WO2020189575A1 - Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia - Google Patents

Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia Download PDF

Info

Publication number
WO2020189575A1
WO2020189575A1 PCT/JP2020/011223 JP2020011223W WO2020189575A1 WO 2020189575 A1 WO2020189575 A1 WO 2020189575A1 JP 2020011223 W JP2020011223 W JP 2020011223W WO 2020189575 A1 WO2020189575 A1 WO 2020189575A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
gas
decomposition
water
self
Prior art date
Application number
PCT/JP2020/011223
Other languages
French (fr)
Japanese (ja)
Inventor
荒木 秀文
谷村 聡
正和 野勢
淳 笹原
上地 英之
田中 幸男
厚志 湯浅
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2020189575A1 publication Critical patent/WO2020189575A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an ammonia decomposition facility for decomposing ammonia, a gas turbine plant equipped with the facility, and an ammonia decomposition method.
  • the present application claims priority based on Japanese Patent Application No. 2019-048898 filed in Japan on March 15, 2019, and this content is incorporated herein by reference.
  • Patent Document 1 describes a gas turbine plant provided with a decomposition device that heats ammonia and decomposes the ammonia into hydrogen and nitrogen.
  • This gas turbine plant is equipped with a gas turbine and an exhaust heat recovery boiler.
  • the exhaust heat recovery boiler has a first heat exchange unit that heats water with exhaust gas from a gas turbine to make steam, and a second heat exchange unit that heats liquid ammonia with exhaust gas.
  • the liquid ammonia boosted by the pump and the exhaust gas exhausted from the gas turbine are exchanged for heat to heat the ammonia, and this ammonia is thermally decomposed to decompose hydrogen and nitrogen. Make it gas.
  • the above-mentioned decomposition device has this second heat exchange section. The decomposed gas is directly guided to the combustor of the gas turbine.
  • Patent Document 2 also describes a gas turbine plant equipped with a heating device that heats ammonia and decomposes the ammonia into hydrogen and nitrogen.
  • This gas turbine plant is equipped with a gas turbine, a heating device, and an exhaust heat recovery boiler.
  • the exhaust heat recovery boiler heats the water into steam by exchanging heat between a part of the exhaust gas exhausted from the gas turbine and water.
  • the heating device heat-exchanges the rest of the exhaust gas exhausted from the gas turbine with liquid ammonia to heat the ammonia and thermally decompose the ammonia into a decomposed gas containing hydrogen and nitrogen. This decomposed gas is introduced into the combustor of the gas turbine.
  • the exhaust has a first heat exchange unit that heats water with exhaust gas from a gas turbine to make steam, and a second heat exchange unit that heats liquid ammonia with exhaust gas. It is necessary to newly design and manufacture a heat recovery steam generator. Further, in the technique described in Patent Document 2, a heating device that heats ammonia with a part of the exhaust gas from the gas turbine and an exhaust heat recovery boiler that heats water with the rest of the exhaust gas are newly designed. It is necessary to manufacture these.
  • Patent Document 1 and the technique described in Patent Document 2 have a problem that the cost of new design and manufacture of gas turbine plant equipment is high.
  • an object of the present invention is to provide a technique capable of suppressing the equipment cost of a gas turbine plant using a gas obtained by decomposition of ammonia as a fuel.
  • the ammonia decomposition equipment as one aspect of the invention for achieving the above object is A gas turbine having a compressor that compresses air, a combustor that burns fuel in compressed air that is the air compressed by the compressor to generate combustion gas, and a turbine that is driven by the combustion gas.
  • the bleed air line connected to the gas turbine and a part of the compressed air flows as bleed air, the ammonia supply line through which ammonia flows, the bleed air line and the ammonia supply line.
  • the gas is provided with an ammonia decomposition device for producing the gas, and a processed gas supply line for guiding the processed gas generated by the ammonia decomposition device to the combustor as the fuel.
  • the treated gas containing hydrogen obtained by the decomposition of ammonia is used as the fuel for the combustor. Therefore, carbon dioxide emissions can be reduced as compared with a plant that uses only natural gas as fuel for the combustor.
  • an external heating method that heats the ammonia by heat transfer from a heat source other than the ammonia to be decomposed, There is a self-pyrolysis method in which a part of the ammonia to be decomposed is burned to generate heat and the remaining ammonia is heated.
  • the exhaust gas from the gas turbine or the heat medium heated by the heat of this exhaust gas is used as the heat required for the thermal decomposition of ammonia
  • the exhaust gas or the heat medium is used as the ammonia decomposer. It is necessary to newly design and manufacture the equipment to guide and the exhaust heat recovery boiler that separately generates this heat medium.
  • the heat required for the thermal decomposition of ammonia is obtained by a self-thermal decomposition method in which a part of ammonia is burned.
  • the equipment for guiding the exhaust gas and the heat medium to the ammonia decomposer, the exhaust heat recovery boiler for separately generating the heat medium, and the like are not required, and the equipment cost of the gas turbine plant can be suppressed. Further, in this embodiment, even when remodeling work is performed to add ammonia decomposition equipment to the existing gas turbine combined cycle plant, the exhaust heat recovery boiler contained in this plant can be used with almost no remodeling, so that the equipment cost can be suppressed. be able to.
  • bleed air which is a part of compressed air generated by the air compressor of a gas turbine
  • bleed air which is a part of compressed air generated by the air compressor of a gas turbine
  • bleed air is used as an oxidant for burning a part of ammonia in this embodiment.
  • the equipment cost of the gas turbine plant can be suppressed as compared with the case where the compressed air generated by the air compressor of the gas turbine is not used.
  • Hydrogen-based gas obtained by decomposing ammonia has a smaller calorific value per volume than natural gas fuel, so when used as gas turbine fuel, the volumetric flow rate of the fuel becomes large. As a result, the flow rate of gas flowing through the turbine of the gas turbine increases, and the risk of abnormal events such as surges in the air compressor of the gas turbine increases.
  • the flow rate of the combustion air supplied to the combustor is reduced. Therefore, in this embodiment, the amount of increase in the gas flow rate flowing through the turbine of the gas turbine is small as compared with the self-pyrolysis method that does not use the compressed air generated by the air compressor of the gas turbine and the external heating method. Therefore, in this embodiment, the risk of abnormal events such as surges in the gas turbine air compressor is reduced as compared with the self-thermal decomposition method or the external heating method that does not use the compressed air generated by the gas turbine air compressor. can do. Further, in this embodiment, as compared with other methods, the matching between the gas flow rate flowing through the air compressor of the gas turbine and the gas flow rate flowing through the turbine of the gas turbine is improved, and the thermal performance is improved.
  • an ammonia booster provided in the ammonia supply line and boosting the ammonia flowing through the ammonia supply line to a pressure higher than the pressure in the combustor, and the bleed air line.
  • the bleed air booster which is provided in the above and pressurizes the bleed air flowing through the bleed air line to a pressure higher than the pressure in the combustor, may be provided.
  • the ammonia before being supplied to the ammonia decomposition device is boosted to a pressure higher than the pressure in the combustor by the ammonia booster, and the bleed air before being supplied to the ammonia decomposition device is bleed.
  • the air booster boosts the pressure to a level higher than the pressure inside the combustor. Therefore, in this embodiment, this gas can be guided into the combustor without boosting the pressure of the gas after decomposing ammonia.
  • the bleed air having a pressure higher than that of the atmosphere is boosted by the bleed air booster, the load on the bleed air booster is small. Therefore, in this aspect, the equipment cost and the running cost can be suppressed.
  • the ammonia decomposition apparatus uses the extracted air from the extracted air line as an oxidizing agent to burn a part of the ammonia from the ammonia supply line.
  • Ammonia self-thermal decomposition device that self-decomposes the ammonia to generate a decomposition gas containing hydrogen, nitrogen, and residual ammonia, and removes the residual ammonia contained in the decomposition gas from the ammonia self-thermal decomposition device. It may also have an ammonia removing device for discharging the gas from which the residual ammonia has been removed from the decomposed gas as the treated gas.
  • the ammonia decomposition device of this embodiment has an ammonia removing device that removes residual ammonia contained in the decomposition gas from the ammonia self-pyrolysis device. Therefore, in this embodiment, the residual ammonia in the fuel supplied to the combustor can be reduced, so that the NOx concentration contained in the exhaust gas generated by the combustion of the fuel can be suppressed.
  • the ammonia self-pyrolysis device may have an ammonia heater and an ammonia self-pyrolysis device.
  • the ammonia heater is provided in the ammonia supply line, and heat exchanges the ammonia flowing through the ammonia supply line with the decomposition gas to heat the ammonia and cool the decomposition gas. It is a heat exchanger.
  • the ammonia self-pyrolyzer uses the extracted air from the extracted air line as an oxidant to burn a part of the ammonia after being heated by the ammonia heater, and self-produces the ammonia. It is thermally decomposed to generate the decomposed gas.
  • the heat of the decomposition gas generated in the ammonia decomposition equipment is used as the heat for heating the ammonia. Therefore, in this embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment is used as the heat for heating the ammonia.
  • the ammonia removing device may have an ammonia absorber and an ammonia separator.
  • the ammonia absorber brings the decomposition gas from the ammonia self-pyrolysis apparatus into contact with water to dissolve the residual ammonia in the decomposition gas in the water, while the treated decomposition gas.
  • the ammonia separator has a separation tower and a water heater.
  • the separation tower brings the ammonia water, which is the water in which the residual ammonia is dissolved, into contact with water vapor, heats the ammonia water, and separates ammonia from the ammonia water.
  • the water heater heats water in which ammonia is separated from the ammonia water to make steam, and then returns the steam to the separation tower.
  • the water heater heats the water to be steamed by exchanging heat between the water in which ammonia is separated from the ammonia water and the decomposition gas. It may be a exchanger.
  • the heat of the decomposition gas generated in the ammonia decomposition equipment is used as the heat for heating the water. Therefore, in this embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment is used as the heat for heating the water in the water heater.
  • the gas turbine plant as one aspect of the invention for achieving the above object is The ammonia decomposition equipment of any of the above aspects and the gas turbine are provided.
  • the method for decomposing ammonia as one aspect of the invention for achieving the above object is In the ammonia decomposition device, part of the ammonia is burned using the extracted air, which is a part of the compressed air that is the air compressed by the compressor of the gas turbine, as an oxidizing agent, and the ammonia is self-thermally decomposed into hydrogen.
  • An ammonia decomposition step of producing a processed gas containing nitrogen and a processed gas supply step of guiding the processed gas generated in the ammonia decomposition step to a combustor of the gas turbine as fuel are executed.
  • the ammonia before self-thermal decomposition in the ammonia decomposition step is pressurized to a pressure higher than the pressure in the combustor, and then the ammonia after the pressure is increased to the ammonia decomposition apparatus.
