JP2022086741A - Method and device for detecting hardness abnormality of work material - Google Patents

Method and device for detecting hardness abnormality of work material Download PDF

Info

Publication number
JP2022086741A
JP2022086741A JP2020198924A JP2020198924A JP2022086741A JP 2022086741 A JP2022086741 A JP 2022086741A JP 2020198924 A JP2020198924 A JP 2020198924A JP 2020198924 A JP2020198924 A JP 2020198924A JP 2022086741 A JP2022086741 A JP 2022086741A
Authority
JP
Japan
Prior art keywords
hardness
work material
abnormality
grinding
vibration intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020198924A
Other languages
Japanese (ja)
Inventor
智 五十君
Satoshi Isogimi
智実 大橋
Tomomi Ohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2020198924A priority Critical patent/JP2022086741A/en
Publication of JP2022086741A publication Critical patent/JP2022086741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

To provide a method for detecting the hardness abnormality of a work material capable of inspecting the hardness abnormality of the total number of work materials to be ground without an inspection process.SOLUTION: Disclosed is a method for detecting the hardness abnormality of a work material 12 in which the hardness abnormality of the hardened work material 12 is detected, which includes: a grinding step of performing the grinding of the work material 12 hardened by using a grind stone 20; and a hardness abnormality determination step for determining the hardness abnormality of the hardened work material 12 based on an AE signal SAE generated from a grinding point of the grind stone 20 during a grinding process. As a result, regarding the hardness abnormality for the work materials 12, the total number of the work materials 12 can be inspected without an inspection process, and the reliability of the work materials 12 after grinding can be enhanced.SELECTED DRAWING: Figure 1

Description

本発明は、研削加工中に得られたAE信号から被削材の硬度が異常であることを検出する被削材の硬度異常検出装置、およびそれを用いた硬度異常検出方法に関するものである。 The present invention relates to a hardness abnormality detection device for a work material that detects that the hardness of the work material is abnormal from an AE signal obtained during grinding, and a hardness abnormality detection method using the same.

例えば、軸受の外輪や内輪、スプロケット、カム軸のような焼き入れされた焼入鋼材製等の被削材を、仕上げ等のために研削砥石を用いて研削加工する場合がある。このような被削材の焼入れは、比較的ばらつきが大きいため、製品歩留りを高めるために、研削加工に先立って被削材の焼入れが規定の通りのものであることを検査することが、望まれる。 For example, a work material made of hardened steel such as an outer ring, an inner ring, a sprocket, and a camshaft of a bearing may be ground by using a grinding wheel for finishing or the like. Since such quenching of the work material has a relatively large variation, it is desirable to inspect that the quenching of the work material is as specified prior to the grinding process in order to increase the product yield. Is done.

このような検査としては、例えば、被削材の表面に圧子を押し当てたときに形成される窪みの大きさを測定することで硬度を測定する硬度測定法(JIS Z 2244:2009、JIS Z 2245:2016)が知られている。しかし、このように、被削材の表面に圧子を押し当てたときに形成される窪みの大きさを測定することで硬度を測定する硬度測定法では、検査痕が被削材の表面に残されることから、検査痕を起点とした進行性の傷が発生したり、検査痕による起伏が発生して部品性能が損なわれる可能性がある。また、このような硬度測定法は、一種の破壊検査となるので、抜き取り検査とならざるを得ない場合があるため、焼入れの不具合品が所定の割合で混入し、研削加工された被削材の信頼性を低下させる可能性があった。 As such an inspection, for example, a hardness measuring method (JIS Z 2244: 2009, JIS Z) in which the hardness is measured by measuring the size of the dent formed when the indenter is pressed against the surface of the work material. 2245: 2016) is known. However, in the hardness measuring method in which the hardness is measured by measuring the size of the dent formed when the indenter is pressed against the surface of the work material in this way, inspection marks are left on the surface of the work material. Therefore, there is a possibility that progressive scratches starting from the inspection marks may occur, or undulations due to the inspection marks may occur and the component performance may be impaired. In addition, since such a hardness measurement method is a kind of destructive inspection, it may have to be a sampling inspection. Could reduce the reliability of.

これに対して、特許文献1には、そのような被削材に、表面上の焼入変色範囲或いは深さ方向の焼入変色範囲の基準を示す長さ或いは深さを有する長手溝状の目印を、被削材の加圧成形工程において被削材の焼入部位から突き出すように設けることが提案されている。これによれば、被削材の表面上の焼入検査に際しては、表面上の焼入変色範囲と長手溝状の目印の長さとを比較することで焼入範囲が許容範囲内か否かを判定して、被削材の焼入れが検査される。また、被削材の焼入深さの検査に際しては、前記長手溝状の目印の溝内壁面が現れるように被削材を切断し、表面から深さ方向の変色範囲と長手溝状の目印の溝深さと比較することで焼入深さが許容範囲内か否かを判定して、被削材の焼入れが検査される。上記の目印(長手溝)は、後加工である研削加工工程における取り代よりも浅く形成され、研削加工後の被削材には残らないようになっている。 On the other hand, in Patent Document 1, such a work material has a longitudinal groove shape having a length or depth indicating a reference of the quenching discoloration range on the surface or the quenching discoloration range in the depth direction. It has been proposed that the mark is provided so as to protrude from the hardened portion of the work material in the pressure forming process of the work material. According to this, when the quenching inspection on the surface of the work material is performed, whether or not the quenching range is within the allowable range is determined by comparing the quenching discoloration range on the surface with the length of the longitudinal groove-shaped mark. Judgment is made and the work material is inspected for quenching. In addition, when inspecting the quenching depth of the work material, the work material is cut so that the inner wall surface of the groove of the longitudinal groove-shaped mark appears, and the discoloration range in the depth direction from the surface and the longitudinal groove-shaped mark are formed. By comparing with the groove depth of, it is determined whether the quenching depth is within the allowable range, and the quenching of the work material is inspected. The above-mentioned mark (longitudinal groove) is formed shallower than the allowance in the grinding process which is the post-processing, and does not remain in the work material after the grinding process.

特開2012-246522号公報Japanese Unexamined Patent Publication No. 2012-246522

しかしながら、このような特許文献1に記載の焼入検査方法では、例えば、焼入深さの検査では、検査工程を独立に設ける必要があるとともに、焼入深さ範囲の検査については被削材を破壊することが必要となるという問題があり、仮に、焼入深さについては抜き取り検査とした場合でも、焼入深さが大きい場合には、それに伴って目印(長手溝)の深さも大きくなることから、その目印(長手溝)を除去するための取り代も大きくなるので、研削加工工程では研削負荷が大きく、研削加工時間が長くなったり、研削砥石の寿命が短くなるという不都合があった。 However, in such a quenching inspection method described in Patent Document 1, for example, in the inspection of the quenching depth, it is necessary to independently provide an inspection process, and in the inspection of the quenching depth range, the work material is used. There is a problem that it is necessary to destroy the material, and even if the quenching depth is a sampling inspection, if the quenching depth is large, the depth of the mark (longitudinal groove) is also large. As a result, the allowance for removing the mark (longitudinal groove) is also large, so there are inconveniences that the grinding load is large in the grinding process, the grinding time is long, and the life of the grinding wheel is shortened. rice field.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、研削加工される被削材の硬度異常を、検査工程を設けることなく全数検査できる、被削材の硬度異常検出方法、および被削材の硬度異常検出装置を提供することにある。 The present invention has been made in the background of the above circumstances, and an object of the present invention is to inspect all the hardness abnormalities of the work material to be ground without providing an inspection process. It is an object of the present invention to provide a hardness abnormality detecting method and a hardness abnormality detecting apparatus for a work material.

本発明者等は、以上の事情に基づいて種々検討を重ねた結果、焼き入れされた被削材を研削加工する過程で得られたAE信号を周波数解析して検討を重ねるうち、高速サンプリング周期のA/D変換器を用いてデジタル化したAE信号を周波数解析すると、周波数解析された周波数スペクトル中の45~65kHzの周波数帯中に、被削材の硬度に敏感に反応する特定周波数帯が含まれている点、および、焼入れが正常な被削材で得られた特定周波数帯の振動強度値に基づく閾値を予め決定し、実際の被削材で得られた特定周波数帯の振動強度値をその閾値と比較することで、研削工程中において被削材の硬度異常すなわち焼入異常が検出され得ることを見出した。本発明は係る知見に基づいて為されたものである。 As a result of repeated studies based on the above circumstances, the present inventors conducted frequency analysis of the AE signal obtained in the process of grinding the hardened work material, and repeated studies, while performing a high-speed sampling period. When the frequency analysis of the AE signal digitized by using the A / D converter of the above, a specific frequency band that reacts sensitively to the hardness of the work material is found in the frequency band of 45 to 65 kHz in the frequency analysis of the frequency spectrum. The points included and the threshold value based on the vibration intensity value of the specific frequency band obtained from the work material with normal quenching are determined in advance, and the vibration intensity value of the specific frequency band obtained from the actual work material is determined in advance. By comparing with the threshold value, it was found that an abnormality in hardness of the work material, that is, an abnormality in quenching can be detected during the grinding process. The present invention has been made based on such findings.

第1発明の要旨とするところは、(a)焼き入れされた被削材の硬度異常を検出する被削材の硬度異常検出方法であって、(b)研削砥石を用いて前記焼き入れされた被削材の研削加工を行なう研削加工工程と、(c)前記研削加工工程中に前記研削砥石の研削点から発生するAE信号に基づいて、前記焼き入れされた被削材の硬度異常を判定する硬度異常判定工程と、を含むことにある。 The gist of the first invention is (a) a method for detecting a hardness abnormality of a hardened work material, and (b) a method for detecting a hardness abnormality of the hardened work material, which is (b) hardened using a grinding grindstone. Based on the grinding process of grinding the work material and (c) the AE signal generated from the grinding point of the grinding wheel during the grinding process, the hardness abnormality of the hardened work material is detected. It includes a hardness abnormality determination step for determining.

第2発明の要旨とするところは、第1発明において、前記被削材の硬度異常検出方法は、前記硬度異常判定工程により硬度異常でないと判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されるが、前記硬度異常判定工程により硬度異常であると判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されないことにある。 The gist of the second invention is that, in the first invention, when the method for detecting a hardness abnormality of the work material is determined not to be a hardness abnormality by the hardness abnormality determination step, the ground work material is ground. Is flowed to the next step of the grinding process, but when it is determined by the hardness abnormality determination step that the hardness is abnormal, the ground work material is sent to the next step of the grinding process. It is not done.

