JP2023175214A - Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus - Google Patents

Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus Download PDF

Info

Publication number
JP2023175214A
JP2023175214A JP2022087552A JP2022087552A JP2023175214A JP 2023175214 A JP2023175214 A JP 2023175214A JP 2022087552 A JP2022087552 A JP 2022087552A JP 2022087552 A JP2022087552 A JP 2022087552A JP 2023175214 A JP2023175214 A JP 2023175214A
Authority
JP
Japan
Prior art keywords
joined
conductive bonding
oxide film
bonded
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022087552A
Other languages
Japanese (ja)
Inventor
智洋 石井
Tomohiro Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2022087552A priority Critical patent/JP2023175214A/en
Publication of JP2023175214A publication Critical patent/JP2023175214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a method for producing a joined body in which the joining strength of a boundary between a joining layer and members to be joined is improved.SOLUTION: A method for producing a joined body includes the steps of: forming an oxide film on the joining face of at lest either in two members to be joined; forming a fluorine compound layer on the surface of the oxide film; applying a conductive joining material comprising silver grains and a dispersant on the surface of the fluorine compound layer to form a conductive joining layer; and mounting the other member to be joined on the surface of the conductive joining layer so as to execute heating and compression.SELECTED DRAWING: Figure 1

Description

本開示は、接合体の製造方法、接合体、半導体装置の製造方法及び半導体装置に関するものである。 The present disclosure relates to a method for manufacturing a bonded body, a method for manufacturing a bonded body, a semiconductor device, and a semiconductor device.

半導体装置等に用いられる放熱部材の接合においては、放熱性を有する接合材料を用いて接合する必要がある。放熱性を有する接合材料としては、銀粒子や酸化銀等の銀化合物粒子に、分散剤として有機物を含んだ導電性接合材料が一般的に知られている。このような導電性接合材料を用いた接合方法の一例としては、一方の被接合部材の接合面に導電性接合材料を塗布し、導電性接合材料を介して他方の被接合部材を載置する。そして、一方の被接合部材に他方の被接合部材を載置した状態で加熱及び加圧することによって、導電性接合材料に含まれる酸化銀が還元され、銀ナノ粒子が生成し、最終的には金属銀を含む接合層を介して接合された接合体が形成される。
ここで、被接合部材として放熱部材を接合した半導体装置の場合を考えると、放熱部材と放熱部材を接合する接合部材とは材料が異なるため、部材同士の線膨張係数が異なる。さらに、放熱部材は加熱と冷却が繰り返されるため、部材同士の線膨張係数の差によって接合部に応力が発生し、部材及び部材同士の接合界面に負荷がかかる。特許文献1では、接合部材である導電性接合材料を用いた接合層の強度を向上させるため、銀化合物粒子と銀粒子の重量比を特定範囲にすることによって、接合層の空隙率を低下させ、接合層の強度と放熱性の両立を目的とした技術が開示されている。
When bonding heat dissipating members used in semiconductor devices and the like, it is necessary to use a bonding material that has heat dissipating properties. As a bonding material having heat dissipation properties, a conductive bonding material containing an organic substance as a dispersant in silver particles or silver compound particles such as silver oxide is generally known. An example of a bonding method using such a conductive bonding material is to apply the conductive bonding material to the bonding surface of one member to be bonded, and then place the other member to be bonded via the conductive bonding material. . Then, by heating and pressurizing one member to be joined with the other member to be joined, the silver oxide contained in the conductive joining material is reduced, silver nanoparticles are generated, and finally, A bonded body is formed by bonding via a bonding layer containing metallic silver.
Here, considering the case of a semiconductor device in which a heat dissipation member is bonded as a member to be bonded, the heat dissipation member and the bonding member that joins the heat dissipation member are made of different materials, and thus have different coefficients of linear expansion. Furthermore, since the heat dissipation member is repeatedly heated and cooled, stress is generated at the joint due to the difference in linear expansion coefficient between the members, and a load is applied to the member and the joint interface between the members. In Patent Document 1, in order to improve the strength of a bonding layer using a conductive bonding material as a bonding member, the porosity of the bonding layer is reduced by adjusting the weight ratio of silver compound particles and silver particles to a specific range. , a technique aimed at achieving both strength and heat dissipation of the bonding layer has been disclosed.

国際公開WO2018/101471号公報International Publication WO2018/101471 Publication

しかしながら、特許文献1に記載の方法は、接合部材である接合層の強度向上を図る技術であって、接合層と被接合部材との界面の接合強度の向上の効果は得られない点が課題である。 However, the method described in Patent Document 1 is a technique for improving the strength of the bonding layer, which is a bonding member, and has a problem in that it cannot achieve the effect of improving the bonding strength at the interface between the bonding layer and the member to be bonded. It is.

本開示は、上記のような課題を解決するためになされたものであり、接合層と被接合部材との界面の接合強度を向上した接合体の製造方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and aims to provide a method for manufacturing a bonded body that improves the bonding strength at the interface between a bonding layer and a member to be bonded.

本開示に係る接合体の製造方法は、二つの被接合部材のうち少なくとも一方の被接合部材の接合面に酸化膜を形成する工程と、前記酸化膜の表面にフッ素化合物層を形成する工程と、前記フッ素化合物層の表面に銀系粒子及び分散剤を含む導電性接合材料を塗布し、導電性接合層を形成する工程と、前記一方の被接合部材の前記接合面上に前記導電性接合層を介して他方の被接合部材を載置し、加熱及び加圧する工程と、を備えていることを特徴とする。 A method for manufacturing a bonded body according to the present disclosure includes a step of forming an oxide film on the joint surface of at least one of two members to be joined, and a step of forming a fluorine compound layer on the surface of the oxide film. , applying a conductive bonding material containing silver-based particles and a dispersant to the surface of the fluorine compound layer to form a conductive bonding layer; and applying the conductive bonding material on the bonding surface of the one member to be bonded. The method is characterized by comprising a step of placing the other member to be joined with the layer interposed therebetween, and heating and pressurizing the member.

本開示によれば、二つの被接合部材のうち少なくとも一方の被接合部材の接合面に酸化膜が形成され、酸化膜を介して接合される被接合部材と導電性接合層との接合界面にフッ素が導入される。このため、被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体を得ることができる。 According to the present disclosure, an oxide film is formed on the bonding surface of at least one of the two members to be joined, and the bonding interface between the member to be joined and the conductive bonding layer is bonded via the oxide film. Fluorine is introduced. Therefore, it is possible to obtain a bonded body in which the bonding strength at the interface between the members to be bonded and the conductive bonding layer is further improved.

実施の形態1に係る接合体の製造方法の処理工程図である。1 is a process diagram of a method for manufacturing a joined body according to Embodiment 1. FIG. 実施の形態1に係る酸化膜の形成工程後の断面模式図である。FIG. 3 is a schematic cross-sectional view after an oxide film forming step according to Embodiment 1; 実施の形態1に係るフッ素化合物層の形成工程後の断面模式図である。FIG. 3 is a schematic cross-sectional view after a step of forming a fluorine compound layer according to Embodiment 1. FIG. 実施の形態1に係る導電性接合材料の塗布工程後の断面模式図である。FIG. 3 is a schematic cross-sectional view after the process of applying the conductive bonding material according to the first embodiment. 実施の形態1に係る加熱・加圧工程において、他方の被接合部材を載置後、加熱・加圧処理前の断面模式図である。FIG. 7 is a schematic cross-sectional view after the other member to be joined is placed and before the heating/pressing process in the heating/pressing process according to the first embodiment. 実施の形態1に係る加熱・加圧工後の断面模式図である。FIG. 3 is a schematic cross-sectional view after heating and pressurizing according to the first embodiment. 実施例によって得られた接合体の模式図である。FIG. 2 is a schematic diagram of a bonded body obtained in an example. 実施例で得た接合体の接合界面における断面SEM写真である。It is a cross-sectional SEM photograph of the bonded interface of the bonded body obtained in the example. A6063片と導電性接合層との界面におけるSEM-EDX分析の断面SEM写真である。This is a cross-sectional SEM photograph of the SEM-EDX analysis of the interface between the A6063 piece and the conductive bonding layer. A6063片と導電性接合層との界面におけるSEM-EDX分析のEDX分析結果である。This is an EDX analysis result of SEM-EDX analysis at the interface between the A6063 piece and the conductive bonding layer. 実施例で作製した接合体と本開示の技術を適用していない接合体とのシェア強度の比較図である。FIG. 2 is a comparison diagram of shear strength between a bonded body produced in an example and a bonded body to which the technology of the present disclosure is not applied. 実施の形態2に係る接合体の製造方法の処理工程図である。FIG. 7 is a process diagram of a method for manufacturing a bonded body according to a second embodiment. 元素の割合を測定する測定点を示した、被接合部材と導電性接合層との接合界面の断面模式図である。FIG. 2 is a schematic cross-sectional view of a bonding interface between a member to be bonded and a conductive bonding layer, showing measurement points for measuring the proportions of elements. 実施の形態3で示した接合体の製造方法の処理工程図である。FIG. 7 is a process diagram of the method for manufacturing a bonded body shown in Embodiment 3; 実施の形態3に係る接合体の断面模式図である。FIG. 7 is a schematic cross-sectional view of a joined body according to Embodiment 3. 実施の形態4に係る半導体装置の断面模式図である。FIG. 7 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment.