  • the bleed air before being used as the oxidant in the ammonia supply step and the ammonia decomposition step is boosted to a pressure higher than the pressure in the combustor, and then the bleed air after the boost is boosted to the ammonia decomposition device.
  • the bleed air supply step of supplying to the air may be performed.
  • ammonia decomposition step in the ammonia decomposition step, a part of the ammonia is burned using the extracted air before being used as the oxidizing agent as the oxidizing agent, and the ammonia is produced.
  • the ammonia self-pyrolysis step may include an ammonia preheating step and an ammonia self-thermal decomposition execution step.
  • the ammonia preheating step the ammonia and the decomposition gas are heat-exchanged to heat the ammonia while cooling the decomposition gas.
  • the extracted air before being used as the oxidizing agent is used as an oxidizing agent, and a part of the ammonia after being heated in the ammonia preheating step is burned to burn the ammonia.
  • the decomposition gas is produced by self-pyrolysis.
  • the ammonia removal step may include an ammonia absorption step and an ammonia separation step.
  • the decomposition gas obtained in the execution of the ammonia self-thermal decomposition step is brought into contact with water to dissolve the residual ammonia in the decomposition gas in water, while the treatment. Discharge the finished gas.
  • the ammonia separation step includes a separation execution step and a water heating step.
  • ammonia water which is water in which the residual ammonia is dissolved, is brought into contact with water vapor, and ammonia is evaporated and separated from the ammonia water.
  • the water heating step the water in which ammonia is separated from the ammonia water is heated to obtain steam used in the separation execution step.
  • the water heating step in the water heating step, the water in which ammonia is separated from the ammonia water and the decomposition gas are heat-exchanged, and the water is heated to steam. May be good.
  • the residual ammonia concentration in the treated gas may be set to a desired value.
  • This desired value is a value at which the nitrogen oxide concentration in the exhaust gas conforms to the environmental regulation of the nitrogen oxide concentration at the installation point of this plant, or when a denitration device is installed in the exhaust gas path, nitrogen after denitration.
  • the oxide concentration can be determined to be a value that complies with environmental regulations.
  • the gas turbine plant of the present embodiment includes a gas turbine facility 10, an exhaust heat recovery boiler 20, a steam turbine facility 30, and an ammonia decomposition facility X.
  • the gas turbine equipment 10 includes a gas turbine 11, a fuel line 12 that guides fuel to the gas turbine 11, a flow meter 13 that detects the flow rate of fuel flowing through the fuel line 12, and a preheater that preheats the fuel flowing through the fuel line 12.
  • a fuel control valve 15 for adjusting the flow rate of fuel supplied to the gas turbine 11 is provided.
  • the gas turbine 11 includes an air compressor 11a that compresses air to generate compressed air, a combustor 11b that burns fuel in compressed air to generate combustion gas, and a turbine 11c that is driven by the combustion gas.
  • the combustor 11b has a structure capable of stably combusting a gas fuel containing hydrogen as a main component.
  • the air compressor 11a has a compressor rotor and a compressor casing that covers the compressor rotor.
  • the turbine 11c includes a turbine rotor and a turbine casing that covers the turbine rotor.
  • the compressor rotor and the turbine rotor are connected to each other to form the gas turbine rotor 11d.
  • the fuel line 12 is connected to the combustor 11b.
  • the fuel line 12 is provided with the flow meter 13, the preheater 14, and the fuel control valve 15 described above.
  • the exhaust heat recovery boiler 20 includes a boiler frame 21 through which the exhaust gas EG from the gas turbine 11 flows, a low-pressure steam generation system 22, a medium-pressure steam generation system 23, a reheat steam system 25, and a high-pressure steam generation system 26. , A medium pressure pump 24 and a high pressure pump 27.
  • the upstream side regarding the flow of the exhaust gas EG in the boiler frame 21 is simply the upstream side, and the opposite side is the downstream side.
  • a stack 29 that exhausts the exhaust gas EG to the atmosphere is connected to the most downstream end of the boiler frame 21.
  • the low-pressure steam generator 22 has an economizer 22a, an evaporator 22b, and a superheater 22c.
  • the economizer 22a exchanges heat between water and the exhaust gas EG to heat the water into hot water.
  • the evaporator 22b heats the water into steam by exchanging heat between a part of the hot water from the economizer 22a and the exhaust gas EG.
  • the superheater 22c heats the water vapor by exchanging heat between the water vapor from the evaporator 22b and the exhaust gas EG.
  • the economizer 22a, at least a part of the evaporator 22b, and the superheater 22c are all arranged in the boiler frame 21.
  • the economizer 22a, at least a part of the evaporator 22b, and the superheater 22c are arranged in this order from the downstream side to the upstream side.
  • the medium-pressure steam generator system 23 and the high-pressure steam generator system 26 are not shown, they both have an economizer, an evaporator, and a superheater, similar to the low-pressure steam generator system 22.
  • the medium-pressure pump 24 boosts a part of the hot water from the economizer 22a of the low-pressure steam generator 22 and then sends it to the economizer of the medium-pressure steam generator 23.
  • the economizer 22a of the low-pressure steam generator 22 and the economizer of the high-pressure steam generator 26 are connected by a hot water line 49.
  • the high-pressure pump 27 is provided in the hot water line 49.
  • the high-pressure pump 27 boosts a part of the hot water from the economizer 22a of the low-pressure steam generator 22 and then sends it to the economizer of the high-pressure steam generator 26.
  • the superheater of the high-pressure steam generator 26 is arranged in the boiler frame 21 on the upstream side of the other superheaters.
  • the superheater of the medium-pressure steam generator system 23 is arranged in the boiler frame 21 on the downstream side of the superheater of the high-pressure steam generator system 26.
  • the superheater 22c of the low-pressure steam generator 22 is arranged in the boiler frame 21 on the downstream side of the superheater of the medium-pressure steam generator 23.
  • the reheat steam system 25 has only a reheater that superheats steam with the exhaust gas EG.
  • the reheated steam system 25 is arranged on the downstream side of the superheater of the high-pressure steam generating system 26 and on the upstream side of the superheater of the medium-pressure steam generating system 23.
  • the steam turbine equipment 30 includes a low-pressure steam turbine 31, a medium-pressure steam turbine 32, a high-pressure steam turbine 33, a condenser 35, and a condenser pump 36.
  • the low pressure steam turbine 31 has a low pressure steam turbine rotor and a casing that covers the low pressure steam turbine rotor.
  • the medium pressure steam turbine 32 has a medium pressure steam turbine rotor and a casing that covers the medium pressure steam turbine rotor.
  • the high-pressure steam turbine 33 has a high-pressure steam turbine rotor and a casing that covers the high-pressure steam turbine rotor.
  • the low pressure steam turbine rotor, the medium pressure steam turbine rotor, and the high pressure steam turbine rotor are connected to each other to form one steam turbine rotor 34.
  • the gas turbine rotor 11d described above is connected to one end of the steam turbine rotor 34.
  • a generator 39 is connected to the other end of the steam turbine rotor 34.
  • the superheater of the high-pressure steam generation system 26 and the steam inlet of the high-pressure steam turbine 33 are connected by a high-pressure steam line 44.
  • the steam outlet of the high-pressure steam turbine 33 and the steam inlet of the reheat steam system 25 are connected by a high-pressure exhaust steam line 46.
  • the steam inlet of the reheat steam system 25 is further connected to the superheater of the medium pressure steam generation system 23 by a medium pressure steam line 42.
  • the steam outlet of the reheat steam system 25 and the steam inlet of the medium pressure steam turbine 32 are connected by a reheat steam line 43.
  • the superheater 22c of the low-pressure steam generator 22 and the steam inlet of the low-pressure steam turbine 31 are connected by a low-pressure steam line 41.
  • the steam inlet of the low pressure steam turbine 31 is further connected to the steam outlet of the medium pressure steam turbine 32 by a medium pressure exhaust steam line 45.
  • the above-mentioned condenser 35 is connected to the steam outlet of the low-pressure steam turbine 31.
  • the condenser 35 returns the steam exhausted from the low-pressure steam turbine 31 to the liquid phase water.
  • the condenser 35 and the economizer 22a of the low-pressure steam generator 22 are connected by a water supply line 47.
  • the above-mentioned condensate pump 36 is provided in the water supply line 47.
  • the ammonia decomposition equipment X includes an ammonia decomposition device 50, an ammonia supply line 81, an ammonia booster 80, a processed gas supply line 82, an bleed air line 85, an bleed air cooler 86, and an bleed air booster 87.
  • a cooling medium line 88i, a cooling medium recovery line 88o, and a fuel buffer 89 are provided.
  • the ammonia supply line 81 connects the ammonia tank T in which liquid ammonia is stored and the ammonia decomposition device 50.
  • the liquid ammonia stored in the ammonia tank T is, for example, produced from hydrogen as a raw material.
  • This hydrogen is, for example, hydrogen obtained by electrolyzing water using electricity generated by renewable energy such as wind power or sunlight, or hydrogen obtained by steam reforming natural gas. is there. Hydrogen is not as easy to transport and store as liquefied natural gas. Therefore, the hydrogen obtained as described above is used to produce liquid ammonia that can be easily transported and stored, and the liquid ammonia is stored in the ammonia tank T.
  • the ammonia booster 80 is provided in the ammonia supply line 81.
  • the ammonia booster 80 is a pump.
  • the ammonia booster 80 boosts the liquid ammonia flowing through the ammonia supply line 81.
  • the bleed air line 85 connects the compressed air passage 11e between the discharge port of the air compressor 11a of the gas turbine 11 to the compressed air inlet of the combustor 11b and the ammonia decomposition device 50. Therefore, the bleed air BA, which is a part of the compressed air generated by the air compressor 11a, flows through the bleed air line 85. The rest of the compressed air generated by the air compressor 11a is sent to the combustor 11b via the compressed air passage 11e.
  • the bleed air cooler 86 is provided in the bleed air line 85 and cools the bleed air BA flowing through the bleed air line 85.
  • the bleed air booster 87 is provided at a position closer to the ammonia decomposition device 50 than the bleed air cooler 86 in the bleed air line 85. The bleed air booster 87 boosts the bleed air BA cooled by the bleed air cooler 86.
  • the bleed air cooler 86 is a heat exchanger that heats the cooling medium while cooling the bleed air BA by exchanging heat between the bleed air BA and the cooling medium.
  • One end of the cooling medium line 88i is connected to the cooling medium inlet of the bleed air cooler 86.
  • the other end of the cooling medium line 88i is connected to a position on the high pressure steam generation system 26 side of the high pressure pump 27 in the hot water line 49 of the exhaust heat recovery boiler 20. Therefore, a part of the hot water from the economizer 22a of the low-pressure steam generator 22 is supplied to the bleed air cooler 86 as a cooling medium.