第3発明の要旨とするところは、第1発明又は第2発明において、前記硬度異常判定工程は、(a)前記焼き入れされた被削材の研削加工中に前記研削砥石の研削点から発生する前記AE信号を検出するAEセンサと、(b)10μsec以下のサンプリング周期のA/D変換器を用いてデジタル化された前記AE信号を周波数解析する周波数解析部と、(c)前記周波数解析部により周波数解析された周波数スペクトル中の45~65kHzの周波数帯に含まれる、前記焼き入れされた被削材の硬度に応じて強度変化する特定周波数帯内の振動強度値を積分演算することにより振動強度積分値を算出する振動強度積分値算出部と、(d)前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値と予め設定された硬度異常判定閾値とに基づいて前記焼き入れされた被削材の硬度異常を判定する硬度異常判定部と、を含む硬度異常検出装置を用いて、前記焼き入れされた被削材の硬度異常を判定することにある。 The gist of the third invention is that in the first invention or the second invention, the hardness abnormality determination step is (a) generated from the grinding point of the grinding wheel during the grinding process of the hardened work material. An AE sensor that detects the AE signal, a frequency analysis unit that frequency-analyzes the AE signal digitized using an A / D converter having a sampling period of 10 μsec or less, and (c) the frequency analysis. By integrating and calculating the vibration intensity value in the specific frequency band whose intensity changes according to the hardness of the hardened work material, which is included in the frequency band of 45 to 65 kHz in the frequency spectrum analyzed by the unit. The vibration intensity integrated value calculation unit that calculates the vibration intensity integrated value, and (d) the vibration intensity integrated value actually measured during grinding of the hardened work material and the preset hardness abnormality determination threshold value. The present invention is to determine the hardness abnormality of the hardened work material by using a hardness abnormality detection device including a hardness abnormality determination unit for determining the hardness abnormality of the hardened work material based on the above. ..

第4発明の要旨とするところは、第3発明において、前記硬度異常検出装置は、正常な焼入れが施された被削材についての研削加工の累積研削断面積と前記正常な焼入れが施された被削材について測定した振動強度積分値との間の近似関係式を求める近似関係式生成部を有し、前記近似関係式から求めた振動強度積分値期待値の所定割合の値を、前記硬度異常判定閾値として決定する閾値決定部を、備えることにある。 The gist of the fourth invention is that, in the third invention, the hardness abnormality detecting device is subjected to the cumulative grinding cross-sectional area of the grinding process of the work material which has been normally quenched and the normal quenching. It has an approximate relational expression generation unit that obtains an approximate relational expression between the measured vibration intensity integral value of the work material, and the value of a predetermined ratio of the expected vibration intensity integrated value obtained from the approximate relational expression is the hardness. A threshold determination unit for determining an abnormality determination threshold is provided.

第5発明の要旨とするところは、第4発明において、前記硬度異常判定部は、前記振動強度積分値期待値と前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて、前記焼き入れされた被削材の硬度異常を判定することにある。 The gist of the fifth invention is that in the fourth invention, the hardness abnormality determination unit actually measures the expected value of the integral value of the vibration strength and the hardened work material during the grinding process. The purpose is to determine the hardness abnormality of the hardened work material based on the fact that the difference value from the integrated value is lower than the hardness abnormality determination threshold.

第6発明の要旨とするところは、(a)焼き入れされた被削材の硬度異常を検出する被削材の硬度異常検出装置であって、(b)前記焼き入れされた被削材の研削加工中に研削砥石の研削点から発生するAE信号を検出するAEセンサと、(c)10μsec以下のサンプリング周期のA/D変換器を用いてデジタル化された前期AE信号を周波数解析する周波数解析部と、(d)前記周波数解析部により周波数解析された周波数スペクトル中の45~65kHzの周波数帯に含まれる、前記焼き入れされた被削材の硬度に応じて強度変化する特定周波数帯内の振動強度値を積分演算することにより振動強度積分値を算出する振動強度積分値算出部と、(e)前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値と予め設定された硬度異常判定閾値とに基づいて前記焼き入れされた被削材の硬度異常を判定する硬度異常判定部と、を含むことにある。 The gist of the sixth invention is (a) a hardness abnormality detecting device for a work material that detects a hardness abnormality of the hardened work material, and (b) the hardened work material. Frequency to frequency-analyze the digitized early AE signal using an AE sensor that detects the AE signal generated from the grinding point of the grinding wheel during grinding and (c) an A / D converter with a sampling period of 10 μsec or less. Within the analysis unit and (d) a specific frequency band whose intensity changes according to the hardness of the hardened work material, which is included in the frequency band of 45 to 65 kHz in the frequency spectrum analyzed by the frequency analysis unit. The vibration intensity integrated value calculation unit that calculates the vibration intensity integrated value by integrating the vibration intensity value of (e) and the vibration intensity integrated value actually measured during grinding of the hardened work material. The hardness abnormality determination unit for determining the hardness abnormality of the hardened work material based on the hardness abnormality determination threshold set in advance is included.

第7発明の要旨とするところは、第6発明において、前記被削材の硬度異常検出装置は、正常な焼入れが施された被削材についての研削加工の累積研削断面積と前記正常な焼入れが施された被削材について測定した振動強度積分値との間の近似関係式を求める近似関係式生成部を有し、前記近似関係式から求めた振動強度積分値期待値の所定割合の値を、前記硬度異常判定閾値として決定する閾値決定部を、備えることにある。 The gist of the seventh invention is that, in the sixth invention, the hardness abnormality detecting device of the work material is the cumulative grinding cross-sectional area of the grinding process of the work material that has been normally quenched and the normal quenching. It has an approximate relational expression generation unit that obtains an approximate relational expression between the measured vibration intensity integrated value and the work material subjected to the above, and is a value of a predetermined ratio of the expected vibration intensity integrated value obtained from the approximate relational expression. Is provided with a threshold determination unit for determining the hardness abnormality determination threshold.

第8発明の要旨とするところは、第7発明において、前記硬度異常判定部は、前記振動強度積分値期待値と前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて、前記焼き入れされた被削材の硬度異常を判定することにある。 The gist of the eighth invention is that in the seventh invention, the hardness abnormality determination unit actually measures the expected value of the integral value of the vibration intensity and the hardened work material during the grinding process. The purpose is to determine the hardness abnormality of the hardened work material based on the fact that the difference value from the integrated value is lower than the hardness abnormality determination threshold.

第1発明の被削材の硬度異常検出方法によれば、硬度異常判定工程において、研削加工工程中に前記研削砥石の研削点から発生するAE信号に基づいて、焼き入れされた被削材の硬度異常が判定されるので、被削材の硬度異常について、検査工程を設けることなく全数検査でき、研削加工後の被削材の信頼性を高めることができる。 According to the method for detecting hardness abnormality of a work material of the first invention, in the hardness abnormality determination step, the hardened work material is obtained based on the AE signal generated from the grinding point of the grinding wheel during the grinding process. Since the hardness abnormality is determined, 100% of the hardness abnormality of the work material can be inspected without providing an inspection step, and the reliability of the work material after grinding can be improved.

第2発明の被削材の硬度異常検出方法によれば、前記硬度異常判定工程により硬度異常でないと判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されるが、前記硬度異常判定工程により硬度異常であると判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されないことから、不良品の被削材が後工程へ流れることが防止されるので、後工程の工数の無駄を解消できる。 According to the method for detecting a hardness abnormality of a work material of the second invention, when it is determined by the hardness abnormality determination step that the hardness is not abnormal, the ground work material is transferred to the next step of the grinding process. However, if it is determined by the hardness abnormality determination step that the hardness is abnormal, the ground work material is not flown to the next step of the grinding process, so that the work material is a defective product. Is prevented from flowing to the post-process, so that the waste of labor in the post-process can be eliminated.

第3発明の硬度異常検出方法、および第6発明の硬度異常検出装置によれば、(a)前記焼き入れされた被削材の研削加工中に前記研削砥石の研削点から発生する前記AE信号を検出するAEセンサと、(b)前記AE信号を10μsec以下のサンプリング周期のA/D変換器を用いてデジタル化したAE信号を周波数解析する周波数解析部と、(c)前記周波数解析部により周波数解析された周波数スペクトル中の45~65kHzの周波数帯に含まれる、前記焼き入れされた被削材の硬度に応じて強度変化する特定周波数帯内の振動強度値を積分演算することにより振動強度積分値を算出する振動強度積分値算出部と、(d)前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値と予め設定された硬度異常判定閾値とに基づいて前記焼き入れされた被削材の硬度異常を判定する硬度異常判定部と、を含む。これにより、焼き入れされた被削材の研削加工工程においてその被削材の硬度異常を検出することができるので、被削材の硬度異常について、検査工程を設けることなく全数検査でき、研削加工後の被削材の信頼性を高めることができる。 According to the hardness abnormality detecting method of the third invention and the hardness abnormality detecting apparatus of the sixth invention, (a) the AE signal generated from the grinding point of the grinding wheel during the grinding process of the hardened work material. The AE sensor for detecting the above, (b) a frequency analysis unit that frequency-analyzes the AE signal obtained by digitizing the AE signal using an A / D converter having a sampling period of 10 μsec or less, and (c) the frequency analysis unit. Vibration intensity is calculated by integrating the vibration intensity value in the specific frequency band, which is included in the frequency band of 45 to 65 kHz in the frequency analysis and whose intensity changes according to the hardness of the hardened work material. Based on the vibration intensity integrated value calculation unit that calculates the integrated value, and (d) the vibration intensity integrated value actually measured during grinding of the hardened work material and the preset hardness abnormality determination threshold value. It includes a hardness abnormality determining unit for determining the hardness abnormality of the hardened work material. As a result, it is possible to detect an abnormality in the hardness of the work material in the grinding process of the hardened work material, so that all the abnormal hardness of the work material can be inspected without providing an inspection process, and the grinding process can be performed. The reliability of the later work material can be improved.

第4発明の被削材の硬度異常検出方法、および第7発明の被削材の硬度異常検出装置によれば、正常な焼入れが施された被削材についての研削加工の累積研削断面積と前記正常な焼入れが施された被削材について測定した振動強度積分値との間の近似関係式を求める近似関係式生成部を有し、前記近似関係式から求めた振動強度積分値期待値の所定割合の値を、前記硬度異常判定閾値として決定する閾値決定部を、備える。このことから、硬度異常判定閾値が、前記近似関係式から求めた振動強度積分値期待値の所定割合の値として決定されるので、前記被削材の硬度異常判定が正確となる。 According to the method for detecting an abnormality in hardness of a work material of the fourth invention and the device for detecting an abnormality in hardness of a work material of the seventh invention, the cumulative grinding cross-sectional area of the grinding process of a normally hardened work material It has an approximate relational expression generation unit that obtains an approximate relational expression between the measured vibration intensity integrated value and the normally hardened work material, and has an expected vibration intensity integrated value obtained from the approximate relational expression. A threshold determination unit for determining a value of a predetermined ratio as the hardness abnormality determination threshold is provided. From this, since the hardness abnormality determination threshold value is determined as a value of a predetermined ratio of the expected value of the vibration intensity integrated value obtained from the approximate relational expression, the hardness abnormality determination of the work material becomes accurate.

第5発明の被削材の硬度異常検出方法、および第8発明の被削材の硬度異常検出装置によれば、前記硬度異常判定部は、前記振動強度積分値期待値と前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて、前記焼き入れされた被削材の硬度異常を判定する。このことから、前記被削材の硬度異常が、振動強度積分値期待値と実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて行なわれるので、累積研削断面積毎に振動強度積分値期待値がばらついても、前記被削材の硬度異常判定が正確となる。 According to the method for detecting an abnormality in hardness of a work material of the fifth invention and the device for detecting an abnormality in hardness of a work material of the eighth invention, the hardness abnormality determination unit is hardened with the expected value of the vibration intensity integrated value. The hardness abnormality of the hardened work material is determined based on the difference value from the vibration intensity integrated value actually measured during the grinding process of the work material is below the hardness abnormality determination threshold. From this, since the hardness abnormality of the work material is performed based on the difference value between the expected value of the integral value of vibration intensity and the actually measured integrated value of vibration intensity being lower than the hardness abnormality determination threshold, it is cumulative. Even if the expected value of the integral value of the vibration strength varies depending on the ground cross-sectional area, the hardness abnormality determination of the work material is accurate.

