JP2023177725A - Metal recovery method from lithium ion battery - Google Patents

Metal recovery method from lithium ion battery Download PDF

Info

Publication number
JP2023177725A
JP2023177725A JP2022090562A JP2022090562A JP2023177725A JP 2023177725 A JP2023177725 A JP 2023177725A JP 2022090562 A JP2022090562 A JP 2022090562A JP 2022090562 A JP2022090562 A JP 2022090562A JP 2023177725 A JP2023177725 A JP 2023177725A
Authority
JP
Japan
Prior art keywords
lithium ion
lithium
ion battery
leaching
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022090562A
Other languages
Japanese (ja)
Other versions
JP7220340B1 (en
Inventor
俊洋 小山
Toshihiro Koyama
祥彦 近田
Yoshihiko Chikada
尚之 菅井
Naoyuki Sugai
弘 菅井
Hiroshi Sugai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envipro Holdings Inc
Original Assignee
Envipro Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envipro Holdings Inc filed Critical Envipro Holdings Inc
Priority to JP2022090562A priority Critical patent/JP7220340B1/en
Application granted granted Critical
Publication of JP7220340B1 publication Critical patent/JP7220340B1/en
Publication of JP2023177725A publication Critical patent/JP2023177725A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

To provide a method for efficiently and readily recovering metal (lithium, manganese) from waste residues of lithium-ion batteries in a leaching process before solvent extraction.SOLUTION: The inventive method is a method for recovering metal from a lithium ion battery that includes, as a positive electrode active material, lithium (Li), cobalt (Co) and nickel (Ni) and, as a negative electrode active material, graphite (C). The method includes a step (a) of preparing a waste residue of a lithium-ion battery that, in X-ray diffraction (XRD) measurement, has a ratio (A/B) of peak intensity A at a diffraction angle 18.7° and peak intensity B at 26.5°within a range of 0-0.15 and also includes either a step (b1) for dispersing the waste residue in water and leaching lithium for 2-24 hours in a leaching solution at 30-80°C or, (b2) dispersing the waste residue in a sulphuric acid solution with 1-3 mass% concentration and leaching lithium and manganese for 0.5-24 hours in the leaching solution at 30-80°C.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池からの金属回収方法に関し、具体的には、リチウムイオン電池の電池滓から金属を回収する方法に関し、より具体的には、リチウムイオン電池の電池滓からリチウム、マンガンを回収する方法に関する。 The present invention relates to a method for recovering metals from lithium ion batteries, and specifically to a method for recovering metals from lithium ion battery slag, and more specifically to a method for recovering metals from lithium ion battery slag. Regarding the method of collection.

リチウムイオン電池は、各種の電子デバイスをはじめとして多くの産業分野で使用されており、マンガン、ニッケルおよびコバルトを含有するリチウム金属複合酸化物を正極材として用いるものが一般的に知られている。近年、その使用量の増加および使用範囲の拡大に伴い、電池の製品寿命や製造過程で不良により廃棄される量が増大している状況にある。かかる状況の下では、大量に廃棄されるリチウムイオン電池から、ニッケルおよびコバルト等の高価な元素を再利用するべく比較的低コストで容易に回収することが望まれる。 Lithium ion batteries are used in many industrial fields including various electronic devices, and those that use a lithium metal composite oxide containing manganese, nickel, and cobalt as a positive electrode material are generally known. In recent years, as the amount of batteries used has increased and the range of use has expanded, the amount of batteries that are discarded due to product life or defects during the manufacturing process is increasing. Under such circumstances, it is desired to easily recover expensive elements such as nickel and cobalt from lithium ion batteries, which are discarded in large quantities, for reuse at a relatively low cost.

有価金属の回収のためにリチウムイオン電池を処理するには、従来からある一般的な方法として、例えば、はじめにリチウムイオン電池を必要に応じて焙焼、粉砕および篩選別等の各工程を経て得られた粉状ないし粒状のリチウムイオン電池滓を準備する。その電池滓を酸浸出し、そこに含まれ得るリチウム、ニッケル、コバルト、マンガン、鉄、銅、アルミニウム等を溶液中に溶解させて浸出液を得る。その浸出液に対して溶媒抽出法を実施して、各金属元素を順次に分離させる。その際、まず鉄およびアルミニウムを回収し、続いてマンガンおよび銅、そしてコバルト、その後にニッケルを回収して、最後に水相にリチウムを残して回収する。 In order to process lithium-ion batteries for the recovery of valuable metals, there is a conventional and common method, for example, in which lithium-ion batteries are first subjected to various steps such as roasting, crushing, and sieving as necessary. Prepare powdered or granular lithium ion battery slag. The battery slag is leached with an acid, and lithium, nickel, cobalt, manganese, iron, copper, aluminum, etc. that may be contained therein are dissolved in the solution to obtain a leachate. A solvent extraction method is performed on the leachate to sequentially separate each metal element. The iron and aluminum are recovered first, followed by the manganese and copper, then the cobalt, then the nickel, and finally the lithium, leaving it in the aqueous phase.

従来の方法では、上述したように溶媒抽出後にリチウムを回収するのが一般的であるが、溶媒抽出前の浸出工程でリチウムが回収可能となる方法例として、例えば下記の特許文献1、2がある。特許文献1は、リチウムが含まれる電池廃棄物の熱処理方法及びリチウム回収方法を開示する。文献1の熱処理方法では、電池廃棄物を配置した熱処理炉内で、酸素と、窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種とを含む雰囲気ガスを流して、炉内酸素分圧を調整しながら、電池廃棄物を加熱する。文献1のリチウム回収方法では、熱処理工程後の電池廃棄物から得られる電池粉末中のリチウムを、弱酸性溶液、水又はアルカリ性溶液のいずれかで浸出させるリチウム浸出工程を含む。 In conventional methods, lithium is generally recovered after solvent extraction as described above, but as an example of a method in which lithium can be recovered in a leaching step before solvent extraction, for example, Patent Documents 1 and 2 below are disclosed. be. Patent Document 1 discloses a method for heat treatment of battery waste containing lithium and a method for recovering lithium. In the heat treatment method of Document 1, an atmospheric gas containing oxygen and at least one selected from the group consisting of nitrogen, carbon dioxide, and water vapor is caused to flow in a heat treatment furnace in which battery waste is placed, thereby increasing the oxygen partial pressure in the furnace. Heat the battery waste while adjusting the temperature. The lithium recovery method of Document 1 includes a lithium leaching step in which lithium in battery powder obtained from battery waste after a heat treatment step is leached with a weakly acidic solution, water, or an alkaline solution.

特許文献2は、リチウムイオン電池廃棄物を焙焼して得られた電池滓からリチウムを回収する方法を開示する。その回収方法では、アルミン酸リチウムを含有する電池滓を、酸性溶液中に浸出させる浸出工程と、浸出工程で得られる浸出後液のpHを上昇させて中和するとともに固液分離して、リチウム溶解液を得る中和工程とを含む。 Patent Document 2 discloses a method for recovering lithium from battery slag obtained by roasting lithium ion battery waste. The recovery method involves a leaching step in which battery slag containing lithium aluminate is leached into an acidic solution, and the pH of the leached solution obtained in the leaching step is raised to neutralize it and solid-liquid separation is carried out to remove lithium. and a neutralization step to obtain a solution.

特開2021-193645JP2021-193645 特開2019-160429JP2019-160429

特許文献1、2は、いずれも溶媒抽出前の浸出工程でリチウムが回収可能となる方法であるが、リチウムイオン電池の負極活物質の種類に関する情報は何も開示しておらず、かつ溶媒抽出前の浸出工程でのマンガンの回収については何ら言及していない。 Patent Documents 1 and 2 are both methods in which lithium can be recovered in a leaching step before solvent extraction, but they do not disclose any information regarding the type of negative electrode active material of lithium ion batteries, and they do not disclose any information regarding the type of negative electrode active material of lithium ion batteries. There is no mention of manganese recovery in the previous leaching process.

特許文献1では、リチウムイオン電池滓の組成が分析/明示されておらずその組成が不明確であり、実施例ではリチウムの回収(浸出)率が50~60%程度(段落「0048」)に留まっている。 In Patent Document 1, the composition of lithium ion battery slag is not analyzed/clarified and its composition is unclear, and in the example, the recovery (leaching) rate of lithium is about 50 to 60% (paragraph "0048"). It's staying.

特許文献2では、リチウムイオン電池滓中のアルミン酸リチウムの存在の有無を確認するためにX線回折法(XRD)による分析結果が示されているが(段落「0025」、図2)、他の組成とリチウムの回収率との関係等は開示されていない。 Patent Document 2 shows analysis results by X-ray diffraction (XRD) in order to confirm the presence or absence of lithium aluminate in lithium ion battery slag (paragraph "0025", FIG. 2), etc. The relationship between the composition and the lithium recovery rate is not disclosed.

