatus of FIG. 1 is shown with the time axis expanded more than in FIG. 6. 7 is a diagram corresponding to FIG. 6. 図1の研削加工装置において、研削砥石の回転速度を図8の場合よりもさらに低下させた場合に得られた信号強度(積分)値SPIの波形を、図8と同じ時間軸上に示す図6に相当する図である。A diagram showing, on the same time axis as FIG. 8, the waveform of the signal intensity (integral) value SPI obtained when the rotation speed of the grinding wheel is further lowered than in the case of FIG. 8 in the grinding apparatus of FIG. 1. 6 is a diagram corresponding to No. 6. 図6に示す所定周波数帯B2内の信号強度(積分)値SPIの移動標準偏差値MSDの時間的変化を示す波形を示す図である。7 is a diagram showing a waveform showing a temporal change in a moving standard deviation value MSD of a signal strength (integral) value SPI within a predetermined frequency band B2 shown in FIG. 6. FIG. 図8に示す信号強度(積分)値SPIの移動標準偏差値MSDの時間的変化を示す波形を示す図である。9 is a diagram showing a waveform showing a temporal change in the moving standard deviation value MSD of the signal strength (integral) value SPI shown in FIG. 8. FIG. 図9に示す信号強度(積分)値SPIの移動標準偏差値MSDの時間的変化を示す波形を示す図である。10 is a diagram showing a waveform showing a temporal change in a moving standard deviation value MSD of the signal strength (integral) value SPI shown in FIG. 9. FIG. 図10の移動標準偏差値MSDの時間的変化を示す波形上に、上すべり判定閾値として用いた異常レベル1および異常レベル2を重ねて示すとともに、異常レベル2が検知された場合に研削砥石の回転速度を低下させた場合の、それ以後の移動標準偏差値MSDの時間的変化を示す波形を示す図である。Abnormality level 1 and abnormality level 2 used as the upward slip judgment threshold are superimposed on the waveform showing the temporal change of the moving standard deviation value MSD in Fig. 10, and when abnormality level 2 is detected, the grinding wheel FIG. 6 is a diagram showing a waveform showing a temporal change in the moving standard deviation value MSD after the rotation speed is lowered. 図1の電子制御装置の制御作動の要部を説明するフローチャートである。2 is a flowchart illustrating a main part of the control operation of the electronic control device of FIG. 1. FIG. 図14の他の例の電子制御装置の制御作動を説明するフローチャートの要部を説明する図である。FIG. 15 is a diagram illustrating a main part of a flowchart illustrating a control operation of another example of the electronic control device in FIG. 14;

以下、本発明の一実施例を、図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Note that in the following examples, the figures are simplified or modified as appropriate, and the dimensional ratios, shapes, etc. of each part are not necessarily drawn accurately.

図1は、本発明の一実施例の被削材12の上すべり検出装置10を備えた研削加工装置14の構成を説明する図である。研削加工装置14は、研削ホイール20を用いて、例えばチタン合金等の難削材から成る被削材12を研削加工する。被削材12は、例えばチタン合金(Ti-6Al-4V)等の難削材から成る円筒状或いは軸状の金属部品である。また、研削ホイール20は、たとえば溶融アルミナ系砥粒、炭化珪素系砥粒、セラミックス砥粒などの一般砥粒や、CBN砥粒、ダイヤモンド砥粒などの超砥粒などが、無機質、有機質、或いは金属等の結合材によって結合されたビトリファイド砥石等の複数のセグメント状砥石片である砥石部20bが、本体(台金)20aの外周面に貼り付けられることで構成された研削砥石である。 FIG. 1 is a diagram illustrating the configuration of a grinding device 14 equipped with a top slip detection device 10 for a workpiece 12 according to an embodiment of the present invention. The grinding device 14 uses a grinding wheel 20 to grind a workpiece 12 made of a difficult-to-cut material such as a titanium alloy. The workpiece 12 is a cylindrical or shaft-shaped metal component made of a difficult-to-cut material such as titanium alloy (Ti-6Al-4V). Furthermore, the grinding wheel 20 may be made of general abrasive grains such as fused alumina abrasive grains, silicon carbide abrasive grains, and ceramic abrasive grains, and superabrasive grains such as CBN abrasive grains and diamond abrasive grains, as well as inorganic, organic, or organic abrasive grains. The grinding wheel is constructed by attaching a grindstone portion 20b, which is a plurality of segment-shaped grindstone pieces such as a vitrified grindstone connected by a binding material such as metal, to the outer peripheral surface of a main body (base metal) 20a.

図1において、研削加工装置14は、研削ホイール20と、研削ホイール20を研削ホイール20の回転中心線C1まわりに回転可能に支持する回転主軸を回転駆動する主軸駆動モータ62と、研削ホイール20を円柱状の被削材12の外周面に押し当てるために被削材12を径方向に移動させて取り代を変更する被削材移動モータ66と、被削材12を研削ホイール20の回転中心線C1に平行な回転中心軸C2まわりに回転駆動する被削材回転駆動モータ68と、主軸駆動モータ62、被削材移動モータ66、および被削材回転駆動モータ68等を制御する研削制御装置72と、を備えている。 In FIG. 1, the grinding device 14 includes a grinding wheel 20, a spindle drive motor 62 that rotationally drives a rotating spindle that rotatably supports the grinding wheel 20 around a rotation center line C1 of the grinding wheel 20, and A workpiece movement motor 66 that moves the workpiece 12 in the radial direction to change the machining allowance in order to press the workpiece 12 against the outer peripheral surface of the cylindrical workpiece 12, and a rotation center of the grinding wheel 20 that moves the workpiece 12. A grinding control device that controls a workpiece rotation drive motor 68 that rotates around a rotation center axis C2 parallel to a line C1, a main shaft drive motor 62, a workpiece movement motor 66, a workpiece rotation drive motor 68, etc. 72.

研削ホイール20は、円筒状或いはドラム状の金属コア(台金)すなわち本体20aと、本体20aの外周面に接着等により固定された複数個のセグメント状の砥石部20bとを有しており、主軸駆動モータ62により研削ホイール20の回転中心線C1まわりに回転駆動される図示しない回転主軸の軸端に装着される。 The grinding wheel 20 has a cylindrical or drum-shaped metal core (base metal), that is, a main body 20a, and a plurality of segment-shaped grindstone portions 20b fixed to the outer peripheral surface of the main body 20a by adhesive or the like. It is attached to the shaft end of a rotating main shaft (not shown) that is rotationally driven around the rotational center line C1 of the grinding wheel 20 by the main shaft drive motor 62.

本体20a内には、AEセンサ22、プリアンプ24、プリアンプ24により増幅されたAE信号SAEを所定の搬送波を用いて変調し、送信する送信回路26、及び、それらの電源として機能する蓄電池44とが、設けられている。また、送信回路26から送信されたAE信号SAEを受信するためのアンテナ28を有する受信回路30、バンドパスフィルタ32、復調回路33、A/D変換器34、及び電子制御装置36が、研削加工装置14に位置固定に設けられている。上記のAEセンサ22、送信回路26、受信回路30、バンドパスフィルタ32、復調回路33、A/D変換器34、及び電子制御装置36の一部等が、上すべり検出装置10を構成している。 Inside the main body 20a, there are an AE sensor 22, a preamplifier 24, a transmitting circuit 26 that modulates the AE signal SAE amplified by the preamplifier 24 using a predetermined carrier wave, and transmits the modulated signal, and a storage battery 44 that functions as a power source for these. , is provided. Further, a receiving circuit 30 having an antenna 28 for receiving the AE signal SAE transmitted from the transmitting circuit 26, a bandpass filter 32, a demodulating circuit 33, an A/D converter 34, and an electronic control device 36 are processed by grinding. It is provided in a fixed position on the device 14. The above-mentioned AE sensor 22, transmission circuit 26, reception circuit 30, bandpass filter 32, demodulation circuit 33, A/D converter 34, a part of the electronic control device 36, etc. constitute the upslip detection device 10. There is.