本発明の一実施例の、研削加工中に被削材の硬度異常を検出する硬度異常検出装置を備えた、被削材の研削加工装置及び電子制御装置の構成を説明する図である。It is a figure explaining the structure of the grinding processing apparatus and an electronic control apparatus of a work material provided with the hardness abnormality detecting apparatus which detects the hardness abnormality of a work material during the grinding process of one Embodiment of this invention. 図1の研削加工装置による研削加工中に、研削砥石の研削点から発生するAE信号の発生メカニズムを説明する図である。It is a figure explaining the generation mechanism of the AE signal generated from the grinding point of the grinding wheel during the grinding process by the grinding machine of FIG. 1. 図1の電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the main part of the control operation of the electronic control device of FIG. 研削試験に用いた正常な硬度を有する被削材(正常品)及び異常な硬度を有する被削材(異常品)のビッカース硬度HVを対比可能に示す棒グラフである。It is a bar graph which shows the Vickers hardness HV of the work material (normal product) with normal hardness and the work material (abnormal product) with abnormal hardness used in the grinding test in a comparable manner. 図1において、AEセンサにより検出されたAE信号を周波数解析部により周波数解析して得られた周波数スペクトルの一例を示す図である。FIG. 1 is a diagram showing an example of a frequency spectrum obtained by frequency analysis of an AE signal detected by an AE sensor by a frequency analysis unit. 累積研削断面積SGを表す横軸と振動強度積分値IVSを表す縦軸とから成る二次元座標に、累積研削断面積SGとともに変化する、正常品の振動強度積分値IVS及び異常品の振動強度積分値IVSの値を、4つの小領域F1、F2、F3、F4についてそれぞれ示す図である。Two-dimensional coordinates consisting of a horizontal axis representing the cumulative grinding cross-sectional area SG and a vertical axis representing the vibration intensity integrated value IV, and the vibration intensity integrated value IVS of the normal product and the vibration strength of the abnormal product that change with the cumulative grinding cross-sectional area SG. It is a figure which shows the value of the integral value IVS for four small areas F1, F2, F3, F4 respectively. 図6の第3小領域F3における、正常品の振動強度積分値IVSの値と、異常品の振動強度積分値IVSの値と、を示す図である。It is a figure which shows the value of the vibration intensity integrated value IVS of a normal product, and the value of the vibration intensity integrated value IVS of an abnormal product in the 3rd small region F3 of FIG. 図7の正常品の値を近似した近似関係式(1)から得られた振動強度積分値期待値と正常品から得られた振動強度積分値の研削加工中の実測値との差分値ΔIVSnと、前記振動強度積分値期待値と異常品から得られた振動強度積分値の研削加工中の実測値との差分値ΔIVSaと、前記振動強度積分値の期待値の2.5%の値と、を示す図である。The difference value ΔIVSn between the expected value of the integral vibration intensity obtained from the approximate relational expression (1) that approximates the value of the normal product in FIG. 7 and the measured value of the integral vibration intensity obtained from the normal product during grinding. , The difference value ΔIVSa between the expected value of the integral value of vibration intensity and the measured value of the integrated value of vibration intensity obtained from the abnormal product during grinding, and 2.5% of the expected value of the integrated value of vibration intensity. It is a figure which shows.

以下、本発明の一実施例を、図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following examples, the drawings are appropriately simplified or modified, and the dimensional ratios and shapes of each part are not always drawn accurately.

図1は、本発明の一実施例の被削材12の硬度異常検出装置10を備えた研削加工装置14の構成を説明する図である。研削加工装置14は、研削ホイール20を用いて、例えば焼入鋼から成る被削材12を研削加工する。被削材12は、例えば、軸受の内輪及び外輪、スプロケット、カム軸のような、焼入鋼から成る金属部品である。この焼入鋼は、例えば、浸炭焼入れされたクロム鋼SCr420、或いは焼き入れされたクロムモリブデンの鋼SCM440等である。また、研削ホイール20は、溶融アルミナ系砥粒、炭化珪素系砥粒、セラミックス砥粒などの一般砥粒や、CBN砥粒、ダイヤモンド砥粒などの超砥粒などが、無機質、有機質、或いは金属等の結合材によって結合されたビトリファイド砥石、レジノイド砥石、メタルボンド砥石、電着砥石等のよく知られた研削砥石である。 FIG. 1 is a diagram illustrating a configuration of a grinding apparatus 14 provided with a hardness abnormality detecting apparatus 10 for a work material 12 according to an embodiment of the present invention. The grinding apparatus 14 uses the grinding wheel 20 to grind a work material 12 made of, for example, hardened steel. The work material 12 is a metal part made of hardened steel, for example, an inner ring and an outer ring of a bearing, a sprocket, and a camshaft. The hardened steel is, for example, carburized and hardened chrome steel SCr420, hardened chrome molybdenum steel SCM440, or the like. Further, in the grinding wheel 20, general abrasive grains such as molten alumina-based abrasive grains, silicon carbide-based abrasive grains, and ceramic abrasive grains, and super-abrasive grains such as CBN abrasive grains and diamond abrasive grains are inorganic, organic, or metal. It is a well-known grinding wheel such as a vitrified grindstone, a resinoid grindstone, a metal bond grindstone, and an electrodeposition grindstone bonded by a binder such as.

図1において、研削加工装置14は、研削ホイール20と、研削ホイール20を研削ホイール20の回転中心線C1まわりに回転可能に支持する回転主軸を回転駆動する主軸駆動モータ62と、研削ホイール20を円柱状の被削材12の外周面に押し当てるために被削材12を径方向に移動させる被削材移動モータ66と、ツルーイング工具として用いるロータリドレッサ46を回転中心線C1に平行な回転中心線C2まわりに回転駆動するツルーイング工具回転駆動モータ68と、ロータリドレッサ46をその回転中心線C2方向に送るツルーイング工具送りモータ70と、研削制御装置72と、を備えている。 In FIG. 1, the grinding apparatus 14 includes a grinding wheel 20, a spindle drive motor 62 that rotationally drives a rotating spindle that rotatably supports the grinding wheel 20 around the rotation center line C1 of the grinding wheel 20, and a grinding wheel 20. A rotation center parallel to the rotation center line C1 of a work material moving motor 66 that moves the work material 12 in the radial direction in order to press the work material 12 against the outer peripheral surface of the columnar work material 12 and a rotary dresser 46 used as a truing tool. It includes a turling tool rotation drive motor 68 that rotationally drives around the line C2, a turwing tool feed motor 70 that feeds the rotary dresser 46 in the direction of the rotation center line C2, and a grinding control device 72.

研削ホイール20は、円筒状或いはドラム状の金属コアすなわち本体20aと、本体20aの外周面に固設された複数個のセグメント砥石から成る砥石部20bとを有しており、主軸駆動モータ62により研削ホイール20の回転中心線C1まわりに回転駆動される回転主軸に装着される。 The grinding wheel 20 has a cylindrical or drum-shaped metal core, that is, a main body 20a, and a grindstone portion 20b composed of a plurality of segment grindstones fixed to the outer peripheral surface of the main body 20a. It is mounted on a rotating spindle that is rotationally driven around the rotation center line C1 of the grinding wheel 20.

硬度異常検出装置10は、本体20a内に設けられた、AEセンサ22、プリアンプ24、プリアンプ24により増幅されたAE信号SAEを所定の搬送波を用いて送信する送信回路26、及び、それらの電源として機能する蓄電池44と、位置固定に設けられた、送信回路26から送信されたAE信号SAEを受信するためのアンテナ28を有する受信回路30、バンドパスフィルタ32、復調回路33、A/D変換器34、及び電子制御装置36と、を備えている。 The hardness abnormality detecting device 10 serves as a transmission circuit 26 provided in the main body 20a, which transmits the AE signal SAE amplified by the AE sensor 22, the preamplifier 24, and the preamplifier 24 using a predetermined carrier, and a power source thereof. A receiving circuit 30, a bandpass filter 32, a demodulator circuit 33, and an A / D converter having a functioning storage battery 44 and an antenna 28 for receiving the AE signal SAE transmitted from the transmitting circuit 26, which is provided at a fixed position. 34, and an electronic control device 36.

AEセンサ22は、砥石部20bに含まれる砥粒の破砕時に発生し且つ砥石部20b内を伝播する例えば20kHz以上の超音波領域である極めて周波数の高い破砕振動(acoustic emission)を砥石部20bの内周面から検出し、その破砕振動を表すアナログ信号であるAE信号SAEを出力する。プリアンプ24は、AEセンサ22から出力されたAE信号SAEを増幅する。バンドパスフィルタ32は、受信回路30により受信された搬送波を通過させる所定の通過周波数帯を備える。A/D変換器34は、復調回路33により搬送波から復調されたAE信号SAEをデジタル信号に変換する。電子制御装置36は、デジタル信号に変換されたAE信号SAEを処理し、研削加工工程中に研削ホイール20の砥石部20bの研削点から発生するAE信号SAEに基づいて、焼き入れされた被削材12の硬度異常を判定する。 The AE sensor 22 causes an extremely high frequency crushing vibration (acoustic vibration) of the grindstone portion 20b, which is generated at the time of crushing of the abrasive grains contained in the grindstone portion 20b and propagates in the grindstone portion 20b, for example, in an ultrasonic region of 20 kHz or higher. It detects from the inner peripheral surface and outputs the AE signal SAE, which is an analog signal representing the crushing vibration. The preamplifier 24 amplifies the AE signal SAE output from the AE sensor 22. The bandpass filter 32 includes a predetermined passing frequency band through which the carrier wave received by the receiving circuit 30 is passed. The A / D converter 34 converts the AE signal SAE demodulated from the carrier wave by the demodulation circuit 33 into a digital signal. The electronic control device 36 processes the AE signal SAE converted into a digital signal, and the hardened work piece is based on the AE signal SAE generated from the grinding point of the grindstone portion 20b of the grinding wheel 20 during the grinding process. The hardness abnormality of the material 12 is determined.

A/D変換器34は、高速のサンプリング周期且つ高分解能を有し、例えば10μ秒(マイクロ秒)以下のサンプリング周期、好適には5μ秒以下のサンプリング周期、さらに好適には1μ秒以下のサンプリング周期で、AE信号SAEをデジタル信号に変換する。A/D変換器34のサンプリング周期は、短くなるほど(高速となるほど)、AE信号SAEの周波数解析で得られる周波数スペクトルの波形が明確となる。なお、本実施例では、A/D変換器34のサンプリング周期として1μ秒が用いられている。 The A / D converter 34 has a high-speed sampling cycle and high resolution, for example, a sampling cycle of 10 μsec (microsecond) or less, preferably a sampling cycle of 5 μsec or less, and more preferably 1 μsec or less. The AE signal SAE is converted into a digital signal in a cycle. The shorter the sampling period of the A / D converter 34 (the higher the speed), the clearer the waveform of the frequency spectrum obtained by the frequency analysis of the AE signal SAE. In this embodiment, 1 μsec is used as the sampling period of the A / D converter 34.