  • One end of the cooling medium recovery line 88o is connected to the cooling medium outlet of the bleed air cooler 86.
  • the other end of the cooling medium recovery line 88o is connected to the economizer of the high-pressure steam generator system 26. Therefore, hot water, which is a cooling medium heated by heat exchange with the bleed air BA, flows into the economizer of the high-pressure steam generation system 26. Hot water from the economizer 22a of the low-pressure steam generator 22 also flows into the economizer of the high-pressure steam generator 26 via the hot water line 49.
  • the ammonia decomposition device 50 uses the extracted air BA from the extracted air line 85 as an oxidant to burn a part of the ammonia from the ammonia supply line 81, and the heat at this time self-pyrolyzes the ammonia to generate hydrogen. Produces a treated gas PG containing nitrogen.
  • One end of the treated gas supply line 82 is connected to the ammonia decomposition device 50.
  • the treated gas PG generated by the ammonia decomposition apparatus 50 flows through the treated gas supply line 82.
  • the fuel buffer 89 described above is provided at the other end of the processed gas supply line 82.
  • a start-up fuel line 16 is further connected to the fuel buffer 89.
  • the start-up fuel SF flows through the start-up fuel line 16.
  • the start-up fuel SF is, for example, hydrogen, natural gas, or the like.
  • the fuel line 12 described above is further connected to the fuel buffer 89.
  • the fuel buffer 89 is a buffer for temporarily retaining the starting fuel SF from the starting fuel line 16 and the processed gas PG from the processed gas supply line 82.
  • the fuel buffer 89 includes the start-up fuel line 16 and the treated gas supply line 82 in order to ensure the stability of the fuel supply to the combustor 11b when the fuel is switched from the start-up fuel SF to the treated gas PG. It is provided at the confluence of.
  • the ammonia decomposition device 50 includes an ammonia self-thermal decomposition device 51 and an ammonia removal device 61.
  • the ammonia self-pyrolyzer 51 uses the extracted air BA boosted by the bleed air booster 87 as an oxidizing agent to burn a part of the ammonia boosted by the ammonia booster 80, and uses the heat at this time to self-produce ammonia. Pyrolysis is carried out to produce a decomposition gas DG containing hydrogen, nitrogen and residual ammonia.
  • the ammonia removing device 61 removes residual ammonia contained in the decomposition gas DG from the ammonia self-thermal decomposition device 51.
  • the treated gas PG described above is a gas from which residual ammonia has been removed from the decomposition gas DG.
  • the ammonia self-pyrolysis apparatus 51 includes a first ammonia heater 52a, a second ammonia heater 52b, an ammonia self-pyrolysis device 53, and a decomposition gas line 54.
  • the ammonia supply line 81 described above is connected to the ammonia self-pyrolyzer 53.
  • the first ammonia heater 52a is provided at a position on the ammonia self-thermal decomposition device 53 side of the ammonia booster 80 in the ammonia supply line 81.
  • the first ammonia heater 52a is a heat exchanger that exchanges heat between the liquid ammonia boosted by the ammonia booster 80 and the decomposition gas DG.
  • the first ammonia heater 52a heats the liquid ammonia by heat exchange between the liquid ammonia and the decomposition gas DG, and turns the liquid ammonia into vapor phase ammonia.
  • the second ammonia heater 52b is provided at a position on the ammonia self-thermal decomposition device 53 side of the first ammonia heater 52a in the ammonia supply line 81.
  • the second ammonia heater 52b further heats the ammonia in the gas phase by heat exchange between the ammonia in the gas phase and the decomposition gas DG from the first ammonia heater 52a.
  • the ammonia self-pyrolyzer 53 uses the extracted air BA from the extracted air line 85 as an oxidizing agent to burn a part of the ammonia in the gas phase from the ammonia supply line 81, and self-pyrolyzes the ammonia with the heat at this time.
  • a decomposition gas DG containing hydrogen, nitrogen and residual ammonia.
  • the ammonia self-thermal decomposition device 53 is filled with a catalyst for promoting the oxidation (combustion) of ammonia and the thermal decomposition of ammonia.
  • the catalyst has a catalyst component that activates an oxidation (combustion) reaction or a decomposition reaction, and a carrier that supports the catalyst component.
  • Examples of the catalyst component that activates the oxidation (combustion) reaction include particles of a noble metal such as platinum, palladium, and rhodium.
  • examples of the catalyst component that activates the decomposition reaction include particles of a noble metal such as Ru and metal particles containing a transition metal such as Ni, Co, and Fe.
  • Examples of the carrier include metal oxides such as Al 2 O 3 , ZrO 2 , Pr 2 O 3 , La 2 O 3 , and MgO.
  • the catalyst is not limited to the catalysts exemplified above as long as it activates the oxidation (combustion) reaction and decomposition reaction of ammonia.
  • the ammonia self-thermal decomposition device 53 is connected to a decomposition gas line 54 that guides the decomposition gas DG generated in the ammonia self-thermal decomposition device 53 to the ammonia removal device 61.
  • the decomposition gas line 54 has a first line 54a, a second line 54b, a third line 54c, and a fourth line 54d.
  • One end of the first line 54a is connected to the decomposition gas outlet of the ammonia self-thermal decomposition device 53, and the other end of the first line 54a is connected to the heat medium inlet of the second ammonia heater 52b.
  • One end of the second line 54b is connected to the heat medium outlet of the second ammonia heater 52b, and the other end of the second line 54b is connected to the heat medium inlet of the water heater 77 in the ammonia removing device 61 described later.
  • One end of the third line 54c is connected to the heat medium outlet of the water heater 77 in the ammonia removing device 61, and the other end of the third line 54c is connected to the heat medium inlet of the first ammonia heater 52a.
  • One end of the fourth line 54d is connected to the heat medium outlet of the first ammonia heater 52a, and the other end of the fourth line 54d is connected to the ammonia removing device 61.
  • the decomposition gas DG generated in the ammonia self-thermal decomposition device 53 is the first line 54a, the second ammonia heater 52b, the second line 54b, the water heater 77 in the ammonia removing device 61, the third line 54c, and the first line. (1) It is guided to the ammonia removing device 61 via the ammonia heater 52a and the fourth line 54d.
  • the decomposition gas DG that exchanges heat with ammonia is the decomposition gas DG that has flowed into the second ammonia heater 52b from the ammonia self-thermal decomposition device 53 via the first line 54a.
  • the decomposition gas DG that exchanges heat with ammonia flows into the first ammonia heater 52a from the water heater 77 in the ammonia removing device 61 via the third line 54c. Gas DG.
  • the ammonia removing device 61 has an ammonia absorber 62 and an ammonia separator 72.
  • the ammonia absorber 62 includes a decomposition gas cooler 63, an absorption tower 64, a water line 65, a water supply pump 66, and a water cooler 67.
  • the other end of the fourth line 54d in the decomposition gas line 54 described above is connected to the absorption tower 64.
  • the decomposition gas cooler 63 is provided on the fourth line 54d of the decomposition gas line 54.
  • the decomposition gas cooler 63 further cools the decomposition gas DG cooled by heat exchange with ammonia in the second ammonia heater 52b and the first ammonia heater 52a.
  • the absorption tower 64 has an absorption tower container 64v and a filling material 64p.
  • the filling 64p is arranged in the intermediate basin in the vertical direction in the absorption tower container 64v.
  • the fourth line 54d of the decomposition gas line 54 is connected below the intermediate region in the absorption tower container 64v.
  • the water line 65 is connected above the intermediate region in the absorption tower container 64v.
  • the water line 65 is provided with a water supply pump 66 that boosts the water flowing through the water line 65 and a water cooler 67 that cools the water flowing through the water line 65.
  • One end of the treated gas supply line 82 described above is connected to the top of the absorption tower container 64v. Therefore, the processed gas supply line 82 connects the absorption tower 64 and the fuel buffer 89.
  • the decomposition gas DG cooled by the decomposition gas cooler 63 flows into the absorption tower container 64v from below the intermediate region of the absorption tower container 64v. Further, water cooled by the water cooler 67 is sprayed into the absorption tower container 64v from above the intermediate region of the absorption tower container 64v. The decomposition gas DG that has flowed into the absorption tower container 64v rises in the absorption tower container 64v. On the other hand, the water sprayed in the absorption tower container 64v descends in the absorption tower container 64v. The water comes into contact with the filling 64p in the process of descending in the absorption tower container 64v. The water in contact with the filling 64p forms a water film covering the surface of the filling 64p.
  • the decomposition gas DG comes into contact with the water film covering the surface of the filling 64p in the process of ascending in the absorption tower container 64v.
  • the residual ammonia contained in the decomposition gas DG dissolves in water.
  • Ammonia water which is water in which residual ammonia is dissolved, collects in the lower part of the absorption tower container 64v.
  • the treated gas PG which is the decomposed gas DG from which the residual ammonia has been removed, rises in the absorption tower container 64v and flows into the treated gas supply line 82.
  • the ammonia separator 72 includes an ammonia water line 73, an ammonia water heater 74, a separation tower 75, a water circulation line 76, a water heater 77, and a condenser 78.
  • One end of the ammonia water line 73 is connected to the bottom of the absorption tower container 64v.
  • the separation tower 75 has a separation tower container 75v and a perforated plate type shelf 75p. A plurality of stages constituting the shelf stage 75p are arranged side by side in the vertical direction in the intermediate basin in the vertical direction in the separation tower container 75v.
  • the other end of the above-mentioned ammonia water line 73 is connected to an intermediate stage among a plurality of stages constituting the shelf stage 75p.
  • the water circulation line 76 is connected to the bottom of the separation tower container 75v, and the other end of the water circulation line 76 is connected above the bottom and below the intermediate region in the separation tower container 75v.
  • the water heater 77 is provided on the water circulation line 76.
  • the water heater 77 is a heat exchanger that exchanges heat between the water flowing through the water circulation line 76 and the decomposition gas DG flowing in from the second line 54b of the decomposition gas line 54.
  • the water heater 77 exchanges heat between the water and the decomposition gas DG, and heats the water into steam while cooling the decomposition gas DG.
  • This water vapor flows into the separation tower container 75v via the water circulation line 76.
  • the decomposition gas DG flows from the water heater 77 into the first ammonia heater 52a via the third line 54c of the decomposition gas line 54.
  • Ammonia which evaporates more easily than water, is heated by water vapor, which is water in the gas phase, to move from the liquid phase to the gas phase, and water moves from the gas phase to the liquid phase.
  • Ammonia in the gas phase rises in the separation tower 75.
  • liquid phase water or more precisely water with a low ammonia concentration, collects in the lower part of the separation tower container 75v. A part of this water flows into the separation tower container 75v again as steam through the water circulation line 76 and the water heater 77.