以下、本開示に係る接合体の製造方法の好適な形態の1例を説明するが、本開示は以下の実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で、任意に変形して実施することができる。 Hereinafter, one example of a preferred form of the method for manufacturing a bonded body according to the present disclosure will be described, but the present disclosure is not limited to the following embodiments, and may be freely modified without departing from the gist of the present disclosure. It can be modified and implemented.

実施の形態1.
図1は、実施の形態1に係る接合体の製造方法の好適な形態を示した処理工程図である。図2は、実施の形態1に係るフッ素化合物層の形成工程後の断面模式図である。図3は、実施の形態1に係る導電性接合材料の塗布工程後の断面模式図である。図4は、実施の形態1に係る加熱・加圧工程において、他方の被接合部材を載置後、加熱・加圧処理前の断面模式図である。図5は、実施の形態1に係る加熱・加圧工後の断面模式図である。図6は、実施の形態1に係る接合体の断面模式図である。
Embodiment 1.
FIG. 1 is a process diagram showing a preferred embodiment of the method for manufacturing a bonded body according to the first embodiment. FIG. 2 is a schematic cross-sectional view after the step of forming a fluorine compound layer according to the first embodiment. FIG. 3 is a schematic cross-sectional view after the process of applying the conductive bonding material according to the first embodiment. FIG. 4 is a schematic cross-sectional view after placing the other member to be joined and before the heating/pressing process in the heating/pressing process according to the first embodiment. FIG. 5 is a schematic cross-sectional view after heating and pressurizing according to the first embodiment. FIG. 6 is a schematic cross-sectional view of the joined body according to the first embodiment.

まず、図1に示す通り、実施の形態1に係る処理工程としては、有機溶剤による洗浄工程、酸化膜の形成工程、フッ素化合物層の形成工程、導電性接合材料の塗布工程、乾燥工程及び加熱・加圧工程を備える。 First, as shown in FIG. 1, the processing steps according to the first embodiment include a cleaning step using an organic solvent, an oxide film forming step, a fluorine compound layer forming step, a conductive bonding material coating step, a drying step, and a heating step.・Equipped with a pressurization process.

有機溶剤による洗浄工程は、図示しないが、汚染物質の除去を目的に、少なくとも一方の被接合部材の接合表面を洗浄する工程である。有機溶剤としては、アセトン、エタノール、イソプロピルアルコール等を使用する。洗浄方法としては、洗浄する被接合部材をアセトン、エタノール、イソプロピルアルコール等の有機溶剤に浸漬させ、超音波洗浄を行うことで、接合表面の汚染物質を除去する。 Although not shown, the cleaning process using an organic solvent is a process of cleaning the joining surface of at least one of the members to be joined, for the purpose of removing contaminants. As the organic solvent, acetone, ethanol, isopropyl alcohol, etc. are used. As a cleaning method, the members to be joined to be cleaned are immersed in an organic solvent such as acetone, ethanol, or isopropyl alcohol, and then subjected to ultrasonic cleaning to remove contaminants on the joining surfaces.

酸化膜の形成工程では、図2に示す通り、少なくとも一方の被接合部材1の接合表面に酸化膜2を形成する。酸化膜2の形成方法としては、特に限定されず公知の方法によって形成することができ、例えば、加熱炉又はレーザを用いた熱酸化法のほか、蒸着法も適用可能である。尚、酸化膜2は自然酸化膜である場合も含むため、自然酸化膜が形成される場合も、酸化膜の形成工程に含まれる。
加熱炉又はレーザによる熱酸化法で酸化膜2を形成する際の処理雰囲気としては、大気雰囲気中で形成できる。さらに、酸素あるいは酸素を含んだアシストガスを処理炉内に供給し、大気雰囲気よりも酸素濃度が高い処理雰囲気とすることによって、より効率よく酸化膜2を形成することもできる。また、加熱によって酸化膜2を形成する際の被接合部材1の温度は、例えば被接合部材1がアルミニウム合金の場合、500℃以上600℃以下であることが好ましい。
形成する酸化膜2の厚さは、自然酸化膜と同等でも良いが、200nm以上が好ましく、200nm以上の酸化膜2を形成することによって、接合層と被接合部材1との界面の接合強度がより向上した接合体を得られやすい。なお、酸化膜2の厚さは、被接合部材1の断面観察、酸化膜2の形成前後の被接合部材1の厚さの差分評価又はXPS(X-ray Photoelectron Spectroscopy)による深さ方向の酸素分布評価等によって計測できる。また、酸化膜2の成分は、被接合部材1に含まれる元素を少なくとも一つ以上含んだものが好ましい。
In the oxide film forming step, as shown in FIG. 2, an oxide film 2 is formed on the joining surface of at least one of the members 1 to be joined. The method for forming the oxide film 2 is not particularly limited, and can be formed by any known method. For example, in addition to a thermal oxidation method using a heating furnace or a laser, a vapor deposition method is also applicable. Incidentally, since the oxide film 2 may be a natural oxide film, the case where a natural oxide film is formed is also included in the oxide film forming process.
The oxide film 2 can be formed in an air atmosphere as a processing atmosphere when forming the oxide film 2 by a thermal oxidation method using a heating furnace or a laser. Furthermore, the oxide film 2 can be formed more efficiently by supplying oxygen or an assist gas containing oxygen into the processing furnace to create a processing atmosphere with a higher oxygen concentration than the air atmosphere. Further, the temperature of the member to be joined 1 when forming the oxide film 2 by heating is preferably 500° C. or more and 600° C. or less, for example, when the member to be joined 1 is an aluminum alloy.
The thickness of the oxide film 2 to be formed may be the same as that of the natural oxide film, but is preferably 200 nm or more. By forming the oxide film 2 of 200 nm or more, the bonding strength at the interface between the bonding layer and the members 1 to be bonded can be increased. It is easier to obtain a more improved bonded product. The thickness of the oxide film 2 can be determined by observing the cross section of the member 1 to be joined, evaluating the difference in the thickness of the member 1 before and after forming the oxide film 2, or measuring oxygen in the depth direction using XPS (X-ray Photoelectron Spectroscopy). It can be measured by distribution evaluation, etc. Further, it is preferable that the components of the oxide film 2 contain at least one element included in the member to be joined 1.

フッ素化合物層の形成工程は、図3に示す通り、酸化膜の形成工程で形成した酸化膜2の表面にフッ素化合物層3を形成する工程である。フッ素化合物層3は、接合層と被接合部材1との接合界面にフッ素を供給する役割を担っており、且つ、後述の実施例の通り、接合層と被接合部材1との接合界面にフッ素が含まれることが、本開示の効果を得るための重要な要因の一つと考えられる。一方で、フッ素化合物は、撥水性及び撥油性を有する場合があり、技術常識としては接合界面にフッ素化合物を適用する積極的な動機はないのが通常である。つまり、本開示による効果を得るためには、フッ素化合物層3は、安定的に酸化膜2上に存在することが好ましく、例えば、以下に示すフッ素系の高分子化合物及び形成方法を適用することにより、フッ素化合物層3を形成することができる。
フッ素系の高分子化合物としては、ポリクロロトリフルオロエチレン、ポリビニルフルオライド、エチレン-クロロトリフルオロエチレンコポリマー、ポリビニリデンフルオライド、パーフルオロエチレンプロペンコポリマー、エチレン-テトラフルオロエチレンコポリマー、ポリテトラフルオロエチレン、エチルパーフルオロイソブチンやエチルパーフルオロブチン等を含む材料を用いることができる。
また、フッ素化合物層3の形成方法としては、フッ素系の高分子化合物を溶解させた溶剤を使用する方法、又は粉体状のフッ素系の高分子化合物を静電塗布する方法等が適用可能である。フッ素系の高分子化合物を溶解させた溶剤を使用する方法の具体例としては、まず、フッ素系の高分子化合物を溶解させた溶剤を含ませた刷毛等を用いる方法、又はフッ素系の高分子化合物を溶解させた溶剤に被接合部材1を浸漬する方法などにより、酸化膜の形成工程で形成した酸化膜2の表面に、フッ素系の高分子化合物を溶解させた溶剤を塗布する。フッ素系の高分子化合物を溶解させた溶剤が塗布された被接合部材1は、常温大気中、又は100℃から150℃に加熱した炉中で溶剤を蒸発させ、フッ素化合物層3を形成することができる。
なお、フッ素系の高分子化合物層は、一種類のフッ素系の高分子化合物を含む場合だけでなく、複数種類のフッ素系の高分子化合物を含んでもよい。フッ素化合物層3の厚さは100nm程度であることが好ましい。フッ素化合物層3の厚さは、被接合部材1の断面観察又はフッ素化合物層3の形成前後の被接合部材1の厚さの差分評価によって計測できる。
As shown in FIG. 3, the fluorine compound layer forming step is a step of forming a fluorine compound layer 3 on the surface of the oxide film 2 formed in the oxide film forming step. The fluorine compound layer 3 plays the role of supplying fluorine to the bonding interface between the bonding layer and the members 1 to be bonded, and as described in the examples below, the fluorine compound layer 3 plays the role of supplying fluorine to the bonding interface between the bonding layer and the members 1 to be bonded. It is considered that inclusion of is one of the important factors for obtaining the effects of the present disclosure. On the other hand, fluorine compounds may have water repellency and oil repellency, and as common technical knowledge, there is usually no active motivation to apply fluorine compounds to the bonding interface. That is, in order to obtain the effects of the present disclosure, it is preferable that the fluorine compound layer 3 stably exist on the oxide film 2, and for example, the fluorine-based polymer compound and formation method described below may be applied. Accordingly, the fluorine compound layer 3 can be formed.
Examples of fluorine-based polymer compounds include polychlorotrifluoroethylene, polyvinyl fluoride, ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride, perfluoroethylene propene copolymer, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, A material containing ethyl perfluoroisobutyne, ethyl perfluorobutyne, etc. can be used.
In addition, as a method for forming the fluorine compound layer 3, a method using a solvent in which a fluorine-based polymer compound is dissolved, a method of electrostatically applying a powdered fluorine-based polymer compound, etc. can be applied. be. As a specific example of a method using a solvent in which a fluorine-based polymer compound is dissolved, first, a method using a brush or the like impregnated with a solvent in which a fluorine-based polymer compound is dissolved; A solvent in which a fluorine-based polymer compound is dissolved is applied to the surface of the oxide film 2 formed in the oxide film forming step by immersing the members 1 to be joined in a solvent in which the compound is dissolved. The members to be joined 1 coated with a solvent in which a fluorine-based polymer compound is dissolved are evaporated in the atmosphere at room temperature or in a furnace heated from 100° C. to 150° C. to form a fluorine compound layer 3. I can do it.
Note that the fluorine-based polymer compound layer may contain not only one type of fluorine-based polymer compound but also multiple types of fluorine-based polymer compounds. The thickness of the fluorine compound layer 3 is preferably about 100 nm. The thickness of the fluorine compound layer 3 can be measured by observing the cross section of the member to be joined 1 or by evaluating the difference in the thickness of the member to be joined 1 before and after the formation of the fluorine compound layer 3.