研削ホイール20の砥石部20bは、例えば図2に示すように、砥粒38と、それら砥粒38を結合する無機結合材(ビトリファイドボンド)40と、気孔42とから成るよく知られたビトリファイド砥石組織から構成されている。この研削ホイール20の砥石部20bと被削材(ワーク)12との摺接によって、砥粒38自体のクラックCaすなわち破砕の発生に由来すると推定される振動や、砥粒38と被削材12との接触すなわち擦れCbによって発生する摩擦振動或いは弾性振動に由来すると推定される振動が発生し、それらの振動を含む研削振動すなわちAE波が、AEセンサ22によって検出される。 As shown in FIG. 2, for example, the grindstone portion 20b of the grinding wheel 20 is a well-known grindstone composed of abrasive grains 38, an inorganic binder (vitrified bond) 40 for binding the abrasive grains 38, and pores 42. It is composed of organizations. Due to the sliding contact between the grindstone portion 20b of the grinding wheel 20 and the work material (work) 12, vibrations presumed to be caused by crack Ca of the abrasive grains 38 itself, that is, crushing, and the abrasive grains 38 and the work material 12 Vibrations generated by contact with, that is, rubbing Cb, or vibrations presumed to be derived from elastic vibrations are generated, and grinding vibrations including those vibrations, that is, AE waves are detected by the AE sensor 22.

AEセンサ22によって検出されるAE波を周波数解析することにより得られた周波数スペクトルの周波数帯には、砥粒38自体のクラックCaすなわち破砕の発生に由来すると思われる信号強度の山を示す25~40kHzの第1周波数帯B1と、砥粒38と被削材12との接触すなわち擦れCbによって発生する摩擦振動或いは弾性振動に由来すると思われる信号強度の山を示す45~65kHzの第2周波数帯B2とが観察される。そして、上記第2周波数帯B2内には、被削材12の焼入硬度に比較的敏感に対応して強度変化する小領域である特定周波数帯SHFRが存在することが見出された。上記の特定周波数帯SHFRは予め実験的に設定される。この特定周波数帯SHFR内の振動強度積分値IVSに基づいて研削加工中の被削材12の硬度すなわち焼入状態が正常であるか異常であるかの判定が可能となるので、被削材12の硬度異常検出工程を独立に設ける必要がなくなる。 In the frequency band of the frequency spectrum obtained by frequency analysis of the AE wave detected by the AE sensor 22, crack Ca of the abrasive grains 38 itself, that is, a peak of signal strength considered to be derived from the occurrence of crushing is shown in 25 to 25. The first frequency band B1 of 40 kHz and the second frequency band of 45 to 65 kHz showing the peak of the signal strength considered to be derived from the frictional vibration or elastic vibration generated by the contact between the abrasive grains 38 and the work material 12, that is, the rubbing Cb. B2 is observed. Then, it was found that a specific frequency band SHFR, which is a small region in which the strength changes relatively sensitively to the quenching hardness of the work material 12, exists in the second frequency band B2. The above specific frequency band SHFR is set experimentally in advance. Based on the vibration intensity integral value IVS in this specific frequency band SHFR, it is possible to determine whether the hardness of the work material 12 being ground, that is, the quenching state is normal or abnormal, so that the work material 12 can be determined. It is not necessary to independently provide a hardness abnormality detection step.

図1の電子制御装置36は、CPU、ROM、RAM、インターフェースなどを含む所謂マイクロコンピュータであって、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って入力信号を処理することにより、研削加工中の被削材12の硬度を判定するための硬度異常判定閾値HATHを予め求め、その硬度異常判定閾値HATHと研削加工中に実際に測定した特定周波数帯SHFR内の振動強度積分値IVSとに基づいて、被削材12の硬度異常を判定し、判定結果を表示装置48に表示させるともに、研削制御装置72へ送信する。 The electronic control device 36 of FIG. 1 is a so-called microcomputer including a CPU, ROM, RAM, interface, etc., and the CPU processes an input signal according to a program stored in advance in the ROM while using the temporary storage function of the RAM. As a result, the hardness abnormality determination threshold HATH for determining the hardness of the work material 12 during grinding is obtained in advance, and the hardness abnormality determination threshold HATH and the vibration intensity in the specific frequency band SHFR actually measured during grinding are obtained. Based on the integrated value IVS, the hardness abnormality of the work material 12 is determined, the determination result is displayed on the display device 48, and is transmitted to the grinding control device 72.

電子制御装置36は、周波数解析部50、振動強度積分値算出部52、硬度異常判定部54、及び、近似関係式生成部56を有する閾値決定部58を、機能的に備えている。 The electronic control device 36 functionally includes a frequency analysis unit 50, a vibration intensity integral value calculation unit 52, a hardness abnormality determination unit 54, and a threshold value determination unit 58 having an approximate relational expression generation unit 56.

周波数解析部50は、研削ホイール20による被削材12の研削加工中において、A/D変換器34から入力されたAE信号SAEの周波数解析(FFT解析)を所定の解析周期毎に連続的に行なって、振動強度値(パワー)Irを示す縦軸と周波数を示す横軸との二次元座標において、周波数成分の大きさを示す振動強度値を周波数毎にピーク波形で周波数軸(横軸)上に示す周波数スペクトルを生成する。後述の図5は、その周波数スペクトルの一例を示している。 During the grinding process of the work material 12 by the grinding wheel 20, the frequency analysis unit 50 continuously performs frequency analysis (FFT analysis) of the AE signal SAE input from the A / D converter 34 at predetermined analysis cycles. In the two-dimensional coordinates of the vertical axis indicating the vibration intensity value (power) Ir and the horizontal axis indicating the frequency, the vibration intensity value indicating the magnitude of the frequency component is calculated as a peak waveform for each frequency on the frequency axis (horizontal axis). Generate the frequency spectrum shown above. FIG. 5, which will be described later, shows an example of the frequency spectrum.

振動強度積分値算出部52は、周波数解析部50により周波数解析された周波数スペクトル中の第2周波数帯B2(45~65kHz)内に含まれる、被削材12の硬度に応じて比較的敏感に強度変化する小領域である特定周波数帯SHFR内の振動強度値Irを前記所定の解析周期毎に積分演算することにより、振動強度積分値IVSを逐次算出する。上記の振動強度積分値IVSは、上記周波数スペクトルの特定周波数帯SHFR内の各周波数における振幅の実効値である振動強度値Irを、特定周波数帯SHFRの周波数区間内において周波数軸に対して積分した値である。 The vibration intensity integral value calculation unit 52 is relatively sensitive to the hardness of the work material 12 contained in the second frequency band B2 (45 to 65 kHz) in the frequency spectrum analyzed by the frequency analysis unit 50. The vibration intensity integrated value IVS is sequentially calculated by integrating the vibration intensity value Ir in the specific frequency band SHFR, which is a small region where the intensity changes, at each predetermined analysis cycle. In the vibration intensity integrated value IVS, the vibration intensity value Ir, which is an effective value of the amplitude at each frequency in the specific frequency band SHFR of the frequency spectrum, is integrated with respect to the frequency axis in the frequency section of the specific frequency band SHFR. The value.

硬度異常判定部54は、研削加工中の被削材12について実際に測定された振動強度積分値IVSと予め設定された硬度異常判定閾値HATHとに基づいて研削加工中の被削材12の硬度異常を判定する。 The hardness abnormality determination unit 54 determines the hardness of the work material 12 being ground based on the vibration intensity integral value IVS actually measured for the work material 12 being ground and the preset hardness abnormality determination threshold HATH. Judge an abnormality.

閾値決定部58は、正常な焼入れが施された被削材12についての研削加工の累積研削断面積SGと、正常な焼入れが施された被削材12について測定した振動強度積分値IVSとの間の近似関係式(1)を求める近似関係式生成部56を有し、近似関係式(1)から求めた振動強度積分値の期待値IVS1の平均値(正常な焼入硬度に対応する振動強度積分値の1カット分の平均値)の所定割合、例えば2.5~5%の値を、硬度異常判定閾値HATHとして決定する。近似関係式(1)は、例えば59.0~61.0kHzの特定周波数帯SHFRにおける振動強度積分値IVSを、後述の図7に示すように、正常な焼入硬度の被削材12から得られた累積研削断面積毎に示す黒丸印の値を対数近似して得た式である。 The threshold determination unit 58 includes the cumulative ground cross-sectional area SG of the grinding process for the normally hardened work material 12 and the vibration intensity integrated value IVS measured for the normally hardened work material 12. It has an approximate relational expression generation unit 56 for obtaining the approximate relational expression (1) between them, and has an average value of the expected value IVS1 of the integral value of the vibration intensity obtained from the approximate relational expression (1) (vibration corresponding to normal quenching hardness). A predetermined ratio (for example, a value of 2.5 to 5%) of (the average value for one cut of the intensity integral value) is determined as the hardness abnormality determination threshold HATH. In the approximate relational expression (1), for example, the vibration intensity integrated value IVS in the specific frequency band SHFR of 59.0 to 61.0 kHz is obtained from the work material 12 having a normal quenching hardness as shown in FIG. 7 described later. It is an equation obtained by logarithmically approximating the values of the black circles shown for each cumulative grinding cross-sectional area obtained.

y=-452.2ln(x)+6288.3 ・・・(1)
ここで、yは縦軸の変数である振動強度積分値IVSを表し、xは横軸の変数である累積研削断面積SG(mm)を表している。
y = -452.2ln (x) +6288.3 ... (1)
Here, y represents the vibration intensity integrated value IVS, which is a variable on the vertical axis, and x represents the cumulative grinding cross-sectional area SG (mm 2 ), which is a variable on the horizontal axis.

硬度異常判定部54は、予め設定された振動強度積分値の期待値IVS1の平均値(被削材12の1カット分の平均値)と研削加工中に実際に測定された振動強度積分値IVSの平均値(被削材12の1カット分の平均値)との差分値ΔIVSが、硬度異常判定閾値HATH以上であれば研削加工中の被削材12の硬度は正常であると判定するが、硬度異常判定閾値HATHを下まわると、研削加工中の被削材12の硬度は異常であると判定する。 The hardness abnormality determination unit 54 has an average value of the expected value IVS1 of the preset vibration intensity integrated value (an average value for one cut of the work material 12) and the vibration intensity integrated value IVS actually measured during the grinding process. If the difference value ΔIVS from the average value of (the average value of one cut of the work material 12) is equal to or higher than the hardness abnormality determination threshold HATH, it is determined that the hardness of the work material 12 being ground is normal. When the hardness falls below the hardness abnormality determination threshold HATH, it is determined that the hardness of the work material 12 during the grinding process is abnormal.

研削制御装置72は、電子制御装置36と同様のマイクロコンピュータから構成されており、研削自動制御部74及びツルーイング制御部76を機能的に備えている。研削自動制御部74は、研削開始指令信号を受けると、予め設定された動作で研削ホイール20及び被削材12をそれぞれ回転駆動しつつ相対移動させることで被削材12を研削し、被削材12の研削が完了すると研削ホイール20及び被削材12の回転を停止させるとともに原位置へ戻す。また、研削制御装置72は、電子制御装置36から被削材12の硬度異常の判定を表す信号を受けた場合は、研削自動制御部74に研削加工を直ちに停止させ、原位置へ戻す。 The grinding control device 72 is composed of a microcomputer similar to the electronic control device 36, and functionally includes an automatic grinding control unit 74 and a growing control unit 76. Upon receiving the grinding start command signal, the automatic grinding control unit 74 grinds the work material 12 by relatively moving the grinding wheel 20 and the work material 12 while rotationally driving them in a preset operation to grind the work material 12. When the grinding of the material 12 is completed, the rotation of the grinding wheel 20 and the work material 12 is stopped and returned to the original position. Further, when the grinding control device 72 receives a signal from the electronic control device 36 indicating the determination of the hardness abnormality of the work material 12, the automatic grinding control unit 74 immediately stops the grinding process and returns it to the original position.

