JP2023175102A - Exhaust gas boiler system - Google Patents

Exhaust gas boiler system Download PDF

Info

Publication number
JP2023175102A
JP2023175102A JP2022087380A JP2022087380A JP2023175102A JP 2023175102 A JP2023175102 A JP 2023175102A JP 2022087380 A JP2022087380 A JP 2022087380A JP 2022087380 A JP2022087380 A JP 2022087380A JP 2023175102 A JP2023175102 A JP 2023175102A
Authority
JP
Japan
Prior art keywords
exhaust gas
evaporator
vapor
water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022087380A
Other languages
Japanese (ja)
Inventor
尚史 福田
Naofumi Fukuda
信行 石崎
Nobuyuki Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2022087380A priority Critical patent/JP2023175102A/en
Publication of JP2023175102A publication Critical patent/JP2023175102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

To provide an exhaust gas boiler system for enabling heat recovery from exhaust gas having a relatively low temperature.SOLUTION: An exhaust gas boiler system 1 according to one aspect of the invention includes a first vaporizer 20 to be heat-exchanged with exhaust gas to vaporize makeup water, a second vaporizer 30 to be heat-exchanged with the exhaust gas passing through the first vaporizer 20 to vaporize the makeup water, an economizer 40 to be heat-exchanged with the exhaust gas passing through the second vaporizer 30 to heat the makeup water to be supplied to the first vaporizer 20 and the second vaporizer 30, a vapor compressor 50 for compressing vapor generated in the second vaporizer 30, and a vapor header 60 into which the vapor generated in the first vaporizer 20 and the vapor compressed by the vapor compressor 50 are introduced.SELECTED DRAWING: Figure 1

Description

本発明は、排ガスボイラシステムに関する。 The present invention relates to an exhaust gas boiler system.

例えば、発電機を駆動するガスエンジン等からは高温の排ガスが排出されるため、排ガスから熱回収して蒸気を生成する排ガスボイラが利用される。排ガスから回収できる熱量を増大するために、排ガスの流路の上流側から下流側に並んで配設される複数の蒸発器(缶体)を備える排ガスボイラも知られている。このような排ガスボイラでは、上流側ほど高圧の蒸気を得ることができる。蒸気の圧力が低すぎると発生した蒸気を有効に利用することができないため、排ガスボイラにおいても一定以上の圧力を有する蒸気を生成する必要がある。 For example, since high-temperature exhaust gas is discharged from a gas engine that drives a generator, an exhaust gas boiler is used that recovers heat from the exhaust gas and generates steam. In order to increase the amount of heat that can be recovered from exhaust gas, exhaust gas boilers are also known that include a plurality of evaporators (can bodies) arranged in line from the upstream side to the downstream side of the exhaust gas flow path. In such an exhaust gas boiler, steam can be obtained at a higher pressure on the upstream side. If the steam pressure is too low, the generated steam cannot be used effectively, so it is necessary to generate steam having a pressure above a certain level in the exhaust gas boiler as well.

例えば、特許文献1には、上流側の蒸発器で発生する高圧の蒸気と下流側の蒸発器で発生する低圧の蒸気とをエゼクタを用いて混合することで、利用可能な圧力の蒸気を得ることが提案されている。 For example, Patent Document 1 discloses that high-pressure steam generated in an upstream evaporator and low-pressure steam generated in a downstream evaporator are mixed using an ejector to obtain steam at a usable pressure. It is proposed that.

特許第5359540号公報Patent No. 5359540

近年、二酸化炭素排出を削減は喫緊となっており、ガスエンジン等では熱効率の向上に伴って排ガスの温度が低下している。単段の蒸発器を有する排ガスボイラでは蒸気の発生量が少なくなり、給水加熱器の通水量が減少することで沸騰が生じる場合がある。一方、多段の蒸発器を有する排ガスボイラを使用して低温の排ガスから熱回収すると、高圧の蒸気の発生量が相対的に少なくなる。このため、特許文献1のようにエゼクタを利用するシステムでは、混合後の蒸気を利用可能な圧力まで昇圧することができない場合がある。 In recent years, it has become urgent to reduce carbon dioxide emissions, and the temperature of exhaust gas in gas engines and the like is decreasing as thermal efficiency improves. In an exhaust gas boiler having a single-stage evaporator, the amount of steam generated is small, and the amount of water flowing through the feed water heater is reduced, which may cause boiling. On the other hand, when heat is recovered from low-temperature exhaust gas using an exhaust gas boiler having a multi-stage evaporator, the amount of high-pressure steam generated becomes relatively small. For this reason, in a system using an ejector as in Patent Document 1, it may not be possible to increase the pressure of mixed steam to a usable pressure.