AEセンサ22は、砥石部20bに含まれる砥粒の破砕時に発生し且つ砥石部20b内を伝播する例えば20kHz以上の超音波領域である極めて周波数の高い破砕振動(acoustic emission)を砥石部20bの内周面から検出し、その破砕振動を表すアナログ信号であるAE信号SAEを出力する。プリアンプ24は、AEセンサ22から出力されたAE信号SAEを増幅する。バンドパスフィルタ32は、受信回路30により受信された搬送波を専ら通過させる所定の通過周波数帯を備える。復調回路33は、搬送波から復調されたAE信号SAEを出力し、A/D変換器34は、AE信号SAEをデジタル信号に変換する。 The AE sensor 22 detects extremely high-frequency crushing vibrations (acoustic emissions) in the ultrasonic range of, for example, 20 kHz or higher, which are generated when the abrasive grains contained in the grinding wheel 20b are crushed and propagated within the grinding wheel 20b. It is detected from the inner peripheral surface and outputs an AE signal SAE which is an analog signal representing the crushing vibration. The preamplifier 24 amplifies the AE signal SAE output from the AE sensor 22. The bandpass filter 32 has a predetermined pass frequency band that exclusively passes the carrier wave received by the receiving circuit 30. The demodulation circuit 33 outputs the AE signal SAE demodulated from the carrier wave, and the A/D converter 34 converts the AE signal SAE into a digital signal.

A/D変換器34は、例えば被削材12の回転周期の1/10以下のサンプリング周期、たとえば65msのサンプリング周期で、AE信号SAEをデジタル信号に変換する。A/D変換器34のサンプリング周期は、被削材12の回転周期よりも短くなるほど(高速となるほど)、AE信号SAEの周波数解析で得られる周波数スペクトルの波形が明確となり、研削ホイール20の被削材12に対する上すべりの検出精度が得られる。 The A/D converter 34 converts the AE signal SAE into a digital signal at a sampling period of, for example, 1/10 or less of the rotation period of the workpiece 12, for example, a sampling period of 65 ms. The shorter the sampling period of the A/D converter 34 is than the rotation period of the workpiece 12 (the faster it becomes), the clearer the waveform of the frequency spectrum obtained by frequency analysis of the AE signal SAE becomes, and the more the grinding wheel 20 is affected. The detection accuracy of upward slip on the cutting material 12 can be obtained.

研削ホイール20の砥石部20bは、例えば図2に示すように、砥粒38と、それら砥粒38を結合する無機結合材(ビトリファイドボンド)40と、気孔42とから成るよく知られたビトリファイド砥石組織から構成されている。この研削ホイール20の砥石部20bと被削材(ワーク)12との摺接によって、砥粒38自体のクラックCaすなわち破砕の発生に由来すると推定される振動や、砥粒38と被削材12との接触すなわち擦れCbによって発生する摩擦振動或いは弾性振動に由来すると推定される振動が発生し、それらの振動を含む研削振動すなわちAE波が、AEセンサ22によって検出される。 The grinding wheel portion 20b of the grinding wheel 20 is, for example, a well-known vitrified grinding wheel made of abrasive grains 38, an inorganic bond (vitrified bond) 40 that binds the abrasive grains 38, and pores 42, as shown in FIG. It is made up of organizations. Due to the sliding contact between the grinding wheel portion 20b of the grinding wheel 20 and the workpiece 12, vibrations that are presumed to be caused by the occurrence of cracks Ca, that is, fractures in the abrasive grains 38 themselves, and vibrations between the abrasive grains 38 and the workpiece 12 are generated. Vibrations presumed to be derived from frictional vibrations or elastic vibrations generated by contact with, or rubbing Cb, occur, and grinding vibrations, ie, AE waves including these vibrations, are detected by the AE sensor 22.

AEセンサ22によって検出されたAE信号SAEを周波数解析することにより得た周波数スペクトルには、図3に示すように、砥粒38自体のクラックCaすなわち破砕の発生に由来すると推定される信号強度の山を示す25~40kHzの第1の山P1と、砥粒38の被削材12に対する上すべりに敏感に反応する信号強度が含まれる45~75kHzの周波数帯B2内の第2の山P2とが含まれる。上すべりの検出は、その45~75kHzの周波数帯B2内の一部の信号強度を用いることで可能となるので、必ずしも45~75kHzの周波数帯B2内の信号強度でなくてもよい。たとえば、55~60kHzの中心周波数帯B1は、周波数帯B2内の第2の山P2のうちの中央部の信号強度が最大となる領域に対応しているので、好適には、その中心周波数領域B1の少なくとも一部を含む予め設定された所定周波数領域内の信号強度が、上すべりの検出に用いられ得る。 As shown in FIG. 3, the frequency spectrum obtained by frequency analysis of the AE signal SAE detected by the AE sensor 22 includes a signal intensity that is estimated to originate from the occurrence of cracks Ca, that is, fractures, in the abrasive grains 38 themselves. A first peak P1 with a frequency of 25 to 40 kHz indicating a peak, and a second peak P2 in a frequency band B2 of 45 to 75 kHz, which includes a signal intensity that sensitively responds to the upward slip of the abrasive grains 38 on the workpiece 12. is included. Detection of upslip is possible by using part of the signal strength within the 45-75 kHz frequency band B2, so the signal strength does not necessarily have to be within the 45-75 kHz frequency band B2. For example, the center frequency band B1 of 55 to 60 kHz corresponds to the region where the signal strength at the center of the second peak P2 in the frequency band B2 is maximum. Signal strength within a predetermined frequency range that includes at least a portion of B1 may be used to detect upslip.

ここで、研削ホイール20の被削材12に対する上すべり現象と、上記AE信号SAEの周波数スペクトルにおける所定周波数内の信号強度積分値SPIとの関係を確認するために、本発明者等が行なった確認試験を、以下に説明する。先ず、本発明者等は、以下に示す研削試験条件にて研削試験を行い、研削砥石を回転駆動する主軸駆動モータ62の消費電力値を採取するとともに、A/D変換されたAE信号SAEの周波数解析を行い、所定周波数帯(45~75kHz)の信号強度積分値SPIを算出した。図4は、研削中の上記主軸駆動モータ62の消費電力値の変化を示している。図5は、上記信号強度積分値SPIの変化を示している。なお、この研削試験では、研削砥石の周速と被削材の周速との比率は一定(約200対1)に設定されている。 Here, in order to confirm the relationship between the upward sliding phenomenon of the grinding wheel 20 with respect to the workpiece 12 and the signal strength integral value SPI within a predetermined frequency in the frequency spectrum of the AE signal SAE, the present inventors conducted a The confirmation test will be explained below. First, the inventors conducted a grinding test under the following grinding test conditions, collected the power consumption value of the main shaft drive motor 62 that rotates the grinding wheel, and measured the A/D converted AE signal SAE. Frequency analysis was performed to calculate the signal strength integral value SPI in a predetermined frequency band (45 to 75 kHz). FIG. 4 shows changes in the power consumption value of the spindle drive motor 62 during grinding. FIG. 5 shows changes in the signal strength integral value SPI. In this grinding test, the ratio of the circumferential speed of the grinding wheel to the circumferential speed of the workpiece was set to be constant (approximately 200:1).