  • the water line 65 of the ammonia absorber 62 is connected to the water circulation line 76. Therefore, a part of the water collected in the lower part of the separation tower container 75v returns to the inside of the separation tower container 75v again through the water circulation line 76, and the other part of the water collected in the lower part of the separation tower container 75v becomes. It flows into the absorption tower 64 via the water circulation line 76 and the water line 65.
  • the ammonia water heater 74 is provided in the ammonia water line 73.
  • the ammonia water heater 74 is a heat exchanger that exchanges heat between the ammonia water flowing through the ammonia water line 73 and the water flowing through the water line 65.
  • the ammonia water heater 74 heats the ammonia water by heat exchange between the ammonia water and the water.
  • the heated ammonia water is sprayed into the separation tower container 75v as described above.
  • the water cooled by heat exchange with the ammonia water is sprayed into the absorption tower container 64v via the water line 65, the water supply pump 66, and the water cooler 67.
  • the ammonia decomposition facility X further includes an ammonia recovery line 83 and an ammonia compressor 84.
  • ammonia recovery line 83 One end of the ammonia recovery line 83 is connected to the top of the separation tower container 75v, and the other end of the ammonia recovery line 83 is between the first ammonia heater 52a and the second ammonia heater 52b in the ammonia supply line 81. It is connected to the position.
  • the ammonia compressor 84 boosts the ammonia in the gas phase flowing through the ammonia recovery line 83.
  • the vapor-phase ammonia boosted by the ammonia compressor 84 merges with the vapor-phase ammonia flowing through the ammonia supply line 81, passes through the second ammonia heater 52b, and then flows into the ammonia self-thermal decomposition device 53.
  • the condenser 78 is provided on the ammonia recovery line 83.
  • the condenser 78 cools a gas containing ammonia in the gas phase flowing through the ammonia recovery line 83 to condense the water and ammonia in the gas.
  • the water condensed by the condenser 78 returns to the space above the shelf 75p in the separation tower container 75v via the water recovery line 79.
  • the number of shelves 75p is planned to be the number of stages required for this high-concentration ammonia water to become a trace amount of ammonia water having a desired concentration.
  • the concentration of the ammonia water supplied from the ammonia water line 73 is lower than that of the high-concentration ammonia water discharged from the condenser 78.
  • the number of shelves required for separating the ammonia water supplied from the ammonia water line 73 is smaller than the planned number of shelves from the high-concentration ammonia water from the condenser 78. Therefore, the connection destination of the ammonia water supplied from the ammonia water line 73 is an intermediate stage among the plurality of stages constituting the shelf stage 75p.
  • the start-up fuel SF is supplied to the combustor 11b via the start-up fuel line 16 and the fuel line 12.
  • the air compressor 11a of the gas turbine 11 compresses the air to generate compressed air.
  • the combustor 11b burns the starting fuel SF in the compressed air to generate a combustion gas.
  • This combustion gas is supplied to the turbine 11c to drive the turbine 11c.
  • the exhaust gas EG which is the combustion gas that drives the turbine 11c, flows into the boiler frame 21 of the exhaust heat recovery boiler 20.
  • each of the steam generation systems 22, 23, and 26 of the exhaust heat recovery boiler 20 the exhaust gas EG flowing in the boiler frame 21 and water are exchanged for heat to turn the liquid phase water into steam.
  • a part of the hot water from the economizer 22a of the low-pressure steam generator 22 is boosted by the high-pressure pump 27 and then sent to the high-pressure steam generator 26.
  • the temperature of this hot water is, for example, 150 ° C.
  • the hot water sent to the high-pressure steam generation system 26 becomes high-pressure steam HS by heat exchange with the exhaust gas EG.
  • This high-pressure steam HS is, for example, superheated steam at about 620 ° C.
  • This high-pressure steam HS is supplied to the high-pressure steam turbine 33 via the high-pressure steam line 44.
  • the high-pressure steam turbine 33 is driven by the high-pressure steam HS.
  • a part of the hot water from the economizer 22a of the low-pressure steam generator 22 is boosted by the medium-pressure pump 24 and then sent to the medium-pressure steam generator 23.
  • the hot water sent to the medium-pressure steam generation system 23 becomes medium-pressure steam IS by heat exchange with the exhaust gas EG.
  • This medium pressure steam IS is, for example, superheated steam at 300 ° C.
  • the medium pressure steam IS flows into the reheat steam system 25 via the medium pressure steam line 42.
  • the steam exhausted from the high-pressure steam turbine 33 flows into the reheated steam system 25 via the high-pressure exhaust steam line 46. That is, the medium-pressure steam IS from the medium-pressure steam generation system 23 and the steam exhausted from the high-pressure steam turbine 33 flow into the reheat steam system 25.
  • the steam flowing into the reheated steam system 25 is heated by heat exchange with the exhaust gas EG to form the reheated steam RS.
  • the reheated steam RS is supplied to the medium pressure steam turbine 32 via the reheated steam line 43.
  • the medium-pressure steam turbine 32 is driven by the reheated steam RS supplied to the medium-pressure steam turbine 32.
  • a part of the hot water from the economizer 22a of the low-pressure steam generator 22 is heated by the exhaust gas EG in the evaporator 22b of the low-pressure steam generator 22 to become steam.
  • This steam becomes the low-pressure steam LS superheated by the exhaust gas EG in the superheater 22c of the low-pressure steam generation system 22.
  • This low-pressure steam LS is, for example, superheated steam at 250 ° C.
  • This low-pressure steam LS is supplied to the low-pressure steam turbine 31 via the low-pressure steam line 41. Further, the steam exhausted from the medium pressure steam turbine 32 is supplied to the low pressure steam turbine 31 via the medium pressure exhaust steam line 45.
  • the low-pressure steam LS from the low-pressure steam generation system 22 and the steam exhausted from the medium-pressure steam turbine 32 are supplied to the low-pressure steam turbine 31.
  • the low-pressure steam turbine 31 is driven by the steam supplied to the low-pressure steam turbine 31.
  • the steam exhausted from the low-pressure steam turbine 31 is returned to water by the condenser 35.
  • the water in the condenser 35 is sent to the economizer 22a of the low-pressure steam generator 22 via the water supply line 47.
  • the liquid ammonia in the ammonia tank T and the extracted air BA from the gas turbine 11 are supplied to the ammonia self-thermal decomposition device 51.
  • the procedure for ammonia decomposition by the ammonia decomposition equipment X will be described with reference to the flowchart shown in FIG.
  • Liquid ammonia is stored in the ammonia tank T in a state of being cooled to a temperature of ⁇ 33.4 ° C. or lower, which is the boiling point, and in a state of almost atmospheric pressure.
  • the liquid ammonia in the ammonia tank T is boosted to, for example, about 5.2 MPa (absolute pressure) by the ammonia booster 80, and then supplied to the ammonia decomposition apparatus 50 (S1: ammonia supply step).
  • the pressure after pressurization of ammonia is determined in consideration of the pressure loss in the piping and various devices in the path until the liquid ammonia becomes the treated gas PG and the treated gas PG flows into the combustor 11b.
  • the pressure of the compressed air supplied to the combustor 11b is, for example, about 2.5 MPa, and the temperature of the compressed air is, for example, about 500 ° C.
  • the bleed air supply step (S2) is executed in parallel with the above ammonia supply step (S1).
  • a part of the compressed air generated by the air compressor 11a of the gas turbine 11 is used as the bleed air BA, and the ammonia self-thermal decomposition of the ammonia decomposition apparatus 50 is performed through the bleed air line 85. It is supplied to the vessel 53.
  • the bleed air BA from the air compressor 11a is, for example, 500 ° C.
  • the bleed air BA flows into the bleed air cooler 86 via the bleed air line 85.
  • hot water from the economizer 22a of the low-pressure steam generator 22 in the exhaust heat recovery boiler flows into the bleed air cooler 86 via the cooling medium line 88i.
  • the temperature of this hot water is about 150 ° C.
  • the bleed air cooler 86 the bleed air BA and the hot water as a cooling medium exchange heat, and the bleed air BA is cooled to, for example, about 160 ° C.
  • the bleed air BA is cooled to, for example, about 35 ° C. by a cooler (not shown).
  • the bleed air BA cooled to about 35 ° C.
  • the bleed air BA is boosted to, for example, about 5.2 MPa by the bleed air booster 87, and then supplied to the ammonia self-thermal decomposer 53 of the ammonia decomposition apparatus 50.
  • the bleed air BA is cooled from about 500 ° C. to about 35 ° C. by the bleed air cooler 86 and a cooler (not shown), and then flows into the bleed air booster 87. Therefore, the volume of the bleed air BA flowing into the bleed air booster 87 is reduced, and the driving force required for the bleed air booster 87 can be reduced.
  • the pressure after the pressure of the extracted air BA is a pressure determined in consideration of the pressure loss in the piping and various devices in the path until the treated gas PG containing a part of this gas flows into the combustor 11b.
  • the pressure is such that the processed gas PG can be supplied into the combustor 11b into which the compressed air is flowing without boosting up the processed gas PG. Therefore, this pressure (about 5.2 MPa) is higher than the pressure in the combustor 11b (for example, about 2.5 MPa).
  • hot water at about 150 ° C. is heated to, for example, about 330 ° C. by heat exchange with the bleed air BA.
  • the hot water heated by the bleed air cooler 86 flows into the economizer of the high-pressure steam generation system 26 in the exhaust heat recovery boiler 20 via the cooling medium recovery line 88o.
  • the economizer of the high-pressure steam generator 26 includes hot water of, for example, about 330 ° C. from the bleed air cooler 86, and hot water of, for example, about 150 ° C. from the economizer 22a of the low-pressure steam generator 22. Inflow.
  • hot waters are heated by the evaporator of the high-pressure steam generation system 26 to become steam, and then further superheated by the superheater of the high-pressure steam generation system 26 to become high-pressure steam HS.
  • hot water having a temperature higher than that of the hot water also flows into the economizer of the high-pressure steam generator system 26. Therefore, the hot water can be heated by the exhaust gas in the high-pressure steam generation system 26, and the amount of heat for converting the hot water into the high-pressure steam HS can be suppressed. That is, the amount of heat of the exhaust gas consumed by the high-pressure steam generation system 26 can be reduced. Therefore, the heat of the exhaust gas EG can be effectively used downstream of the high-pressure steam generation system 26 in the exhaust heat recovery boiler 20.
  • the extracted air BA from the extracted air line 85 is used as an oxidizing agent to burn a part of the ammonia from the ammonia supply line, and this heat self-pyrolyzes the ammonia to produce hydrogen and nitrogen. Produces a treated gas PG containing (S3: ammonia decomposition step).
  • the ammonia self-thermal decomposition step (S4) and the ammonia removal step (S7) are executed.