研削制御装置72は、例えば研削累積時間が予め設定されたツルーイング開始条件(ツルーイング周期)に到達したか否かを判定し、前記研削累積時間がツルーイング開始条件に到達したと判定すると、ツルーイング制御部76にツルーイングを開始させる指令を出力する。ツルーイング制御部76は、トラバースによるツルーイングの場合は、ツルーイング工具として用いるロータリドレッサ46を、研削ホイール20の円柱状の砥石部20bの外周面に予め設定された切込量で切り込ませ且つ研削ホイール20の回転中心線C1に平行に走査させ、研削制御装置72からツルーイング完了判定出力を受けるまで、この動作を繰り返し実行させる。 The grinding control device 72 determines, for example, whether or not the cumulative grinding time has reached the preset true-toothing start condition (truing cycle), and if it is determined that the cumulative grinding time has reached the true-toothing start condition, the grinding control unit 72 determines. Outputs a command to 76 to start growing. In the case of true troughing by traverse, the trueuing control unit 76 cuts the rotary dresser 46 used as a trueuing tool into the outer peripheral surface of the cylindrical grindstone portion 20b of the grinding wheel 20 with a preset depth of cut, and the grinding wheel. It is scanned in parallel with the rotation center line C1 of 20 and this operation is repeatedly executed until the grinding completion determination output is received from the grinding control device 72.

図3は、電子制御装置36の制御作動の要部を説明するフローチャートである。図3のステップS1(以下、ステップを省略する)では、硬度異常判定閾値HATHが設定済であるか否かが判断される。 FIG. 3 is a flowchart illustrating a main part of the control operation of the electronic control device 36. In step S1 of FIG. 3 (hereinafter, the step is omitted), it is determined whether or not the hardness abnormality determination threshold value HATH has been set.

このS1の判断が肯定される場合はS4以下が実行されるが、否定される場合は、近似関係式生成部56に対応するS2において、前述の様に、正常な焼入れが施された被削材12から得られた周波数スペクトルから、59.0~61.0kHzの特定周波数帯SHFRにおける、累積研削断面積に対する振動強度積分値IVSの値を対数近似して得た対数近似式である近似関係式(1)が作成される。 If the judgment of S1 is affirmed, S4 or less is executed, but if it is denied, the work that has been normally hardened as described above in S2 corresponding to the approximate relational expression generation unit 56. Approximation relationship which is a logarithmic approximation formula obtained by logarithmically approximating the value of the vibration intensity integral value IVS with respect to the cumulative grinding cross-sectional area in the specific frequency band SHFR of 59.0 to 61.0 kHz from the frequency spectrum obtained from the material 12. Equation (1) is created.

次に、閾値決定部58に対応するS3では、研削ホイール20による被削材12についての研削加工の累積研削断面積SGと、正常な焼入れが施された被削材12について測定した振動強度積分値IVSとの間の近似関係式(1)が求められ、近似関係式(1)から求めた振動強度積分値すなわち振動強度積分値の期待値IVS1の平均値(正常な焼入硬度に対応する振動強度積分値の目標値の1カット分の平均値)の所定割合例えば2.5、3、4、5等の2.5~5%の値が、硬度異常判定閾値HATHとして決定される。 Next, in S3 corresponding to the threshold determination unit 58, the cumulative grinding cross-sectional area SG of the grinding process for the work material 12 by the grinding wheel 20 and the vibration intensity integration measured for the work material 12 that has been normally quenched. An approximate relational expression (1) with the value IVS is obtained, and the vibration intensity integrated value obtained from the approximate relational expression (1), that is, the expected value of the vibration intensity integrated value, the average value of IVS1 (corresponding to the normal quenching hardness). A predetermined ratio (the average value of one cut of the target value of the vibration intensity integrated value), for example, 2.5 to 5% such as 2.5, 3, 4, 5, etc., is determined as the hardness abnormality determination threshold HATH.

続く、研削加工工程に対応するS4では、研削ホイール20による被削材12に対する研削加工すなわち研削加工工程が開始される。 In S4 corresponding to the subsequent grinding process, the grinding process of the work material 12 by the grinding wheel 20, that is, the grinding process is started.

次に、S5では、研削加工中にAEセンサ22から出力され且つA/D変換器34によりA/D変換された、研削加工時のAE信号SAEが読み込まれる。 Next, in S5, the AE signal SAE at the time of grinding, which is output from the AE sensor 22 during the grinding process and A / D converted by the A / D converter 34, is read.

周波数解析部50に対応するS6では、A/D変換器34から入力されたAE信号SAEの周波数解析(FFT解析)を所定の解析周期毎に連続的に行なって、振動強度(パワー)を示す縦軸と周波数を示す横軸との二次元座標において、周波数成分の大きさを示す振動強度を周波数毎にピーク波形で周波数軸(横軸)上に、後述の図5に示すような周波数スペクトルが生成される。 In S6 corresponding to the frequency analysis unit 50, the frequency analysis (FFT analysis) of the AE signal SAE input from the A / D converter 34 is continuously performed at predetermined analysis cycles to show the vibration intensity (power). In the two-dimensional coordinates of the vertical axis and the horizontal axis indicating the frequency, the vibration intensity indicating the magnitude of the frequency component is expressed as a peak waveform for each frequency on the frequency axis (horizontal axis), and the frequency spectrum as shown in FIG. 5 described later. Is generated.

振動強度積分値算出部52に対応するS7では、S6における周波数解析により生成された周波数スペクトル中の第2周波数帯B2(45~65kHz)内に含まれる、被削材12の硬度に応じて比較的敏感に強度変化する予め定められた小領域である特定周波数帯SHFR(好適には59~61kHz)内の各周波数における振動強度値Irを示す振幅の実効値を、前記所定の解析周期毎に積分演算することにより、振動強度積分値IVSが、逐次算出される。 In S7 corresponding to the vibration intensity integrated value calculation unit 52, comparison is made according to the hardness of the work material 12 contained in the second frequency band B2 (45 to 65 kHz) in the frequency spectrum generated by the frequency analysis in S6. The effective value of the amplitude indicating the vibration intensity value Ir at each frequency in the specific frequency band SHFR (preferably 59 to 61 kHz), which is a predetermined small region where the intensity changes sensitively, is determined for each predetermined analysis cycle. By performing the integral calculation, the vibration intensity integrated value IVS is sequentially calculated.

硬度異常判定部54或いは硬度異常判定工程に対応するS8では、研削加工終了時において、研削加工中の被削材12について実際に測定された振動強度積分値IVSの1カット分の平均値が算出される。 In the hardness abnormality determination unit 54 or S8 corresponding to the hardness abnormality determination step, the average value of one cut of the vibration intensity integrated value IVS actually measured for the work material 12 being ground is calculated at the end of the grinding process. Will be done.

次いで、硬度異常判定部54或いは硬度異常判定工程に対応するS9では、実際に測定された振動強度積分値IVSの1カット分の平均値と、予め設定された硬度異常判定閾値HATHと、に基づいて研削加工中の被削材12の硬度異常が判定される。すなわち、予め設定された振動強度積分値の期待値IVS1の平均値(被削材12の1カット分の平均値)と研削加工中に実際に測定された振動強度積分値IVSの平均値(被削材12の1カット分の平均値)との差分値ΔIVSが、硬度異常判定閾値HATH以上であるか否かが判断される。差分値ΔIVSが硬度異常判定閾値HATH以上であれば、研削加工された被削材12の硬度は正常(合格)であると判定されるが、差分値ΔIVSが硬度異常判定閾値HATHを下まわると、研削加工された被削材12の硬度は異常であると判定される。 Next, in the hardness abnormality determination unit 54 or S9 corresponding to the hardness abnormality determination step, the average value for one cut of the actually measured vibration intensity integrated value IVS and the preset hardness abnormality determination threshold HATH are used. It is determined that the hardness of the work material 12 during the grinding process is abnormal. That is, the average value of the expected value IVS1 of the preset vibration intensity integrated value (the average value of one cut of the work material 12) and the average value of the vibration intensity integrated value IVS actually measured during the grinding process (subject). It is determined whether or not the difference value ΔIVS from the average value for one cut of the cutting material 12 is equal to or higher than the hardness abnormality determination threshold HATH. If the difference value ΔIVS is equal to or higher than the hardness abnormality determination threshold HATH, it is determined that the hardness of the ground work material 12 is normal (pass), but if the difference value ΔIVS is lower than the hardness abnormality determination threshold HATH. , The hardness of the ground work material 12 is determined to be abnormal.

差分値ΔIVSが硬度異常判定閾値HATHを下まわることでS9の判断が否定された場合は、S10において、被削材12の硬度異常すなわち焼入異常であることを示すアラートが出力されるとともに、研削加工された被削材12が硬度異常品であることを示すマーキングが施されるか、或いは硬度異常品を収容する箱に選別されるとともに、次の被削材12についてS1以下が実行される。また、差分値ΔIVSが硬度異常判定閾値HATH以上であることでS9の判断が肯定された場合は、研削加工された被削材12が硬度正常品を収容する箱に選別され、以後の工程へ流されるとともに、次の被削材12についてS1以下が実行される。 If the judgment of S9 is denied because the difference value ΔIVS falls below the hardness abnormality determination threshold HATH, an alert indicating that the work material 12 has an abnormality in hardness, that is, an abnormality in quenching is output in S10, and an alert is output. The ground work material 12 is marked to indicate that it is an abnormal hardness product, or is sorted into a box for accommodating the abnormal hardness product, and S1 or less is executed for the next work material 12. To. If the determination of S9 is affirmed because the difference value ΔIVS is equal to or higher than the hardness abnormality determination threshold value HATH, the ground work material 12 is sorted into a box for accommodating a product having normal hardness, and the process proceeds to the subsequent steps. At the same time as being washed away, S1 or less is executed for the next work material 12.

本発明者等は、正常な硬度を有する被削材(焼入鋼)と異常な硬度を有する被削材(焼入鋼)とを用意し、以下の研削試験条件で研削を行なったときにAE信号SAEを測定し、そのAE信号SAEの解析を行なった。 The present inventors prepare a work material having a normal hardness (hardened steel) and a work material having an abnormal hardness (hardened steel), and when grinding is performed under the following grinding test conditions. The AE signal SAE was measured and the AE signal SAE was analyzed.