(研削試験条件)
FFT解析データ長:65ms
積分解析ピッチΔt:65ms
積分周波数範囲:45-75kHz
加工機:円筒研削盤
研削砥石:GC 150 H 12 V99
研削砥石の外径:405mmφ
研削砥石の周速:42m/秒、37m/秒、33m/秒
被削材の外径:58mmφ
被削材の周速:0.21m/秒、0.18m/秒、0.16m/秒
切込み速度:0.13mm/分
スパークアウト:10rev.
研削油:SEC-1500P(希釈倍率50倍)
被削材:チタン合金(Ti-6Al-4V)
研磨能率Z’:0.2
(Grinding test conditions)
FFT analysis data length: 65ms
Integral analysis pitch Δt: 65ms
Integral frequency range: 45-75kHz
Processing machine: Cylindrical grinder Grinding wheel: GC 150 H 12 V99
Outer diameter of grinding wheel: 405mmφ
Peripheral speed of grinding wheel: 42m/sec, 37m/sec, 33m/sec Outer diameter of workpiece: 58mmφ
Peripheral speed of workpiece: 0.21 m/sec, 0.18 m/sec, 0.16 m/sec Cutting speed: 0.13 mm/min Spark out: 10 rev.
Grinding oil: SEC-1500P (50x dilution rate)
Work material: Titanium alloy (Ti-6Al-4V)
Polishing efficiency Z': 0.2

本発明者等は、研削砥石の周速が42m/秒且つ被削材の周速が0.21m/秒とした研削において、研削加工初期の消費電力値からは、図4に示されるように、目立った周期的脈動を見出すことができなかったが、図4と同じ時間軸を用いた図5、および図4と同じ時間軸を用いた図6の研削加工初期の信号強度積分値SPIにおいて、山形波形と谷形波形との脈動波形が連続的に生じていることを見出した。この谷形波形は、初期値まで低下している。この図5および図6に示す脈動波形を拡大すると、図7に示すように信号強度積分値SPIの脈動の周期は、0.88secであり、被削材12の回転周期0.86secに相当する値であった。 The inventors found that in grinding where the circumferential speed of the grinding wheel was 42 m/sec and the circumferential speed of the workpiece was 0.21 m/sec, the power consumption value at the initial stage of the grinding process was as shown in Figure 4. Although no noticeable periodic pulsation could be found, in the signal intensity integral value SPI at the beginning of the grinding process in Fig. 5 using the same time axis as Fig. 4 and Fig. 6 using the same time axis as Fig. 4. It was discovered that a pulsating waveform consisting of a mountain waveform and a trough waveform occurs continuously. This trough waveform has decreased to its initial value. When the pulsating waveforms shown in FIGS. 5 and 6 are enlarged, as shown in FIG. 7, the pulsating period of the signal strength integral value SPI is 0.88 sec, which corresponds to the rotation period of the workpiece 12 of 0.86 sec. It was a value.

次いで、本発明者等は、研削砥石の周速を、42m/秒(被削材の周速0.21m/秒)から37m/秒(被削材の周速0.18m/秒)および33m/秒(被削材の周速0.16m/秒)へ低下させて、研削初期の信号強度積分値SPIの変化波形をそれぞれ観測すると、図8および図9に示すように、脈動波形は図6と同じであるが、研削砥石の周速の低下に伴って谷形波形の落ち込みが小さくなり脈動波形の振幅が低くなるとを見出した。研削砥石の周速の低下に伴って信号強度積分値SPIの脈動波形の振幅が低くなる点は、研削砥石の周速が低下すると、砥粒の切込み深さが大きくなり、研削砥石の1回転当たりの切込み量が増加したことで、研削加工初期における砥粒の上すべりが軽減されたためと考えられる。 Next, the present inventors changed the circumferential speed of the grinding wheel from 42 m/s (peripheral speed of work material 0.21 m/s) to 37 m/s (peripheral speed of work material 0.18 m/s) and 33 m/s. /second (peripheral speed of the workpiece 0.16m/second) and observe the change waveform of the signal strength integral value SPI at the initial stage of grinding. As shown in FIGS. 8 and 9, the pulsation waveform is 6, it was found that as the circumferential speed of the grinding wheel decreases, the depression of the valley waveform becomes smaller and the amplitude of the pulsating waveform becomes lower. The reason why the amplitude of the pulsating waveform of the signal strength integral value SPI decreases as the circumferential speed of the grinding wheel decreases is that as the circumferential speed of the grinding wheel decreases, the cutting depth of the abrasive grains increases, and one revolution of the grinding wheel increases. This is thought to be because the increase in the depth of cut per contact reduced the upward slippage of the abrasive grains at the initial stage of the grinding process.

これらの事実から、切込み速度が0.13mm/分であり且つ研磨能率Z’が0.2という一般的な研削に比較して低能率である難削材の研削において、図6に示す信号強度積分値SPIの脈動波形のうちの谷形波形は、被削材の回転に同期して、研削砥石が上すべりを現象が発生したことを示していると、推定された。 From these facts, in grinding difficult-to-cut materials, where the cutting speed is 0.13 mm/min and the polishing efficiency Z' is 0.2, which is lower efficiency than general grinding, the signal intensity shown in Fig. 6 It was estimated that the valley waveform of the pulsating waveform of the integral value SPI indicates that the grinding wheel upwardly slid in synchronization with the rotation of the workpiece.

図1に戻って、電子制御装置36は、CPU、ROM、RAM、インターフェースなどを含む所謂マイクロコンピュータであって、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って入力信号を処理することにより、AE信号SAEを周波数解析することで周波数スペクトルを生成し、その周波数スペクトルのうちたとえば55-60kHzを含む所定波長帯内の信号強度積分値(積算値)SPIを算出し、その信号強度積分SPIの移動標準偏差値MSDを表示装置46に表示させるとともに、その移動標準偏差値MSDが予め設定された上すべり判定閾値HSを超えたか否かを判定し、その判定結果を表示装置46に表示させる。その信号強度積分値SPIが予め設定された上すべり判定閾値HSを超えた場合には、判定結果を研削制御装置72へ送信し、上すべりを抑制するために研削ホイール20の回転速度を所定値低下させる。 Returning to FIG. 1, the electronic control device 36 is a so-called microcomputer including a CPU, ROM, RAM, interface, etc., and the CPU uses the temporary storage function of the RAM to process input signals according to a program stored in the ROM in advance. By processing, a frequency spectrum is generated by frequency analysis of the AE signal SAE, and a signal strength integral value (integrated value) SPI within a predetermined wavelength band including, for example, 55-60 kHz of the frequency spectrum is calculated, The moving standard deviation value MSD of the signal strength integral SPI is displayed on the display device 46, and it is determined whether or not the moving standard deviation value MSD exceeds a preset upward slip determination threshold HS, and the determination result is displayed. Displayed on the device 46. If the signal strength integral value SPI exceeds a preset upward slip judgment threshold HS, the judgment result is transmitted to the grinding control device 72, and the rotational speed of the grinding wheel 20 is set to a predetermined value in order to suppress upward slip. lower.