本発明は、上記した従来技術の事情に鑑みて成されたものであって、その目的は、溶媒抽出前の浸出工程において、リチウムイオン電池の電池滓から効率的で容易に金属(リチウム、マンガン)を回収する方法を提供することである。 The present invention has been made in view of the above-mentioned circumstances of the prior art, and its purpose is to efficiently and easily remove metals (lithium, manganese, ).

本発明の一態様は、正極活物質としてリチウム(Li)、コバルト(Co)及びニッケル(Ni)を含み、負極活物質として黒鉛(C)を含むリチウムイオン電池から金属を回収する方法であって、(a)X線回折(XRD)測定において、回折角度18.7°のピーク強度Aと26.5°のピーク強度Bとの比(A/B)が0~0.15の範囲にある、リチウムイオン電池の電池滓を準備する工程と、(b)電池滓を水中に分散させ、30~80℃の浸出液中に2~24時間かけてリチウムを浸出させる工程と、を含む方法を提供する。 One aspect of the present invention is a method for recovering metal from a lithium ion battery containing lithium (Li), cobalt (Co), and nickel (Ni) as a positive electrode active material and graphite (C) as a negative electrode active material, the method comprising: , (a) In X-ray diffraction (XRD) measurement, the ratio (A/B) of peak intensity A at a diffraction angle of 18.7° and peak intensity B at 26.5° is in the range of 0 to 0.15. , provides a method comprising the steps of: preparing battery sludge for a lithium ion battery; and (b) dispersing the battery sludge in water and leaching lithium into a leaching solution at 30 to 80° C. for 2 to 24 hours. do.

本発明の他の一態様は、正極活物質としてリチウム(Li)、コバルト(Co)及びニッケル(Ni)を含み、負極活物質として黒鉛(C)を含むリチウムイオン電池から金属を回収する方法であって、(a)X線回折(XRD)測定において、回折角度18.7°のピーク強度Aと26.5°のピーク強度Bとの比(A/B)が0~0.15の範囲にある、リチウムイオン電池の電池滓を準備する工程と、(b)電池滓を1~3質量%の濃度の硫酸水溶液中に分散させ、30~80℃の浸出液中に0.5~24時間かけてリチウムとマンガンを浸出させる工程と、を含む方法を提供する。 Another embodiment of the present invention is a method for recovering metal from a lithium ion battery containing lithium (Li), cobalt (Co), and nickel (Ni) as positive electrode active materials and graphite (C) as negative electrode active material. (a) In X-ray diffraction (XRD) measurement, the ratio (A/B) of peak intensity A at a diffraction angle of 18.7° and peak intensity B at 26.5° is in the range of 0 to 0.15. (b) Dispersing the battery slag in an aqueous sulfuric acid solution with a concentration of 1 to 3% by mass and soaking it in a leachate at 30 to 80°C for 0.5 to 24 hours. leaching lithium and manganese over the process.

本発明の他の各態様では、電池滓は、(i)X線回折(XRD)測定において、CoNiに起因するピークを有し、あるいはLiCOとCoの一方または双方に起因するピークを有し、(ii)10~35質量%の黒鉛(C)を含み、あるいは正極活物質はマンガン(Mn)を含む。 In each of the other aspects of the present invention, the battery slag (i) has a peak caused by CoNi in X-ray diffraction (XRD) measurement, or has a peak caused by one or both of Li 2 CO 3 and Co 3 O 4 (ii) contains 10 to 35% by mass of graphite (C), or the positive electrode active material contains manganese (Mn).

本発明の他の一態様では、リチウムイオン電池の電池滓を準備する工程(a)は、(a1)リチウムイオン電池を加熱炉内の大気中で500~600℃の温度で0.3~10時間保持する熱処理工程と、(a2)熱処理後のリチウムイオン電池を粉砕して粉砕物を得る粉砕工程と、(a3)粉砕物を篩分けして粉状のリチウムイオン電池滓を得る篩分け工程と、を含む。 In another aspect of the present invention, the step (a) of preparing battery slag for a lithium ion battery includes (a1) heating the lithium ion battery in the atmosphere in a heating furnace at a temperature of 500 to 600°C to (a2) A pulverization step in which the heat-treated lithium ion battery is pulverized to obtain a pulverized product; (a3) A sieving step in which the pulverized product is sieved to obtain powdered lithium ion battery slag. and, including.

本発明の他の一態様では、熱処理工程(a1)は、加熱炉内を大気に代えて、酸素濃度が1~21体積%の不活性ガスまたは過熱水蒸気の雰囲気、及び酸素濃度が1~3体積%の不活性ガスまたは過熱水蒸気の雰囲気のいずれかの状態にして加熱することを含む。 In another aspect of the present invention, the heat treatment step (a1) is performed using an atmosphere of an inert gas or superheated steam having an oxygen concentration of 1 to 21% by volume, and an oxygen concentration of 1 to 3% by volume, instead of the atmosphere inside the heating furnace. % by volume of inert gas or superheated steam.

本発明によれば、リチウムイオン電池の電池滓から溶媒抽出前の浸出工程でリチウム/マンガンを効率的で容易に分離/回収することが可能となる。 According to the present invention, it becomes possible to efficiently and easily separate/recover lithium/manganese from battery slag of a lithium ion battery in a leaching step before solvent extraction.

本発明の一実施形態のリチウムイオン電池から金属を回収する方法の工程を示す図である。1 is a diagram showing steps of a method for recovering metal from a lithium ion battery according to an embodiment of the present invention. FIG. 本発明の一実施形態のリチウムイオン電池滓(BM)の製造方法の工程を示す図である。It is a figure showing the process of the manufacturing method of lithium ion battery slag (BM) of one embodiment of the present invention. 本発明の一実施形態のリチウムイオン電池滓(BM)のX線回折(XRD)測定結果を示す図である。It is a figure showing the result of X-ray diffraction (XRD) measurement of lithium ion battery slag (BM) of one embodiment of the present invention.

図面や表を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態のリチウムイオン電池から金属を回収する方法の工程を示す図である。最初に図1を参照しながら本発明の回収方法の概要(フロー)を説明する。 Embodiments of the present invention will be described with reference to the drawings and tables. FIG. 1 is a diagram showing the steps of a method for recovering metal from a lithium ion battery according to an embodiment of the present invention. First, an overview (flow) of the recovery method of the present invention will be explained with reference to FIG.

工程S1では、リチウムイオン電池の電池滓(以下、リチウムイオン電池滓、あるいは単に電池宰とも呼ぶ。)を準備する。原料となるリチウムイオン電池は、正極活物質としてリチウム(Li)、コバルト(Co)及びニッケル(Ni)を含み、負極活物質として黒鉛(C)を含む。また正極活物質はマンガン(Mn)を含むことができる。黒鉛(C)は、電池滓に10~35質量%含むことができる。電池滓は、X線回折(XRD)測定において、回折角度18.7°のピーク強度Aと26.5°のピーク強度Bとの比(A/B)が0~0.15の範囲にあるものを準備する。詳細は後述するが、このピーク強度比(A/B)に着目するのは、リチウムイオン電池の正極活物質の結晶構造の崩壊によるリチウム(Li)の取出(浸出)やすさの目安(指標)となるからである。さらに、電池滓は、X線回折(XRD)測定において、CoNiに起因するピーク、あるいはLiCOとCoの一方または双方に起因するピークを有するという特徴がある。 In step S1, battery slag (hereinafter also referred to as lithium ion battery slag or simply battery slag) of a lithium ion battery is prepared. The lithium ion battery used as a raw material contains lithium (Li), cobalt (Co), and nickel (Ni) as a positive electrode active material, and graphite (C) as a negative electrode active material. Further, the positive electrode active material can include manganese (Mn). Graphite (C) can be contained in the battery slag in an amount of 10 to 35% by mass. In X-ray diffraction (XRD) measurement, battery slag has a ratio (A/B) of peak intensity A at a diffraction angle of 18.7° to peak intensity B at 26.5° in the range of 0 to 0.15. prepare things. The details will be described later, but the reason to focus on this peak intensity ratio (A/B) is that it is an indicator of the ease with which lithium (Li) can be taken out (leached) due to the collapse of the crystal structure of the positive electrode active material of a lithium ion battery. This is because. Furthermore, battery slag is characterized in that it has a peak due to CoNi or a peak due to one or both of Li 2 CO 3 and Co 3 O 4 in X-ray diffraction (XRD) measurement.