(研削試験条件)
研削ホイールスペック:CB 80 N V
(外径409mm×厚み30mm×内径127mm)
研削方式 :湿式プランジ研削
砥石周速度 :2700m/min(2122rpm)
被削材周速度 :0.45m/sec
被削材 :SCM435
切込速度 :R0.8mm/min
取り代 :研削代断面積で80mm相当
スパークアウト :10rev
カット数 :60カット
研削油 :SEC700(×50)
研削油流量 :20L/min
ドレッサスペック :SD 40 Q 75 MW7
(直径100mm×砥石層厚み1mm)
ドレス周速 :45m/sec
ドレスリード :0.10mm/r.o.w.
ドレス切込量 :R0.002mm/pass×10pass
(Grinding test conditions)
Grinding wheel specs: CB 80 NV
(Outer diameter 409 mm x Thickness 30 mm x Inner diameter 127 mm)
Grinding method: Wet plunge grinding wheel Circumferential speed: 2700 m / min (2122 rpm)
Work material peripheral speed: 0.45 m / sec
Work material: SCM435
Cutting speed: R0.8mm / min
Replacement allowance: 80 mm in cross-sectional area of grinding allowance Spark out: 10 rev
Number of cuts: 60 cuts Grinding oil: SEC700 (× 50)
Grinding oil flow rate: 20 L / min
Dresser spec: SD 40 Q 75 MW7
(Diameter 100 mm x grindstone layer thickness 1 mm)
Dress peripheral speed: 45m / sec
Dress lead: 0.10 mm / r. o. w.
Dress cut amount: R0.002mm / pass x 10 pass

本発明者等は、上記研削試験に用いた正常な硬度を有する被削材12及び異常な硬度を有する被削材12のビッカース硬度HV(JIS Z 2244:2009)を測定した。図4は、それら測定されたビッカース硬度HVを対比可能に示す棒グラフである。正常な硬度を有する被削材12のビッカース硬度HVは537程度であり、異常な硬度を有する被削材12のビッカース硬度HVは533程度であった。このビッカース硬度HVの測定では、10Kgfの押込み荷重が用いられた。上述の正常な焼入れが施された被削材12とは、正常な(焼入)硬度を有する被削材12を意味しており、正常な硬度とは、予め設定された正常な硬度範囲例えばHV534以上の範囲の硬度を意味し、異常な硬度とは、正常な硬度を下回る範囲の硬度を意味している。 The present inventors measured the Vickers hardness HV (JIS Z 2244: 2009) of the work material 12 having a normal hardness and the work material 12 having an abnormal hardness used in the above-mentioned grinding test. FIG. 4 is a bar graph showing the measured Vickers hardness HV in a contrastable manner. The Vickers hardness HV of the work material 12 having a normal hardness was about 537, and the Vickers hardness HV of the work material 12 having an abnormal hardness was about 533. In this measurement of Vickers hardness HV, a pushing load of 10 kgf was used. The above-mentioned normally hardened work material 12 means a work material 12 having a normal (quenched) hardness, and the normal hardness is a preset normal hardness range, for example. It means the hardness in the range of HV534 or more, and the abnormal hardness means the hardness in the range below the normal hardness.

図5は、正常な硬度を有する被削材12に対して上記研削試験条件を用いて研削したときに得られたAE信号SAEを周波数解析することにより得られた周波数スペクトルを示している。 FIG. 5 shows a frequency spectrum obtained by frequency analysis of an AE signal SAE obtained when a work material 12 having a normal hardness is ground using the above grinding test conditions.

次に、本発明者等は、正常な硬度を有する被削材12及び異常な硬度を有する被削材12を交互に研削加工したとき、被削材12の硬さの影響を受け易いと思われる図5の第2周波数帯B2内において被削材硬度に高感度で変動する特定周波数帯SHFRを見出すために、第2周波数帯B2内の複数の主なピークを含む53.5Hz~56.0Hzの「第1小領域F1」、57.0Hz~58.5Hzの「第2小領域F2」、59.0Hz~61.0Hzの「第3小領域F3」、62.0Hz~63.0Hzの「第4小領域F4」を設定した。 Next, the present inventors consider that when the work material 12 having a normal hardness and the work material 12 having an abnormal hardness are alternately ground, they are easily affected by the hardness of the work material 12. In order to find a specific frequency band SHFR that fluctuates with high sensitivity to the hardness of the work material in the second frequency band B2 of FIG. 5, 53.5 Hz to 56. Including a plurality of main peaks in the second frequency band B2. 0 Hz "first small region F1", 57.0 Hz to 58.5 Hz "second small region F2", 59.0 Hz to 61.0 Hz "third small region F3", 62.0 Hz to 63.0 Hz The "fourth small area F4" was set.

そして、正常な硬度を有する被削材12及び異常な硬度を有する被削材12を研削加工時の振動強度値Irの実測値から、正常な硬度を有する被削材12の振動強度積分値IVS及び異常な硬度を有する被削材12の振動強度積分値IVSを、上記の4つの小領域毎に、累積研削断面積SG(mm)の増加に伴って繰り返し算出し、図6に示す、累積研削断面積SGを表す横軸と振動強度積分値IVSを表す縦軸とから成る二次元座標に示した。図6において、正常な硬度を有する被削材12の振動強度積分値IVSと異常な硬度を有する被削材12の振動強度積分値IVSとの差が最も大きいのは、4つの小領域のうちの59.0Hz~61.0Hzの第3小領域F3であった。 Then, from the measured value of the vibration strength value Ir at the time of grinding the work material 12 having a normal hardness and the work material 12 having an abnormal hardness, the vibration strength integrated value IVS of the work material 12 having a normal hardness. And the vibration intensity integrated value IVS of the work material 12 having an abnormal hardness was repeatedly calculated for each of the above four small regions as the cumulative grinding cross-sectional area SG (mm 2 ) increased, and is shown in FIG. It is shown in two-dimensional coordinates consisting of a horizontal axis representing the cumulative grinding cross-sectional area SG and a vertical axis representing the vibration intensity integrated value IVS. In FIG. 6, the difference between the vibration intensity integrated value IVS of the work material 12 having normal hardness and the vibration intensity integrated value IVS of the work material 12 having abnormal hardness is the largest among the four small regions. It was the third small region F3 of 59.0 Hz to 61.0 Hz.

図7は、59.0Hz~61.0Hzの第3小領域F3における、正常な硬度を有する被削材12の振動強度積分値IVSを黒丸印にて示し、異常な硬度を有する被削材12の振動強度積分値IVSを白丸印にて示している。上記振動強度積分値IVSの累積研削断面積SGに対する変化は対数曲線に近似しているので、累積研削断面積SGをxとし、黒丸印にて示された正常な硬度を有する被削材12の振動強度積分値IVSをyとすると、累積研削断面積SGと振動強度積分値IVSとの関係は、前記(1)式に示す近似関係式で示される。 In FIG. 7, the integrated vibration intensity IVS of the work material 12 having normal hardness in the third small region F3 of 59.0 Hz to 61.0 Hz is indicated by a black circle, and the work material 12 having abnormal hardness is shown. The vibration intensity integrated value IVS of is indicated by a white circle. Since the change of the vibration intensity integral value IVS with respect to the cumulative grinding cross-sectional area SG is close to the logarithmic curve, the cumulative grinding cross-sectional area SG is defined as x, and the work material 12 having the normal hardness indicated by the black circle is used. Assuming that the vibration intensity integrated value IVS is y, the relationship between the cumulative grinding cross-sectional area SG and the vibration intensity integrated value IVS is shown by the approximate relational expression shown in the above equation (1).

図8は、近似関係式(1)から得られた59.0Hz~61.0Hzの第3小領域F3における、振動強度積分値の期待値(正常な硬度を有する被削材12の振動強度積分値IVSの目標値)IVS1と正常な硬度を有する被削材12から得られた振動強度積分値IVSの実測値との差分値(期待値-実測値)ΔIVSnを黒丸印にて示し、振動強度積分値の期待値IVS1と異常な硬度を有する被削材12から得られた振動強度積分値IVSの実測値との差分値(期待値-実測値)ΔIVSaを白丸印にて示している。また、図8の破線は、異常な硬度の被削材12を区別する仮の閾値であって、振動強度積分値の期待値(正常な硬度を有する被削材12の振動強度積分値IVSの目標値)IVS1の所定割合例えば2.5%の値を負側に示している。 FIG. 8 shows the expected value of the integral value of the vibration intensity (integration of the vibration intensity of the work material 12 having normal hardness) in the third small region F3 of 59.0 Hz to 61.0 Hz obtained from the approximate relational expression (1). Value IVS target value) Difference value (expected value-measured value) ΔIVSn between IVS1 and the measured value of the integral value IVS of the vibration intensity obtained from the work material 12 having normal hardness is indicated by a black circle and the vibration strength. The difference value (expected value-measured value) ΔIVSa between the expected integrated value IVS1 and the measured value of the vibration intensity integrated value IVS obtained from the work material 12 having an abnormal hardness is indicated by a white circle. Further, the broken line in FIG. 8 is a tentative threshold value for distinguishing the work material 12 having an abnormal hardness, and is an expected value of the integrated vibration strength value (the integrated vibration strength IVS of the work material 12 having a normal hardness). Target value) A predetermined ratio of IVS1, for example, a value of 2.5% is shown on the negative side.

図8から明らかなように、振動強度積分値の期待値IVS1と異常な硬度を有する被削材12から得られた振動強度積分値IVSの実測値との差分値ΔIVSaを示す白丸印のうちの90%は上記破線で示される閾値を下回っていて、異常判定を示す破線の丸印により囲まれている。このことから、振動強度積分値の期待値(正常な硬度を有する被削材12の振動強度積分値の目標値)IVS1、振動強度積分値の期待値IVS1と異常な硬度を有する被削材12から得られた振動強度積分値IVSの実測値との差分値(期待値-実測値)ΔIVSaについて、1カット(1回の研削加工)分の平均値を用いることで、確実に被削材12の硬度異常が検出可能となる。 As is clear from FIG. 8, among the white circles indicating the difference value ΔIVSa between the expected value IVS of the integrated vibration intensity value and the measured value of the integrated vibration intensity IVS obtained from the work material 12 having an abnormal hardness. 90% is below the threshold indicated by the broken line, and is surrounded by a circle with a broken line indicating an abnormality determination. From this, the expected value of the integral value of vibration intensity (the target value of the integral value of vibration intensity of the work material 12 having normal hardness) IVS1, the expected value of the integral value of vibration intensity IVS1, and the work material 12 having abnormal hardness. By using the average value for one cut (one grinding process) for the difference value (expected value-measured value) ΔIVSa from the measured value of the vibration intensity integrated value IVS obtained from the above, the work material 12 is surely used. Hardness abnormality can be detected.

上述のように、本実施例の硬度異常検出装置10及び硬度異常検出方法によれば、硬度異常判定部54或いは硬度異常判定工程において、研削加工工程中に研削ホイール20の研削点から発生するAE信号SAEに基づいて、焼き入れされた被削材12の硬度異常が判定されるので、被削材12の硬度異常について、検査工程を設けることなく全数の被削材12を検査でき、研削加工後の被削材12の信頼性を高めることができる。 As described above, according to the hardness abnormality detecting device 10 and the hardness abnormality detecting method of the present embodiment, the AE generated from the grinding point of the grinding wheel 20 during the grinding process in the hardness abnormality determination unit 54 or the hardness abnormality determination step. Since the hardness abnormality of the hardened work material 12 is determined based on the signal SAE, all the work materials 12 can be inspected for the hardness abnormality of the work material 12 without providing an inspection step, and the grinding process can be performed. The reliability of the later work material 12 can be improved.