信号強度積分SPIは、被削材12の回転周期T(0.87秒=58×π/210)に対して、その1/13.4である65msecの積分解析ピッチΔtで算出されており、その積分解析ピッチΔtは、図6の信号強度積分値SPIの脈動周期0.88secよりも十分に小さい。また、移動標準偏差値MSDは、次の数式1から算出される。数式1において、nは移動区間内の解析データ数(整数)、xはi番目の信号強度積分値SPI、xavは移動区間内の信号強度積分値SPIの平均値、Tは被削材回転周期(秒)、Δtは解析データ長(ms)である。

Figure 2023179328000002
The signal strength integral SPI is calculated with an integral analysis pitch Δt of 65 msec, which is 1/13.4 of the rotation period T (0.87 seconds = 58 x π/210) of the workpiece 12, The integral analysis pitch Δt is sufficiently smaller than the pulsation period of 0.88 sec of the signal strength integral value SPI in FIG. Further, the moving standard deviation value MSD is calculated from the following equation 1. In formula 1, n is the number of analysis data (integer) within the moving section, x i is the i-th signal strength integral value SPI, x av is the average value of the signal strength integral value SPI within the moving section, and T is the workpiece material. The rotation period (seconds) and Δt are the analysis data length (ms).
Figure 2023179328000002

移動標準偏差値MSDは、解析データ数をn個含む移動区間は、被削材12の回転周期Tと同等であるので、信号強度積分値SPIの脈動波形の振幅が大きいほど大きい値となる。すなわち、移動標準偏差値MSDは、信号強度積分値SPIの脈動波形の周期的変化量(振幅)の大きさに対応する値を示す。この点において、信号強度積分値SPIの脈動波形の振幅すなわち周期的変化量の大きさを示す振幅評価値として、信号強度積分値SPIの脈動波形の振幅値、その脈動波形の振幅値の移動平均値、谷形波形の深さ値或いは面積値、その谷形波形の深さ或いは面積値の移動平均値等が、移動標準偏差値MSDに代えて用いられてもよい。 The moving standard deviation value MSD has a larger value as the amplitude of the pulsating waveform of the signal strength integral value SPI is larger, since the moving section including n pieces of analysis data is equivalent to the rotation period T of the workpiece 12. That is, the moving standard deviation value MSD indicates a value corresponding to the magnitude of the periodic variation (amplitude) of the pulsating waveform of the signal strength integral value SPI. In this respect, the amplitude of the pulsating waveform of the signal strength integral value SPI, the moving average of the amplitude value of the pulsating waveform, is used as an amplitude evaluation value indicating the amplitude of the pulsating waveform of the signal strength integral value SPI, that is, the magnitude of the periodic variation amount. value, the depth value or area value of the trough waveform, the moving average value of the depth or area value of the trough waveform, etc. may be used instead of the moving standard deviation value MSD.

電子制御装置36は、周波数解析部50、信号強度積分値算出部52、移動標準偏差算出部54、および、上すべり判定部58を有する上すべり検出部56を、機能的に備えている。 The electronic control device 36 functionally includes a frequency analysis section 50, a signal strength integral value calculation section 52, a moving standard deviation calculation section 54, and an upslip detection section 56 having an upslip determination section 58.

周波数解析部50は、研削ホイール20による被削材12の研削加工中において、A/D変換器34から出力されたAE信号SAEの周波数解析(FFT解析)を所定の解析周期毎に繰り返し連続的に行なって、信号強度積分値SPI(パワー)を示す縦軸と、解析周波数を示す横軸との二次元座標において、AE信号SAEの周波数成分の大きさを示す周波数スペクトルを、たとえば図3に示すように生成する。 The frequency analysis unit 50 repeatedly and continuously performs frequency analysis (FFT analysis) of the AE signal SAE output from the A/D converter 34 at predetermined analysis cycles during the grinding process of the workpiece 12 by the grinding wheel 20. Then, in the two-dimensional coordinates of the vertical axis showing the signal strength integral value SPI (power) and the horizontal axis showing the analysis frequency, the frequency spectrum showing the magnitude of the frequency component of the AE signal SAE is shown in FIG. 3, for example. Generate as shown.

信号強度積分値算出部52は、周波数解析部50により周波数解析された周波数スペクトル中のうち、研削ホイール20の被削材12に対する上すべりに比較的敏感に強度変化する小領域である特定の周波数帯B2たとえば45~70kHz内に含まれる信号強度値SPを積分演算(積算)することにより、信号強度積分値SPIを、被削材12の回転周期よりも十分に短い周期たとえば1/10以下の周期で、好適には周波数解析部50による周波数解析周期と同じ周期で逐次算出する。たとえば図6、図7、および図8は、研削ホイール20の周速が42m/秒、37m/秒、および33m/秒であるときの、信号強度積分値SPIの時間変化波形を示している。 The signal strength integral value calculation section 52 calculates a specific frequency, which is a small region in which the intensity changes relatively sensitively to the upward slip of the grinding wheel 20 against the workpiece 12, in the frequency spectrum subjected to frequency analysis by the frequency analysis section 50. Band B2 For example, by performing an integral calculation (integration) on the signal strength values SP included in the range of 45 to 70 kHz, the signal strength integral value SPI can be set to a period sufficiently shorter than the rotation period of the workpiece 12, for example, 1/10 or less. It is calculated sequentially at a period, preferably at the same period as the frequency analysis period by the frequency analysis section 50. For example, FIGS. 6, 7, and 8 show time-varying waveforms of the signal strength integral value SPI when the peripheral speed of the grinding wheel 20 is 42 m/sec, 37 m/sec, and 33 m/sec.

移動標準偏差算出部54は、信号強度積分値算出部52により逐次算出された信号強度積分値SPIの解析データ数をn個含む移動区間内の移動標準偏差値MSDを、数式1に従って、信号強度積分値SPIの算出周期毎に繰り返し算出する。たとえば図10、図11、図12は、研削ホイール20の周速が42m/秒、37m/秒、および33m/秒であるときの、移動標準偏差値MSDの時間変化波形を示している。 The moving standard deviation calculating section 54 calculates the moving standard deviation value MSD within the moving section including n pieces of analysis data of the signal strength integral value SPI sequentially calculated by the signal strength integral value calculating section 52, according to formula 1. The integral value SPI is repeatedly calculated every calculation period. For example, FIGS. 10, 11, and 12 show time-varying waveforms of the moving standard deviation value MSD when the peripheral speeds of the grinding wheel 20 are 42 m/sec, 37 m/sec, and 33 m/sec.