このため、本発明は、比較的低温の排ガスから効果的かつ安定的に熱回収量を増やすことができる排ガスボイラシステムを提供することを目的とする。 Therefore, an object of the present invention is to provide an exhaust gas boiler system that can effectively and stably increase the amount of heat recovered from relatively low-temperature exhaust gas.

本発明の一態様に係る排ガスボイラシステムは、排ガスと熱交換して補給水を蒸発させる第1蒸発器と、前記第1蒸発器を通過した前記排ガスと熱交換して補給水を蒸発させる第2蒸発器と、前記第2蒸発器を通過した排ガスと熱交換して前記第1蒸発器及び前記第2蒸発器に供給される補給水を加熱するエコノマイザと、前記第2蒸発器で発生した蒸気を圧縮する蒸気圧縮機と、前記第1蒸発器で発生した蒸気及び前記蒸気圧縮機で圧縮された蒸気が導入される蒸気ヘッダと、を備える。 An exhaust gas boiler system according to one aspect of the present invention includes a first evaporator that evaporates make-up water by exchanging heat with exhaust gas, and a second evaporator that evaporates make-up water by exchanging heat with the exhaust gas that has passed through the first evaporator. an economizer that heats make-up water supplied to the first evaporator and the second evaporator by exchanging heat with the exhaust gas that has passed through the second evaporator; It includes a vapor compressor that compresses vapor, and a vapor header into which the vapor generated in the first evaporator and the vapor compressed by the vapor compressor are introduced.

上述の排ガスボイラシステムにおいて、前記排ガスの温度は250℃以上320℃以下であり、前記第1蒸発器の蒸気圧は0.5MPa以上1.0MPa以下であり、前記第2蒸発器の蒸気圧は0.05MPa以上0.2MPa以下であってもよい。 In the above-mentioned exhaust gas boiler system, the temperature of the exhaust gas is 250° C. or more and 320° C. or less, the vapor pressure of the first evaporator is 0.5 MPa or more and 1.0 MPa or less, and the vapor pressure of the second evaporator is It may be 0.05 MPa or more and 0.2 MPa or less.

上述の排ガスボイラシステムにおいて、前記蒸気圧縮機は、前記蒸気を圧縮する空間内に水を噴射する給水手段を備える水噴射式蒸気圧縮機であってもよい。 In the above-mentioned exhaust gas boiler system, the vapor compressor may be a water injection type vapor compressor including a water supply means for injecting water into the space in which the vapor is compressed.

本発明によれば、比較的低温の排ガスから効果的かつ安定的に熱回収量を増やすことができる。 According to the present invention, the amount of heat recovered from relatively low-temperature exhaust gas can be effectively and stably increased.

本発明の一実施形態に係る排ガスボイラシステムの構成を示す模式図である。1 is a schematic diagram showing the configuration of an exhaust gas boiler system according to an embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しながら説明をする。図1は、本発明の一実施形態に係る排ガスボイラシステム1の構成を示す模式図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an exhaust gas boiler system 1 according to an embodiment of the present invention.

排ガスボイラシステム1は、不図示のガスエンジン等が排出する排ガスから熱回収して蒸気を発生させる。排ガスボイラシステム1は、排ガスを案内する排ガスチャンバ10と、排ガスチャンバ10の中に上流側から順番に配設される第1蒸発器20、第2蒸発器30及びエコノマイザ40と、第2蒸発器30で発生した蒸気を圧縮する蒸気圧縮機50と、第1蒸発器20で発生した蒸気及び蒸気圧縮機50で圧縮された蒸気が導入される蒸気ヘッダ60と、を備える。 The exhaust gas boiler system 1 generates steam by recovering heat from exhaust gas discharged by a gas engine (not shown) or the like. The exhaust gas boiler system 1 includes an exhaust gas chamber 10 that guides exhaust gas, a first evaporator 20, a second evaporator 30, an economizer 40, and a second evaporator arranged in order from the upstream side in the exhaust gas chamber 10. The vapor compressor 50 compresses the vapor generated in the first evaporator 30, and a vapor header 60 into which the vapor generated in the first evaporator 20 and the vapor compressed by the vapor compressor 50 are introduced.