工程S2では、工程S1で得られた電池滓を水中に分散させ、30~80℃の浸出液中に2~24時間かけてリチウムを浸出させる。この水(温水)を用いた浸出では、Co、Ni及びMnの浸出をほぼ完全に抑制しつつLiのみを浸出させることができる。電池滓の水スラリー中の含有量は、50~150g/L、好ましくは80~120g/L程度が良い。含有量が少ないと処理(浸出)量が低くなりすぎ処理効率が悪く、逆に高すぎるとスラリーの攪拌が十出来なくなり反応の均一性が低くなってしまうからである。 In step S2, the battery slag obtained in step S1 is dispersed in water, and lithium is leached into a leachate at 30 to 80° C. over a period of 2 to 24 hours. By leaching using this water (warm water), only Li can be leached while almost completely suppressing leaching of Co, Ni, and Mn. The content of battery sludge in the water slurry is preferably about 50 to 150 g/L, preferably about 80 to 120 g/L. This is because if the content is too low, the amount of treatment (leaching) will be too low, resulting in poor treatment efficiency, while if the content is too high, stirring of the slurry will not be sufficient and the uniformity of the reaction will decrease.

工程S3では、工程S1で得られた電池滓を1~5質量%の濃度の硫酸水溶液中に分散させ、30~80℃の浸出液中に0.5~24時間かけてLiとMnを浸出させる。工程S3は工程S2に代えて、または並行して行うことができる。この希硫酸水溶液を用いた浸出では、CoとNiの浸出を低く抑えつつLiとMnを浸出させることができる。電池滓の硫酸水溶液スラリー中の含有量は、水の場合と同様な理由で、50~150g/L、好ましくは80~120g/L程度が良い。 In step S3, the battery slag obtained in step S1 is dispersed in an aqueous sulfuric acid solution with a concentration of 1 to 5% by mass, and Li and Mn are leached into a leachate at 30 to 80° C. for 0.5 to 24 hours. . Step S3 can be performed in place of or in parallel with step S2. By leaching using this dilute aqueous sulfuric acid solution, Li and Mn can be leached out while suppressing leaching of Co and Ni. The content of battery sludge in the sulfuric acid aqueous solution slurry is preferably about 50 to 150 g/L, preferably about 80 to 120 g/L, for the same reason as for water.

希硫酸の濃度は、0より大きく8質量%以下であり、好ましくは1~3質量%である。硫酸濃度が濃すぎると、CoとNiの希硫酸への浸出量が多くなりすぎて、Liとの分離が悪くなるためである。浸出時間は、0.25~24時間であり、好ましくは0.25~2時間であり、より好ましくは0.25~1時間である。浸出温度は、常温~100℃が良く、好ましくは30℃~80℃、より好ましくは60℃~80℃である。希硫酸を用いた場合、希硫酸濃度、浸出温度、浸出時間がLiとCoおよびNiの回収(浸出)率に影響を与えるため、これらを電池滓の組成やピーク強度比(A/B)によって、適宜調整する事が好ましい。 The concentration of dilute sulfuric acid is greater than 0 and 8% by mass or less, preferably 1 to 3% by mass. This is because if the sulfuric acid concentration is too high, the amount of Co and Ni leached into dilute sulfuric acid will be too large, making separation from Li poor. The leaching time is 0.25 to 24 hours, preferably 0.25 to 2 hours, more preferably 0.25 to 1 hour. The leaching temperature is preferably room temperature to 100°C, preferably 30°C to 80°C, more preferably 60°C to 80°C. When dilute sulfuric acid is used, the dilute sulfuric acid concentration, leaching temperature, and leaching time affect the recovery (leaching) rate of Li, Co, and Ni, so these should be adjusted depending on the composition of the battery slag and the peak intensity ratio (A/B). , it is preferable to adjust as appropriate.

電池滓を希硫酸に浸出させると、浸出初期にLi、MnとCoおよびNiが浸出され、時間経過に従ってCoおよびNiの回収(浸出)率が低下する傾向が見られる。また、温度が高いほど、CoおよびNiの浸出率の低下が速くなる傾向があり、Li、Mnの回収(浸出)は低下する傾向があるが、大きく低下することはない。希硫酸による浸出が進むにつれて、浸出液のpHは高くなる。浸出開始直後に、Li、MnとCoおよびNiの浸出が始まり、pHも上昇し始めると考えられる。pHの上昇に伴ってCoおよびNiは沈殿するものと考えられ、この沈殿によってCoおよびNiの見かけの回収(浸出)率が小さくなる。この反応は、温度が高いと早く進むため、温度が高いほどLi、MnとCoおよびNiの分離に要する時間は短くなる。Mnは、浸出時間が2時間以内の場合は、Liと同じ浸出率を示す。反応時間が長くなると、Mnの回収(浸出)率は低下する傾向が見られる。 When battery slag is leached into dilute sulfuric acid, Li, Mn, Co, and Ni are leached out at the beginning of leaching, and the recovery (leaching) rate of Co and Ni tends to decrease as time passes. Further, as the temperature is higher, the leaching rate of Co and Ni tends to decrease faster, and the recovery (leaching) of Li and Mn tends to decrease, but does not decrease significantly. As leaching with dilute sulfuric acid progresses, the pH of the leachate increases. It is thought that immediately after the start of leaching, leaching of Li, Mn, Co, and Ni begins, and the pH also begins to rise. Co and Ni are thought to precipitate as the pH increases, and this precipitation reduces the apparent recovery (leaching) rate of Co and Ni. This reaction proceeds faster at higher temperatures, so the higher the temperature, the shorter the time required to separate Li, Mn from Co and Ni. Mn exhibits the same leaching rate as Li when the leaching time is less than 2 hours. As the reaction time becomes longer, the recovery (leaching) rate of Mn tends to decrease.

工程S4では、工程S2で浸出したLiを回収する。回収は、中和や炭酸化等の公知の方法によって炭酸リチウムや水酸化リチウムの形態で行うことができる。工程S5では、工程S3で浸出したLiとMnを分離・回収する。LiとMnは、浸出液のpHと酸化還元電位(ORP)を適宣調整する事で分離できる。例えば、pHを3.0~10.0、より好ましくは3.5~7.0の範囲に調整し、ORPを400~600mV(Vvs.Ag/AgCl)とする事で、MnをMn酸化物として沈殿させ、液中のLiイオンと分離する事が出来る。なお、LiとMnと同時に浸出されたCoおよびNiは、Mnの分離後にさらにpHを調整する事で、CoおよびNiの水酸化物として沈殿回収する事ができる。 In step S4, the Li leached out in step S2 is recovered. Recovery can be carried out in the form of lithium carbonate or lithium hydroxide by known methods such as neutralization and carbonation. In step S5, Li and Mn leached out in step S3 are separated and recovered. Li and Mn can be separated by appropriately adjusting the pH and oxidation-reduction potential (ORP) of the leachate. For example, by adjusting the pH to a range of 3.0 to 10.0, more preferably 3.5 to 7.0, and setting the ORP to 400 to 600 mV (V vs.Ag/AgCl), Mn can be converted into Mn oxide. It can be precipitated as a liquid and separated from Li ions in the liquid. Note that Co and Ni leached simultaneously with Li and Mn can be precipitated and recovered as Co and Ni hydroxides by further adjusting the pH after separation of Mn.

図2は、図1の工程S1で準備する本発明の一実施形態のリチウムイオン電池滓の製造方法の工程を示す図である。以下、図2を参照しながらリチウムイオン電池滓の製法とその特徴について説明する。 FIG. 2 is a diagram showing the steps of a method for manufacturing lithium ion battery slag according to an embodiment of the present invention prepared in step S1 of FIG. The method for producing lithium ion battery slag and its characteristics will be described below with reference to FIG.

工程S11では、原料となるリチウムイオン電池を準備する。対象となるリチウムイオン電池は、携帯電話、スマートフォン、ノートブックPC、その他の種々の電子機器、自動車等の様々な機械や装置で使用され得るリチウムイオン電池を含むことができる。その形態としては、寿命を終えて市場から回収されたリチウムイオン電池、製造不良のリチウムイオン電池、正極電極および負極電極、正極活物質を含む工程不良材、正極活物質、正極活物質前駆体などを単独もしくは混合して用いても良い。ただし、下記の要件(1)~(3)を満たすことが求められる。 In step S11, a lithium ion battery as a raw material is prepared. Lithium ion batteries of interest can include lithium ion batteries that can be used in various machines and devices such as mobile phones, smartphones, notebook PCs, various other electronic devices, and automobiles. These include lithium-ion batteries that have been collected from the market at the end of their lifespan, poorly manufactured lithium-ion batteries, positive and negative electrodes, defective materials including positive active materials, positive active materials, positive active material precursors, etc. may be used alone or in combination. However, the following requirements (1) to (3) must be met.

(1)正極活物質としては、リチウム(Li)、コバルト(Co)、ニッケル(Ni)、またはマンガン(Mn)を含み得る、コバルト酸リチウム(LCO)、または三元系正極活物質であるニッケル・コバルト・マンガン(NCM)、ニッケル・コバルト・アルミニウム(NCA)、あるいはニッケル・コバルト・マンガン・アルミニウム(NCMA)が対象となる。リン酸鉄(オリビン鉄)は対象外である。 (1) The positive electrode active material is lithium cobalt oxide (LCO), which may contain lithium (Li), cobalt (Co), nickel (Ni), or manganese (Mn), or nickel, which is a ternary positive electrode active material.・Applicable to cobalt manganese (NCM), nickel cobalt aluminum (NCA), or nickel cobalt manganese aluminum (NCMA). Iron phosphate (olivine iron) is not covered.