導電性接合材料の塗布工程では、図4に示す通り、フッ素化合物層上に導電性接合材料4を塗布する。
導電性接合材料4は、銀系粒子及び分散剤を含む。銀系粒子とは、銀粒子、銀化合物粒子又は両方を指す。導電性接合材料4に含まれる銀系粒子及び分散剤の含有割合は、本開示の効果を損なわない範囲で任意に選択可能である。
銀粒子の形状は特に限定されず、フレーク状又は真球状等、任意の形状を用いることができ、さらに複数種類の形状を組み合わせて用いてもよい。銀粒子の粒径は、1μm以上100μm以下程度であることが好ましい。銀化合物粒子の一例としては、酸化銀粒子が挙げられる。酸化銀粒子の粒径は、1μm以上100μm以下程度であることが好ましい。銀系粒子の粒径は、パーティクルカウンターや顕微鏡を用いた計測により確認可能である。
分散剤としては、本開示の効果を損なわない範囲で任意の有機溶剤を用いることができる。有機溶剤の例としては、例えば、テルペン系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が挙げられる。より具体的には、ターピネオール、メチルエチルケトン、アセトン、イソプロパノール、ブチルカービトール、デカン、ウンデカン、テトラデカン、ベンゼン、トルエン、ヘキサン、ジエチルエーテル又はケロシン等を用いることができる。
また、導電性接合材料4の密着性、流動性又は印刷性を高めるために、増粘剤又は表面張力調整剤等を任意に添加してもよい。
上述の通り、導電性接合材料4は、銀系粒子及び分散剤を含むものであり、必要に応じて、その他の添加物を公知の種々の方法で任意に混合することによって、得ることができる 。
導電性接合材料の塗布工程で意味する塗布とは、被接合部材1に対して導電性接合材料4を面状に塗布する場合に限らず、線状に塗布する場合も含む概念である。また、被接合部材1に対して塗布された面状及び線状の導電性接合材料4は、連続する部分、不連続の部分又はその両方の部分を含んでいてもよく、任意に適用可能である。
塗布される導電性接合材料4の厚さは、本開示の効果を得られる範囲内では特に限定されるものではなく、被接合部材の材料や大きさによって任意に設定可能である。一例として、導電性接合材料4を塗布した銅の上に、板厚2mmのアルミニウム合金を載置して接合する場合は、導電性接合材料4の厚みは50μm以上100μm以下程度であることが好ましい。
導電性接合材料4を塗布する方法は、特に限定されず任意の方法を用いることが可能であり、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式又はシリンジ式等の方法から任意に選択して用いることができる。
In the process of applying the conductive bonding material, as shown in FIG. 4, the conductive bonding material 4 is coated on the fluorine compound layer.
The conductive bonding material 4 includes silver-based particles and a dispersant. Silver-based particles refer to silver particles, silver compound particles, or both. The content ratios of silver-based particles and dispersant contained in the conductive bonding material 4 can be arbitrarily selected within a range that does not impair the effects of the present disclosure.
The shape of the silver particles is not particularly limited, and any shape such as a flake shape or a true spherical shape can be used, and a combination of a plurality of shapes may also be used. The particle size of the silver particles is preferably about 1 μm or more and 100 μm or less. An example of silver compound particles is silver oxide particles. The particle size of the silver oxide particles is preferably about 1 μm or more and 100 μm or less. The particle size of the silver-based particles can be confirmed by measurement using a particle counter or a microscope.
As the dispersant, any organic solvent can be used as long as it does not impair the effects of the present disclosure. Examples of organic solvents include terpene solvents, ketone solvents, alcohol solvents, ester solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cellosolve solvents, and carbitol solvents. Examples include solvents. More specifically, terpineol, methyl ethyl ketone, acetone, isopropanol, butyl carbitol, decane, undecane, tetradecane, benzene, toluene, hexane, diethyl ether, kerosene, etc. can be used.
Furthermore, in order to improve the adhesion, fluidity, or printability of the conductive bonding material 4, a thickener, a surface tension regulator, or the like may be optionally added.
As mentioned above, the conductive bonding material 4 contains silver-based particles and a dispersant, and can be obtained by arbitrarily mixing other additives using various known methods, if necessary. .
The term "coating" as used in the process of applying the conductive bonding material is a concept that includes not only the case where the conductive bonding material 4 is applied in a planar manner to the members 1 to be joined, but also the case where the conductive bonding material 4 is applied in a linear manner. Further, the planar and linear conductive bonding material 4 applied to the members 1 to be bonded may include continuous portions, discontinuous portions, or both, and can be applied as desired. be.
The thickness of the conductive bonding material 4 to be applied is not particularly limited as long as the effects of the present disclosure can be obtained, and can be arbitrarily set depending on the material and size of the members to be bonded. As an example, when an aluminum alloy plate with a thickness of 2 mm is placed and bonded on copper coated with the conductive bonding material 4, it is preferable that the thickness of the conductive bonding material 4 is approximately 50 μm or more and 100 μm or less. .
The method of applying the conductive bonding material 4 is not particularly limited and any method can be used, such as dipping, screen printing, spraying, bar coating, spin coating, inkjet, dispenser, etc. Any method can be used, such as a pin transfer method, a brush coating method, a casting method, a flexographic method, a gravure method, or a syringe method.

乾燥工程では、図示しないが、導電性接合材料の塗布工程で塗布された導電性接合材料4を乾燥し、導電性接合材料4中に含まれる分散剤の量を調整する。分散剤として使用している有機溶剤が導電性接合材料4中に過剰に含まれたまま、他方の被接合部材を載置して加熱及び加圧すると、反応に使われない有機溶剤が分解及び蒸発するため、導電性接合材料4を加熱及び加圧することによって形成される導電性接合層内にボイドを発生させる可能性がある。このため、導電性接合材料の塗布工程で塗布された導電性接合材料4を乾燥させることにより、導電性接合材料4に含まれる分散剤を適当な量に調整することが好ましい。
乾燥工程の処理条件としては、導電性接合材料4が塗布された被接合部材1を、40℃以上60℃以下程度の乾燥炉内で乾燥させることが好ましい。一例として、60℃に保温した乾燥炉内で乾燥させる場合は、15分以上35分以下程度の時間、乾燥させることで、適当な分散剤の量に調整できる。
なお、導電性接合材料4に含まれる分散剤の調整の必要が無ければ、乾燥工程は省略可能である。
In the drying step, although not shown, the conductive bonding material 4 applied in the conductive bonding material application step is dried, and the amount of dispersant contained in the conductive bonding material 4 is adjusted. If the other member to be joined is placed and heated and pressurized while the organic solvent used as a dispersant is excessively contained in the conductive joining material 4, the organic solvent not used for the reaction will decompose and Because of the evaporation, voids may be generated in the conductive bonding layer formed by heating and pressurizing the conductive bonding material 4. For this reason, it is preferable to adjust the amount of dispersant contained in the conductive bonding material 4 to an appropriate amount by drying the conductive bonding material 4 applied in the process of applying the conductive bonding material.
As for the processing conditions of the drying step, it is preferable to dry the members 1 coated with the conductive bonding material 4 in a drying oven at a temperature of about 40° C. or higher and 60° C. or lower. For example, when drying is performed in a drying oven maintained at 60° C., the amount of dispersant can be adjusted to an appropriate amount by drying for a period of approximately 15 minutes or more and 35 minutes or less.
Note that if there is no need to adjust the dispersant contained in the conductive bonding material 4, the drying step can be omitted.