排ガスチャンバ10は、排ガスが第1蒸発器20、第2蒸発器30及びエコノマイザ40をこの順番に通過してから、不図示の煙突などを通して外部に排出されるよう、排ガスを案内する。 The exhaust gas chamber 10 guides the exhaust gas so that the exhaust gas passes through a first evaporator 20, a second evaporator 30, and an economizer 40 in this order, and then is exhausted to the outside through a chimney (not shown) or the like.

排ガスチャンバ10に導入される排ガスの温度の下限としては、250℃が好ましく、270℃がより好ましい。一方、排ガスチャンバ10に導入される排ガスの温度の上限としては、320℃が好ましく、300℃がより好ましい。排ガスチャンバ10に導入される排ガスの温度が前記下限以上であれば、排ガスにより蒸気を発生させることで効果的に熱回収を行うことができる。また、排ガスチャンバ10に導入される排ガスの温度が前記上限以下であれば、排ガス温度の低下に伴って熱回収率の低下が顕著となる従来の単段の排ガスボイラに比べて高い熱回収率を達成できる。つまり、前記温度範囲は、排ガスボイラシステム1が従来の排ガスボイラに比べて特に有利となる範囲である。 The lower limit of the temperature of the exhaust gas introduced into the exhaust gas chamber 10 is preferably 250°C, more preferably 270°C. On the other hand, the upper limit of the temperature of the exhaust gas introduced into the exhaust gas chamber 10 is preferably 320°C, more preferably 300°C. If the temperature of the exhaust gas introduced into the exhaust gas chamber 10 is equal to or higher than the lower limit, heat can be effectively recovered by generating steam from the exhaust gas. Furthermore, if the temperature of the exhaust gas introduced into the exhaust gas chamber 10 is below the upper limit, the heat recovery rate is higher than that of a conventional single-stage exhaust gas boiler, in which the heat recovery rate decreases significantly as the exhaust gas temperature decreases. can be achieved. That is, the temperature range is a range in which the exhaust gas boiler system 1 is particularly advantageous compared to conventional exhaust gas boilers.

第1蒸発器20は、排ガスと熱交換して補給水を蒸発させる。第1蒸発器20は、補給水を貯留する下部ヘッダ21と、下部ヘッダ21から延出し、排ガスによって加熱され、内部の補給水を蒸発させる複数の水管22と、水管22で発生した蒸気を集める上部ヘッダ23と、上部ヘッダ23から流出する蒸気中に含まれる水滴を分離する気水分離器24と、水管22における水面高さを一定範囲内に保持するよう、下部ヘッダ21に供給される補給水の水量を調節する給水弁25と、を有する貫流ボイラとすることができる。 The first evaporator 20 evaporates makeup water by exchanging heat with exhaust gas. The first evaporator 20 includes a lower header 21 that stores make-up water, a plurality of water pipes 22 extending from the lower header 21 and heated by exhaust gas to evaporate the make-up water inside, and collecting steam generated in the water pipes 22. An upper header 23, a steam-water separator 24 that separates water droplets contained in steam flowing out from the upper header 23, and a replenisher supplied to the lower header 21 so as to maintain the water surface height in the water pipe 22 within a certain range. The boiler may be a once-through boiler including a water supply valve 25 that adjusts the amount of water.

第1蒸発器20の蒸気圧(ゲージ圧)の下限としては、0.5MPaが好ましく、0.6MPaがより好ましい。一方、第1蒸発器20の蒸気圧の上限としては、1.0MPaが好ましく、0.9MPaがより好ましい。第1蒸発器20の蒸気圧を前記下限以上とすることによって、第1蒸発器20で発生した蒸気を一般的な需要設備において利用できる。加えて、第1蒸発器20の蒸気圧を前記下限以上とすることによって、第1蒸発器20において排ガスの温度が低くなり過ぎることを防止して、第2蒸発器30において効率的に熱回収し、排ガスボイラシステム1全体としての熱効率を向上できる。また、第1蒸発器20の蒸気圧を前記上限以下とすることにより、第1蒸発器20における回収熱量を確保するとともに、設備コストが不必要に上昇することを防止できる。 The lower limit of the vapor pressure (gauge pressure) of the first evaporator 20 is preferably 0.5 MPa, more preferably 0.6 MPa. On the other hand, the upper limit of the vapor pressure of the first evaporator 20 is preferably 1.0 MPa, more preferably 0.9 MPa. By setting the vapor pressure of the first evaporator 20 to be equal to or higher than the lower limit, the steam generated in the first evaporator 20 can be used in general demand equipment. In addition, by setting the vapor pressure of the first evaporator 20 at or above the lower limit, the temperature of the exhaust gas in the first evaporator 20 is prevented from becoming too low, and heat is efficiently recovered in the second evaporator 30. Therefore, the thermal efficiency of the exhaust gas boiler system 1 as a whole can be improved. Further, by setting the vapor pressure of the first evaporator 20 to be equal to or lower than the upper limit, the amount of heat recovered in the first evaporator 20 can be ensured, and the equipment cost can be prevented from increasing unnecessarily.