(2)負極活物質としては、黒鉛(C)が対象となる。以下、本明細書中で「黒鉛」または「C」とも表記する。黒鉛は還元剤として機能している可能性が最も高いので、十分な量の黒鉛を加熱前に含んでいる必要がある。したがって、黒鉛は、リチウムイオン電池滓に10~35質量%、より好ましくは、20~32質量%含まれる必要がある。10質量%未満では、CoやNiの還元効果が不十分であり、35質量%を超えると回収目的の金属の含有量が低くなってしまうからである。負極活物質が黒鉛のみで構成されるリチウムイオン電池を選択してもよい。黒鉛が必要量残る事を前提に、チタン酸リチウム、ニオブ酸リチウム、酸化ケイ素系などの黒鉛以外の負極活物質が混ざっていてもよい。また、鉄(Fe)や銅(Cu)が含まれていても良い。 (2) Graphite (C) is used as the negative electrode active material. Hereinafter, it will also be referred to as "graphite" or "C" in this specification. Graphite is most likely functioning as a reducing agent, so a sufficient amount of graphite must be included before heating. Therefore, graphite needs to be contained in the lithium ion battery slag in an amount of 10 to 35% by mass, more preferably 20 to 32% by mass. This is because if it is less than 10% by mass, the reduction effect of Co and Ni will be insufficient, and if it exceeds 35% by mass, the content of the metal to be recovered will be low. A lithium ion battery in which the negative electrode active material is composed only of graphite may be selected. On the premise that the required amount of graphite remains, negative electrode active materials other than graphite such as lithium titanate, lithium niobate, and silicon oxide may be mixed. Further, iron (Fe) or copper (Cu) may be included.

(3)その他のリチウムイオン電池構成要素としては、通常の物が使用出来る。例えば、正極活物質が、ポリフッ化ビニリデン(PVDF)、その他の有機や水系バインダー等によって塗布され固着されたアルミニウム箔(正極基材)や、リチウムイオン電池の周囲を包む外装としてアルミニウムを含む筐体が含まれていても良い。 (3) As other lithium ion battery components, ordinary ones can be used. For example, aluminum foil (positive electrode base material) on which a positive electrode active material is coated and fixed with polyvinylidene fluoride (PVDF) or other organic or water-based binders, or a case containing aluminum as an exterior wrapping around a lithium-ion battery. may be included.

リチウムイオン電池の状態としては、例えば3V以下に放電されている事が好ましい。その放電方法は、塩水(5~20質量%のNaCl水溶液)に浸して放電、放電機能を有する放電機での放電、抵抗を繋いでの放電等、放電可能であればいかなる方法でも良い。車載用や定置用途等のバッテリー・マネジメント・システム(BMS)での電圧調整機能を用いても良い。塩水放電の場合、電解液を塩水中に拡散させて脱電解液を行っても良い。放電後に予備加熱もしくは直接次工程の本加熱(熱処理)を行う。予備加熱では、リチウムイオン電池を例えば250~350℃程度で加熱して、電解液を本加熱前に先に蒸発させることができる。 The lithium ion battery is preferably discharged to, for example, 3V or less. The discharge method may be any method that allows discharge, such as discharging by immersing it in salt water (5 to 20 mass % NaCl aqueous solution), discharging with a discharge machine having a discharge function, discharging by connecting a resistor, etc. The voltage adjustment function of a battery management system (BMS) for in-vehicle use or stationary use may also be used. In the case of salt water discharge, electrolyte removal may be performed by diffusing the electrolyte into salt water. After discharge, preliminary heating or main heating (heat treatment) in the next step is performed directly. In the preheating, the lithium ion battery can be heated, for example, at about 250 to 350° C., and the electrolyte can be evaporated before the main heating.

工程S12では、工程S11で準備したリチウムイオン電池の熱処理を行う。ここで言う熱処理は、焙焼や焼成等と同様な意味で用いられ、リチウムイオン電池を、加熱炉内で大気(酸素濃度:約21体積%)中または酸素濃度が制御された雰囲気中で所定の温度で加熱することを意味する。酸素濃度が制御された雰囲気は、例えば酸素を1~21体積%含む不活性ガス(例えば窒素または過熱水蒸気)雰囲気が該当し、好ましくは1~3体積%の酸素を含む過熱水蒸気雰囲気が良い。電解液が残存しているリチウムイオン電池を原料として用いる場合は、酸素濃度を1~3体積%に制御することが好ましい。 In step S12, the lithium ion battery prepared in step S11 is heat-treated. The heat treatment referred to here is used in the same sense as roasting, calcination, etc., and the lithium ion battery is heated in a heating furnace in the atmosphere (oxygen concentration: approximately 21% by volume) or in an atmosphere with a controlled oxygen concentration. means heating at a temperature of The atmosphere in which the oxygen concentration is controlled is, for example, an inert gas (eg, nitrogen or superheated steam) atmosphere containing 1 to 21% by volume of oxygen, preferably a superheated steam atmosphere containing 1 to 3% by volume of oxygen. When using a lithium ion battery with residual electrolyte as a raw material, it is preferable to control the oxygen concentration to 1 to 3% by volume.

所定の温度は、例えば450~650℃が該当し、好ましくは500~600℃が良い。黒鉛は600℃を超える温度で酸化されるため、この点からも加熱温度は500~600℃とする事が好ましい。温度が高いと、(1)Liとアルミ箔との反応が生じLiAlOが多量に生成する、(2)アルミニウムの融点の660℃以上であればアルミ箔が融解して有価金属が溶融物に取り込まれて回収できなくなる、あるいは(3)加熱炉内でプラスチックが燃焼する等の不都合が生じてしまう。加熱時間は、例えば0.3~10時間が該当し、好ましくは10分~6時間が良い。 The predetermined temperature is, for example, 450 to 650°C, preferably 500 to 600°C. Since graphite is oxidized at temperatures exceeding 600°C, from this point of view as well, the heating temperature is preferably 500 to 600°C. If the temperature is high, (1) a reaction between Li and aluminum foil will occur, producing a large amount of LiAlO 2 ; (2) if the temperature is higher than the melting point of aluminum, 660°C, the aluminum foil will melt and valuable metals will turn into molten material. Inconveniences may occur, such as the plastic being taken in and becoming unrecoverable, or (3) the plastic burning in the heating furnace. The heating time is, for example, 0.3 to 10 hours, preferably 10 minutes to 6 hours.

加熱条件は、使用する加熱炉の加熱方式、廃リチウムイオン電池の種類によって適宜使い分ける。上述した条件下で加熱すると、加熱時に円筒型や角型のリチウムイオン電池では、筐体の内部までは酸素が行き渡らず、セパレーター等のプラスチックが燃える事はない。ラミネート型リチウムイオン電池の場合は、電解液の蒸発時に開口部が大きく開く可能性があるため、1~3体積%の酸素を含む過熱水蒸気雰囲気下で加熱する事が好ましい。正極や負極に含まれるPVDF等のバインダー成分の分解が生じ、正極活物質の正極集電体からの剥離および負極活物質の負極集電体からの剥離が容易に生じるようになるが、温度や時間が不十分であればこれらの作用が大量に生じることは無い。 The heating conditions are determined as appropriate depending on the heating method of the heating furnace used and the type of waste lithium ion battery. When heated under the above conditions, oxygen does not reach the inside of the casing of cylindrical or square lithium ion batteries during heating, and the plastic separator etc. does not burn. In the case of a laminated lithium ion battery, it is preferable to heat it in a superheated steam atmosphere containing 1 to 3% by volume of oxygen, since the opening may open wide when the electrolyte evaporates. Binder components such as PVDF contained in the positive and negative electrodes decompose, and the positive electrode active material easily peels off from the positive electrode current collector, and the negative electrode active material peels off from the negative electrode current collector. If there is insufficient time, these effects will not occur in large quantities.

使用する加熱炉は、基本的にどのような形式でもよい。例えば、連続式炉であるロータリーキルン、トンネル炉、ローラーハースキルン、台車炉、流動床炉等、あるいはバッチ式炉であるマッフル炉等を用いることができる。加熱後には冷却を行う。冷却を行わずに次工程の粉砕を行うと、残留しているプラスチックが燃える等の危険があるからである。冷却は100℃以下、より好ましくは40℃以下まで冷却する。冷却は、チラーを用いて冷却速度を速めても良いが、大気雰囲気で行うことが設備や雰囲気調整のコストを軽減する上で好ましい。 Basically, the heating furnace used may be of any type. For example, a continuous furnace such as a rotary kiln, a tunnel furnace, a roller hearth kiln, a bogie furnace, a fluidized bed furnace, etc., or a batch furnace such as a muffle furnace can be used. Cooling is performed after heating. This is because if the next step of pulverization is performed without cooling, there is a risk that the remaining plastic will burn. Cooling is carried out to 100°C or lower, more preferably to 40°C or lower. The cooling may be performed using a chiller to increase the cooling rate, but it is preferable to perform the cooling in the air in order to reduce the cost of equipment and atmosphere adjustment.