上すべり検出部56は、前記周波数解析部50により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯たとえば45~75kHz帯の信号強度積分値SPIの被削材12の回転に同期する周期的変化量の大きさに基づいて、研削ホイール20の上すべりを検出する。具体的には、上すべり検出部56は、信号強度積分値SPIの被削材12の回転に同期する周期的変化量の大きさを、被削材12の1回転周期を含む移動区間内に得られた複数のn個の信号強度積分値SPIの移動標準偏差値MSDを用いて表わす。そして、上すべり検出部56は、移動標準偏差値MSDが予め実験的に設定された第1上すべり判定閾値M1および第2上すべり判定閾値M2のいずれかを超えたことに基づいて、研削ホイール20の上すべりを判定する上すべり判定部58を、さらに含む。 The top-slip detection section 56 detects a period in synchronization with the rotation of the workpiece 12 of a signal intensity integral value SPI in a predetermined frequency band, for example, a 45 to 75 kHz band, out of the signal intensity of the frequency spectrum frequency-analyzed by the frequency analysis section 50. An upward slip of the grinding wheel 20 is detected based on the magnitude of the amount of change in the target. Specifically, the top slip detection unit 56 determines the magnitude of the periodic variation of the signal strength integral value SPI that is synchronized with the rotation of the workpiece 12 within a movement section that includes one rotation period of the workpiece 12. It is expressed using the moving standard deviation value MSD of the plurality of n signal strength integral values SPI obtained. Then, the upward slip detection unit 56 detects whether the grinding wheel It further includes an upslip determining section 58 that determines an upslip of 20.

上すべり判定部58は、移動標準偏差値MSD、および移動標準偏差値MSDが予め実験的に設定された第1上すべり判定閾値M1および第2上すべり判定閾域M2のいずれかを超えたことを、表示装置48に表示させる。移動標準偏差値MSDの数値が表示されるだけでも、上すべり現象の発生を知らせることができる。 The upward slip determination unit 58 determines that the movement standard deviation value MSD and the movement standard deviation value MSD exceed either of a first upward slip determination threshold M1 and a second upward slip determination threshold M2 that are experimentally set in advance. is displayed on the display device 48. Just by displaying the numerical value of the moving standard deviation value MSD, it is possible to notify the occurrence of the upward slip phenomenon.

上すべり判定部58では、図13に示すように、第1上すべり判定閾値M1は、上すべり異常なしか否かを判定するための値であり、たとえば「50」に設定されている。移動標準偏差値MSDが第1上すべり判定閾値M1以下である場合は、異常なしと判定されるが、移動標準偏差値MSDが第1上すべり判定閾値M1を超えると異常レベル1と判定される。第2上すべり判定閾値M2は、上すべり異常か発生したか否かを判定するための値であり、たとえば「200」に設定されている。移動標準偏差値MSDが第2上すべり判定閾値M2以下である場合は、異常レベル1と判定されるが、移動標準偏差値MSDが第2上すべり閾値M2を超えると、上すべり異常の修正が必要な異常レベル2と判定される。 In the upward slip determination unit 58, as shown in FIG. 13, the first upward slip determination threshold M1 is a value for determining whether there is an abnormal upward slip, and is set to "50", for example. If the movement standard deviation value MSD is less than or equal to the first upward slip determination threshold M1, it is determined that there is no abnormality, but if the movement standard deviation value MSD exceeds the first upward slip determination threshold M1, it is determined that the abnormality level is 1. . The second upward slip determination threshold M2 is a value for determining whether an upward slip abnormality has occurred, and is set to "200", for example. If the movement standard deviation value MSD is less than or equal to the second upslip determination threshold M2, it is determined that the abnormality level is 1, but if the movement standard deviation value MSD exceeds the second upslip threshold M2, the upslip abnormality cannot be corrected. It is determined that the required abnormality level is 2.

上すべり検出部56は、上すべり判定部58により研削ホイール20の上すべりの異常レベル2が判定された場合には、その判定結果を研削制御装置72の回転速度低下制御部74へ出力し、研削制御装置72に研削ホイール20の回転速度を所定値低下させる。 When the top slip determination unit 58 determines that the top slip abnormality level 2 of the grinding wheel 20 is determined, the top slip detection unit 56 outputs the determination result to the rotational speed reduction control unit 74 of the grinding control device 72, The grinding control device 72 is caused to reduce the rotational speed of the grinding wheel 20 by a predetermined value.

研削制御装置72は、回転速度低下制御部74を機能的に備える電子制御装置であって、主軸駆動モータ62、被削材移動モータ66、被削材回転駆動モータ68等を制御する。研削制御装置72は、研削開始指令信号を受けると、予め設定された動作で研削ホイール20及び被削材12をそれぞれ回転駆動しつつ予め設定された切込み速度で切れ込みを行ない、被削材12の研削が完了すると研削ホイール20及び被削材12の回転を停止させるとともに原位置へ戻す。研削制御装置72は、電子制御装置36の上すべり検出部56から、研削ホイール20の上すべりの異常レベル2が送信された場合は、研削ホイール20の回転速度を、上すべりが減少するように低下させる。 The grinding control device 72 is an electronic control device that functionally includes a rotational speed reduction control section 74, and controls the main shaft drive motor 62, the workpiece movement motor 66, the workpiece rotation drive motor 68, and the like. When the grinding control device 72 receives the grinding start command signal, the grinding control device 72 rotates the grinding wheel 20 and the workpiece 12 in a preset operation, cuts at a preset cutting speed, and cuts the workpiece 12. When the grinding is completed, the rotation of the grinding wheel 20 and the workpiece 12 is stopped and returned to the original position. When abnormal level 2 of the top slip of the grinding wheel 20 is transmitted from the top slip detection section 56 of the electronic control device 36, the grinding control device 72 controls the rotation speed of the grinding wheel 20 so that the top slip is reduced. lower.

図14は、電子制御装置36の制御作動の要部を説明するフローチャートである。図14のステップS1(以下、ステップを省略する)では、研削加工に先立って、たとえば前述の研削試験条件に示すような研削加工条件が入力される。次に、S2において、第1上すべり判定閾値M1および第2上すべり判定閾値M2が設定された後、S3において、研削加工装置14の被削材12に対する研削加工が開始され、研削ホイール20がたとえば42m/秒の周速で回転させられる。 FIG. 14 is a flowchart illustrating the main part of the control operation of the electronic control device 36. In step S1 in FIG. 14 (hereinafter, steps will be omitted), prior to grinding, grinding conditions such as those shown in the above-mentioned grinding test conditions are input. Next, in S2, after the first upward slip determination threshold M1 and the second upward slip judgment threshold M2 are set, in S3, the grinding process on the workpiece 12 of the grinding device 14 is started, and the grinding wheel 20 is For example, it is rotated at a circumferential speed of 42 m/sec.

S4では、研削加工中においてAEセンサ22から出力され且つA/D変換器34によりA/D変換されたAE信号SAEが逐次読み込まれる。次いで、周波数解析部50の機能或いは周波数解析工程に対応するS5において、たとえば65msのデータ長毎の周波数解析(FFT)が行なわれ、たとえば図3に示す周波数スペクトルが生成される。 In S4, the AE signal SAE output from the AE sensor 22 and A/D converted by the A/D converter 34 during the grinding process is sequentially read. Next, in S5 corresponding to the function of the frequency analysis section 50 or a frequency analysis step, frequency analysis (FFT) is performed for each data length of, for example, 65 ms, and a frequency spectrum shown in, for example, FIG. 3 is generated.

次に、信号強度積分値算出部52の機能或いは信号強度積分値算出工程に対応するS6では、S5で周波数解析された周波数スペクトル中のうちの特定の周波数帯B2たとえば45~70kHz内に含まれる信号強度値SPを積分演算(積算)することにより、被削材12の回転周期よりも十分に短い周期たとえば1/10以下の周期、たとえばS5の周波数解析周期と同じ周期で、信号強度積分値SPIが逐次算出される。 Next, in S6 corresponding to the function of the signal strength integral value calculation unit 52 or the signal strength integral value calculation step, a specific frequency band B2 of the frequency spectrum subjected to frequency analysis in S5, for example, included within 45 to 70 kHz is determined. By performing an integral calculation (integration) on the signal strength value SP, the signal strength integral value is calculated at a sufficiently shorter period than the rotation period of the workpiece 12, for example, a period of 1/10 or less, for example, the same period as the frequency analysis period of S5. SPI is calculated sequentially.