また、本実施例の硬度異常検出装置10及び硬度異常検出方法によれば、硬度異常判定部54或いは硬度異常判定工程により硬度異常でないと判定される場合には、研削加工された被削材12は研削加工工程の次の工程へ流されるが、硬度異常判定部54或いは硬度異常判定工程により硬度異常であると判定される場合には、研削加工された被削材12は研削加工工程の次の工程へ流されないことから、不良品の被削材12が後工程へ流れることが防止されるので、後工程の工数の無駄を解消できる。 Further, according to the hardness abnormality detection device 10 and the hardness abnormality detection method of the present embodiment, when it is determined by the hardness abnormality determination unit 54 or the hardness abnormality determination step that the hardness is not abnormal, the ground work material 12 Is sent to the next step of the grinding process, but if it is determined by the hardness abnormality determination unit 54 or the hardness abnormality determination step that the hardness is abnormal, the ground work material 12 is next to the grinding process. Since the defective work material 12 is prevented from flowing to the subsequent process, it is possible to eliminate the waste of manpower in the subsequent process.

また、本実施例の硬度異常検出装置10及び硬度異常検出方法によれば、焼き入れされた被削材12の研削加工中に研削ホイール(研削砥石)20の研削点から発生するAE信号SAEを検出するAEセンサ22と、10μsec以下のサンプリング周期のA/D変換器34を用いてデジタル化したAE信号SAEを周波数解析する周波数解析部50と、周波数解析部50により周波数解析された周波数スペクトル中の45kHz以上65kHz以下の第2周波数帯B2に含まれる、被削材12の硬度に応じて強度変化する特定周波数帯SHFR内の振動強度値Irを積分演算することにより振動強度積分値IVSを算出する振動強度積分値算出部52と、被削材12について研削加工中に実際に測定された振動強度積分値IVSと予め設定された硬度異常判定閾値HATHとに基づいて被削材12の硬度異常を判定する硬度異常判定部54と、を含む。これにより、焼き入れされた被削材12の研削加工工程においてその被削材12の硬度異常を検出することができるので、被削材12の硬度異常について、検査工程を設けることなく全数の被削材12を検査でき、研削加工後の被削材12の信頼性を高めることができる。 Further, according to the hardness abnormality detecting device 10 and the hardness abnormality detecting method of the present embodiment, the AE signal SAE generated from the grinding point of the grinding wheel (grinding grindstone) 20 during the grinding process of the hardened work material 12 is generated. In the frequency analysis unit 50 for frequency analysis of the AE signal SAE digitized by using the AE sensor 22 to be detected and the A / D converter 34 with a sampling period of 10 μsec or less, and the frequency spectrum analyzed by the frequency analysis unit 50. The vibration intensity integrated value IVS is calculated by integrating the vibration intensity value Ir in the specific frequency band SHFR whose strength changes according to the hardness of the work material 12, which is included in the second frequency band B2 of 45 kHz or more and 65 kHz or less. Vibration intensity integrated value calculation unit 52, vibration intensity integrated value IVS actually measured during grinding of the work material 12, and hardness abnormality determination threshold HATH set in advance, the hardness abnormality of the work material 12 The hardness abnormality determination unit 54 for determining the above is included. As a result, it is possible to detect an abnormality in the hardness of the work material 12 in the grinding process of the hardened work material 12, so that the entire number of objects to be subjected to the hardness abnormality of the work material 12 can be covered without providing an inspection process. The work material 12 can be inspected, and the reliability of the work material 12 after grinding can be improved.

また、本実施例の硬度異常検出装置10及び硬度異常検出方法によれば、正常な焼入れが施された被削材12についての研削加工の累積研削断面積SG(mm)と正常な焼入れが施された被削材12について測定した振動強度積分値IVSとの間の近似関係式(1)を求める近似関係式生成部56を有し、近似関係式(1)から求めた振動強度積分値期待値IVS1の所定割合の値を、硬度異常判定閾値HATHとして決定する閾値決定部58を、備える。このことから、硬度異常判定閾値HATHが、近似関係式(1)から求めた振動強度積分値期待値IVS1の所定割合の値として決定されるので、被削材12の硬度異常判定が正確となる。 Further, according to the hardness abnormality detecting device 10 and the hardness abnormality detecting method of this embodiment, the cumulative grinding cross-sectional area SG (mm 2 ) and the normal quenching of the work material 12 which has been normally quenched can be obtained. It has an approximate relational expression generation unit 56 for obtaining an approximate relational expression (1) with the vibration intensity integrated value IVS measured for the applied work material 12, and an approximate vibration intensity integrated value obtained from the approximate relational expression (1). A threshold determination unit 58 for determining a predetermined ratio of the expected value IVS1 as a hardness abnormality determination threshold HATH is provided. From this, since the hardness abnormality determination threshold value HATH is determined as a value of a predetermined ratio of the expected value IVS1 of the vibration intensity integral value obtained from the approximate relational expression (1), the hardness abnormality determination of the work material 12 becomes accurate. ..

また、本実施例の硬度異常検出装置10及び硬度異常検出方法によれば、硬度異常判定部54は、予め設定された振動強度積分値期待値IVS1と焼き入れされた被削材12について研削加工中に実際に測定された振動強度積分値IVSとの差分値ΔIVSが、硬度異常判定閾値HATHを下回ることに基づいて、焼き入れされた被削材12の硬度異常を判定する。このように、被削材12の硬度異常が、振動強度積分値期待値IVS1と実際に測定された振動強度積分値IVSとの差分値ΔIVSが硬度異常判定閾値HATHを下回ることに基づいて行なわれるので、累積研削断面積毎に振動強度積分値期待値IVS1がばらついても、被削材12の硬度異常判定が正確となる。 Further, according to the hardness abnormality detection device 10 and the hardness abnormality detection method of the present embodiment, the hardness abnormality determination unit 54 grinds the hardened work material 12 and the preset vibration intensity integrated value expected value IVS1. Based on the fact that the difference value ΔIVS from the vibration intensity integrated value IVS actually measured therein is lower than the hardness abnormality determination threshold HATH, the hardness abnormality of the hardened work material 12 is determined. As described above, the hardness abnormality of the work material 12 is performed based on the difference value ΔIVS between the expected vibration intensity integrated value IVS1 and the actually measured vibration intensity integrated value IVS being lower than the hardness abnormality determination threshold HATH. Therefore, even if the expected value IVS1 of the vibration intensity integral value varies for each cumulative grinding cross-sectional area, the hardness abnormality determination of the work material 12 is accurate.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is also applicable to other aspects.

例えば、前述の実施例の硬度異常検出装置10は、硬度異常判定閾値HATHを決定する閾値決定部58を備えていたが、閾値決定部58の機能を備えた他の制御装置において予め決定された硬度異常判定閾値HATHが硬度異常検出作動に先立って入力され、その入力された硬度異常判定閾値HATHを用いて硬度異常を判定するものであってもよい。この場合には、硬度異常検出装置10は、閾値決定部58を備えなくてもよい。 For example, the hardness abnormality detecting device 10 of the above-described embodiment includes the threshold value determination unit 58 for determining the hardness abnormality determination threshold value HATH, but the hardness abnormality detection device 10 is predetermined by another control device having the function of the threshold value determination unit 58. The hardness abnormality determination threshold value HATH may be input prior to the hardness abnormality detection operation, and the hardness abnormality determination threshold value HATH may be used to determine the hardness abnormality. In this case, the hardness abnormality detection device 10 does not have to include the threshold value determination unit 58.

また、前述の実施例では、AEセンサ22は、研削ホイール20の本体20a内に設けられていたが、研削ホイールを挟んで回転主軸に固定するフランジや、被削材12が固定されるテーブル内に設けられていてもよい。 Further, in the above-described embodiment, the AE sensor 22 is provided in the main body 20a of the grinding wheel 20, but in the flange where the grinding wheel is sandwiched and fixed to the rotating spindle and in the table where the work material 12 is fixed. It may be provided in.

また、前述の硬度異常判定部54では、予め設定された振動強度積分値の期待値IVS1の平均値(被削材12の1カット分の平均値)と研削加工中に実際に測定された振動強度積分値IVSの平均値(被削材12の1カット分の平均値)との差分値ΔIVSが、硬度異常判定閾値HATH以上であるか否かが判断されていた。しかし、差分値ΔIVSは、振動強度積分値の期待値IVS1と研削加工中に実際に測定された振動強度積分値IVSとの差分の平均値(被削材12の1カット分の平均値)であってもよい。 Further, in the above-mentioned hardness abnormality determination unit 54, the expected value of the integral value of the vibration intensity set in advance, the average value of the IVS1 (the average value of one cut of the work material 12) and the vibration actually measured during the grinding process. It was determined whether or not the difference value ΔIVS from the average value of the intensity integrated value IVS (the average value for one cut of the work material 12) was equal to or higher than the hardness abnormality determination threshold HATH. However, the difference value ΔIVS is the average value of the difference between the expected value IVS1 of the vibration intensity integrated value and the vibration intensity integrated value IVS actually measured during the grinding process (the average value for one cut of the work material 12). There may be.

また、前述の硬度異常判定部54において、図7に示す累積研削断面積SGのうちの、例えば、予め設定された所定の累積研削断面積SG1に対応する近似関係式(1)上の振動強度積分値期待値IVS1からそれよりも所定値低い硬度異常判定閾値HATHが設定され、所定の累積研削断面積SG1において研削加工中に実際に測定された振動強度積分値IVSが硬度異常判定閾値HATHを下回ることに基づいて被削材12の硬度異常が判定されてもよい。要するに、硬度異常判定部54は、実際に測定された振動強度積分値IVSと予め設定された硬度異常判定閾値HATHとに基づいて被削材12の硬度異常を判定するものであればよい。 Further, in the hardness abnormality determination unit 54 described above, among the cumulative grinding cross-sectional areas SG shown in FIG. 7, for example, the vibration strength on the approximate relational expression (1) corresponding to a predetermined cumulative grinding cross-sectional area SG1 set in advance. A hardness abnormality determination threshold HATH lower than the expected integrated value IVS1 is set, and the vibration intensity integrated value IVS actually measured during grinding in the predetermined cumulative grinding cross-sectional area SG1 sets the hardness abnormality determination threshold HATH. The hardness abnormality of the work material 12 may be determined based on the fact that the hardness is lower. In short, the hardness abnormality determination unit 54 may determine the hardness abnormality of the work material 12 based on the actually measured vibration intensity integrated value IVS and the preset hardness abnormality determination threshold value HATH.

尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 It should be noted that the above is only one embodiment, and the present invention can be carried out in a mode in which various changes and improvements are made based on the knowledge of those skilled in the art.