加熱・加圧工程では、図5に示す通り、導電性接合材料4を塗布した一方の被接合部材1の接合面上に他方の被接合部材5を載置し、加熱と加圧とを同時に行う。加熱と加圧との処理を経ることで、図6に示す通り、一方の被接合部材1と他方の被接合部材5とが、酸化膜2及び導電性接合層6を介して接合された接合体7を得られる。加熱と加圧とを処理する方法としては、特に限定はされず、例えば汎用のヒートプレス機で処理することができる。処理条件としては、例えば、加熱温度は100℃以上400℃以下程度、加圧力は5MPa以上30MPa以下程度が好ましい。ただし、加熱温度と加圧力の組み合わせは、本開示の効果を損なわない範囲で、被接合部材の種類に応じて自由に設定できる。さらに、加熱温度及び加圧力は、段階的に高くしたり低くしたりすることもできる。また、加熱及び加圧処理の雰囲気は、本開示の効果を損なわない範囲であれば、大気中、不活性ガス雰囲気中又は任意の雰囲気中で処理可能である。
加熱・加圧工程の処理により、導電性接合材料4は、フッ素化合物層3からフッ素が導入されつつ導電性接合層6を形成し、一方の被接合部材1と他方の被接合部材5とが導電性接合層6を介して接合された接合体7を得ることができる。
In the heating and pressurizing process, as shown in FIG. 5, the other member to be joined 5 is placed on the joining surface of one member to be joined 1 coated with the conductive joining material 4, and heating and pressurizing are performed simultaneously. conduct. As shown in FIG. 6, one member to be joined 1 and the other member to be joined 5 are joined through the oxide film 2 and the conductive bonding layer 6 through the heating and pressurizing treatments. You can get body 7. The method of heating and pressurizing is not particularly limited, and can be performed using, for example, a general-purpose heat press machine. As for the processing conditions, for example, the heating temperature is preferably about 100° C. or more and 400° C. or less, and the pressing force is preferably about 5 MPa or more and 30 MPa or less. However, the combination of heating temperature and pressing force can be freely set according to the type of members to be joined, within a range that does not impair the effects of the present disclosure. Furthermore, the heating temperature and the pressing force can be increased or decreased in steps. Furthermore, the heating and pressure treatment can be performed in the air, in an inert gas atmosphere, or any other atmosphere as long as the effects of the present disclosure are not impaired.
Through the heating and pressurizing process, the conductive bonding material 4 forms a conductive bonding layer 6 while fluorine is introduced from the fluorine compound layer 3, and one member to be joined 1 and the other member to be joined 5 are bonded. A bonded body 7 bonded via the conductive bonding layer 6 can be obtained.

このように構成された接合体の製造方法を適用することにより、接合表面に酸化膜が形成された一方の被接合部材と、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介して一方の被接合部材に接合された他方の被接合部材と、を備え、一方の被接合部材と導電性接合層との界面にフッ素を含む接合体を製造できる。 By applying the method for manufacturing a bonded body configured in this way, one member to be bonded has an oxide film formed on the bonding surface, and a conductive bonding layer formed on the oxide film and containing silver particles. , one member to be joined and the other member to be joined via the conductive joining layer, and a joined body containing fluorine at the interface between the one member to be joined and the conductive joining layer can be manufactured.

次に、実施例として、アルミニウム合金であるA6063と無酸素銅であるC1020とを被接合部材として接合した各工程の処理条件及び接合結果を示す。 Next, as an example, processing conditions and joining results of each process in which A6063, which is an aluminum alloy, and C1020, which is an oxygen-free copper, are joined as members to be joined will be shown.

まず、有機溶剤による洗浄工程として、φ5mmで厚さ2mmの円盤状のA6063片をアセトンに浸漬し、超音波洗浄を行った。
次に、酸化膜の形成工程として、A6063片を大気雰囲気の加熱炉で、500℃の温度で6時間の熱処理を施し、A6063片の表面に厚さ1μm以上の酸化膜を形成した。
次に、フッ素系の高分子化合物層の形成工程として、酸化膜形成後のA6063片を、エチルパーフルオロイソブチルエーテルを溶媒としてフッ素樹脂を含有させた溶液に15秒間浸漬した。浸漬後は、常温の大気中で乾燥した。
次に、導電性接合材料の塗布工程として、30mm×30mmのサイズで厚さ3mmのC1020板上に導電性接合材料を50μmの厚さで塗布した。導電性接合材料としては、純度99.9%の酸化銀粒子、フレーク状純銀粒子及びジエチレングリコールを混合したものを用いた。
次に、加熱・加圧工程として、導電性接合材料を塗布したC1020板上に、表面に酸化膜を形成したA6063片を載置し、温度400℃、圧力20MPaの条件で5分間加熱及び加圧し、C1020板とA6063片とを接合した。図7は、実施例によって得られた接合体の模式図である。
First, as a cleaning step using an organic solvent, a disc-shaped A6063 piece with a diameter of 5 mm and a thickness of 2 mm was immersed in acetone and subjected to ultrasonic cleaning.
Next, as an oxide film forming step, the A6063 piece was subjected to heat treatment at 500° C. for 6 hours in a heating furnace in an air atmosphere to form an oxide film with a thickness of 1 μm or more on the surface of the A6063 piece.
Next, as a step of forming a fluorine-based polymer compound layer, the A6063 piece after the oxide film was formed was immersed for 15 seconds in a solution containing a fluororesin using ethyl perfluoroisobutyl ether as a solvent. After dipping, it was dried in the air at room temperature.
Next, in the process of applying the conductive bonding material, the conductive bonding material was coated to a thickness of 50 μm on a C1020 plate measuring 30 mm×30 mm and having a thickness of 3 mm. As the conductive bonding material, a mixture of silver oxide particles with a purity of 99.9%, flaky pure silver particles, and diethylene glycol was used.
Next, in the heating and pressurizing process, an A6063 piece with an oxide film formed on the surface was placed on a C1020 plate coated with a conductive bonding material, and heated and applied for 5 minutes at a temperature of 400°C and a pressure of 20 MPa. The C1020 plate and the A6063 piece were joined together by pressing. FIG. 7 is a schematic diagram of a bonded body obtained in an example.

続いて、実施例で得られた接合体について、接合界面の分析結果と接合強度の評価結果を示す。図8は、実施例で得た接合体の接合界面における断面SEM写真である。図9は、A6063片と導電性接合層との界面におけるSEM-EDX分析の断面SEM写真である。図10は、A6063片と導電性接合層との界面におけるSEM-EDX分析のEDX分析結果である。図11は、実施例で作製した接合体と本開示の技術を適用していない接合体とのシェア強度の比較図である。 Next, the analysis results of the bonding interface and the evaluation results of the bonding strength will be shown for the bonded bodies obtained in the examples. FIG. 8 is a cross-sectional SEM photograph of the bonded interface of the bonded body obtained in the example. FIG. 9 is a cross-sectional SEM photograph of the SEM-EDX analysis of the interface between the A6063 piece and the conductive bonding layer. FIG. 10 shows the EDX analysis results of the SEM-EDX analysis at the interface between the A6063 piece and the conductive bonding layer. FIG. 11 is a comparison diagram of shear strength between the bonded body produced in the example and the bonded body to which the technology of the present disclosure is not applied.

まず、図8に示す通り、実施例で作製した接合体として、A6063片とC1020板とが、金属銀を含む導電性接合層を介して接合していることが確認できる。また、A6063片と導電性接合層との界面は、C1020板と導電性接合層との界面に比べて、凹凸を有していることが分かる。これは、A6063片の接合表面に酸化膜を形成したことに起因して形成されたものと推定される。 First, as shown in FIG. 8, it can be confirmed that the A6063 piece and the C1020 plate are bonded via a conductive bonding layer containing metallic silver as the bonded body produced in the example. Furthermore, it can be seen that the interface between the A6063 piece and the conductive bonding layer has more irregularities than the interface between the C1020 plate and the conductive bonding layer. This is presumed to be caused by the formation of an oxide film on the bonding surface of the A6063 piece.

次に、A6063片と導電性接合層との界面におけるSEM-EDX分析の結果を示す。図9の断面SEM写真で示したA6063片と導電性接合層との界面のスペクトル3の箇所において、EDX分析で検出された元素割合が図10の円グラフである。図10のとおり、A6063片と導電性接合層との界面においては、フッ素が15%程度含まれることが確認できる。 Next, the results of SEM-EDX analysis at the interface between the A6063 piece and the conductive bonding layer are shown. The pie chart in FIG. 10 shows the element ratios detected by EDX analysis at the location of spectrum 3 at the interface between the A6063 piece and the conductive bonding layer shown in the cross-sectional SEM photograph in FIG. 9. As shown in FIG. 10, it can be confirmed that about 15% fluorine is contained at the interface between the A6063 piece and the conductive bonding layer.