第2蒸発器30は、第1蒸発器20を通過した排ガスと熱交換して補給水を蒸発させる。第2蒸発器30は、補給水を貯留する下部ヘッダ31と、下部ヘッダ31から延出し、排ガスによって加熱され、内部の補給水を蒸発させる複数の水管32と、水管32で発生した蒸気を集める上部ヘッダ33と、上部ヘッダ33から流出する蒸気中に含まれる水滴を分離する気水分離器34と、水管32における水面高さを一定範囲内に保持するよう、下部ヘッダ31に供給される補給水の水量を調節する給水弁35と、を有する貫流ボイラとすることができる。 The second evaporator 30 exchanges heat with the exhaust gas that has passed through the first evaporator 20 to evaporate makeup water. The second evaporator 30 includes a lower header 31 that stores make-up water, a plurality of water pipes 32 extending from the lower header 31 and heated by exhaust gas to evaporate the make-up water inside, and collecting steam generated in the water pipes 32. An upper header 33, a steam-water separator 34 that separates water droplets contained in steam flowing out from the upper header 33, and a replenisher supplied to the lower header 31 so as to maintain the water surface height in the water pipe 32 within a certain range. The boiler may be a once-through boiler including a water supply valve 35 that adjusts the amount of water.

第2蒸発器30の蒸気圧の下限としては、0.05MPaが好ましく、0.06MPaがより好ましい。一方、第2蒸発器30の蒸気圧の上限としては、0.20MPaが好ましく、0.15MPaがより好ましい。第2蒸発器30の蒸気圧を前記下限以上とすることによって、蒸気圧縮機50の負荷つまり電力消費及びそれに伴う二酸化炭素排出を抑制し効果的かつ安定的に熱回収量を増やすことができるとともに蒸気圧縮機50の大型化により設備コストが不必要に上昇することを防止できる。また、第2蒸発器30の蒸気圧を前記上限以下とすることにより、排ガスから回収できる熱量を十分に増やすことができる。 The lower limit of the vapor pressure of the second evaporator 30 is preferably 0.05 MPa, more preferably 0.06 MPa. On the other hand, the upper limit of the vapor pressure of the second evaporator 30 is preferably 0.20 MPa, more preferably 0.15 MPa. By setting the vapor pressure of the second evaporator 30 at or above the lower limit, it is possible to suppress the load on the vapor compressor 50, that is, the power consumption and the associated carbon dioxide emissions, and effectively and stably increase the amount of heat recovery. It is possible to prevent equipment costs from increasing unnecessarily due to enlargement of the vapor compressor 50. Further, by setting the vapor pressure of the second evaporator 30 to be below the upper limit, the amount of heat that can be recovered from the exhaust gas can be sufficiently increased.

エコノマイザ40は、第2蒸発器30を通過した排ガスと熱交換して第1蒸発器20及び第2蒸発器30に供給される補給水を加熱する。つまり、エコノマイザ40で加熱された補給水は、第1蒸発器20と第2蒸発器30に分配され、エコノマイザ40には、給水ポンプ41によって第1蒸発器20の蒸気圧以上の圧力で補給水が供給される。例えば、第1蒸発器の蒸気圧が0.8MPaの場合、エコノマイザには0.8MPa以上が加圧されており、一方、第2蒸発器を通過してエコノマイザに流入する排ガス温度は135℃に低下する。このため、エコノマイザの水温は飽和温度を超えることが無く、スティーミング発生がない安定的な熱回収を行うことができる。 The economizer 40 heats makeup water supplied to the first evaporator 20 and the second evaporator 30 by exchanging heat with the exhaust gas that has passed through the second evaporator 30 . In other words, the makeup water heated by the economizer 40 is distributed to the first evaporator 20 and the second evaporator 30, and the makeup water is supplied to the economizer 40 at a pressure higher than the vapor pressure of the first evaporator 20 by the water supply pump 41. is supplied. For example, when the vapor pressure of the first evaporator is 0.8 MPa, the economizer is pressurized to 0.8 MPa or more, and on the other hand, the exhaust gas temperature passing through the second evaporator and flowing into the economizer is 135°C. descend. Therefore, the water temperature of the economizer does not exceed the saturation temperature, and stable heat recovery without steaming can be performed.