次いて、移動標準偏差算出部54の機能或いは移動標準偏差算出工程に対応するS7では、S6において逐次算出された信号強度積分値SPIの解析データ数をn個含む移動区間内の移動標準偏差値MSDが、数式1に従って、たとえば図10に示すように、信号強度積分値SPIの算出周期毎に繰り返し算出される。 Next, in S7 corresponding to the function of the moving standard deviation calculation unit 54 or the moving standard deviation calculation step, the moving standard deviation value within the moving section including n pieces of analysis data of the signal strength integral value SPI sequentially calculated in S6 is calculated. The MSD is repeatedly calculated in accordance with Equation 1, for example, as shown in FIG. 10, every calculation cycle of the signal strength integral value SPI.

次に、上すべり判定部58の機能或いは上すべり判工程に対応するS8では、S7で算出された移動標準偏差値MSDが第1上すべり判定閾値M1或いは第2上すべり判定閾値M2を上まわるか否かに基づいて閾値判定が行なわれる。次いで、上すべり検出部56の機能或いは上すべり検出工程に対応するS9において、S8の判定結果が表示装置48は出力される。たとえば、移動標準偏差値MSDが第1上すべり判定閾値M1以下である場合は、異常なしと出力されるが、移動標準偏差値MSDが第1上すべり判定閾値M1を超えると異常レベル1が出力され、移動標準偏差値MSDが第2上すべり判定閾値M2を超えると、上すべり異常の修正が必要な異常レベル2が出力される。 Next, in S8 corresponding to the function of the upward slip determination unit 58 or the upward slip determination process, the movement standard deviation value MSD calculated in S7 exceeds the first upward slip determination threshold M1 or the second upward slip determination threshold M2. A threshold value determination is performed based on whether or not. Next, in S9 corresponding to the function of the upward slip detection section 56 or the upward slip detection process, the display device 48 outputs the determination result of S8. For example, if the moving standard deviation value MSD is less than or equal to the first upward slip judgment threshold M1, no abnormality is output, but if the moving standard deviation value MSD exceeds the first upward slip judgment threshold M1, an abnormality level 1 is output. When the movement standard deviation value MSD exceeds the second upslip determination threshold M2, an abnormality level 2 that requires correction of the upslip abnormality is output.

そして、S10において、被削材12に対する研削加工が終了したか否かが判断される。このS10の判断が否定される場合は、S11において閾値判定が更新された後、S4以下が繰り返し実行されるが、S10の判断が肯定される場合は、本制御ルーチンが終了させられる。 Then, in S10, it is determined whether or not the grinding process on the workpiece 12 has been completed. If the determination in S10 is negative, the threshold value determination is updated in S11, and then steps S4 and subsequent steps are repeatedly executed, but if the determination in S10 is affirmative, this control routine is ended.

上述のように、本実施例の上すべり検出装置10或いは上すべり検出方法によれば、研削ホイール20からの被削材12に対する研削時に発生するAE信号SAEを周波数解析する周波数解析部50と、周波数解析工程50により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度の、被削材12の回転に同期する周期的変化量の大きさに基づいて研削ホイール20の上すべりを検出する上すべり検出部56とが、含まれている。これにより、AE信号SAEを周波数解析することにより得られた所定周波数帯の信号強度SPの被削材12の回転に同期する周期的変化量の大きさに基づいて、研削ホイール20の上すべりの発生を正確に検出できる。 As described above, according to the top slip detection device 10 or the top slip detection method of the present embodiment, the frequency analysis unit 50 frequency-analyzes the AE signal SAE generated when grinding the workpiece 12 from the grinding wheel 20; The upward slip of the grinding wheel 20 is determined based on the magnitude of the periodic variation amount in synchronization with the rotation of the workpiece 12 in the signal strength of a predetermined frequency band of the signal strength of the frequency spectrum frequency-analyzed in the frequency analysis step 50. An upward slip detection section 56 is included. As a result, the top slip of the grinding wheel 20 is determined based on the magnitude of the periodic variation in synchronization with the rotation of the workpiece 12 of the signal strength SP in a predetermined frequency band obtained by frequency analysis of the AE signal SAE. Occurrence can be detected accurately.

本実施例の上すべり検出装置10或いは上すべり検出方法によれば、上すべり検出部56は、信号強度SPの被削材12の回転に同期する周期的変化量の大きさを、被削材12の1回転周期Tを超える移動区間内に得られた複数個の信号強度積分値SPIの移動標準偏差値MSDにより表わすので、移動標準偏差値MSDの大きさに基づいて、研削ホイール20の上すべりの発生を正確に且つ定量的に検出できる。 According to the top slip detection device 10 or the top slip detection method of the present embodiment, the top slip detection unit 56 detects the magnitude of the periodic variation of the signal strength SP in synchronization with the rotation of the workpiece 12. Since it is expressed by the moving standard deviation value MSD of a plurality of signal strength integral values SPI obtained within a moving section exceeding one rotation period T of 12, the upper part of the grinding wheel 20 is expressed based on the magnitude of the moving standard deviation value MSD. The occurrence of slip can be detected accurately and quantitatively.

本実施例の上すべり検出装置10或いは上すべり検出方法によれば、移動標準偏差値MSDが予め設定された上すべり判定閾値M(第1上すべり判定閾値M1および第2上すべり判定閾値M2)を超えたことに基づいて研削ホイール20の上すべりを判定する上すべり判定部58が、さらに含まれるので、上すべり判定部58により、研削砥石の上すべりの発生が正確に判定される。 According to the upward slip detection device 10 or the upward slip detection method of the present embodiment, the upward slip determination threshold M (the first upward slip determination threshold M1 and the second upward slip determination threshold M2) has a moving standard deviation value MSD set in advance. Since the top slip determination unit 58 further includes a top slip determination unit 58 that determines the top slip of the grinding wheel 20 based on the fact that the grinding wheel 20 exceeds the above value, the top slip determination unit 58 accurately determines the occurrence of top slip of the grinding wheel.

本実施例の上すべり検出装置10或いは上すべり検出方法によれば、上すべり判定部により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御部が、さらに含まれるので、研削砥石の上すべりが判定された場合には研削砥石の回転速度が低下させられて、自動的に上すべりが解消される。 According to the top slip detection device 10 or the top slip detection method of the present embodiment, when the top slip determination unit determines that the grinding wheel is top slip, the rotation speed is adjusted to reduce the rotation speed of the grinding wheel by a predetermined value. Since a lowering control section is further included, when upward slip of the grinding wheel is determined, the rotational speed of the grinding wheel is reduced to automatically eliminate upward slip.

次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。 Next, another embodiment of the present invention will be described. In the following description, parts common to those in the above-described embodiments are designated by the same reference numerals, and the description thereof will be omitted.

図15は、電子制御装置36の制御作動の要部を説明するフローチャートのうちの、図14と相違する点を主に示している。 FIG. 15 is a flowchart illustrating a main part of the control operation of the electronic control device 36, and mainly shows differences from FIG. 14.