  • the ammonia self-pyrolysis step (S4) a part of the ammonia from the ammonia supply line 81 is burned using the extracted air BA from the bleed air line 85 as an oxidizing agent, and the ammonia is self-pyrolyzed by this heat. It produces a decomposition gas DG containing hydrogen, nitrogen and residual ammonia.
  • the ammonia preheating step (S5) and the ammonia self-thermal decomposition execution step (S6) are executed.
  • the first ammonia heater 52a and the second ammonia heater 52b exchange heat between the ammonia and the decomposition gas DG, and while the ammonia is heated, the decomposition gas DG is cooled.
  • the liquid ammonia boosted to about 5.2 MPs by the ammonia booster 80 flows into the first ammonia heater 52a of the ammonia self-thermal decomposition device 51.
  • the liquid ammonia heater 52a the liquid ammonia and the decomposition gas DG are heat-exchanged, and the liquid ammonia is heated to about 170 ° C. Liquid ammonia evaporates to gaseous ammonia at 90 ° C.
  • gaseous ammonia at about 170 ° C. flows out from the first ammonia heater 52a.
  • the gaseous ammonia from the first ammonia heater 52a flows into the second ammonia heater 52b.
  • the gaseous ammonia and the decomposed gas DG are heat-exchanged, and the gaseous ammonia is heated to about 400 ° C. This gaseous ammonia flows into the ammonia self-pyrolyzer 53.
  • the ammonia self-thermal decomposition execution step (S6) is executed in the ammonia self-thermal decomposition device 53.
  • the ammonia self-thermal decomposition device 53 As described above, about 5.2 MPa of gaseous ammonia and about 5.2 MPa of bleed air BA flow into the ammonia self-pyrolyzer 53.
  • the ammonia self-pyrolyzer 53 As shown in the following formulas (1) and (2), first, a part of gaseous ammonia or the like undergoes an oxidation (combustion) reaction due to the action of the catalyst, and the heat of reaction is generated. discharge.
  • Some of the remaining gaseous ammonia is heated to about 600 ° C from this heat of reaction and pyrolyzed as shown in formula (3) into hydrogen at about 600 ° C and nitrogen at about 600 ° C. Will be done. These hydrogen and nitrogen flow out from the ammonia self-thermal cracker 53 together with the gaseous ammonia (residual ammonia) that has not been thermally decomposed as a decomposed gas DG at about 600 ° C.
  • gaseous ammonia is a reaction in which the number of moles after the reaction increases, so that the lower the pressure, the more promoted. In other words, this pyrolysis reaction is suppressed at high pressures. Further, since this pyrolysis reaction is an endothermic reaction, it is promoted at a higher temperature.
  • the calorific value of NH 3 on the left side of the equation (3) is 317 kJ
  • the calorific value of 3 / 2H 2 on the right side of the equation (3) is 363 kJ. Therefore, the heat generation amount of the fuel increases by 46 kJ due to the thermal decomposition reaction of the formula (3).
  • the horizontal axis is the temperature of the pyrolysis reaction environment (Temperature [deg-C]), and the vertical axis is the residual ammonia concentration (Concentration of Ammonia [%]).
  • This graph is the result of trial calculation of the concentration corresponding to each temperature and each pressure by changing the temperature and pressure of the pyrolysis reaction environment and using the equilibrium coefficient of the pyrolysis reaction.
  • the temperature of the pyrolysis reaction environment in the present embodiment is 600 ° C.
  • the pressure of this pyrolysis reaction environment is 5.2 MPa.
  • the residual ammonia concentration after the thermal decomposition reaction is about 4%.
  • the graph shown in FIG. 4 is a graph showing the residual ammonia concentration remaining after the thermal decomposition reaction of ammonia when only ammonia is present as the raw material gas.
  • the extracted air BA is flowed into the ammonia self-thermal decomposition device 53, and nitrogen is produced by the oxidation reactions in the formulas (1) and (2).
  • the gas composition at the outlet of the ammonia self-thermal decomposition device 53 that is, the gas composition of the decomposition gas DG flowing out from the ammonia self-thermal decomposition device 53 is about 48 mol% of hydrogen and about 39 mol% of nitrogen. , Water is about 10 mol% and residual ammonia is about 3 mol%. This completes the ammonia self-pyrolysis step (S3).
  • the decomposition gas DG at about 600 ° C. flowing out from the ammonia self-thermal decomposition device 53 flows into the second ammonia heater 52b via the first line 54a of the decomposition gas line 54, and here. It is cooled to about 350 ° C by heat exchange with gaseous ammonia at about 170 ° C.
  • the decomposed gas DG flows into the water heater 77 via the second line 54b of the decomposed gas line 54, where it is further cooled to about 200 ° C. by heat exchange with water.
  • the decomposition gas DG flows into the first ammonia heater 52a via the third line 54c of the decomposition gas line 54, where it is cooled to 50 ° C. by heat exchange with liquid ammonia.
  • the ammonia removal step (S7) for removing residual ammonia from the decomposition gas DG obtained in the ammonia self-pyrolysis step (S4) is executed.
  • the ammonia absorption step (S8) and the ammonia separation step (S12) are executed.
  • the decomposition gas DG at about 50 ° C. flowing through the fourth line 54d of the decomposition gas line 54 is cooled by the decomposition gas cooler 63 of the ammonia absorber 62 to reach about 30 ° C.
  • This decomposed gas DG flows into the absorption tower 64 of the ammonia absorber 62. Water at about 30 ° C. cooled by the water cooler 67 is sprayed into the absorption tower 64.
  • the decomposition gas DG comes into contact with water, and the residual ammonia in the decomposition gas DG dissolves in water.
  • Ammonia water which is water in which residual ammonia is dissolved, collects in the lower part of the absorption tower container 64v (S10: ammonia absorption execution step).
  • the ammonia concentration in this ammonia water is about 7 mol%.
  • the concentration of ammonia in the gas phase dissolved in water is determined by the vapor-liquid equilibrium constant.
  • the concentration of ammonia in this gas phase dissolved in water is higher at low temperatures. Therefore, the temperature of the decomposition gas DG flowing into the absorption tower 64 and the temperature of the water are set to about 30 ° C.
  • the treated gas PG which is the decomposed gas DG from which the residual ammonia has been removed, rises in the absorption tower container 64v and flows into the treated gas supply line 82.
  • the mass flow rate of the water sprayed into the absorption tower 64 is set to about 1/3 of the mass flow rate of the decomposition gas DG flowing into the absorption tower 64, so that the residue contained in the treated gas PG
  • the concentration of ammonia is about 0.02 mol% or less. Therefore, the gas composition of the treated gas PG in the present embodiment is about 55 mol% of hydrogen, about 45 mol% of nitrogen, and about 0.02 mol% or less of residual ammonia.
  • the temperature of the ammonia self-pyrolyzer 53 and the fluid inside is low, and the condition is such that the decomposition reaction of ammonia is unlikely to occur. Is a residual ammonia component. Since the residual ammonia component is removed by the absorption tower 64, the flow rate of the treated gas PG supplied from the treated gas supply line 82 to the gas turbine 11 becomes smaller than the planned value.
  • the processed gas PG when the processed gas PG is sufficiently generated, the supply of the fuel SF at startup to the combustor 11b is stopped, and the processed gas PG passes through the processed gas supply line 82 and the fuel line 12. It will be supplied to the combustor 11b (S11: processed gas supply process).
  • the processed gas PG supplied to the combustor 11b burns in the combustor 11b.
  • the temperature of the combustion gas produced as a result of this combustion is in the 1650 ° C. class. This combustion gas flows into the turbine 11c to drive the turbine 11c.
  • the low-pressure steam generation system 22 of the exhaust heat recovery boiler 20 water is heated by the exhaust gas EG to generate low-pressure steam LS, as described above.
  • This low-pressure steam LS is superheated steam at about 250 ° C.
  • the medium-pressure steam generation system 23 of the exhaust heat recovery boiler 20 water is heated by the exhaust gas EG to generate the medium-pressure steam IS, as described above.
  • This medium pressure steam IS is superheated steam at about 300 ° C.
  • the high-pressure steam generation system 26 of the exhaust heat recovery boiler 20 water is heated by the exhaust gas EG to generate high-pressure steam HS as described above.
  • This high-pressure steam HS is superheated steam at about 620 ° C.
  • the horizontal axis is the residual ammonia concentration (Concentration of Ammonia [%]), and the vertical axis is the predicted value of NOx concentration in the exhaust gas EG (NOx Prediction [ppm @ 15% O2]).
  • the predicted value of the NOx concentration is a value calculated by the inventor by modeling a one-dimensional laminar flow premixed flame using the PREMIX code of CHEMKIN.
  • CHEMKIN is a calculation program. This CHEMKIN is explained in detail in the following materials.
  • Source R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia Report, SAND89-8009B (1995)
  • the NOx concentration at the gas turbine 11 outlet can be predicted to be about 60 ppm or less from the graph shown in FIG. Therefore, in the gas turbine plant of the present embodiment, by installing a denitration device inside or outside the exhaust heat recovery boiler 20, the NOx concentration at the outlet of the stack 29 can be further suppressed to a desired concentration. It will be possible to comply with nitrogen oxide concentration regulations in many regions around the world.
  • ammonia absorption step (S8) When the ammonia absorption step (S8) is completed, the above-mentioned ammonia separation step (S12) for separating ammonia from the ammonia water generated in the ammonia absorption step (S8) is executed.
  • ammonia water heating step first, the ammonia water of about 30 ° C. accumulated in the lower part of the absorption tower container 64v flows into the ammonia water heater 74.
  • ammonia water heater 74 ammonia water at about 30 ° C. is heated to about 170 ° C. by heat exchange with water at about 190 ° C. (S13: Ammonia water heating step).
  • Ammonia water heated to about 170 ° C. flows into the separation tower 75.
  • the separation tower 75 is a device provided for separating and distilling ammonia from aqueous ammonia using steam. Therefore, in order to lower the saturation temperature of water, the operating pressure in the separation tower container 75v is set to about 1.4 MPa.
  • the operating pressure in the absorption tower container 64v is about 5.2 MPa as described above.
  • the ammonia water in the absorption tower container 64v flows into the separation tower container 75v via the ammonia water line 73. Further, water vapor at about 250 ° C.
  • the separation tower container 75v flows into the separation tower container 75v from the lower part of the separation tower container 75v.
  • the mass flow rate of the water sprayed into the absorption tower 64 is about 1/3 of the mass flow rate of the decomposition gas DG flowing into the absorption tower 64
  • the ammonia water flowing into the separation tower 75 The mass flow rate is also about 1/3 of the mass flow rate of the decomposed gas DG flowing into the absorption tower 64.