蒸気圧縮機50は、第2蒸発器30で発生した蒸気を第1蒸発器20で発生した蒸気と等しい圧力になるまで圧縮する。蒸気圧縮機50としては、例えばスクリュ式圧縮機を用いることができる。また、蒸気圧縮機50は、例えばポンプ等を含み、蒸気を圧縮する空間内に水を噴射する給水手段51を備える水噴射式蒸気圧縮機であることが好ましい。蒸気圧縮機50の蒸気を圧縮する空間内に水を噴射することによって、蒸気が過熱蒸気になることを防止するとともに、噴射した水を蒸発させることで吐出する蒸気量を増大できる。また、給水手段51を有する蒸気圧縮機50は、排ガス温度の変動により第2蒸発器30における蒸気発生量が変動しても安定して運転することができるので、常に最大限の熱回収を行うことができる。 The vapor compressor 50 compresses the vapor generated in the second evaporator 30 to a pressure equal to that of the vapor generated in the first evaporator 20. As the vapor compressor 50, for example, a screw compressor can be used. Further, the vapor compressor 50 is preferably a water injection type vapor compressor that includes, for example, a pump and includes a water supply means 51 that injects water into a space where vapor is compressed. By injecting water into the space in which steam is compressed in the vapor compressor 50, it is possible to prevent the steam from becoming overheated steam, and also to increase the amount of steam to be discharged by evaporating the injected water. Furthermore, the vapor compressor 50 having the water supply means 51 can operate stably even if the amount of steam generated in the second evaporator 30 fluctuates due to fluctuating exhaust gas temperature, so it always recovers the maximum amount of heat. be able to.

蒸気ヘッダ60は、第1蒸発器20で発生した蒸気及び蒸気圧縮機50で圧縮された蒸気を一次的に貯留し、需要設備に蒸気を安定供給するためのバッファである。蒸気ヘッダ60の容量は、排ガスボイラシステム1に供給される排ガスの風量及び温度の変動、需要設備の負荷変動等を考慮して適宜設定される。蒸気ヘッダ60には、例えば燃料焚きボイラ等の通常のボイラからも蒸気が供給されてもよい。これにより、排ガスボイラシステム1に供給される排ガスの量と需要設備の蒸気使用量とが連動しない場合であっても、需要設備が必要とする量の蒸気を安定して供給できる。 The steam header 60 is a buffer that temporarily stores the steam generated in the first evaporator 20 and the steam compressed by the vapor compressor 50, and stably supplies steam to demand equipment. The capacity of the steam header 60 is appropriately set in consideration of fluctuations in the air volume and temperature of the exhaust gas supplied to the exhaust gas boiler system 1, load fluctuations of demand equipment, and the like. The steam header 60 may also be supplied with steam from a normal boiler, such as a fuel-fired boiler. Thereby, even if the amount of exhaust gas supplied to the exhaust gas boiler system 1 and the amount of steam used by the demand facility are not linked, the amount of steam required by the demand facility can be stably supplied.

上述のように、排ガスボイラシステム1は、第1蒸発器20で排ガスから熱回収を行って所望の圧力の蒸気を生成した後、さらに第2蒸発器30で排ガスから熱回収を行って低圧の蒸気を生成し、この低圧の蒸気を蒸気圧縮機50で所望の圧力まで昇圧する。このため、排ガスボイラシステム1は、より多くの熱エネルギを利用可能な蒸気エネルギとして回収できるので、排ガスの温度が低く、従来の排ガスボイラシステムでは回収できる熱量が小さい場合であっても、排ガスから効果的かつ安定的に熱回収できる。 As described above, the exhaust gas boiler system 1 recovers heat from the exhaust gas in the first evaporator 20 to generate steam at a desired pressure, and then recovers heat from the exhaust gas in the second evaporator 30 to generate steam at a low pressure. Steam is generated, and the low pressure steam is boosted to a desired pressure by a vapor compressor 50. Therefore, the exhaust gas boiler system 1 can recover more thermal energy as usable steam energy, so even if the temperature of the exhaust gas is low and the amount of heat that can be recovered with the conventional exhaust gas boiler system is small, Heat can be recovered effectively and stably.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。例として、本発明に係る排ガスボイラシステムにおいて、第1蒸発器及び第2蒸発器は貫流ボイラに限られず、例えば蒸気ドラム内で水を蒸発させる水管ボイラ等の構成を有してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made. For example, in the exhaust gas boiler system according to the present invention, the first evaporator and the second evaporator are not limited to once-through boilers, but may have a configuration such as a water tube boiler that evaporates water within a steam drum.