工程S13では、熱処理後のリチウムイオン電池を粉砕して粉砕物を得る。粉砕は、常用の粉砕機を使用出来、目的に応じて適宜選択することができる。衝撃により破砕して破砕物を得ても良い。切断機により熱処理物を切断する予備破砕を行っても良い。粉砕機としては、例えば、ハンマークラッシャーを用いることができる。セラミック等のボールにより被破砕物を叩く方法でも良く、ボールミル等により行うことができる。二軸破砕機あるいは必要に応じてジェットミルなどの気流粉砕機を用いても良い。 In step S13, the heat-treated lithium ion battery is pulverized to obtain a pulverized product. For pulverization, a commonly used pulverizer can be used and can be appropriately selected depending on the purpose. A crushed product may be obtained by crushing by impact. Preliminary crushing may be performed by cutting the heat-treated product using a cutting machine. As the crusher, for example, a hammer crusher can be used. A method of hitting the object to be crushed with ceramic balls or the like may be used, and a ball mill or the like may be used. A twin-screw crusher or, if necessary, an air flow crusher such as a jet mill may be used.

工程S14では、粉砕物を篩分けして所定サイズの粉状(粒状)のリチウムイオン電池滓を得る。この篩分けでは適度な粉径(粒径)に揃えることが望ましい。粉砕物を篩分けして篩上と篩下に選別して、それぞれにおいて回収物を得る。篩分けられた分離物に対して、磁力選別をする工程を含めてもよい。ここで、篩上物に磁選を実施する場合は、磁選後の非磁着物を粗粒産物、篩下に分離されるものを微粒産物という。 In step S14, the pulverized material is sieved to obtain powdered (granular) lithium ion battery slag of a predetermined size. In this sieving, it is desirable to have a suitable powder size (particle size). The pulverized material is sieved and sorted into upper and lower sieves, and recovered materials are obtained from each. A step of magnetically sorting the sieved separation material may be included. Here, when performing magnetic separation on the sieve material, the non-magnetic material after magnetic separation is called a coarse grain product, and the material separated under the sieve is called a fine grain product.

篩上には、銅、アルミ箔、プラスチック、鉄が主として残る。篩下に有価金属を含む正極活物質等の処理物、粉砕工程で粉砕されて篩を通過した銅、アルミ箔、鉄や負極活物質の黒鉛などが含まれる。磁力選別を施せば、鉄は磁力によって除かれる。篩分け方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いることができる。篩の篩目開きとしては、目的に応じて適宜選択することができるが、その範囲は0.01~10mm程度が好ましい。以下、得られる黒色のリチウムイオン電池滓を本出願ではブラックマス(BM)とも呼ぶ。 Copper, aluminum foil, plastic, and iron mainly remain on the sieve. This includes processed materials such as positive electrode active materials that contain valuable metals under the sieve, as well as copper, aluminum foil, iron, and negative electrode active material graphite that have been crushed in the crushing process and passed through the sieve. If magnetic separation is applied, iron will be removed by magnetic force. The sieving method is not particularly limited and can be selected as appropriate depending on the purpose. For example, a vibrating sieve, a multistage vibrating sieve, a cyclone, a standard sieve according to JIS Z8801, etc. can be used. The mesh opening of the sieve can be appropriately selected depending on the purpose, but the range is preferably about 0.01 to 10 mm. Hereinafter, the obtained black lithium ion battery slag will also be referred to as black mass (BM) in this application.

工程S15では、工程S14で得られたリチウムイオン電池滓(BM)をX線回折(XRD)測定する。X線回折(XRD)測定は、リチウムイオン電池滓(BM)中の含有元素がどのような状態(化合物等)で存在するかを分析し、Li/Mnの浸出/回収との関係を解析するために行う。 In step S15, the lithium ion battery slag (BM) obtained in step S14 is subjected to X-ray diffraction (XRD) measurement. X-ray diffraction (XRD) measurement analyzes the state (compounds, etc.) of elements contained in lithium ion battery sludge (BM) and analyzes the relationship with Li/Mn leaching/recovery. do it for the sake of

本発明のリチウムイオン電池滓(BM)のXRD測定では、正極活物質に用いた材料や工程S2の熱処理条件により内容は変わるが、例えば、黒鉛(C)、CoNi、LiCO、Co、LiAlO、Cu、CoO、MnO等の存在を示すピークが検出される。さらに、本発明では、検出された特定のピークを比較し、それらの強度比(ピーク強度比)A/Bに着目する。その理由は以下の通りである。 In the XRD measurement of the lithium ion battery slag (BM) of the present invention, the content varies depending on the material used for the positive electrode active material and the heat treatment conditions of step S2, but for example, graphite (C), CoNi, Li 2 CO 3 , Co 3 Peaks indicating the presence of O 4 , LiAlO 2 , Cu, CoO, MnO, etc. are detected. Furthermore, in the present invention, detected specific peaks are compared and attention is paid to their intensity ratio (peak intensity ratio) A/B. The reason is as follows.

正極活物質がLCO、NCM、NCMAまたはNCAでは、空間群R-3mに属する結晶構造を持ち、組成の違いに関わらずXRD測定によれば、回折角度:diffraction angle 2θ=18.7°、36.8°、44.5°などに結晶構造由来のピークを示す。ここで、18.7°のピークが最も大きく、このピークの高さで試料中の正極活物質の結晶構造がどの程度維持されているかをおおよそ把握する事が出来る。その18.7°のピーク高さが高いほど、結晶構造は維持されていると考えられる。 When the positive electrode active material is LCO, NCM, NCMA, or NCA, it has a crystal structure belonging to the space group R-3m, and regardless of the difference in composition, according to XRD measurement, the diffraction angle: 2θ = 18.7°, 36 It shows peaks derived from the crystal structure at .8°, 44.5°, etc. Here, the peak at 18.7° is the largest, and the height of this peak can be used to roughly determine how well the crystal structure of the positive electrode active material in the sample is maintained. It is considered that the higher the peak height of 18.7°, the better the crystal structure is maintained.

リチウムイオン電池中のLiは、放電状態では正極活物質の結晶内に取り込まれている。充電深度が高まるにつれて、正極活物質から負極活物質の黒鉛へ移動して、炭素(C)-Liの化合物の状態となる。今回対象としているリチウムイオン電池では、充電電圧が4.2V程度に制御されることから、正極活物質に元々存在するLi量の約50%が充電時に正極活物質から抜け出し、残りの約50%は、正極活物質に残存したままであると考えられる。 Li in a lithium ion battery is incorporated into the crystals of the positive electrode active material in a discharged state. As the depth of charge increases, the graphite moves from the positive electrode active material to the negative electrode active material, becoming a carbon (C)-Li compound. In the lithium-ion battery targeted this time, the charging voltage is controlled to about 4.2V, so about 50% of the Li amount originally present in the positive electrode active material escapes from the positive electrode active material during charging, and the remaining 50% is considered to remain in the positive electrode active material.

そこで、本発明者らは正極活物質の結晶構造を加熱によって崩壊させる事で、正極活物質に残存するLiが取出しやすくなると考え、この崩壊の程度の指標として、XRD測定における18.7°のピーク(正極活物質の最強ピーク)の強度Aと26.5°のピーク(負極活物質での黒鉛の最強ピーク)の強度Bとの比(A/B)に着目することにした。 Therefore, the present inventors thought that by disintegrating the crystal structure of the cathode active material by heating, the Li remaining in the cathode active material could be easily taken out. We decided to focus on the ratio (A/B) between the intensity A of the peak (the strongest peak of the positive electrode active material) and the intensity B of the peak at 26.5° (the strongest peak of graphite in the negative electrode active material).

<リチウムイオン電池滓(BM)の製造>
NCM523(N:C:M=5:2:3)を正極活物質とする民生用円筒型リチウムイオン電池を、酸素が2体積%含まれる過熱水蒸気雰囲気のバッチ炉で、200℃/時間の昇温速度で500℃まで昇温し5.5時間維持した。この間、酸素濃度は維持し、加熱水蒸気の供給は継続した。その後、過熱水蒸気の供給は止め、室温まで12時間かけて冷却した。その後、クロスフローシュレッダーで、リチウムイオ電池の熱処理物を粉砕、篩分けして0.01~10mmの範囲内のサイズの篩下分を分取して、実施例1のBM1を得た。
<Manufacture of lithium ion battery slag (BM)>
A consumer cylindrical lithium ion battery using NCM523 (N:C:M=5:2:3) as the positive electrode active material was heated at 200°C/hour in a batch furnace in a superheated steam atmosphere containing 2% by volume of oxygen. The temperature was increased to 500° C. and maintained for 5.5 hours. During this time, the oxygen concentration was maintained and the supply of heated steam continued. Thereafter, the supply of superheated steam was stopped, and the mixture was cooled to room temperature over 12 hours. Thereafter, the heat-treated lithium ion battery was crushed and sieved using a cross-flow shredder, and the fraction under the sieve with a size within the range of 0.01 to 10 mm was collected to obtain BM1 of Example 1.