10:硬度異常検出装置
12:被削材
20:研削ホイール(研削砥石)
22:AEセンサ
34:A/D変換器
50:周波数解析部
52:振動強度積分値算出部
54:硬度異常判定部
56:近似関係式生成部
58:閾値決定部
B2:第2周波数帯(45~65kHzの周波数帯)
HATH:硬度異常判定閾値
Ir:振動強度値
IVS:振動強度積分値
IVS1:振動強度積分値期待値
S4:研削加工工程
S8,S9:硬度異常判定工程
SAE:AE信号
SG,SG1:累積研削断面積
SHFR:特定周波数帯
F3:第3小領域(特定周波数帯)
ΔIVS,ΔIVSa,ΔIVSn:差分値
10: Hardness abnormality detection device 12: Work material 20: Grinding wheel (grinding grindstone)
22: AE sensor 34: A / D converter 50: Frequency analysis unit 52: Vibration intensity integral value calculation unit 54: Hardness abnormality determination unit 56: Approximate relational expression generation unit 58: Threshold determination unit B2: Second frequency band (45) ~ 65kHz frequency band)
HATH: Hardness abnormality judgment threshold Ir: Vibration intensity value IVS: Vibration intensity integrated value IVS1: Vibration intensity integrated value expected value S4: Grinding process S8, S9: Hardness abnormality judgment process SAE: AE signal SG, SG1: Cumulative grinding cross-sectional area SHFR: Specific frequency band F3: Third small region (specific frequency band)
ΔIVS, ΔIVSa, ΔIVSn: Difference value

Claims (8)

焼き入れされた被削材の硬度異常を検出する被削材の硬度異常検出方法であって、
研削砥石を用いて前記焼き入れされた被削材の研削加工を行なう研削加工工程と、
前記研削加工工程中に前記研削砥石の研削点から発生するAE信号に基づいて、前記焼き入れされた被削材の硬度異常を判定する硬度異常判定工程と、を含む、
ことを特徴とする被削材の硬度異常検出方法。
It is a method for detecting hardness abnormality of hardened work material, which is a method for detecting hardness abnormality of hardened work material.
A grinding process for grinding the hardened work material using a grinding wheel, and
A hardness abnormality determination step of determining a hardness abnormality of the hardened work material based on an AE signal generated from a grinding point of the grinding wheel during the grinding process is included.
A method for detecting abnormal hardness of a work material.
前記硬度異常判定工程により硬度異常でないと判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されるが、前記硬度異常判定工程により硬度異常であると判定される場合には、研削加工された被削材は前記研削加工工程の次の工程へ流されない
ことを特徴とする請求項1の被削材の硬度異常検出方法。
When it is determined by the hardness abnormality determination step that the hardness is not abnormal, the ground work material is flowed to the next step of the grinding process, but it is determined by the hardness abnormality determination step that the hardness is abnormal. The method for detecting an abnormality in the hardness of a work material according to claim 1, wherein the ground work material is not flown to the next step of the grinding process.
前記硬度異常判定工程は、
前記焼き入れされた被削材の研削加工中に前記研削砥石の研削点から発生する前記AE信号を検出するAEセンサと、
10μsec以下のサンプリング周期のA/D変換器を用いてデジタル化された前記AE信号を周波数解析する周波数解析部と、
前記周波数解析部により周波数解析された周波数スペクトル中の45~65kHzの周波数帯に含まれる、前記焼き入れされた被削材の硬度に応じて強度変化する特定周波数帯内の振動強度値を積分演算することにより振動強度積分値を算出する振動強度積分値算出部と、
前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値と予め設定された硬度異常判定閾値とに基づいて前記焼き入れされた被削材の硬度異常を判定する硬度異常判定部と、を含む、硬度異常検出装置を用いて、前記焼き入れされた被削材の硬度異常を判定する
ことを特徴とする請求項1又は2の被削材の硬度異常検出方法。
The hardness abnormality determination step is
An AE sensor that detects the AE signal generated from the grinding point of the grinding wheel during grinding of the hardened work material, and
A frequency analysis unit that frequency-analyzes the AE signal digitized using an A / D converter with a sampling period of 10 μsec or less.
Integral calculation of vibration intensity values in a specific frequency band whose strength changes according to the hardness of the hardened work material, which is included in the frequency band of 45 to 65 kHz in the frequency spectrum analyzed by the frequency analysis unit. The vibration intensity integrated value calculation unit that calculates the vibration intensity integrated value by doing
Hardness for determining hardness abnormality of the hardened work material based on the vibration intensity integrated value actually measured during grinding of the hardened work material and a preset hardness abnormality determination threshold value. The method for detecting a hardness abnormality of a work material according to claim 1 or 2, wherein the hardness abnormality detection device including the abnormality determination unit is used to determine the hardness abnormality of the hardened work material.
前記硬度異常検出装置は、
正常な焼入れが施された被削材についての研削加工の累積研削断面積と前記正常な焼入れが施された被削材について測定した振動強度積分値との間の近似関係式を求める近似関係式生成部を有し、前記近似関係式から求めた振動強度積分値期待値の所定割合の値を、前記硬度異常判定閾値として決定する閾値決定部を、備える
ことを特徴とする請求項3の被削材の硬度異常検出方法。
The hardness abnormality detection device is
Approximate relational expression for obtaining the approximate relational expression between the cumulative grinding cross-sectional area of the grinding process for the work material that has been normally hardened and the vibration intensity integral value measured for the work material that has been normally hardened. 2. A method for detecting abnormal hardness of a material.
前記硬度異常判定部は、前記振動強度積分値期待値と前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて、前記焼き入れされた被削材の硬度異常を判定する
ことを特徴とする請求項4の被削材の硬度異常検出方法。
In the hardness abnormality determination unit, the difference value between the expected vibration intensity integrated value and the vibration intensity integrated value actually measured during grinding of the hardened work material is lower than the hardness abnormality determination threshold value. The method for detecting an abnormality in hardness of a work material according to claim 4, wherein the abnormality in hardness of the hardened work material is determined based on the above.
焼き入れされた被削材の硬度異常を検出する被削材の硬度異常検出装置であって、
前記焼き入れされた被削材の研削加工中に研削砥石の研削点から発生するAE信号を検出するAEセンサと、
10μsec以下のサンプリング周期のA/D変換器を用いてデジタル化された前記AE信号を周波数解析する周波数解析部と、
前記周波数解析部により周波数解析された周波数スペクトル中の45~65kHzの周波数帯に含まれる、前記焼き入れされた被削材の硬度に応じて強度変化する特定周波数帯内の振動強度値を積分演算することにより振動強度積分値を算出する振動強度積分値算出部と、
前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値と予め設定された硬度異常判定閾値とに基づいて前記焼き入れされた被削材の硬度異常を判定する硬度異常判定部と、を含む
ことを特徴とする被削材の硬度異常検出装置。
It is a hardness abnormality detection device for the work material that detects the hardness abnormality of the hardened work material.
An AE sensor that detects an AE signal generated from the grinding point of a grinding wheel during grinding of the hardened work material, and
A frequency analysis unit that frequency-analyzes the AE signal digitized using an A / D converter with a sampling period of 10 μsec or less.
Integral calculation of vibration intensity values in a specific frequency band whose strength changes according to the hardness of the hardened work material, which is included in the frequency band of 45 to 65 kHz in the frequency spectrum analyzed by the frequency analysis unit. The vibration intensity integrated value calculation unit that calculates the vibration intensity integrated value by doing
Hardness for determining hardness abnormality of the hardened work material based on the vibration intensity integral value actually measured during grinding of the hardened work material and a preset hardness abnormality determination threshold value. A hardness abnormality detection device for a work material, which comprises an abnormality determination unit.
前記硬度異常検出装置は、
正常な焼入れが施された被削材についての研削加工の累積研削断面積と前記正常な焼入れが施された被削材について測定した振動強度積分値との間の近似関係式を求める近似関係式生成部を有し、前記近似関係式から求めた振動強度積分値期待値の所定割合の値を、前記硬度異常判定閾値として決定する閾値決定部を、備える
ことを特徴とする請求項6の被削材の硬度異常検出装置。
The hardness abnormality detection device is
Approximate relational expression for obtaining the approximate relational expression between the cumulative grinding cross-sectional area of the grinding process for the work material that has been normally hardened and the vibration intensity integral value measured for the work material that has been normally hardened. The subject of claim 6 is provided with a generation unit, and a threshold determination unit for determining a predetermined ratio of an expected value of an integral value of vibration intensity obtained from the approximate relational expression as the hardness abnormality determination threshold. Hardness abnormality detection device for cutting materials.
前記硬度異常判定部は、前記振動強度積分値期待値と前記焼き入れされた被削材について研削加工中に実際に測定された振動強度積分値との差分値が前記硬度異常判定閾値を下回ることに基づいて、前記焼き入れされた被削材の硬度異常を判定する
ことを特徴とする請求項7の被削材の硬度異常検出装置。
In the hardness abnormality determination unit, the difference value between the expected vibration intensity integrated value and the vibration intensity integrated value actually measured during grinding of the hardened work material is lower than the hardness abnormality determination threshold value. The device for detecting a hardness abnormality of a work material according to claim 7, wherein the hardness abnormality of the hardened work material is determined based on the above.
JP2020198924A 2020-11-30 2020-11-30 Method and device for detecting hardness abnormality of work material Pending JP2022086741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198924A JP2022086741A (en) 2020-11-30 2020-11-30 Method and device for detecting hardness abnormality of work material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198924A JP2022086741A (en) 2020-11-30 2020-11-30 Method and device for detecting hardness abnormality of work material

Publications (1)

Publication Number Publication Date
JP2022086741A true JP2022086741A (en) 2022-06-09

Family

ID=81894354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198924A Pending JP2022086741A (en) 2020-11-30 2020-11-30 Method and device for detecting hardness abnormality of work material

Country Status (1)

Country Link
JP (1) JP2022086741A (en)

Similar Documents

Publication Publication Date Title
Inasaki et al. Monitoring of dressing and grinding processes with acoustic emission signals
Webster et al. Raw acoustic emission signal analysis of grinding process
Hassui et al. Experimental evaluation on grinding wheel wear through vibration and acoustic emission
US9440328B2 (en) Method for ascertaining topography deviations of a dressing tool in a grinding machine
Ahrens et al. Abrasion monitoring and automatic chatter detection in cylindrical plunge grinding
JP2022086741A (en) Method and device for detecting hardness abnormality of work material
Caraguay et al. Wear assessment of microcrystalline and electrofused aluminum oxide grinding wheels by multi-sensor monitoring technique
JPH1177532A (en) Grinding device for rolling roll
Zylka et al. Diagnostic of peripheral longitudinal grinding by using acoustic emission signal
JP2004130512A (en) Method of measuring parameter on surface to be machined simultaneously with machining
Dotto et al. Acoustic image-based damage identification of oxide aluminum grinding wheel during the dressing operation
JP7413110B2 (en) Truing completion determination device
Viera et al. Correlation between surface roughness and AE signals in ceramic grinding based on spectral analysis
Akbari et al. Effect of grinding parameters on acoustic emission signals while grinding ceramics
JP2023046123A (en) Dressing completion determination method and dressing completion determination device
JP7413109B2 (en) Grinding process defect prediction device
JP7384634B2 (en) Grinding surface condition evaluation device and grinding processing device
Imai et al. Identification of Tribological Phenomena in Glass Grinding by Acoustic Emission Sensing
KR100610740B1 (en) System and method determining the optimized dressing conditions for grinding wheel
RU2398212C1 (en) Procedure for evaluation of specific wear of grindstone
JPH06339859A (en) Dressing timing judging method for super abrasive grain wheel and device thereof
JP2023179328A (en) Grinding stone upper slip detection method and device
CN202517373U (en) Measuring device for radial run-out in grinding of metal cement grinding wheel
JPH11221760A (en) Cracking occurrance predicting method of workpiece, wafer working method utilizing the same, and grinder
JP2023059746A (en) Method and device for determining shape-collapse of grinding stone