次に、図11に、実施例で作製した接合体と、比較例としてA6063片に対して有機溶剤による洗浄工程のみ実施した接合体とに対して実施したシェア試験の結果を示す。シェア試験は、せん断速度100μm/sで実施した。図11の通り、比較例の接合体に比べ、本開示に基づき実施例として作製した接合体の方が、シェア強度が高いことが分かる。 Next, FIG. 11 shows the results of a shear test conducted on the bonded body produced in the example and the bonded body in which only the cleaning process with an organic solvent was performed on an A6063 piece as a comparative example. The shear test was conducted at a shear rate of 100 μm/s. As shown in FIG. 11, it can be seen that the shear strength of the joined body produced as an example based on the present disclosure is higher than that of the joined body of the comparative example.

以上の結果は、接合表面に酸化膜が形成された一方の被接合部材と、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介して一方の被接合部材に接合された他方の被接合部材と、を備え、一方の被接合部材と導電性接合層との界面にフッ素を含む接合体において、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上したことを示している。 The above results show that one member to be joined has an oxide film formed on the joining surface, a conductive bonding layer formed on the oxide film and containing silver particles, and one member to be joined through the conductive bonding layer. and another member to be joined to the other member, and the interface between the one member to be joined and the conductive bonding layer contains fluorine, the interface between at least one member to be joined and the conductive bonding layer. This shows that the bonding strength has further improved.

また、以上の結果から、被接合部材であるA6063と導電性接合層との界面の接合強度が向上する効果を得られたメカニズムとしては、必ずしも明らかではないが、被接合部材であるA6063と導電性接合層との接合界面にフッ素が導入されることが、要因の一つとなっていると推定される。具体的には、実施例の接合体においては、A6063片の表面に形成した酸化膜と銀系粒子を主とする導電性接合層とがクーロン力によって接合していると考えられており、接合界面の電気的な特性の違いによって接合強度に違いが生じ得ると考えられる。本開示では、接合界面に電気陰性度が大きいフッ素を積極的に導入するため、接合界面における電気的な特性の変化が生じた結果として、被接合部材と導電性接合層との接合強度に違いが生じたと推定される。つまり、クーロン力で接合している被接合部材と導電性接合層との接合界面に電気陰性度が大きいフッ素が導入されたことにより、被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体を得られたと推定される。 In addition, from the above results, the mechanism by which the bonding strength at the interface between the A6063 and the conductive bonding layer was improved is not necessarily clear, but the conductive It is presumed that one of the factors is that fluorine is introduced into the bonding interface with the adhesive layer. Specifically, in the bonded body of the example, it is thought that the oxide film formed on the surface of the A6063 piece and the conductive bonding layer mainly composed of silver particles are bonded by Coulomb force, and the bonding It is thought that differences in the electrical properties of the interface may cause differences in bonding strength. In the present disclosure, since fluorine with high electronegativity is actively introduced into the bonding interface, changes in electrical characteristics at the bonding interface occur, resulting in a difference in bonding strength between the bonded members and the conductive bonding layer. It is estimated that this occurred. In other words, by introducing fluorine, which has a high electronegativity, into the bonding interface between the members to be joined and the conductive bonding layer, which are joined by Coulomb force, the bonding strength at the interface between the members to be joined and the conductive bonding layer increases. It is estimated that an even more improved zygote was obtained.

したがって、実施の形態1に示した接合体の製造方法を適用することにより、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a joined body described in Embodiment 1, it is possible to provide a method for manufacturing a joined body in which the bonding strength at the interface between at least one of the members to be joined and the conductive bonding layer is further improved. I can do it.

実施の形態1の変形例1.
実施の形態1では、有機溶剤による洗浄工程と酸化膜の形成工程とフッ素化合物層の形成工程とに示した処理を一方の被接合部材に対してのみ適用したが、有機溶剤による洗浄工程と酸化膜の形成工程とフッ素化合物層の形成工程とに示した処理を一方の被接合部材1に適用し、他方の被接合部材5には有機溶剤による洗浄工程と酸化膜の形成工程とフッ素化合物層の形成工程とに示した処理を適用せずに導電性接合材料の塗布工程と乾燥工程とに示した処理を適用し、一方の被接合部材1に他方の被接合部材5を載置して加熱・加圧工程に示した処理を適用してもよい。
Modification 1 of Embodiment 1.
In Embodiment 1, the processes shown in the cleaning process using an organic solvent, the process of forming an oxide film, and the process of forming a fluorine compound layer were applied only to one of the members to be joined. The processes shown in the film forming process and the fluorine compound layer forming process are applied to one of the members to be joined 1, and the cleaning process with an organic solvent, the process of forming an oxide film, and the fluorine compound layer are applied to the other member to be joined 5. The process shown in the process of applying the conductive bonding material and the drying process is applied without applying the process shown in the forming process of , and the process shown in the process of forming the conductive bonding material and the process shown in the drying process are applied, and the other member to be joined 5 is placed on one member to be joined 1 . The treatments shown in the heating and pressurizing steps may also be applied.

このように構成された接合体の製造方法を適用することにより、実施の形態1と同様に、接合表面に酸化膜が形成された一方の被接合部材と、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介して一方の被接合部材に接合された他方の被接合部材と、を備え、一方の被接合部材と前記導電性接合層との界面にフッ素を含む接合体を製造できる。 By applying the method for manufacturing a bonded body configured in this manner, as in the first embodiment, one member to be bonded with an oxide film formed on the bonding surface and a silver-based bonded member formed on the oxide film. A conductive bonding layer containing particles, and another bonded member bonded to one bonded member via the conductive bonding layer, the interface between the one bonded member and the conductive bonding layer A bonded body containing fluorine can be manufactured.

したがって、実施の形態1の変形例1に示した接合体の製造方法を適用することにより、実施の形態1と同様に、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a bonded body shown in Modification 1 of Embodiment 1, the bonding strength at the interface between at least one of the members to be bonded and the conductive bonding layer can be increased as in Embodiment 1. A further improved method for manufacturing a joined body can be provided.

実施の形態1の変形例2.
実施の形態1では、有機溶剤による洗浄工程と酸化膜の形成工程とフッ素化合物層の形成工程とに示した処理を一方の被接合部材1に対してのみ適用したが、他方の被接合部材5にも同様の処理を適用してもよい。
Modification 2 of Embodiment 1.
In the first embodiment, the processes shown in the organic solvent cleaning step, the oxide film formation step, and the fluorine compound layer formation step were applied only to one of the members to be joined 1, but to the other member to be joined 5. Similar processing may also be applied to

このように構成された接合体の製造方法を適用することにより、接合表面に酸化膜が形成された一方の被接合部材と、接合表面に酸化膜が形成された他方の被接合部材と、銀系粒子を含み、酸化膜を介して二つの被接合部材を接合する導電性接合層と、を備え、二つの被接合部材と導電性接合層との界面にフッ素を含む接合体を製造できる。 By applying the manufacturing method of the bonded body configured in this way, one of the members to be bonded with an oxide film formed on the bonding surface, the other member to be bonded with the oxide film formed on the bonding surface, and the silver It is possible to manufacture a bonded body that includes a conductive bonding layer containing system particles and bonding two members to be bonded via an oxide film, and containing fluorine at the interface between the two members to be bonded and the conductive bonding layer.

したがって、実施の形態1の変形例2に示した接合体の製造方法を適用することにより、一方の被接合部材と導電性接合層との界面の接合強度だけでなく、他方の被接合部材と導電性接合層との界面の接合強度もさらに向上した接合体の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a bonded body shown in Modification 2 of Embodiment 1, it is possible to increase not only the bonding strength at the interface between one bonded member and the conductive bonding layer but also the bonding strength at the interface between one bonded member and the conductive bonding layer. It is possible to provide a method for manufacturing a bonded body in which the bonding strength at the interface with the conductive bonding layer is further improved.

実施の形態2.
図12は、実施の形態2に係る接合体の製造方法の処理工程図である。図13は、元素の割合を測定する測定点8を示した、被接合部材1と導電性接合層6との接合界面の断面模式図である。なお、以下の説明では、実施の形態1と重複する部分に関する説明を適宜省略する。
Embodiment 2.
FIG. 12 is a process diagram of the method for manufacturing a bonded body according to the second embodiment. FIG. 13 is a schematic cross-sectional view of the bonding interface between the member to be bonded 1 and the conductive bonding layer 6, showing measurement points 8 for measuring the proportions of elements. Note that in the following description, descriptions regarding parts that overlap with those in Embodiment 1 will be omitted as appropriate.