  • the mass flow rate of water vapor required for distilling and separating ammonia from this mass flow rate of ammonia water is about 30% of the mass flow rate of ammonia water.
  • Ammonia water is heated by steam in the separation tower container 75v as described above, and ammonia in the ammonia water shifts from the liquid phase to the gas phase and rises in the separation tower container 75v (S14: Ammonia separation execution). Process).
  • the water vapor moves to the liquid phase water and collects in the lower part of the separation tower container 75v.
  • the temperature of this water is about 190 ° C.
  • the ammonia concentration in this water is 0.05 mol%.
  • a part of this water flows into the water heater 77 via the water circulation line 76. In the water heater 77, as described above, this water is heat-exchanged with the decomposition gas DG at about 350 ° C.
  • This water is heated to about 250 ° C. by heat exchange with the decomposition gas DG at about 350 ° C. to become steam (S15: water heating step).
  • This water vapor is sent to the separation tower 75 via the water circulation line 76.
  • the water at about 190 ° C. and the ammonia water at about 30 ° C. flowing through the ammonia water line 73 are heat-exchanged.
  • the water is cooled to about 50 ° C., while the aqueous ammonia is heated to 170 ° C. as described above. This completes the ammonia decomposition step (S12).
  • the ammonia water heater 74 cooled by the ammonia water heater 74 is boosted by the water supply pump 66, then flows into the water cooler 67, and is cooled by the water cooler 67 to reach about 30 ° C. .. As described above, the water at 30 ° C. is sprayed into the absorption tower 64.
  • the gas containing ammonia in the gas phase in the separation tower container 75v flows into the condenser 78 via the ammonia recovery line 83 connected to the top of the separation tower container 75v.
  • this gas is cooled, and the water and ammonia contained in this gas are condensed into high-concentration ammonia water.
  • This high-concentration ammonia water returns to the space above the shelf 75p in the separation tower container 75v via the water recovery line 79.
  • This high-concentration ammonia water flows down each stage of the shelf stage 75p and comes into gas-liquid contact with the water vapor supplied from the lower stage, and ammonia is preferentially evaporated.
  • the ammonia concentration in the water gradually decreases, and when it passes through the lowermost shelf, it becomes hot water having an ammonia concentration of 0.05 mol% or less.
  • the gas from which water and the like have been removed by the condenser 78 that is, the gas having a high ammonia concentration in the gas phase, is boosted by the ammonia compressor 84 provided in the ammonia recovery line 83, and then the ammonia supply line 81 and It flows into the ammonia self-thermal decomposition device 53 via the second ammonia heater 52b (S16: ammonia recovery step).
  • the residual ammonia removed by the ammonia removing device 61 returns to the ammonia supply line 81, so that the amount of waste in ammonia as a raw material can be minimized.
  • the exhaust gas EG from the gas turbine 11 or the heat medium heated by the heat of the exhaust gas EG is used as the heat required for the thermal decomposition of ammonia
  • the exhaust gas EG or the heat medium is guided to the ammonia decomposer. It is necessary to newly design and manufacture equipment and an exhaust heat recovery boiler that separately generates this heat medium.
  • the heat required for the thermal decomposition of ammonia is obtained by burning a part of ammonia. That is, in this embodiment, ammonia is self-pyrolyzed.
  • the equipment for guiding the exhaust gas EG and the heat medium to the ammonia decomposer, the exhaust heat recovery boiler for separately generating the heat medium, and the like are not required, and the equipment cost of the gas turbine plant can be suppressed. it can. Further, in the present embodiment, even when the remodeling work of adding the ammonia decomposition equipment X to the existing gas turbine combined cycle plant is performed, the exhaust heat recovery boiler 20 included in this plant can be used with almost no remodeling, so that the remodeling is performed. The cost can be suppressed.
  • the treated gas PG containing hydrogen obtained by decomposing ammonia is used as the main fuel for the combustor 11b. Therefore, carbon dioxide emissions can be reduced as compared with a plant that uses only natural gas as fuel for the combustor 11b.
  • the ammonia decomposition device 50 of the present embodiment is obtained from the ammonia self-pyrolysis device 51 in addition to the ammonia self-pyrolysis device 51 that self-pyrolyzes ammonia to generate a decomposition gas DG containing hydrogen, nitrogen and residual ammonia.
  • the ammonia removing device 61 for removing the residual ammonia contained in the decomposition gas DG is provided. Therefore, in the present embodiment, the residual ammonia in the fuel supplied to the combustor 11b can be reduced, so that the NOx concentration contained in the exhaust gas EG generated by the combustion of the fuel can be suppressed.
  • bleed air BA which is a part of compressed air generated by the air compressor 11a of the gas turbine 11, is used as an oxidant for self-pyrolyzing ammonia. Therefore, in the present embodiment, the oxygen production equipment becomes unnecessary, and from this viewpoint as well, the equipment cost of the gas turbine plant can be suppressed.
  • Table 1 shows the case where the extracted air BA, which is a part of the compressed air generated by the air compressor 11a of the gas turbine 11, is used as the oxidizing agent for self-pyrolyzing ammonia as in the present embodiment.
  • the gas mass flow rate, gas composition, gas calorific value, etc. in each treatment process of (self-pyrolysis method) are shown.
  • Table 2 shows the gas mass flow rate, gas composition, gas calorific value, etc. in each treatment process when ammonia is thermally decomposed by heat from the outside (external heating method).
  • the bleed air BA (C) extracted from the air compressor 11a of the gas turbine 11 contains about 21 vol% oxygen and about 79 vol% nitrogen.
  • the compressed air generated by the air compressor 11a 8.9% of the compressed air in terms of mass flow rate is used as the bleed air BA.
  • this bleed air BA is used as an oxidizing agent for ammonia, nitrogen and water vapor are generated by the oxidation reaction as described above using the formulas (1) and (2). Therefore, the composition of the decomposition gas DG (D) at the outlet of the ammonia self-pyrolyzer 53 is about 48 mol% of hydrogen, about 39 mol% of nitrogen, about 10 mol% of water, and about 3 mol% of residual ammonia.
  • the calorific value is 124 kJ / mol.
  • the unit calorific value of the treated gas PG is slightly increased from the unit calorific value of the decomposed gas DG to 133 kJ / mol.
  • the composition of the decomposition gas DG (D) at the outlet of the ammonia self-thermal decomposition device 53 is about 72 mol% for hydrogen and about 24 mol% for nitrogen. Residual ammonia is about 4 mol%, and its unit calorific value is 186 kJ / mol.
  • the ammonia absorption tower 64 most of the moisture and residual ammonia are removed from the decomposed gas DG to become the treated gas PG (F).
  • the unit calorific value of the treated gas PG increases from the unit calorific value of the decomposed gas DG to 181 kJ / mol.
  • the unit calorific value of the treated gas PG (F) by the self-pyrolysis method is about 0.73 times the unit calorific value of the treated gas PG (F) by the external heating method.
  • the volumetric flow rate of the fuel input to the gas turbine 11 increases.
  • the volumetric flow rate of the fuel charged into the gas turbine 11 increases, the volumetric flow rate of the working fluid flowing into the gas path of the turbine 11c increases, and the pressure loss of the gas path on the turbine 11c side increases. Therefore, the pressure ratio of the turbine 11c becomes high, and the risk of an abnormal event such as a surge occurring in the air compressor 11a of the gas turbine 11 increases.
  • lowering the combustion gas temperature leads to a decrease in thermal performance of the gas turbine 11 and the gas turbine combined cycle.
  • the amount of increase in the working fluid flowing into the turbine 11c is 6.8% (based on the intake mass flow rate).
  • the bleed air BA which is a part of the compressed air generated by the air compressor 11a of the gas turbine 11, is used as an oxidizing agent to flow into the turbine 11c.
  • the net increase in fluid is 5.9% (based on intake mass flow rate).
  • the self-pyrolysis method when air other than the compressed air of the gas turbine 11 is used as an oxidant, it is obvious that the amount of increase in the working fluid flowing into the turbine 11c is larger than that of the present embodiment.
  • the amount of increase in the working fluid flowing into the turbine 11c is smaller than that in the external heating method or the self-pyrolysis method in which the compressed air of the gas turbine 11 is not used. Therefore, in the present embodiment, the risk of an abnormal event such as a surge in the air compressor 11a of the gas turbine 11 is reduced as compared with the external heating method or the self-pyrolysis method that does not use the compressed air of the gas turbine 11. As a result, in the present embodiment, the original combustion gas temperature of the gas turbine 11 can be maintained, and the thermal performance of the gas turbine 11 and the gas turbine combined cycle can be maintained.
  • the gas flow rate flowing through the air compressor 11a of the gas turbine 11 and the gas flow rate flowing through the turbine 11c of the gas turbine 11 are higher than those of the external heating method and the self-thermal decomposition method that does not use the compressed air of the gas turbine 11. Matching with is improved and thermal performance is improved.
  • the net increase in the working fluid flowing into the turbine 11c is 5.9% (based on the intake mass flow rate). Therefore, as shown in Table 3, a general natural gas is used for the combustor 11b. It is necessary to input fuel corresponding to 108% of the calorific value in the case of.
  • the ammonia decomposition apparatus 50 the ammonia decomposition gas once heated to a high temperature of about 600 ° C. is cooled to about 30 ° C. for the operation of the absorption tower 64, and is evaporated in the water heater 77 of the ammonia separator 72.
  • the thermal decomposition of ammonia is promoted in a low-pressure environment. Therefore, a method of thermally decomposing ammonia in a low-pressure environment and then boosting the pressure with a booster to send the decomposed gas to the combustor 11b can be considered.
  • the decomposition reaction of ammonia is a reaction in which the number of moles after the reaction is twice the number of moles before the reaction. Since the cross-sectional area of the flow path of the compressor that boosts the fuel gas is approximately proportional to the volumetric flow rate of the gas, in order to boost the cracked gas after decomposition, the flow is about twice that of the case where the pressure is boosted before cracking. A large booster (compressor) with a road cross-sectional area is required.
  • the power of the booster for boosting the fuel gas obtained by decomposing the ammonia gas is substantially proportional to the volumetric flow rate of the gas, it is about twice the power for boosting the ammonia gas before decomposition. That is, this method increases equipment cost and running cost.
  • the liquid ammonia before being supplied to the ammonia self-thermal decomposition device 51 is boosted to a pressure higher than the pressure in the combustor 11b by the ammonia booster (pump) 80, and the ammonia.
  • the bleed air BA before being supplied to the decomposition device 50 is boosted to a pressure higher than the pressure in the combustor 11b by the bleed air booster 87.
  • this gas can be guided to the combustor 11b without boosting the pressure of the gas after decomposing ammonia.