以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the following Examples.

図1の構成を有する排ガスボイラシステムの実施例と、単段の蒸発器及びエコノマイザを有する従来の排ガスボイラシステムと、について発生する蒸気量についてのシミュレーションを行った。排ガスボイラシステムに供給される排ガスの温度は300℃、排ガスの流量は37000Nm3/h、補給水の水温を25℃とした。 A simulation was conducted regarding the amount of steam generated for the embodiment of the exhaust gas boiler system having the configuration shown in FIG. 1 and a conventional exhaust gas boiler system having a single-stage evaporator and economizer. The temperature of the exhaust gas supplied to the exhaust gas boiler system was 300°C, the flow rate of the exhaust gas was 37000 Nm3/h, and the temperature of the make-up water was 25°C.

実施例の排ガスボイラシステムでは、第1蒸発器の蒸気圧及び蒸気圧縮機の吐出圧力を0.78MPa、第2蒸発器の蒸気圧を0.10MPaに設定した場合、第1蒸発器の蒸気発生量は2397kg/h、第2蒸発器の蒸気発生量は1182kg/h、蒸気圧縮機の消費電力は170kW、蒸気圧縮機における水噴射量は117kg/h(蒸気圧縮機の吐出蒸気量は1300kg/h)となり、蒸気ヘッダにおいて合計3698kg/hの蒸気を得られた。なお、実施例の排ガスボイラシステムを通過した排ガスの温度は109℃となった、一方、比較例の排ガスボイラシステムでは、蒸気発生量は2363kg/h、排ガスボイラシステムを通過した排ガスの温度は168℃となった。 In the exhaust gas boiler system of the example, when the vapor pressure of the first evaporator and the discharge pressure of the vapor compressor are set to 0.78 MPa, and the vapor pressure of the second evaporator is set to 0.10 MPa, the steam generation of the first evaporator is The amount of steam generated by the second evaporator is 1182 kg/h, the power consumption of the vapor compressor is 170 kW, the amount of water injection in the vapor compressor is 117 kg/h (the amount of steam discharged from the vapor compressor is 1300 kg/h) h), and a total of 3,698 kg/h of steam was obtained at the steam header. In addition, the temperature of the exhaust gas that passed through the exhaust gas boiler system of the example was 109 ° C. On the other hand, in the exhaust gas boiler system of the comparative example, the amount of steam generated was 2363 kg/h, and the temperature of the exhaust gas that passed through the exhaust gas boiler system was 168 ° C. It became ℃.

実施例の排ガスシステムと比較例の蒸気発生量の差は1335kg/hであるが、この蒸気量を都市ガス(13A)を燃料とするボイラによって得る場合、57m3N/hの燃料が必要であり、二酸化炭素排出量は172kg/hとなる。これに対し、実施例の排ガスシステムにおいて蒸気圧縮機が消費する電力に電力会社の二酸化炭素排出係数を乗じて算出される蒸気圧縮機の二酸化炭素排出量は83kg/hとなる。したがって、実施例の排ガスシステムでは、比較例に対して二酸化炭素排出量を52%削減できる。 The difference in the amount of steam generated between the exhaust gas system of the example and the comparative example is 1335 kg/h, but if this amount of steam is obtained by a boiler using city gas (13A) as fuel, 57 m3N/h of fuel is required. Carbon dioxide emissions will be 172 kg/h. On the other hand, in the exhaust gas system of the example, the amount of carbon dioxide emitted by the vapor compressor, which is calculated by multiplying the electric power consumed by the vapor compressor by the carbon dioxide emission coefficient of the electric power company, is 83 kg/h. Therefore, the exhaust gas system of the example can reduce carbon dioxide emissions by 52% compared to the comparative example.