実施の形態2では、有機溶剤による洗浄工程の後に、フッ素系の無機化合物層の形成工程が適用され、少なくとも一方の被接合部材の接合表面にフッ素系の無機化合物層を形成する。尚、図12では省略しているが、フッ素系の無機化合物層の形成工程の前に少なくとも一方の被接合部材の接合表面には自然酸化膜が形成されており、実施の形態1で示した酸化膜の形成工程を実施の形態2でも含んでいる。
フッ素系の無機化合物層の形成方法としては、フッ素又はフッ素化合物が含まれる雰囲気中で少なくとも一方の被接合部材を加熱する方法又はフッ素系の無機化合物を蒸着する方法等がある。フッ素又はフッ素化合物が含まれる雰囲気中で加熱する方法では、例えば、加熱する被接合部材がアルミニウム合金の場合、500℃程度の温度で加熱することが好ましい 。
フッ素系の無機化合物としては、被接合部材の成分を鑑み、例えば被接合部材としてアルミニウム合金のA6063を用いる場合、フッ化アルミニウムやフッ化マグネシウムの層を形成することが好ましい。ただし、フッ素系の無機化合物としての成分を特に限定するものではなく、被接合部材に含まれる元素を含むフッ素系の無機化合物であれば好ましく、多元素を含むフッ素系の無機化合物であってもよい。
In the second embodiment, a fluorine-based inorganic compound layer forming step is applied after the organic solvent cleaning step, and the fluorine-based inorganic compound layer is formed on the joining surface of at least one of the members to be joined. Although omitted in FIG. 12, a natural oxide film is formed on the bonding surface of at least one of the members to be bonded before the step of forming the fluorine-based inorganic compound layer, which is similar to that shown in Embodiment 1. The second embodiment also includes the step of forming an oxide film.
As a method for forming the fluorine-based inorganic compound layer, there are a method of heating at least one of the members to be joined in an atmosphere containing fluorine or a fluorine compound, a method of vapor-depositing a fluorine-based inorganic compound, and the like. In the method of heating in an atmosphere containing fluorine or a fluorine compound, for example, when the members to be joined are aluminum alloys, it is preferable to heat at a temperature of about 500°C.
As the fluorine-based inorganic compound, it is preferable to form a layer of aluminum fluoride or magnesium fluoride in consideration of the components of the members to be joined, for example, when aluminum alloy A6063 is used as the member to be joined. However, the component as a fluorine-based inorganic compound is not particularly limited, and any fluorine-based inorganic compound containing the elements contained in the members to be joined is preferable, and even fluorine-based inorganic compounds containing multiple elements are preferable. good.

また、本開示にかかる製造方法が適用された接合体において、接合体を構成する被接合部材と導電性接合層との任意の界面で検出される元素の割合は、フッ素の原子量%が5%以上20%以下であることが好ましい。元素の割合の測定方法としては、SEM-EDX等が挙げられる。例えば、図13に示した測定点8のように、被接合部材1と導電性接合層6との界面において、元素の割合の測定を行う。なお、被接合部材1と導電性接合層6との界面を測定可能であれば、測定点の場所と測定点数は自由に設定してもよい。 In addition, in the bonded body to which the manufacturing method according to the present disclosure is applied, the proportion of elements detected at any interface between the bonded member and the conductive bonding layer that constitute the bonded body is such that the atomic weight % of fluorine is 5%. It is preferable that it is 20% or less. Examples of methods for measuring the proportions of elements include SEM-EDX. For example, at the measurement point 8 shown in FIG. 13, the ratio of elements is measured at the interface between the member to be joined 1 and the conductive bonding layer 6. Note that as long as the interface between the member to be joined 1 and the conductive bonding layer 6 can be measured, the locations of the measurement points and the number of measurement points may be set freely.

また、実施の形態1及び実施の形態2で使用する導電性接合材料は、フッ素を含んでいても良く、例えば、導電性接合材料にフッ素化合物を添加してもよい。添加するフッ素化合物は、親水性や親油性を備えていることが好ましく、例えば、フッ化アルミニウム、フッ化ナトリウム、フッ化マグネシウム、フッ化カルシウム、ケイフッ化カリウム、ホウフッ化カリウム、クリオライト又はカリクリオライト等が挙げられる。
導電性接合材料にフッ素化合物を添加する方法としては、フッ素化合物を溶かした溶液、フッ素化合物の固体を粉砕した粉体又はその両方を導電性接合材料に混合することが好ましい 。
Further, the conductive bonding material used in Embodiment 1 and Embodiment 2 may contain fluorine, and for example, a fluorine compound may be added to the conductive bonding material. The fluorine compound to be added is preferably hydrophilic or lipophilic, and includes, for example, aluminum fluoride, sodium fluoride, magnesium fluoride, calcium fluoride, potassium fluorosilicide, potassium borofluoride, cryolite, or calycryol. Examples include light.
As a method for adding a fluorine compound to the conductive bonding material, it is preferable to mix a solution of the fluorine compound, a powder obtained by crushing a solid fluorine compound, or both into the conductive bonding material.

このように構成された接合体の製造方法を適用することにより、二つの被接合部材のうち少なくとも一方の被接合部材の接合面にフッ素系の無機化合物層が形成され、一方の被接合部材と導電性接合層との接合界面にフッ素を含む接合体を製造できる。 By applying the method for manufacturing a bonded body configured in this way, a fluorine-based inorganic compound layer is formed on the bonding surface of at least one of the two bonded members, and the bonding surface of at least one of the two bonded members is bonded. A bonded body containing fluorine at the bonding interface with the conductive bonding layer can be manufactured.

したがって、実施の形態2に示した接合体の製造方法を適用することにより、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a joined body shown in Embodiment 2, it is possible to provide a method for manufacturing a joined body in which the bonding strength at the interface between at least one of the members to be joined and the conductive bonding layer is further improved. I can do it.

実施の形態3.
図14は、実施の形態3に係る放熱部材を想定した接合体の製造方法の処理工程図である。なお、各工程は、図1の処理工程と対応しており、共通する記載については説明を適宜省略している。図15は、実施の形態3に係る放熱部材を想定した接合体9の断面模式図である。
Embodiment 3.
FIG. 14 is a process diagram of a method for manufacturing a bonded body assuming a heat dissipation member according to the third embodiment. Note that each step corresponds to the processing step in FIG. 1, and descriptions of common descriptions are omitted as appropriate. FIG. 15 is a schematic cross-sectional view of the joined body 9 assuming a heat dissipation member according to the third embodiment.

まず、図14に沿って製造方法の処理工程を示す。図1の処理工程と同様、有機溶剤による洗浄工程として、アルミニウム合金製のヒートシンク10の接合面と絶縁基板13の接合面とをアセトンに浸漬し、汚染物質の除去を目的とした超音波洗浄を行う。 First, the processing steps of the manufacturing method are shown along FIG. 14. Similar to the treatment process in FIG. 1, as a cleaning process using an organic solvent, the bonding surface of the aluminum alloy heat sink 10 and the bonding surface of the insulating substrate 13 are immersed in acetone, and ultrasonic cleaning is performed for the purpose of removing contaminants. conduct.

次に、酸化膜の形成工程として、ヒートシンク10の接合表面にレーザを照射し、加熱することで酸化膜11を形成する。 Next, as an oxide film forming step, the bonding surface of the heat sink 10 is irradiated with a laser and heated to form the oxide film 11.

次に、フッ素化合物層の形成工程として、酸化膜の形成工程で形成した酸化膜11上にフッ素系の高分子化合物を含む溶剤を刷毛で塗布し、常温で乾燥させることにより、フッ素化合物層を酸化膜11上に形成する。 Next, as a fluorine compound layer forming step, a solvent containing a fluorine-based polymer compound is applied with a brush onto the oxide film 11 formed in the oxide film forming step and dried at room temperature to form a fluorine compound layer. It is formed on the oxide film 11.

次に、導電性接合材料の塗布工程として、酸化膜11及びフッ素化合物層を形成したヒートシンク10上に、ディスペンサーを用いて導電性接合材料を塗布する。 Next, in the process of applying the conductive bonding material, the conductive bonding material is applied using a dispenser onto the heat sink 10 on which the oxide film 11 and the fluorine compound layer have been formed.

次に、乾燥工程として、導電性接合材料を塗布したヒートシンク10を乾燥炉で乾燥させ、導電性接合材料中の分散剤の量を調整する。
なお、導電性接合材料中の分散剤の量を調整する必要が無ければ、乾燥工程は省略可能である。
Next, as a drying step, the heat sink 10 coated with the conductive bonding material is dried in a drying oven, and the amount of dispersant in the conductive bonding material is adjusted.
Note that the drying step can be omitted if there is no need to adjust the amount of dispersant in the conductive bonding material.

最後に、加熱・加圧工程として、導電性接合材料を塗布したヒートシンク10上に絶縁基板13を載置し、加熱及び加圧することによって接合する。 Finally, in a heating and pressurizing step, the insulating substrate 13 is placed on the heat sink 10 coated with a conductive bonding material, and bonded by heating and pressurizing.

なお、導電性接合材料から発生するガスを抜くため、被接合部材にあたるヒートシンク10及び絶縁基板13には、必要応じて空孔及び溝が形成されていてもよい。空孔及び溝を形成しておくことで、例えば、加熱・加圧工程の処理により、導電性接合材料に含まれる有機溶剤やフッ素系の高分子化合物層を構成する有機成分が分解及び蒸発することで発生するガスを抜くことができるため、導電性接合層12に空隙等が発生することを抑制することが可能となる。 In order to remove gas generated from the conductive bonding material, holes and grooves may be formed in the heat sink 10 and the insulating substrate 13, which are the members to be bonded, as necessary. By forming pores and grooves, for example, the organic solvent contained in the conductive bonding material and the organic components constituting the fluorine-based polymer compound layer can be decomposed and evaporated by heating and pressurizing processes. Since the gas generated by this can be removed, it is possible to suppress the generation of voids or the like in the conductive bonding layer 12.