  • the bleed air BA whose pressure is higher than that of the atmosphere is boosted by the bleed air booster 87, the load on the bleed air booster 87 is small. Therefore, in the present embodiment, the equipment cost and the running cost can be suppressed from the above viewpoints as well.
  • the heat of the decomposition gas DG generated in the ammonia decomposition facility X is used as a heat source for heating ammonia and as a heat source for heating water from the ammonia separation tower 75 into steam. .. Therefore, in the present embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment X is used as these heat sources.
  • the gas turbine rotor 11d and the steam turbine rotor 34 are connected.
  • the gas turbine rotor 11d and the steam turbine rotor 34 may not be connected.
  • a generator is connected to each of the gas turbine rotor 11d and the steam turbine rotor 34.
  • the steam turbine equipment 30 in the present embodiment has three types of steam turbines 31, 32, 33 in which the pressure of the inflow steam is different from each other.
  • the steam turbine equipment may have only one type of steam turbine as the steam turbine.
  • the steam generation system of the exhaust heat recovery boiler need only have one type of steam generation system as the steam generation system for generating steam for driving the steam turbine.
  • a method of removing ammonia from the decomposition gas DG a method of bringing the decomposition gas DG into contact with water is adopted in the absorption tower 64.
  • a pressure fluctuation adsorption method PSA
  • the pressure fluctuation adsorption method is characterized by being a dry method.
  • the water accumulated in the lower part of the separation tower 75 in the ammonia separator 72 is heated by the water heater 77 by heat exchange with the decomposition gas DG.
  • the steam generated by the exhaust heat recovery boiler 20 may be used as the heat medium for heat exchange with the water.
  • the medium-pressure steam line 42 through which the medium-pressure steam IS flows, or the reheated steam line 43 through which the reheated steam RS flows, and the heat medium inlet of the water heater 77 are connected by a medium line.
  • the pressure steam IS or the reheat steam RS may be used as a heat medium for heat exchange with water.
  • the water heater 77 is arranged outside the separation tower 75 in the ammonia separator 72. That is, in the present embodiment, the water accumulated in the lower part of the separation tower 75 is drawn out to the outside, and this water is heated by the water heater 77.
  • a water heater may be arranged in the lower space of the separation tower 75 in the ammonia separator 72.
  • the condenser 78 is arranged outside the separation tower 75 in the ammonia separator 72. That is, in the present embodiment, the gas in the separation tower 75 is drawn to the outside, and a part of this gas is condensed by the condenser 78.
  • the condenser may be arranged in the upper space in the separation tower 75 of the ammonia separator 72.
  • a filling method is adopted as a gas-liquid contact method in the absorption tower 64 in the ammonia absorber 62.
  • a shelf type is adopted as a gas-liquid contact method in the separation tower 75 in the ammonia separator 72.
  • other methods may be adopted as the gas-liquid contact method in the absorption tower 64 and the separation tower 75.
  • the multiple methods that realize the gas-liquid contact method have advantages and disadvantages in terms of equipment size, equipment capital cost, equipment maintenance cost, equipment pressure loss, equipment required power, equipment durability, etc. There is. Therefore, among a plurality of methods for realizing the liquid contact method, the optimum method may be selected according to the plant specifications, location conditions, and the like.
  • hydrogen or natural gas is assumed as the starting fuel SF.
  • a liquid fuel such as light oil may be used as the start-up fuel SF.
  • the processed gas PG which is a gaseous fuel and the liquid fuel cannot be sent to the combustor 11b through a common pipe. Therefore, in this case, it is necessary to separately provide a pipe for supplying the liquid fuel to the combustor 11b.
  • the processed gas PG is exclusively used as fuel for the combustor 11b.
  • a mixed fuel gas obtained by mixing the processed gas PG and another fuel gas such as natural gas may be used as the fuel.
  • the capacity and processing capacity of each device constituting the ammonia decomposition facility X constitutes the ammonia decomposition facility X of the present embodiment. It is smaller than the capacity and processing capacity of each device.
  • the capacities of the ammonia tank T, the ammonia self-pyrolyzer 53, the ammonia separator 72, and the like are all smaller than those of the present embodiment.
  • the amount of carbon dioxide in the exhaust gas EG is larger than that in the present embodiment.
  • the processed gas PG is used as a part of the fuel during the steady operation, the amount of carbon dioxide in the exhaust gas EG is reduced as compared with the case where the natural gas is exclusively used as the fuel during the steady operation. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

This equipment (X) for decomposing ammonia is provided with: an air bleeding line (85); an ammonia supply line (81) in which ammonia flows; an ammonia decomposing device (50); and a processed gas supply line (82). In the air bleeding line, parts of compressed air generated in an air compressor (11a) of a gas turbine (11) flow as bled air (BA). The ammonia decomposing device uses the bled air from the air bleeding line as an oxidant, burns parts of ammonia from the ammonia supply line, autothermally decomposes ammonia, and produces a processed gas (PG) containing hydrogen and nitrogen. The processed gas supply line guides the processed gas as a fuel to a combustor (11b) of the gas turbine.

Description

アンモニア分解設備、これを備えるガスタービンプラント、アンモニア分解方法Ammonia decomposition equipment, gas turbine plant equipped with this, ammonia decomposition method
 本発明は、アンモニアを分解するアンモニア分解設備、これを備えるガスタービンプラント、アンモニア分解方法に関する。
 本願は、2019年3月15日に、日本国に出願された特願2019-048898号に基づき優先権を主張し、この内容をここに援用する。
The present invention relates to an ammonia decomposition facility for decomposing ammonia, a gas turbine plant equipped with the facility, and an ammonia decomposition method.
The present application claims priority based on Japanese Patent Application No. 2019-048898 filed in Japan on March 15, 2019, and this content is incorporated herein by reference.
 地球環境保全のためCO排出量を削減するため、燃焼してもCOを排出しない水素を燃料として利用することが有力な選択肢となっている。しかし、例えば、ガスタービンの燃料として広く使われている液化天然ガスなどの燃料と比較して、水素は、その輸送や溜蔵は容易ではない。このため、水素に変換可能なアンモニアを燃料として利用することが検討されている。 In order to reduce CO 2 emissions in order to protect the global environment, using hydrogen, which does not emit CO 2 even when burned, is a promising option. However, hydrogen is not easy to transport and store, for example, as compared to fuels such as liquefied natural gas, which are widely used as fuels for gas turbines. Therefore, it is being considered to use ammonia that can be converted into hydrogen as a fuel.
 以下の特許文献1には、アンモニアを加熱して、このアンモニアを水素と窒素に分解する分解装置を備えたガスタービンプラントが記載されている。このガスタービンプラントは、ガスタービン及び排熱回収ボイラを備える。排熱回収ボイラは、ガスタービンからの排気ガスで水を加熱して蒸気にする第一熱交換部の他、液体アンモニアを排気ガスで加熱する第二熱交換部と、を有する。第二熱交換部では、ポンプで昇圧された液体アンモニアとガスタービンから排気された排気ガスとを熱交換させて、アンモニアを加熱して、このアンモニアを熱分解させ、水素と窒素とを含む分解ガスにする。前述の分解装置は、この第二熱交換部を有する。分解ガスは、そのままガスタービンの燃焼器に導かれる。 The following Patent Document 1 describes a gas turbine plant provided with a decomposition device that heats ammonia and decomposes the ammonia into hydrogen and nitrogen. This gas turbine plant is equipped with a gas turbine and an exhaust heat recovery boiler. The exhaust heat recovery boiler has a first heat exchange unit that heats water with exhaust gas from a gas turbine to make steam, and a second heat exchange unit that heats liquid ammonia with exhaust gas. In the second heat exchange section, the liquid ammonia boosted by the pump and the exhaust gas exhausted from the gas turbine are exchanged for heat to heat the ammonia, and this ammonia is thermally decomposed to decompose hydrogen and nitrogen. Make it gas. The above-mentioned decomposition device has this second heat exchange section. The decomposed gas is directly guided to the combustor of the gas turbine.
 また、以下の特許文献2にも、アンモニアを加熱して、このアンモニアを水素と窒素に分解する加熱装置を備えたガスタービンプラントが記載されている。このガスタービンプラントは、ガスタービン、加熱装置の他、排熱回収ボイラを備える。排熱回収ボイラは、ガスタービンから排気された排気ガスの一部と水とを熱交換させて、水を加熱して蒸気にする。加熱装置は、ガスタービンから排気された排気ガスの残りと液体アンモニアとを熱交換させて、アンモニアを加熱して、このアンモニアを熱分解させ、水素と窒素とを含む分解ガスにする。この分解ガスは、ガスタービンの燃焼器に導入される。 Further, Patent Document 2 below also describes a gas turbine plant equipped with a heating device that heats ammonia and decomposes the ammonia into hydrogen and nitrogen. This gas turbine plant is equipped with a gas turbine, a heating device, and an exhaust heat recovery boiler. The exhaust heat recovery boiler heats the water into steam by exchanging heat between a part of the exhaust gas exhausted from the gas turbine and water. The heating device heat-exchanges the rest of the exhaust gas exhausted from the gas turbine with liquid ammonia to heat the ammonia and thermally decompose the ammonia into a decomposed gas containing hydrogen and nitrogen. This decomposed gas is introduced into the combustor of the gas turbine.
特開平04-342829号公報Japanese Unexamined Patent Publication No. 04-342829 特開2018-076794号公報JP-A-2018-0776794
 上記特許文献1に記載の技術では、ガスタービンからの排気ガスで水を加熱して蒸気にする第一熱交換部と、液体アンモニアを排気ガスで加熱する第二熱交換部と、を有する排熱回収ボイラを新たに設計して、製造する必要がある。また、特許文献2に記載の技術では、ガスタービンからの排気ガスの一部でアンモニアを加熱する加熱装置と、排気ガスの残りで水を加熱する排熱回収ボイラとを新たに設計して、これらを製造する必要がある。 In the technique described in Patent Document 1, the exhaust has a first heat exchange unit that heats water with exhaust gas from a gas turbine to make steam, and a second heat exchange unit that heats liquid ammonia with exhaust gas. It is necessary to newly design and manufacture a heat recovery steam generator. Further, in the technique described in Patent Document 2, a heating device that heats ammonia with a part of the exhaust gas from the gas turbine and an exhaust heat recovery boiler that heats water with the rest of the exhaust gas are newly designed. It is necessary to manufacture these.
 すなわち、上記特許文献1に記載の技術及び上記特許文献2に記載の技術では、ガスタービンからの排気ガスでアンモニアを加熱する機器を設計製造し、しかもこの機器と関連する部分も新たに設計製造する必要がある。 That is, in the technique described in Patent Document 1 and the technique described in Patent Document 2, a device for heating ammonia with exhaust gas from a gas turbine is designed and manufactured, and a part related to this device is also newly designed and manufactured. There is a need to.