得られたBM1について、ICP-OES分析装置(島津製作所社製ICPE-9000)にて定量分析を行い、さらにC量の測定はTG-DTAを用いて行って、その含有成分を調べた上で、XRD測定による結晶構造解析を行った。XRD測定は、リガク社製Smart labを用いて行った。図3にXRD測定結果(チャート)BM1を示す。図3より、以下の(1)~(4)の内容が明らかになった。 The obtained BM1 was quantitatively analyzed using an ICP-OES analyzer (ICPE-9000 manufactured by Shimadzu Corporation), and the amount of C was measured using TG-DTA to investigate the contained components. , the crystal structure was analyzed by XRD measurement. XRD measurement was performed using Rigaku's Smart lab. FIG. 3 shows the XRD measurement results (chart) BM1. From Figure 3, the following (1) to (4) have become clear.

(1)18.7°のピーク(正極活物質の最強ピーク)と26.5°(負極活物質:黒鉛の最強ピーク)のピークの高さ(強度)比(18.7/26.5)は、0.102であった。
(2)CoNiの生成を確認した。51.7°と76.2°のピークより判定した。なお、44.4°のピークは、正極活物質と黒鉛に重なるため切り分け不可である。
(3)LiCOの生成を確認した。21.4°、29.5°、30.6°及び31.8°のピークより判定した。
(4)Coの生成を確認した。37.0°と38.6°のピークより判定した。
(1) Height (intensity) ratio of the peak at 18.7° (strongest peak of positive electrode active material) and 26.5° (strongest peak of negative electrode active material: graphite) (18.7/26.5) was 0.102.
(2) Generation of CoNi was confirmed. Judgment was made from the peaks at 51.7° and 76.2°. Note that the peak at 44.4° cannot be separated because it overlaps with the positive electrode active material and graphite.
(3) Generation of Li 2 CO 3 was confirmed. Judgment was made from the peaks at 21.4°, 29.5°, 30.6° and 31.8°.
(4) Production of Co 3 O 4 was confirmed. Judgment was made from the peaks at 37.0° and 38.6°.

<Liの水浸出>
BM1 10gを100mLの水道水に分散させ、ホットスターラーを用いて、120℃/時間の昇温速度で、30℃、60℃、80℃の3つの温度まで加熱した。各温度に到達してから各々2時間、5時間、24時間の間温度を保持しながら攪拌を続け(計9条件)、室温まで冷却した後に濾過した。得られた9条件での濾液(濾液A)と濾過残渣中のLi、Co、NiおよびMnの量を測定した。なお、濾過残渣中のLi、Co、NiおよびMn量は、濾過残渣を熱王水で溶解後、濾過によって回収された濾液(濾液B)中のLi、Co、NiおよびMnの量とした。Li、Co、NiおよびMnの分析は、濾液Aおよび濾液Bを3%硝酸によって適宣希釈してからICP(島津製作所社製ICPE-9000)を用いて行った。Li、Co、NiおよびMnの回収率は、濾液A中の各金属質量/(濾液A中の各金属質量+濾液B中の各金属質量)*100で算出した。
<Water leaching of Li>
10 g of BM1 was dispersed in 100 mL of tap water, and heated using a hot stirrer at a heating rate of 120° C./hour to three temperatures: 30° C., 60° C., and 80° C. After reaching each temperature, stirring was continued while maintaining the temperature for 2 hours, 5 hours, and 24 hours (9 conditions in total), and after cooling to room temperature, it was filtered. The amounts of Li, Co, Ni, and Mn in the resulting filtrate (filtrate A) and filtration residue under the nine conditions were measured. The amounts of Li, Co, Ni, and Mn in the filtration residue were defined as the amounts of Li, Co, Ni, and Mn in the filtrate (filtrate B) recovered by filtration after dissolving the filtration residue in hot aqua regia. Analysis of Li, Co, Ni, and Mn was performed using ICP (ICPE-9000, manufactured by Shimadzu Corporation) after appropriately diluting filtrate A and filtrate B with 3% nitric acid. The recovery rates of Li, Co, Ni, and Mn were calculated as: mass of each metal in filtrate A/(mass of each metal in filtrate A + mass of each metal in filtrate B)*100.

Liの回収率(%)は、以下のようになった。Co、Mn、及びNiの回収率はどの条件でもほぼ0%であった。

30℃ 60℃ 80℃
2H: 46.4 49.9 49.8
5H: 52.3 50.2 47.8
24H: 47.3 49.9 40.9

この結果から、Liのみが高い割合で水に浸出し、CoとNiは水に浸出させずに、Liと(Co+Ni)の固液分離が可能であることが分かった。
The recovery rate (%) of Li was as follows. The recovery rates of Co, Mn, and Ni were approximately 0% under all conditions.

30 60 80℃
2H: 46.4 49.9 49.8
5H: 52.3 50.2 47.8
24H: 47.3 49.9 40.9

From this result, it was found that solid-liquid separation of Li and (Co+Ni) was possible, with only Li leaching into water at a high rate and Co and Ni not leaching into water.

<LiとMnの硫酸水溶液浸出>
(a)BM1 10gを100mLの1、2、3wt%の80℃のHSO水溶液中で2時間浸出反応させたところ、Li、Mn、Co、及びNiの回収率(%)は、以下のようになった。

1wt% 2wt% 3wt%
Li: 52.0 58.2 74.3
Mn: 0.02 39.3 77.2
Co: 0.00 0.42 2.44
Ni: 0. 00 0.31 0.17
<Li and Mn leaching with sulfuric acid aqueous solution>
(a) When 10 g of BM1 was subjected to leaching reaction in 100 mL of 1, 2, and 3 wt% aqueous H 2 SO 4 solution at 80°C for 2 hours, the recovery rate (%) of Li, Mn, Co, and Ni was as follows. It became like this.

1wt% 2wt% 3wt%
Li: 52.0 58.2 74.3
Mn: 0.02 39.3 77.2
Co: 0.00 0.42 2.44
Ni: 0.00 0.31 0.17

(b)BM1 10gを100mLの30℃、60℃、80℃の3wt%のHSO水溶液中で2時間浸出反応させたところ、Li、Mn、Co、及びNiの回収率(%)は、以下のようになった。

30℃ 60℃ 80℃
Li: 66.1 71.2 74.3
Mn: 72.0 72.0 77.2
Co: 14.2 10.3 2.44
Ni: 9.05 4.07 0.17
(b) When 10 g of BM1 was subjected to a leaching reaction in 100 mL of a 3 wt% H 2 SO 4 aqueous solution at 30°C, 60°C, and 80°C for 2 hours, the recovery rate (%) of Li, Mn, Co, and Ni was , it became as follows.

30 60 80℃
Li: 66.1 71.2 74.3
Mn: 72.0 72.0 77.2
Co: 14.2 10.3 2.44
Ni: 9.05 4.07 0.17

(c)BM1 10gを0.5、2、5、24時間の浸出時間(H)で、100mLの80℃の3wt%のHSO水溶液中で浸出反応させたところ、Li、Mn、Co、及びNiの回収率(%)は、以下のようになった。

0.5H 2H 5H 24H
Li: 79.4 72.6 70.7 79.8
Mn: 69.4 64.9 52.3 23.7
Co: 7.14 0.91 0.09 0.21
Ni: 1.89 0.10 0.91 0.21
(c) When 10 g of BM1 was subjected to a leaching reaction in 100 mL of a 3 wt% H 2 SO 4 aqueous solution at 80°C at leaching times (H) of 0.5, 2, 5, and 24 hours, Li, Mn, Co , and the recovery rate (%) of Ni were as follows.

0.5H 2H 5H 24H
Li: 79.4 72.6 70.7 79.8
Mn: 69.4 64.9 52.3 23.7
Co: 7.14 0.91 0.09 0.21
Ni: 1.89 0.10 0.91 0.21

上記(a)~(c)のBM1の浸出結果(回収率)から、温度30℃~80℃で濃度1~3wt%の硫酸水溶液中に浸出時間0.5~24時間で、LiとMnを高い割合で浸出させることができる一方で、CoとNiはほとんど浸出させることなく、(Li+Mn)と(Co+Ni)の固液分離が可能であることが明らかになった。 From the leaching results (recovery rate) of BM1 in (a) to (c) above, Li and Mn were leached into an aqueous sulfuric acid solution with a concentration of 1 to 3 wt% at a temperature of 30°C to 80°C for a leaching time of 0.5 to 24 hours. It has become clear that solid-liquid separation of (Li+Mn) and (Co+Ni) is possible while leaching out at a high rate, while hardly leaching Co and Ni.