実施例の排ガスボイラシステムにおいて、第2蒸発器の蒸気圧を変更した場合のシミュレーションを行った結果を、次の表1に示す。表には、第2蒸発器の出口排ガス温度、エコノマイザ出口の排ガス温度、全体蒸気量(第1蒸発器蒸発量と蒸気圧縮機吐出蒸気量の合計)及び蒸気圧縮機消費電力を、それぞれ第2蒸発器の蒸気圧が0.10MPaである場合に対する百分率で示す。また、第1蒸発器蒸発量及び蒸気圧縮機吐出蒸気量は、全体蒸気量(百分率)の内訳を示す。 Table 1 below shows the results of a simulation in which the vapor pressure of the second evaporator was changed in the exhaust gas boiler system of the example. The table shows the exhaust gas temperature at the outlet of the second evaporator, the exhaust gas temperature at the economizer outlet, the total steam amount (the sum of the first evaporator evaporation amount and the vapor compressor discharge amount), and the vapor compressor power consumption, respectively. It is expressed as a percentage of the case where the vapor pressure of the evaporator is 0.10 MPa. Further, the first evaporator evaporation amount and the vapor compressor discharge vapor amount indicate the breakdown of the total vapor amount (percentage).

Figure 2023175102000002
Figure 2023175102000002

第2蒸発器の蒸気圧を低くすると、第2蒸発器の蒸気圧が低下することで、第2蒸発器の出口排ガス温度、エコノマイザの出口水温、さらに第1蒸発器の蒸発量が低下する。一方、第2蒸発器では、蒸気圧の低下と共に入口と出口の排ガス温度差は大きくなり、第2蒸発器の蒸気量は増加する。したがって、第2蒸発器の蒸気圧を低くすると、第2蒸発器の蒸発量増加が大きくなるため、システム全体の蒸発量は増加する。このため、第2蒸発器の蒸気圧は、第2蒸発器の熱回収量を十分に確保できる0.2MPa以下が好ましい。このとき、第2蒸発器出口の排ガス温度は150℃以下となりエコマイザの通水が停止した場合でも給水温度は飽和蒸気圧を超えることがなく、沸騰が起きないため、安定的して蒸気を供給できる。また、沸騰の考慮が不要であるため、管内圧損の上昇、エロ-ジョンなどが発生せず、エコノマイザの伝熱面の設計に余裕ができる。また、第2蒸発器の蒸気圧の下限は、蒸気圧縮機の負荷を過度に大きくしないことで、蒸気圧縮機の電力消費に伴う二酸化炭素発生及び設備コストを過度に増大させない0.05MPaが好ましい。 When the vapor pressure of the second evaporator is lowered, the vapor pressure of the second evaporator is reduced, thereby reducing the exhaust gas temperature at the outlet of the second evaporator, the water temperature at the outlet of the economizer, and the amount of evaporation from the first evaporator. On the other hand, in the second evaporator, as the vapor pressure decreases, the exhaust gas temperature difference between the inlet and the outlet increases, and the amount of vapor in the second evaporator increases. Therefore, when the vapor pressure of the second evaporator is lowered, the amount of evaporation of the second evaporator increases, and therefore the amount of evaporation of the entire system increases. Therefore, the vapor pressure of the second evaporator is preferably 0.2 MPa or less to ensure a sufficient amount of heat recovery in the second evaporator. At this time, the exhaust gas temperature at the outlet of the second evaporator becomes 150°C or lower, and even if the water flow to the ecomizer stops, the feed water temperature does not exceed the saturated vapor pressure and boiling does not occur, so steam is stably supplied. can. In addition, since there is no need to take boiling into account, there is no increase in pressure drop in the pipe, no erosion, etc., and there is more leeway in designing the heat transfer surface of the economizer. In addition, the lower limit of the vapor pressure of the second evaporator is preferably 0.05 MPa, which does not excessively increase the load on the vapor compressor and thereby avoid excessively increasing carbon dioxide generation and equipment costs due to power consumption of the vapor compressor. .

1 排ガスボイラシステム
10 排ガスチャンバ
20 第1蒸発器
30 第2蒸発器
40 エコノマイザ
50 蒸気圧縮機
60 蒸気ヘッダ
21 下部ヘッダ
22 水管
23 上部ヘッダ
24 気水分離器
25 給水弁
31 下部ヘッダ
32 水管
33 上部ヘッダ
34 気水分離器
35 給水弁
41 給水ポンプ
51 給水手段
1 Exhaust gas boiler system 10 Exhaust gas chamber 20 First evaporator 30 Second evaporator 40 Economizer 50 Vapor compressor 60 Steam header 21 Lower header 22 Water pipe 23 Upper header 24 Steam water separator 25 Water supply valve 31 Lower header 32 Water pipe 33 Upper header 34 Steam water separator 35 Water supply valve 41 Water supply pump 51 Water supply means