また、実施の形態3に放熱部材として示した接合体9は一例であり、導電性接合材料及び被接合部材にあたる材料、形状、個数及び配置等は、任意に変更可能である。 Further, the bonded body 9 shown as a heat dissipation member in the third embodiment is an example, and the materials, shape, number, arrangement, etc. of the conductive bonding material and the bonded members can be changed arbitrarily.

このように構成された接合体の製造方法を適用することにより、接合表面に酸化膜が形成されたヒートシンクと、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介してヒートシンクに接合された絶縁基板と、を備え、ヒートシンクと導電性接合層との界面にフッ素を含む接合体を製造できる。 By applying the manufacturing method of the bonded body configured in this way, a heat sink with an oxide film formed on the bonding surface, a conductive bonding layer formed on the oxide film and containing silver particles, and a conductive bond An insulating substrate bonded to a heat sink via a layer, and a bonded body containing fluorine at the interface between the heat sink and the conductive bonding layer can be manufactured.

したがって、実施の形態3に示した接合体の製造方法を適用することにより、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a joined body shown in Embodiment 3, it is possible to provide a method for manufacturing a joined body in which the bonding strength at the interface between at least one of the members to be joined and the conductive bonding layer is further improved. I can do it.

図15は、図14に示した製造方法を適用して得られる、実施の形態3に係る接合体9の断面模式図である。図15に示した接合体9は、接合面に酸化膜11が形成されたアルミニウム合金製のヒートシンク10と絶縁基板13とが導電性接合層12を介して接合され、放熱部材を想定した構成としている。なお、絶縁基板13は、セラミックス板133を銅板131と銅板132とによって挟んで接合された構造のため、より具体的には、接合面に酸化膜11が形成されたヒートシンク10と銅板132とが、導電性接合層12を介して接合された構造となっている。ヒートシンク10と導電性接合層12との接合は、実施の形態1で示した接合体の製造方法によって接合されている。また、ヒートシンク10には、導電性接合層12と接合している面の反対側に冷媒の流路が形成されている。ヒートシンク10と銅板132と導電性接合層12との線膨張係数が互いに異なるため、温度変化が生じることによって、導電性接合層12を介したヒートシンク10と銅板132との接合部には応力が生じる。 FIG. 15 is a schematic cross-sectional view of the joined body 9 according to the third embodiment, which is obtained by applying the manufacturing method shown in FIG. 14. The bonded body 9 shown in FIG. 15 has a structure in which a heat sink 10 made of an aluminum alloy with an oxide film 11 formed on the bonding surface and an insulating substrate 13 are bonded via a conductive bonding layer 12, and is intended as a heat dissipation member. There is. The insulating substrate 13 has a structure in which the ceramic plate 133 is sandwiched and bonded between the copper plates 131 and 132, so more specifically, the heat sink 10 with the oxide film 11 formed on the bonding surface and the copper plate 132 , has a structure in which they are bonded via a conductive bonding layer 12. The heat sink 10 and the conductive bonding layer 12 are bonded by the bonded body manufacturing method described in the first embodiment. Furthermore, a coolant flow path is formed in the heat sink 10 on the opposite side of the surface that is bonded to the conductive bonding layer 12 . Since the linear expansion coefficients of the heat sink 10, the copper plate 132, and the conductive bonding layer 12 are different from each other, stress is generated at the bond between the heat sink 10 and the copper plate 132 via the conductive bonding layer 12 due to temperature changes. .

このように構成された接合体においては、接合表面に酸化膜が形成されたヒートシンクと、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介してヒートシンクに接合された絶縁基板と、を備え、ヒートシンクと導電性接合層との界面にフッ素を含む接合体を得ることができる。 In a bonded body configured in this way, there is a heat sink with an oxide film formed on the bonding surface, a conductive bonding layer formed on the oxide film and containing silver particles, and a conductive bonding layer that connects the heat sink to the heat sink through the conductive bonding layer. A bonded body including a bonded insulating substrate and containing fluorine at the interface between the heat sink and the conductive bonding layer can be obtained.

したがって、実施の形態3に示した構成によれば、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した接合体を提供することができる。 Therefore, according to the configuration shown in Embodiment 3, it is possible to provide a bonded body in which the bonding strength at the interface between at least one of the members to be bonded and the conductive bonding layer is further improved.

実施の形態4.
図16は、実施の形態4に係る半導体装置14の断面模式図である。
実施の形態4では、実施の形態3に示した接合体の製造方法を適用した半導体装置の製造方法及び構成される半導体装置を示す。
Embodiment 4.
FIG. 16 is a schematic cross-sectional view of the semiconductor device 14 according to the fourth embodiment.
Embodiment 4 shows a method for manufacturing a semiconductor device to which the method for manufacturing a bonded body shown in Embodiment 3 is applied, and a semiconductor device to be constructed.

まず、実施の形態4に係る半導体装置は、図16の半導体装置14の構成と図15の接合体9と対比すると、アルミニウム合金製のヒートシンク15が実施の形態3で示したヒートシンク10に対応し、絶縁基板18が実施の形態3で示した絶縁基板13に対応しており、はんだ19を介して半導体素子20が絶縁基板18上に搭載された半導体装置である。ヒートシンク15の接合面には酸化膜16が形成され、ヒートシンク15と絶縁基板18とは、酸化膜16及び導電性接合層17を介して接合されている。また、実施の形態4に係る半導体装置の製造方法は、実施の形態3で示した有機溶剤による洗浄工程と、酸化膜の形成工程と、フッ素系の高分子化合物層の形成工程と、導電性接合材料の塗布工程と、乾燥工程と、加熱・加圧工程とを適用したものである。さらに、各工程における処理方法についても、実施の形態3と同様の処理を適用できるものであり、説明が重複するため詳細は省略する。 First, in the semiconductor device according to the fourth embodiment, when comparing the configuration of the semiconductor device 14 in FIG. 16 and the bonded body 9 in FIG. 15, the aluminum alloy heat sink 15 corresponds to the heat sink 10 shown in the third embodiment. In this semiconductor device, an insulating substrate 18 corresponds to the insulating substrate 13 shown in the third embodiment, and a semiconductor element 20 is mounted on the insulating substrate 18 via a solder 19. An oxide film 16 is formed on the bonding surface of the heat sink 15, and the heat sink 15 and the insulating substrate 18 are bonded via the oxide film 16 and the conductive bonding layer 17. In addition, the method for manufacturing a semiconductor device according to Embodiment 4 includes the cleaning step using an organic solvent shown in Embodiment 3, the step of forming an oxide film, the step of forming a fluorine-based polymer compound layer, and the step of forming a conductive This method applies a bonding material application process, a drying process, and a heating/pressure process. Furthermore, the same processing as in Embodiment 3 can be applied to the processing method in each step, and the details will be omitted since the explanation will be redundant.

このように構成された半導体装置の製造方法を適用することにより、接合面に酸化膜が形成されたヒートシンクと、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介してヒートシンクに接合された絶縁基板と、を備え、ヒートシンクと導電性接合層との界面にフッ素を含む半導体装置を製造できる。 By applying the method for manufacturing a semiconductor device configured in this way, a heat sink with an oxide film formed on the bonding surface, a conductive bonding layer formed on the oxide film and containing silver particles, and a conductive bond A semiconductor device including an insulating substrate bonded to a heat sink via a layer and containing fluorine at the interface between the heat sink and the conductive bonding layer can be manufactured.

したがって、実施の形態4に示した半導体装置の製造方法を適用することにより、少なくともヒートシンクと導電性接合層との界面の接合強度がさらに向上した半導体装置の製造方法を提供することができる。 Therefore, by applying the method for manufacturing a semiconductor device described in Embodiment 4, it is possible to provide a method for manufacturing a semiconductor device in which the bonding strength at least at the interface between the heat sink and the conductive bonding layer is further improved.

図16は、上述の半導体装置の製造方法の適用によって構成される、実施の形態4に係る半導体装置の断面模式図である。
図16に示した半導体装置14は、実施の形態3で示した接合体9を放熱部として備えており、接合面に酸化膜16が形成されたアルミニウム合金製のヒートシンク15と絶縁基板18とが、導電性接合層17を介して接合されている。なお、絶縁基板18は、セラミックス板183を銅板181と銅板182とによって挟んで接合された構造であり、実施の形態3と同様にヒートシンク15と銅板182とが、導電性接合層17を介して接合された構造となっている。
絶縁基板18を構成する銅板181上には、はんだ19を介して半導体素子20が搭載されている。半導体装置の駆動により半導体素子20が発する熱は、絶縁基板18を介してヒートシンク15に伝わり放熱される。ヒートシンク15と銅板182と導電性接合層17との線膨張係数は互いに異なるため、半導体素子20からの熱の伝搬に伴い、導電性接合層17を介したヒートシンク15と銅板182との接合部には応力が生じる。
なお、図16に示した半導体装置は一例であり、導電性接合材料及び被接合部材の材料、形状、個数、配置等は任意に変更可能である。
FIG. 16 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment, which is constructed by applying the above-described semiconductor device manufacturing method.
A semiconductor device 14 shown in FIG. 16 includes the bonded body 9 shown in Embodiment 3 as a heat dissipation section, and includes an aluminum alloy heat sink 15 with an oxide film 16 formed on the bonded surface and an insulating substrate 18. , are bonded via a conductive bonding layer 17. Note that the insulating substrate 18 has a structure in which a ceramic plate 183 is sandwiched and bonded between a copper plate 181 and a copper plate 182, and the heat sink 15 and the copper plate 182 are bonded to each other via the conductive bonding layer 17, as in the third embodiment. It has a bonded structure.
A semiconductor element 20 is mounted on a copper plate 181 constituting an insulating substrate 18 via a solder 19. Heat generated by the semiconductor element 20 when the semiconductor device is driven is transmitted to the heat sink 15 via the insulating substrate 18 and radiated. Since the linear expansion coefficients of the heat sink 15, the copper plate 182, and the conductive bonding layer 17 are different from each other, as the heat propagates from the semiconductor element 20, the heat sink 15 and the copper plate 182 bond together through the conductive bonding layer 17. causes stress.
Note that the semiconductor device shown in FIG. 16 is an example, and the materials, shapes, numbers, arrangement, etc. of the conductive bonding material and the members to be bonded can be arbitrarily changed.