NCM523を正極活物質とする民生用円筒型リチウムイオン電池を大気雰囲気下300℃に設定したコンベアー式乾燥炉に15分間搬送して、リチウムイオン電池内の電解液を蒸発させた。次に、大気雰囲気が流通可能なローターキルンに560℃で20分間加熱した。得られた加熱済みリチウムイオン電池を室温まで冷却後、二軸破砕機で粉砕した。その後、振動篩で篩分けし、0.01~10mmの範囲内のサイズの篩下分を分取して、実施例2のBM2を得た。 A consumer cylindrical lithium ion battery using NCM523 as a positive electrode active material was transported to a conveyor type drying oven set at 300° C. in an air atmosphere for 15 minutes to evaporate the electrolyte in the lithium ion battery. Next, the mixture was heated at 560° C. for 20 minutes in a rotor kiln through which air could circulate. The obtained heated lithium ion battery was cooled to room temperature and then crushed using a twin-screw crusher. Thereafter, it was sieved using a vibrating sieve, and the under-sieve fraction having a size within the range of 0.01 to 10 mm was collected to obtain BM2 of Example 2.

実施例1のBM1の場合と同様に、含有成分を調べた上で、XRD測定による結晶構造解析を行った。図3にXRD測定結果(チャート)BM2を示す。図3より、以下の内容が明らかになった。
(1)18.7°と26.5°のピーク強度比(18.7/26.5)は、0.0984であった。
(2)CoNi、LiCO3、Coの生成を確認した。
As in the case of BM1 in Example 1, after examining the contained components, crystal structure analysis was performed by XRD measurement. FIG. 3 shows the XRD measurement results (chart) BM2. From Figure 3, the following details were clarified.
(1) The peak intensity ratio between 18.7° and 26.5° (18.7/26.5) was 0.0984.
(2) Generation of CoNi, Li 2 CO 3 and Co 3 O 4 was confirmed.

NCM523を正極活物質とする民生用円筒型リチウムイオン電池を200℃/時間の昇温速度で600℃まで昇温し、5.5時間維持した以外は、実施例1と同様の方法で、実施例3のBM3を得た。 Conducted in the same manner as in Example 1, except that a consumer cylindrical lithium ion battery using NCM523 as the positive electrode active material was heated to 600°C at a rate of 200°C/hour and maintained for 5.5 hours. BM3 of Example 3 was obtained.

実施例1のBM1の場合と同様に、含有成分を調べた上で、XRD測定による結晶構造解析を行った。図3にXRD測定結果(チャート)BM3を示す。図3より、以下の内容が明らかになった。
(1)18.7°と26.5°のピーク強度比(18.7/26.5)は、0.0328であった。
(2)CoNi、LiCO3、Coの生成を確認した。
As in the case of BM1 in Example 1, after examining the contained components, crystal structure analysis was performed by XRD measurement. FIG. 3 shows the XRD measurement results (chart) BM3. From Figure 3, the following details were clarified.
(1) The peak intensity ratio between 18.7° and 26.5° (18.7/26.5) was 0.0328.
(2) Generation of CoNi, Li 2 CO 3 and Co 3 O 4 was confirmed.

<リチウムイオン電池滓(BM)の製造>
実施例4として比較例1の実験を行った。NCM523を正極活物質とする民生用円筒型リチウムイオン電池を大気雰囲気下200℃に設定したコンベアー式乾燥炉に15分間搬送した。次に、大気を流通可能なローターキルンに400℃で20分間加熱した。得られた熱処理済みリチウムイオン電池を室温まで冷却後、二軸破砕機で粉砕した。その後、振動篩で篩分けし、0.01~10mmの範囲内のサイズの篩下分を分取して、比較例1のBMであるBMRを得た。
<Manufacture of lithium ion battery slag (BM)>
As Example 4, an experiment of Comparative Example 1 was conducted. A consumer-use cylindrical lithium ion battery using NCM523 as a positive electrode active material was transported for 15 minutes to a conveyor-type drying oven set at 200° C. in an air atmosphere. Next, it was heated at 400° C. for 20 minutes in a rotor kiln through which air could be circulated. The obtained heat-treated lithium ion battery was cooled to room temperature and then crushed using a twin-screw crusher. Thereafter, it was sieved using a vibrating sieve, and the under-sieve fraction having a size within the range of 0.01 to 10 mm was fractionated to obtain BMR, which is the BM of Comparative Example 1.

実施例1のBM1の場合と同様に、含有成分を調べた上で、XRD測定による結晶構造解析を行った。図3にXRD測定結果(チャート)BMRを示す。図3より、以下の(5)~(8)の内容が明らかになった。
(1)18.7°と26.5°のピーク強度比(18.7/26.5)は、0.18であった。
(2)CoNiの生成は確認できなかった。
(3)LiCOの生成は、トレース量(微量で一定基準以下または測定限界値以下の量)しか確認できなかった。
(4)Coの生成を確認した。
As in the case of BM1 in Example 1, after examining the contained components, crystal structure analysis was performed by XRD measurement. FIG. 3 shows the XRD measurement results (chart) BMR. From FIG. 3, the following (5) to (8) have become clear.
(1) The peak intensity ratio between 18.7° and 26.5° (18.7/26.5) was 0.18.
(2) Generation of CoNi could not be confirmed.
(3) The production of Li 2 CO 3 could only be confirmed in a trace amount (a trace amount below a certain standard or below a measurement limit).
(4) Production of Co 3 O 4 was confirmed.

<Liの水浸出>
実施例1のBM1の場合と同様な方法により、実施例4(比較例1)のBMR 10gを100mLの水道水に分散させ、浸出温度80℃、浸出時間2時間でLiの浸出試験を行った。その結果、Liの浸出率は15.3%となり、Co、Mn、及びNiの回収率はいずれも0%であった。
<Water leaching of Li>
By the same method as in the case of BM1 in Example 1, 10 g of BMR of Example 4 (Comparative Example 1) was dispersed in 100 mL of tap water, and a Li leaching test was conducted at a leaching temperature of 80 ° C. and a leaching time of 2 hours. . As a result, the leaching rate of Li was 15.3%, and the recovery rates of Co, Mn, and Ni were all 0%.

<LiとMnの硫酸水溶液浸出>
実施例4(比較例1)のBMRに対して、5wt%の30℃のHSO水溶液中で2時間浸出反応させたところ、Li、Mn、Co、及びNiの浸出率(%)は、以下のようになった。

Li Mn Co Ni
BMR: 36.9 26.3 25.2 22.8

LiとMnの浸出率が低く、かつCoとNiも同様な割合(%)で浸出してしまうことから、(Li+Mn)と(Co+Ni)の固液分離が困難であることが確認できた。
<Leaching of Li and Mn in sulfuric acid aqueous solution>
When the BMR of Example 4 (Comparative Example 1) was subjected to a leaching reaction for 2 hours in a 5wt% H 2 SO 4 aqueous solution at 30°C, the leaching rate (%) of Li, Mn, Co, and Ni was as follows. , became as follows.

Li Mn Co Ni
BMR: 36.9 26.3 25.2 22.8

It was confirmed that solid-liquid separation of (Li+Mn) and (Co+Ni) was difficult because the leaching rate of Li and Mn was low, and Co and Ni were leached out at similar rates (%).

実施例1~3と実施例4(比較例1)の製造条件とXRD測定結果を比較する事により、
(i)加熱温度が500℃~600℃であること、
(ii)加熱時の雰囲気中の酸素濃度が2~21体積%(大気)以下であること、及び
(iii)加熱温度を0.33~5.5時間維持することで、
(a)BMのXRD測定チャートにおける、2θが18.7°のピークと26.5°のピークの高さ(強度)比が0.102以下となること
(b)CoNi化合物が生成すること
(c)LiCOが生成すること
の3つが同時に生じ得る事が明らかとなった。また、その際のBM中の黒鉛(C)の含有量は、約20~31質量%である事が分かった。
By comparing the manufacturing conditions and XRD measurement results of Examples 1 to 3 and Example 4 (Comparative Example 1),
(i) The heating temperature is 500°C to 600°C,
(ii) The oxygen concentration in the atmosphere during heating is 2 to 21% by volume (atmosphere) or less, and (iii) The heating temperature is maintained for 0.33 to 5.5 hours.
(a) In the XRD measurement chart of BM, the height (intensity) ratio of the peak at 2θ of 18.7° and the peak at 26.5° is 0.102 or less (b) CoNi compound is generated ( It has become clear that three things can occur simultaneously: c) Li 2 CO 3 is produced. Further, it was found that the content of graphite (C) in the BM at that time was about 20 to 31% by mass.