Claims (3)

排ガスと熱交換して補給水を蒸発させる第1蒸発器と、
第1蒸発器を通過した排ガスと熱交換して補給水を蒸発させる第2蒸発器と、
第2蒸発器を通過した排ガスと熱交換して第1蒸発器及び第2蒸発器に供給される補給水を加熱するエコノマイザと、
第2蒸発器で発生した蒸気を圧縮する蒸気圧縮機と、
第1蒸発器で発生した蒸気及び蒸気圧縮機で圧縮された蒸気が導入される蒸気ヘッダと、
を備える、排ガスボイラシステム。
a first evaporator that evaporates make-up water by exchanging heat with exhaust gas;
a second evaporator that evaporates makeup water by exchanging heat with the exhaust gas that has passed through the first evaporator;
an economizer that heats make-up water supplied to the first evaporator and the second evaporator by exchanging heat with the exhaust gas that has passed through the second evaporator;
a vapor compressor that compresses the vapor generated in the second evaporator;
a steam header into which the steam generated in the first evaporator and the steam compressed by the vapor compressor are introduced;
Exhaust gas boiler system.
排ガスの温度は250℃以上320℃以下であり、
第1蒸発器の蒸気圧は0.5MPa以上1.0MPa以下であり、
第2蒸発器の蒸気圧は0.05MPa以上0.20MPa以下である、
請求項1に記載の排ガスボイラシステム。
The temperature of the exhaust gas is 250°C or more and 320°C or less,
The vapor pressure of the first evaporator is 0.5 MPa or more and 1.0 MPa or less,
The vapor pressure of the second evaporator is 0.05 MPa or more and 0.20 MPa or less,
The exhaust gas boiler system according to claim 1.
蒸気圧縮機は、蒸気を圧縮する空間内に水を噴射する給水手段を備える水噴射式蒸気圧縮機である、請求項1又は2に記載の排ガスボイラシステム。 The exhaust gas boiler system according to claim 1 or 2, wherein the vapor compressor is a water injection type vapor compressor equipped with water supply means for injecting water into a space for compressing vapor.
JP2022087380A 2022-05-30 2022-05-30 Exhaust gas boiler system Pending JP2023175102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022087380A JP2023175102A (en) 2022-05-30 2022-05-30 Exhaust gas boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022087380A JP2023175102A (en) 2022-05-30 2022-05-30 Exhaust gas boiler system

Publications (1)

Publication Number Publication Date
JP2023175102A true JP2023175102A (en) 2023-12-12

Family

ID=89121382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087380A Pending JP2023175102A (en) 2022-05-30 2022-05-30 Exhaust gas boiler system

Country Status (1)

Country Link
JP (1) JP2023175102A (en)

Similar Documents

Publication Publication Date Title
WO2020189566A1 (en) Ammonia decomposition facility, gas turbine plant equipped with same, and ammonia decomposition method
JP4838318B2 (en) Power generation method and power plant
US7793501B2 (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
US20100154381A1 (en) Combined brayton - rankine cycle
WO2020189575A1 (en) Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia
JPH09510276A (en) Method for operating combined gas and steam turbine plant and plant operated by this method
JP6702655B2 (en) Coal burning oxygen boiler power plant
JP2006249942A (en) Exhaust heat recovery system of reciprocation type internal combustion engine with supercharger
US11326471B2 (en) System and method to improve boiler and steam turbine start-up times
US20100077722A1 (en) Peak load management by combined cycle power augmentation using peaking cycle exhaust heat recovery
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
JP5909429B2 (en) Moisture gas turbine system
RU2584745C2 (en) High-temperature steam power plant for subcritical pressure and high-temperature flow boiler for subcritical pressure operating at variable pressure
CN114909193A (en) Thermal power generating unit flexible operation system based on molten salt heat storage
CN105899875A (en) Method and plant for co-generation of heat and power
CN105874272A (en) Method and plant for co-generation of heat and power
JP2023175102A (en) Exhaust gas boiler system
JP2011149434A (en) Gas turbine combined power generation system
CN105980773A (en) Method and plant for co-generation of heat and power
Aminov et al. Evaluation of the efficiency of combining wet-steam NPPs with a closed hydrogen cycle
JP6075016B2 (en) Boiler system
JPH01113507A (en) Exhaust heat recovering heat exchanger
JP2020159264A (en) gas turbine
JP2011179710A (en) Heat transporting device