このように構成された半導体装置においては、接合面に酸化膜が形成されたヒートシンクと、酸化膜上に形成され、銀系粒子を含む導電性接合層と、導電性接合層を介してヒートシンクに接合された絶縁基板と、を備え、ヒートシンクと導電性接合層との界面にフッ素を含む半導体装置を得ることができる。 In a semiconductor device configured in this way, there is a heat sink with an oxide film formed on the bonding surface, a conductive bonding layer formed on the oxide film and containing silver particles, and a conductive bonding layer that is connected to the heat sink through the conductive bonding layer. A semiconductor device including a bonded insulating substrate and containing fluorine at the interface between the heat sink and the conductive bonding layer can be obtained.

したがって、実施の形態4に示した構成によれば、少なくとも一方の被接合部材と導電性接合層との界面の接合強度がさらに向上した、半導体装置を提供することができる。 Therefore, according to the configuration shown in Embodiment 4, it is possible to provide a semiconductor device in which the bonding strength at the interface between at least one of the members to be bonded and the conductive bonding layer is further improved.

1 一方の被接合部材
2 酸化膜
3 フッ素化合物層
4 導電性接合材料
5 他方の被接合部材
6 導電性接合層
7 接合体
8 測定点
9 接合体
10 ヒートシンク
11 酸化膜
12 導電性接合層
13 絶縁基板
131 銅板
132 銅板
133 セラミックス板
14 半導体装置
15 ヒートシンク
16 酸化膜
17 導電性接合層
18 絶縁基板
181 銅板
182 銅板
183 セラミックス板
19 はんだ
20 半導体素子
1 One member to be joined 2 Oxide film 3 Fluorine compound layer 4 Conductive bonding material 5 Other member to be joined 6 Conductive bonding layer 7 Bonded body 8 Measurement point 9 Bonded body 10 Heat sink 11 Oxide film 12 Conductive bonding layer 13 Insulation Substrate 131 Copper plate 132 Copper plate 133 Ceramic plate 14 Semiconductor device 15 Heat sink 16 Oxide film 17 Conductive bonding layer 18 Insulating substrate 181 Copper plate 182 Copper plate 183 Ceramic plate 19 Solder 20 Semiconductor element

Claims (9)

二つの被接合部材のうち少なくとも一方の被接合部材の接合面に酸化膜を形成する工程と、
前記酸化膜の表面にフッ素化合物層を形成する工程と、
前記フッ素化合物層の表面又は他方の被接合部材の接合面に銀系粒子及び分散剤を含む導電性接合材料を塗布する工程と、
前記塗布した導電性接合材料の表面に前記他方の被接合部材又は前記一方の被接合部材を載置し、加熱及び加圧する工程と、
を備えた接合体の製造方法。
forming an oxide film on the joint surface of at least one of the two members to be joined;
forming a fluorine compound layer on the surface of the oxide film;
a step of applying a conductive bonding material containing silver-based particles and a dispersant to the surface of the fluorine compound layer or the bonding surface of the other bonded member;
placing the other member to be joined or the one member to be joined on the surface of the applied conductive joining material, and heating and pressurizing it;
A method for manufacturing a joined body comprising:
前記酸化膜の厚さは、自然酸化膜の厚さよりも厚く形成することを特徴とする、請求項1に記載の接合体の製造方法。 2. The method of manufacturing a bonded body according to claim 1, wherein the oxide film is formed thicker than a natural oxide film. 前記導電性接合材料は、フッ素を含む、請求項1又は請求項2に記載の接合体の製造方法。 The method for manufacturing a bonded body according to claim 1 or 2, wherein the conductive bonding material contains fluorine. 接合表面に酸化膜が形成された一方の被接合部材と、
前記酸化膜上に形成され、銀系粒子を含む導電性接合層と、
前記導電性接合層を介して前記一方の被接合部材に接合された他方の被接合部材と、
を備え、
前記一方の被接合部材と前記導電性接合層との界面にフッ素を含む接合体。
One member to be joined has an oxide film formed on its joining surface;
a conductive bonding layer formed on the oxide film and containing silver-based particles;
another member to be joined to the one member to be joined via the conductive bonding layer;
Equipped with
A bonded body containing fluorine at an interface between the one member to be bonded and the conductive bonding layer.
前記酸化膜の厚さが、自然酸化膜の厚さよりも厚い、請求項4に記載の接合体。 The joined body according to claim 4, wherein the thickness of the oxide film is thicker than the thickness of the natural oxide film. 前記導電性接合層は、フッ素を含む、請求項4に記載の接合体。 The joined body according to claim 4, wherein the conductive bonding layer contains fluorine. 前記一方の被接合部材と前記導電性接合層との界面に含まれるフッ素の割合が、原子量%で5%以上20%以下である、請求項4から請求項6のいずれか一項に記載の接合体。 The ratio of fluorine contained in the interface between the one member to be joined and the conductive bonding layer is 5% or more and 20% or less in atomic weight %, according to any one of claims 4 to 6. zygote. 請求項1又は請求項2に記載の接合体の製造方法を用いて接合体を製造する工程を含む半導体装置の製造方法であって、
前記二つの接合部材は、放熱部材及び絶縁基板である、半導体装置の製造方法。
A method for manufacturing a semiconductor device comprising the step of manufacturing a bonded body using the method for manufacturing a bonded body according to claim 1 or claim 2,
The method for manufacturing a semiconductor device, wherein the two bonding members are a heat dissipating member and an insulating substrate.
前記二つの被接合部材が、放熱部材及び絶縁基板である請求項4に記載の接合体を備え、
前記絶縁基板上に半導体素子を備えた、半導体装置。
The joined body according to claim 4, wherein the two members to be joined are a heat dissipation member and an insulating substrate,
A semiconductor device comprising a semiconductor element on the insulating substrate.
JP2022087552A 2022-05-30 2022-05-30 Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus Pending JP2023175214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022087552A JP2023175214A (en) 2022-05-30 2022-05-30 Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022087552A JP2023175214A (en) 2022-05-30 2022-05-30 Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus

Publications (1)

Publication Number Publication Date
JP2023175214A true JP2023175214A (en) 2023-12-12

Family

ID=89121328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087552A Pending JP2023175214A (en) 2022-05-30 2022-05-30 Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus

Country Status (1)

Country Link
JP (1) JP2023175214A (en)

Similar Documents

Publication Publication Date Title
TWI755492B (en) Carbon nanotube-based thermal interface materials and methods of making and using thereof
US8080871B2 (en) Carbon nanotube-based structures and methods for removing heat from solid-state devices
US8206815B2 (en) Metal-based composite material containing both micron-size carbon fiber and nano-size carbon fiber
US20080131722A1 (en) Single Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US9831157B2 (en) Method of attaching an electronic part to a copper plate having a surface roughness
US20080131655A1 (en) Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
WO2015146999A1 (en) Coated solder material and method for producing same
CA2968867A1 (en) Carbon nanotube-based thermal interface materials and methods of making and using thereof
KR20120098810A (en) Method for applying carbon/tin mixtures to metal or alloy layers
KR20120065261A (en) Deposition of thermoelectric materials by printing
TWI787554B (en) Carbonaceous member with metal layer, and thermal conduction plate
KR20170130482A (en) Flexible and flexible thermal interface materials
JP2017074598A (en) Low-temperature bonding method using copper particle
JP2021107569A (en) Copper sintered substrate nano-silver impregnated joint sheet, method therefor and joining method
Zhang et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module
WO2017191415A1 (en) Composite material based on vertically aligned carbon nanotubes and on a metal matrix
JP2023175214A (en) Method for producing joined body, joined body, method for producing semiconductor apparatus and semiconductor apparatus
JP2011041955A (en) Method for producing joined body, and joined body
KR101523849B1 (en) Method of fabricating metal-carbon composite particle
KR20140105069A (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
CN115805349A (en) Connecting process of copper-clad plate ceramic and oxygen-free copper foil of IGBT module
US20140083753A1 (en) Method of forming copper wiring, method of manufacturing wiring board, and wiring board
WO2022243894A1 (en) Process for localized repair of graphene-coated lamination stacks and printed circuit boards
Chen et al. Achieving high reliability via pressureless sintering of nano-Ag paste for die-attach
JP2018193282A (en) Graphene oxide structure and method for producing the same