実施例1と実施例4(比較例1)のLiの水浸出結果(回収率)の比較から、実施例1のBM1は、比較例1のBMRの回収率(約15%)の3倍以上の高い回収率(約50%)でLiを回収することができることが分かった。 From the comparison of Li water leaching results (recovery rate) of Example 1 and Example 4 (Comparative Example 1), BM1 of Example 1 is more than three times the recovery rate of BMR of Comparative Example 1 (about 15%). It was found that Li could be recovered at a high recovery rate (approximately 50%).

実施例1と実施例4(比較例1)の硫酸水溶液浸出結果(回収率)から、実施例1のBM1では、(Li+Mn)と(Co+Ni)の固液分離が可能であるが、実施例4(比較例1)のBMRでは、困難であることが明らかになった。 From the sulfuric acid aqueous solution leaching results (recovery rate) of Example 1 and Example 4 (Comparative Example 1), solid-liquid separation of (Li+Mn) and (Co+Ni) is possible in BM1 of Example 1, but in Example 4 It became clear that the BMR of (Comparative Example 1) was difficult.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. The present invention can be implemented with various improvements, modifications, and variations based on the knowledge of those skilled in the art without departing from the spirit thereof.

リチウムイオン電池滓とその製造方法は、廃リチウムイオン電池からの金属の回収において幅広く利用することができる。

Lithium ion battery slag and its manufacturing method can be widely used in the recovery of metals from waste lithium ion batteries.

Claims (8)

正極活物質としてリチウム(Li)、コバルト(Co)及びニッケル(Ni)を含み、負極活物質として黒鉛(C)を含むリチウムイオン電池から金属を回収する方法であって、
(a)X線回折(XRD)測定において、回折角度18.7°のピーク強度Aと26.5°のピーク強度Bとの比(A/B)が0~0.15の範囲にある、前記リチウムイオン電池の電池滓を準備する工程と、
(b)前記電池滓を水中に分散させ、30~80℃の浸出液中に2~24時間かけてリチウムを浸出させる工程と、
を含む方法。
A method for recovering metal from a lithium ion battery containing lithium (Li), cobalt (Co) and nickel (Ni) as a positive electrode active material and graphite (C) as a negative electrode active material, the method comprising:
(a) In X-ray diffraction (XRD) measurement, the ratio (A/B) of peak intensity A at a diffraction angle of 18.7° and peak intensity B at 26.5° is in the range of 0 to 0.15. a step of preparing battery slag for the lithium ion battery;
(b) dispersing the battery slag in water and leaching lithium into a leachate at 30 to 80°C for 2 to 24 hours;
method including.
正極活物質としてリチウム(Li)、コバルト(Co)及びニッケル(Ni)を含み、負極活物質として黒鉛(C)を含むリチウムイオン電池から金属を回収する方法であって、
(a)X線回折(XRD)測定において、回折角度18.7°のピーク強度Aと26.5°のピーク強度Bとの比(A/B)が0~0.15の範囲にある、前記リチウムイオン電池の電池滓を準備する工程と、
(b)前記電池滓を1~3質量%の濃度の硫酸水溶液中に分散させ、30~80℃の浸出液中に0.5~24時間かけてリチウムとマンガンを浸出させる工程と、
を含む方法。
A method for recovering metal from a lithium ion battery containing lithium (Li), cobalt (Co) and nickel (Ni) as a positive electrode active material and graphite (C) as a negative electrode active material, the method comprising:
(a) In X-ray diffraction (XRD) measurement, the ratio (A/B) of peak intensity A at a diffraction angle of 18.7° and peak intensity B at 26.5° is in the range of 0 to 0.15. a step of preparing battery slag for the lithium ion battery;
(b) dispersing the battery slag in an aqueous sulfuric acid solution with a concentration of 1 to 3% by mass, and leaching lithium and manganese into a leachate at 30 to 80°C for 0.5 to 24 hours;
method including.
X線回折(XRD)測定において、前記電池滓はCoNiに起因するピークを有する、請求項1または2に記載の方法。 3. The method according to claim 1, wherein in X-ray diffraction (XRD) measurement, the battery slag has a peak due to CoNi. X線回折(XRD)測定において、前記電池滓はLiCOとCoの一方または双方に起因するピークを有する、請求項3に記載の方法。 4. The method according to claim 3 , wherein in X-ray diffraction ( XRD) measurement, the battery slag has a peak resulting from one or both of Li2CO3 and Co3O4 . 前記電池滓は前記黒鉛(C)を10~35質量%含む、請求項4に記載の方法。 The method according to claim 4, wherein the battery slag contains 10 to 35% by mass of the graphite (C). 前記正極活物質はマンガン(Mn)を含む、請求項5に記載の方法。 6. The method of claim 5, wherein the positive electrode active material comprises manganese (Mn). 前記リチウムイオン電池の電池滓を準備する工程(a)は、
(a1)前記リチウムイオン電池を加熱炉内の大気中で500~600℃の温度で0.3~10時間保持する熱処理工程と、
(a2)熱処理後の前記リチウムイオン電池を粉砕して粉砕物を得る粉砕工程と、
(a3)前記粉砕物を篩分けして粉状のリチウムイオン電池滓を得る篩分け工程と、
を含む、請求項1または2に記載の方法。
The step (a) of preparing battery slag for the lithium ion battery includes:
(a1) a heat treatment step of holding the lithium ion battery in the atmosphere in a heating furnace at a temperature of 500 to 600°C for 0.3 to 10 hours;
(a2) a pulverizing step of pulverizing the lithium ion battery after heat treatment to obtain a pulverized product;
(a3) a sieving step of sieving the pulverized material to obtain powdered lithium ion battery slag;
The method according to claim 1 or 2, comprising:
前記熱処理工程(a1)は、前記加熱炉内を大気に代えて、酸素濃度が1~21体積%の不活性ガスまたは過熱水蒸気の雰囲気、及び酸素濃度が1~3体積%の不活性ガスまたは過熱水蒸気の雰囲気のいずれかの状態にして加熱することを含む、請求項7に記載の方法。
In the heat treatment step (a1), the inside of the heating furnace is replaced by an atmosphere of inert gas or superheated steam having an oxygen concentration of 1 to 21% by volume, and an atmosphere of inert gas or superheated steam having an oxygen concentration of 1 to 3% by volume. 8. The method according to claim 7, comprising heating in any state of superheated steam atmosphere.
JP2022090562A 2022-06-03 2022-06-03 METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY Active JP7220340B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090562A JP7220340B1 (en) 2022-06-03 2022-06-03 METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022090562A JP7220340B1 (en) 2022-06-03 2022-06-03 METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY

Publications (2)

Publication Number Publication Date
JP7220340B1 JP7220340B1 (en) 2023-02-10
JP2023177725A true JP2023177725A (en) 2023-12-14

Family

ID=85174593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022090562A Active JP7220340B1 (en) 2022-06-03 2022-06-03 METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY

Country Status (1)

Country Link
JP (1) JP7220340B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055159A (en) * 2019-09-30 2021-04-08 Dowaメタルマイン株式会社 Method for leaching out manganese from lithium ion secondary battery and metal recovery method
JP2021174676A (en) * 2020-04-24 2021-11-01 Jx金属株式会社 Lithium recovery method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055159A (en) * 2019-09-30 2021-04-08 Dowaメタルマイン株式会社 Method for leaching out manganese from lithium ion secondary battery and metal recovery method
JP2021174676A (en) * 2020-04-24 2021-11-01 Jx金属株式会社 Lithium recovery method

Also Published As

Publication number Publication date
JP7220340B1 (en) 2023-02-10

Similar Documents

Publication Publication Date Title
CA3058572C (en) Lithium ion battery scrap treatment method
JP5535717B2 (en) Lithium recovery method
EP3956485B1 (en) Process for the preparation of precursor compounds for lithium battery cathodes
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP6948066B2 (en) Recycled negative electrode active material recovered from waste lithium ion battery containing lithium titanate and its recovery method
KR20210031459A (en) How to recycle waste lithium-ion batteries
JP2022542879A (en) Method for recovering lithium and other metals from waste ion batteries
JP2017115179A (en) Recovery method of valuable substance
CN113517484B (en) Method for treating waste lithium cobalt oxide battery and product thereof
WO2021090571A1 (en) Method for separating lithium
EP4152476A1 (en) Method for recovering cathode material
JP2016191143A (en) Lithium extraction method
KR20170052012A (en) Recycling method for waste electrode of lithium secondary battery
KR20220148201A (en) Valuable metal concentration method included in lithium ion secondary battery
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
JP2017052997A (en) Lithium extraction method
JP6869444B1 (en) Lithium separation method
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
CN116323998A (en) Method for recovering lithium and method for producing lithium carbonate
JP7220340B1 (en) METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY
JP2023177724A (en) Waste residue of lithium ion battery and method for producing the same
JP2022547698A (en) How to dispose of waste batteries
JP7423104B1 (en) Method for recovering metals from lithium ion batteries
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7220340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150