図15において、S8において、移動標準偏差値MSDが第1上すべり判定閾値M1或いは第2上すべり判定閾値M2を上まわるか否かに基づいて閾値判定が行なわれると、上すべり検出部に対応するS91、S92、S93において、S91では、移動標準偏差値MSDが第1上すべり判定閾値M1以下である場合は、異常なしと出力される。S92では、移動標準偏差値MSDが第1上すべり判定閾値M1を超えると異常レベル1が出力される。S93では、移動標準偏差値MSDが第2上すべり判定閾値M2を超えると、上すべり異常の修正が必要な異常レベル2が出力される。そして、そのS93に続くS94では、上すべり異常の修正のための研削ホイール20の周速を低下させる信号が、回転速度制御部74へ出力され、回転速度制御部74において研削ホイール20の周速がたとえば5m/秒低下させられる。これにより、研削ホイール20の周速がたとえば42m/秒から37m/秒へ低下させられると、図13に示すように、移動標準偏差値MSDが「200」から「0」へ向かって低下させられる。 In FIG. 15, in S8, when the threshold value determination is performed based on whether the movement standard deviation value MSD exceeds the first upward slip determination threshold M1 or the second upward slip determination threshold M2, the upward slip detection unit In S91, S92, and S93, in S91, if the movement standard deviation value MSD is less than or equal to the first upward slip determination threshold M1, it is output that there is no abnormality. In S92, when the movement standard deviation value MSD exceeds the first upward slip determination threshold M1, an abnormality level 1 is output. In S93, when the moving standard deviation value MSD exceeds the second upward slip determination threshold M2, an abnormality level 2 that requires correction of the upward slip abnormality is output. Then, in S94 following S93, a signal for reducing the circumferential speed of the grinding wheel 20 to correct the top slip abnormality is output to the rotational speed control section 74, and the rotational speed control section 74 outputs a signal to reduce the circumferential speed of the grinding wheel 20. is reduced by, for example, 5 m/sec. As a result, when the circumferential speed of the grinding wheel 20 is reduced from, for example, 42 m/sec to 37 m/sec, the moving standard deviation value MSD is reduced from "200" to "0" as shown in FIG. .

本実施例の上すべり検出装置10或いは上すべり検出方法によれば、上すべり判定部58により研削ホイール20の上すべりが判定された場合には、研削ホイール20の回転速度を所定値低下させる回転速度低下制御部74が、さらに含まれるので、研削ホイール20の上すべりが判定された場合には研削ホイール20の回転速度が低下させられて、自動的に上すべりが解消される。 According to the top slip detection device 10 or the top slip detection method of this embodiment, when the top slip determination unit 58 determines that the grinding wheel 20 is top slip, the rotation speed of the grinding wheel 20 is reduced by a predetermined value. Since a speed reduction control section 74 is further included, when upward slip of the grinding wheel 20 is determined, the rotational speed of the grinding wheel 20 is reduced to automatically eliminate the upward slip.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 Although the embodiments of the present invention have been described above in detail based on the drawings, the present invention can also be applied to other aspects.

例えば、前述の実施例において、AEセンサ22は、研削ホイール20の砥石部20bが貼り着けられた本体(台金)20a内に設けられていたが、本体(台金)20aを用いない円板状の研削砥石を用いる場合には、その研削砥石を挟んで回転主軸に固定するフランジや、被削材12が固定されるテーブル内に設けられていてもよい。 For example, in the above-mentioned embodiment, the AE sensor 22 was provided in the main body (base metal) 20a to which the grindstone portion 20b of the grinding wheel 20 was attached, but the When using a shaped grinding wheel, the grinding wheel may be provided in a flange that is fixed to the rotating main shaft with the grinding wheel sandwiched therebetween, or in a table to which the workpiece 12 is fixed.

また、前述の実施例では、上すべり判定部58では、移動標準偏差値MSDが予め実験的に設定された第1上すべり判定閾値M1および第2上すべり判定閾値M2のいずれかを超えたことを判定しているが、上すべり判定部58は、単一の上すべり判定閾値たとえば第2上すべり判定閾値M2を用いるものであってもよい。 Further, in the above-mentioned embodiment, the upward slip determination unit 58 determines that the movement standard deviation value MSD exceeds either the first upward slip determination threshold M1 or the second upward slip determination threshold M2 that is experimentally set in advance. However, the upward slip determination unit 58 may use a single upward slip determination threshold, for example, a second upward slip determination threshold M2.

また、前述の実施例の上すべり検出部56は、上すべり判定部58を備えたものであったが、上すべり判定部58を備えていたが、必ずしも備えていなくてもよい。上すべり検出部56は、信号強度積分値SPIの被削材12の回転に同期する周期的変化量の大きさを表す移動標準偏差値MSDの最大値を表示装置48に数値表示させたり、たとえば図10或いは図13に示すように、移動標準偏差値MSDの変化波形を表示装置48に数値表示させるものであってもよい。 Moreover, although the above-mentioned example top-slip detection section 56 was equipped with the top-slip determination section 58, it does not necessarily have to be provided. The top slip detection unit 56 causes the display device 48 to numerically display the maximum value of the moving standard deviation value MSD, which represents the magnitude of the periodic variation amount of the signal strength integral value SPI that is synchronized with the rotation of the workpiece 12. As shown in FIG. 10 or 13, the changing waveform of the moving standard deviation value MSD may be numerically displayed on the display device 48.

また、前述の実施例の上すべり検出部56は、移動標準偏差値MSDが予め実験的に設定された第1上すべり判定閾値M1および第2上すべり判定閾値M2のいずれかを超えたことに基づいて、研削ホイール20の上すべりを判定するものであったが、第1上すべり判定閾値M1および第2上すべり判定閾値M2のいずれか一方を用いるものであってもよい。 Further, the upward slip detection unit 56 of the above-described embodiment detects that the movement standard deviation value MSD exceeds either the first upward slip determination threshold M1 or the second upward slip determination threshold M2 that is experimentally set in advance. Based on this, the upward slip of the grinding wheel 20 is determined, but either one of the first upward slip determination threshold M1 and the second upward slip determination threshold M2 may be used.

尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 The above-mentioned embodiment is merely one embodiment, and the present invention can be implemented with various changes and improvements based on the knowledge of those skilled in the art.

10:上すべり検出装置
12:被削材
14:研削加工装置
20:研削ホイール(研削砥石)
22:AEセンサ
34:A/D変換器
50:周波数解析部
52:信号強度積分値算出部
54:移動標準偏差算出部
56:上すべり検出部
58:上すべり判定部
74:回転速度低下制御部
S5:周波数解析工程
S5:周波数解析工程
S6:信号強度積分値算出工程
S7:移動標準偏差算出工程
S8:上すべり判定工程
S9:上すべり検出工程
SAE:AE信号
B2:所定の周波数帯(45~75kHzの周波数帯)
M1:第1上すべり判定閾値
M2:第2上すべり判定閾値
SP:信号強度値
SPI:信号強度積分値
MSD:移動標準偏差
10: Top slip detection device 12: Work material 14: Grinding device 20: Grinding wheel (grinding wheel)
22: AE sensor 34: A/D converter 50: Frequency analysis section 52: Signal strength integral value calculation section 54: Movement standard deviation calculation section 56: Upslip detection section 58: Upslip determination section 74: Rotation speed reduction control section S5: Frequency analysis step S5: Frequency analysis step S6: Signal strength integral value calculation step S7: Moving standard deviation calculation step S8: Upslip determination step S9: Upslip detection step SAE: AE signal B2: Predetermined frequency band (45~ 75kHz frequency band)
M1: First upward slip determination threshold M2: Second upward slip determination threshold SP: Signal strength value SPI: Signal strength integral value MSD: Moving standard deviation

Claims (8)

被削材の外周面を研削する研削砥石の上すべりを検出する研削砥石の上すべり検出方法であって、
前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析工程と、
前記周波数解析工程により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出工程とを、含む
ことを特徴とする研削砥石の上すべり検出方法。
A grinding wheel top slip detection method for detecting top slip of a grinding wheel that grinds the outer peripheral surface of a workpiece, the method comprising:
a frequency analysis step of frequency analyzing an AE signal generated from the grinding wheel when grinding the work material;
on the grinding wheel based on the magnitude of the periodic variation in synchronization with the rotation of the workpiece in the signal intensity integral value of a predetermined frequency band of the signal intensity of the frequency spectrum frequency-analyzed in the frequency analysis step. A method for detecting top slip of a grinding wheel, comprising: a top slip detection step for detecting slip.
前記上すべり検出工程は、前記信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度積分値の移動標準偏差値により表わす
ことを特徴とする請求項1の研削砥石の上すべり検出方法。
In the top slip detection step, the magnitude of a periodic variation of the signal intensity integral value that is synchronized with the rotation of the workpiece is determined by detecting a plurality of values obtained within a movement section exceeding one rotation period of the workpiece. The method for detecting top slip of a grinding wheel according to claim 1, characterized in that the above-mentioned signal strength integral value is expressed by a moving standard deviation value.
前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて、前記研削砥石の上すべりを判定する上すべり判定工程を、さらに含む
ことを特徴とする請求項2の研削砥石の上すべり検出方法。
The top of the grinding wheel according to claim 2, further comprising a top slip determination step of determining top slip of the grinding wheel based on the movement standard deviation value exceeding a preset determination threshold. Slip detection method.
前記上すべり判定工程により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御工程を、さらに含む
ことを特徴とする請求項3の研削砥石のすべり検出方法。
Grinding according to claim 3, further comprising a rotation speed reduction control step of reducing the rotation speed of the grinding wheel by a predetermined value when the top slip of the grinding wheel is determined in the top slip determination step. How to detect grinding wheel slippage.
被削材の外周面を研削する研削砥石の上すべりを検出する研削砥石の上すべり検出装置であって、
前記研削砥石から前記被削材に対する研削時に発生するAE信号を周波数解析する周波数解析部と、
前記周波数解析部により周波数解析された周波数スペクトルの信号強度のうちの所定周波数帯の信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさに基づいて前記研削砥石の上すべりを検出する上すべり検出部とを、含む
ことを特徴とする研削砥石の上すべり検出装置。
A grinding wheel top slip detection device for detecting top slip of a grinding wheel that grinds the outer peripheral surface of a workpiece,
a frequency analysis unit that performs frequency analysis of an AE signal generated from the grinding wheel when grinding the work material;
on the grinding wheel based on the magnitude of the periodic variation in synchronization with the rotation of the workpiece of the signal intensity integral value of a predetermined frequency band of the signal intensity of the frequency spectrum frequency-analyzed by the frequency analysis section. A top-slip detection device for a grinding wheel, comprising a top-slip detection section that detects slippage.
前記上すべり検出部は、前記信号強度積分値の前記被削材の回転に同期する周期的変化量の大きさを、前記被削材の1回転周期を超える移動区間内に得られた複数個の前記信号強度積分値の移動標準偏差値により表わす
ことを特徴とする請求項5の研削砥石の上すべり検出装置。
The top slip detection unit detects a magnitude of a periodic change amount of the signal strength integral value that is synchronized with the rotation of the workpiece, and detects a plurality of magnitudes of the periodic change amount of the signal intensity integral value obtained within a movement section exceeding one rotation period of the workpiece. The top-slip detection device for a grinding wheel according to claim 5, wherein the top-slip detection device for a grinding wheel is expressed by a moving standard deviation value of the signal intensity integral value.
前記移動標準偏差値が予め設定された判定閾値を超えたことに基づいて、前記研削砥石の上すべりを判定する上すべり判定部を、さらに含む
ことを特徴とする請求項6の研削砥石の上すべり検出装置。
The top of the grinding wheel according to claim 6, further comprising an upward slip determination section that determines upward slip of the grinding wheel based on the movement standard deviation value exceeding a preset determination threshold. Slip detection device.
前記上すべり判定部により前記研削砥石の上すべりが判定された場合には、前記研削砥石の回転速度を所定値低下させる回転速度低下制御部を、さらに含む
ことを特徴とする請求項7の研削砥石の上すべり検出装置。
Grinding according to claim 7, further comprising a rotation speed reduction control section that reduces the rotation speed of the grinding wheel by a predetermined value when the top slip of the grinding wheel is determined by the top slip determination section. Grinding wheel top slip detection device.
JP2022092599A 2022-06-07 2022-06-07 Grinding stone upper slip detection method and device Pending JP2023179328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022092599A JP2023179328A (en) 2022-06-07 2022-06-07 Grinding stone upper slip detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092599A JP2023179328A (en) 2022-06-07 2022-06-07 Grinding stone upper slip detection method and device

Publications (1)

Publication Number Publication Date
JP2023179328A true JP2023179328A (en) 2023-12-19

Family

ID=89199518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092599A Pending JP2023179328A (en) 2022-06-07 2022-06-07 Grinding stone upper slip detection method and device

Country Status (1)

Country Link
JP (1) JP2023179328A (en)

Similar Documents

Publication Publication Date Title
JP3439324B2 (en) Wheel life judgment device
JP2810489B2 (en) Grinding wheel
US5044125A (en) Method and apparatus for controlling grinding processes
CN101829951A (en) Outer circle grinding workpiece surface quality visualization real-time monitoring method
Sutowski et al. Monitoring of cylindrical grinding processes by use of a non-contact AE system
Caraguay et al. Wear assessment of microcrystalline and electrofused aluminum oxide grinding wheels by multi-sensor monitoring technique
JP2000233369A (en) Grinding condition monitoring device and dressing condition monitoring device
JP2023179328A (en) Grinding stone upper slip detection method and device
JPH1177532A (en) Grinding device for rolling roll
Lin et al. Characterization of grinding wheel condition by acoustic emission signals
JP7384634B2 (en) Grinding surface condition evaluation device and grinding processing device
JP2008082702A (en) Processing state evaluation system
JP2008093788A (en) Grinder
JP2022086741A (en) Method and device for detecting hardness abnormality of work material
JP3688145B2 (en) Use limit judgment device of superabrasive grinding wheel
de Aguiar et al. Acoustic emission applied to detect workpiece burn during grinding
JP7413109B2 (en) Grinding process defect prediction device
JPH08193879A (en) Method for detecting grinding abnormality of roll grinder
JP7420530B2 (en) Dressing surface evaluation device, dressing device, and grinding device
JP7413110B2 (en) Truing completion determination device
KR20190133888A (en) Method and system for detecting chatter using acceleration sensor
JPH0276678A (en) Improved device and method for controlling grinding process and device and method for correcting grindstone
JP3165488B2 (en) Dressing state judgment method
US5042206A (en) Method and apparatus for controlling grinding processes
Tawakoli Developments in grinding process monitoring and evaluation of results