 このため、上記特許文献1に記載の技術及び上記特許文献2に記載の技術では、ガスタービンプラント機器の新規設計及び製造のコストがかかるという問題点がある。 Therefore, the technique described in Patent Document 1 and the technique described in Patent Document 2 have a problem that the cost of new design and manufacture of gas turbine plant equipment is high.
 そこで、本発明は、アンモニアの分解で得られるガスを燃料とするガスタービンプラントの設備コストを抑えることができる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique capable of suppressing the equipment cost of a gas turbine plant using a gas obtained by decomposition of ammonia as a fuel.
 上記目的を達成するための発明に係る一態様としてのアンモニア分解設備は、
 空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気である圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を有するガスタービンに接続されているアンモニア分解設備において、前記ガスタービンに接続され、前記圧縮空気の一部が抽気空気として流れる抽気空気ラインと、アンモニアが流れるアンモニア供給ラインと、前記抽気空気ライン及び前記アンモニア供給ラインに接続され、前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア供給ラインからの前記アンモニアの一部を燃焼させて、アンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスを生成するアンモニア分解装置と、前記アンモニア分解装置で生成された前記処理済みガスを前記燃料として前記燃焼器に導く処理済みガス供給ラインと、を備える。
The ammonia decomposition equipment as one aspect of the invention for achieving the above object is
A gas turbine having a compressor that compresses air, a combustor that burns fuel in compressed air that is the air compressed by the compressor to generate combustion gas, and a turbine that is driven by the combustion gas. In the connected ammonia decomposition facility, the bleed air line connected to the gas turbine and a part of the compressed air flows as bleed air, the ammonia supply line through which ammonia flows, the bleed air line and the ammonia supply line. A treated gas that is connected and uses the bleed air from the bleed air line as an oxidizing agent to burn a part of the ammonia from the ammonia supply line to self-decompose the ammonia to contain hydrogen and nitrogen. The gas is provided with an ammonia decomposition device for producing the gas, and a processed gas supply line for guiding the processed gas generated by the ammonia decomposition device to the combustor as the fuel.
 本態様では、アンモニアの分解で得られた水素を含む処理済みガスを燃焼器の燃料にしている。このため、天然ガスのみを燃焼器の燃料にするプラントよりも、二酸化炭素の排出量を少なくすることができる。アンモニアを熱分解するためには、分解反応に必要な反応熱を供給する必要があるが、熱の供給方法として、分解させるアンモニア以外の熱源からの伝熱によりアンモニアを加熱する外部加熱方式と、分解させるアンモニアの一部を燃焼させて熱を発生させて残りのアンモニアを加熱する自己熱分解方式がある。外部加熱方式において、アンモニアの熱分解に必要な熱として、ガスタービンからの排気ガス、叉はこの排気ガスの熱で加熱された熱媒体を利用する場合、排気ガスや熱媒体をアンモニア分解器に導く設備や、この熱媒体を別途生成する排熱回収ボイラ等を新たに設計して、これを製造する必要がある。一方、本態様では、アンモニアの熱分解に必要な熱を、アンモニアの一部を燃焼させる自己熱分解方式により得ている。このため、本態様では、排気ガスや熱媒体をアンモニア分解器に導く設備や、この熱媒体を別途生成する排熱回収ボイラ等が不要になり、ガスタービンプラントの設備コストを抑えることができる。また、本態様では、既存のガスタービンコンバインドサイクルプラントにアンモニア分解設備を追加する改造工事を行う場合でも、このプラントに含まれる排熱回収ボイラをほとんど改造せずに利用できるため、設備コストを抑えることができる。 In this embodiment, the treated gas containing hydrogen obtained by the decomposition of ammonia is used as the fuel for the combustor. Therefore, carbon dioxide emissions can be reduced as compared with a plant that uses only natural gas as fuel for the combustor. In order to thermally decompose ammonia, it is necessary to supply the heat of reaction required for the decomposition reaction, but as a heat supply method, an external heating method that heats the ammonia by heat transfer from a heat source other than the ammonia to be decomposed, There is a self-pyrolysis method in which a part of the ammonia to be decomposed is burned to generate heat and the remaining ammonia is heated. In the external heating method, when the exhaust gas from the gas turbine or the heat medium heated by the heat of this exhaust gas is used as the heat required for the thermal decomposition of ammonia, the exhaust gas or the heat medium is used as the ammonia decomposer. It is necessary to newly design and manufacture the equipment to guide and the exhaust heat recovery boiler that separately generates this heat medium. On the other hand, in this embodiment, the heat required for the thermal decomposition of ammonia is obtained by a self-thermal decomposition method in which a part of ammonia is burned. Therefore, in this embodiment, the equipment for guiding the exhaust gas and the heat medium to the ammonia decomposer, the exhaust heat recovery boiler for separately generating the heat medium, and the like are not required, and the equipment cost of the gas turbine plant can be suppressed. Further, in this embodiment, even when remodeling work is performed to add ammonia decomposition equipment to the existing gas turbine combined cycle plant, the exhaust heat recovery boiler contained in this plant can be used with almost no remodeling, so that the equipment cost can be suppressed. be able to.
 自己熱分解方式によりアンモニアを熱分解させる場合、アンモニアの一部を燃焼させるための酸化剤として、本態様では、ガスタービンの空気圧縮機で生成された圧縮空気の一部である抽気空気を利用する。アンモニア分解装置に酸化剤を供給するには、酸素を含む流体をアンモニア分解装置の圧力以上に加圧して供給する動力が必要になる。このため、本態様では、ガスタービンの空気圧縮機で生成された圧縮空気を利用しない場合と比較して、ガスタービンプラントの設備コストを抑えることができる。 When pyrolyzing ammonia by the self-pyrolysis method, bleed air, which is a part of compressed air generated by the air compressor of a gas turbine, is used as an oxidant for burning a part of ammonia in this embodiment. To do. In order to supply the oxidant to the ammonia decomposition device, it is necessary to have the power to pressurize and supply the fluid containing oxygen above the pressure of the ammonia decomposition device. Therefore, in this embodiment, the equipment cost of the gas turbine plant can be suppressed as compared with the case where the compressed air generated by the air compressor of the gas turbine is not used.
 アンモニアを分解して得られた水素を主成分とするガスは、天然ガス燃料と比べて体積当たりの発熱量が少ないため、ガスタービン燃料として利用した場合に燃料の体積流量が大きくなる。その結果、ガスタービンのタービンを流れるガス流量が多くなり、ガスタービンの空気圧縮機でのサージ等の異常事象のリスクが増加する。 Hydrogen-based gas obtained by decomposing ammonia has a smaller calorific value per volume than natural gas fuel, so when used as gas turbine fuel, the volumetric flow rate of the fuel becomes large. As a result, the flow rate of gas flowing through the turbine of the gas turbine increases, and the risk of abnormal events such as surges in the air compressor of the gas turbine increases.
 本態様では、ガスタービンの空気圧縮機で生成された圧縮空気の一部である抽気空気を利用しているため、燃焼器へ供給される燃焼用空気の流量が削減されている。このため、本態様では、ガスタービンの空気圧縮機で生成された圧縮空気を利用しない自己熱分解方式、及び外部加熱方式に比べて、ガスタービンのタービンを流れるガス流量の増加量が少ない。よって、本態様では、ガスタービンの空気圧縮機で生成された圧縮空気を利用しない自己熱分解方式や外部加熱方式に比べて、ガスタービンの空気圧縮機でのサージ等の異常事象のリスクを軽減することができる。また、本態様では、他の方式と比較して、ガスタービンの空気圧縮機を流れる気体流量とガスタービンのタービンを流れる気体流量とのマッチングがよくなり、熱性能が向上する。 In this embodiment, since the bleed air that is a part of the compressed air generated by the air compressor of the gas turbine is used, the flow rate of the combustion air supplied to the combustor is reduced. Therefore, in this embodiment, the amount of increase in the gas flow rate flowing through the turbine of the gas turbine is small as compared with the self-pyrolysis method that does not use the compressed air generated by the air compressor of the gas turbine and the external heating method. Therefore, in this embodiment, the risk of abnormal events such as surges in the gas turbine air compressor is reduced as compared with the self-thermal decomposition method or the external heating method that does not use the compressed air generated by the gas turbine air compressor. can do. Further, in this embodiment, as compared with other methods, the matching between the gas flow rate flowing through the air compressor of the gas turbine and the gas flow rate flowing through the turbine of the gas turbine is improved, and the thermal performance is improved.
 ここで、前記一態様のアンモニア分解設備において、前記アンモニア供給ラインに設けられ、前記アンモニア供給ラインを流れる前記アンモニアを前記燃焼器内の圧力より高い圧力に昇圧するアンモニア昇圧機と、前記抽気空気ラインに設けられ、前記抽気空気ラインを流れる前記抽気空気を前記燃焼器内の圧力より高い圧力に昇圧する抽気空気昇圧機と、を備えてもよい。 Here, in the ammonia decomposition facility of the above aspect, an ammonia booster provided in the ammonia supply line and boosting the ammonia flowing through the ammonia supply line to a pressure higher than the pressure in the combustor, and the bleed air line. The bleed air booster, which is provided in the above and pressurizes the bleed air flowing through the bleed air line to a pressure higher than the pressure in the combustor, may be provided.
 アンモニアの熱分解は、低圧環境下の方が促進される。このため、低圧環境下でアンモニアを熱分解してから、分解後のガスをガス利用対象に送るために昇圧機で昇圧する方法が考えられる。アンモニアの分解反応後のガスの体積は、反応前のアンモニアガスの体積の二倍になる。このため、分解反応後のガスを昇圧する昇圧機の大きさは、反応前のアンモニアガスを昇圧する昇圧機の大きさよりも大きい。また、分解反応後のガスを昇圧する昇圧機の昇圧動力は、反応前のアンモニアガスを昇圧する昇圧機の昇圧動力よりも大きい。すなわち、この方法では、設備コスト及びランニングコストがかさむ。一方、本態様では、アンモニア分解装置に供給する前のアンモニアを、アンモニア昇圧機で、燃焼器内の圧力より高い圧力にまで昇圧する上に、アンモニア分解装置に供給する前の抽気空気を、抽気空気昇圧機で、燃焼器内の圧力より高い圧力にまで昇圧する。このため、本態様では、アンモニアを分解した後のガスを昇圧してなくても、このガスを燃焼器内に導くことができる。しかも、本態様では、大気よりも高圧な抽気空気を抽気空気昇圧機で昇圧しているので、抽気空気昇圧機の負担が小さい。よって、本態様では、設備コスト及びランニングコストを抑えることができる。 Pyrolysis of ammonia is promoted in a low pressure environment. For this reason, it is conceivable to thermally decompose ammonia in a low-pressure environment and then boost the pressure with a booster in order to send the decomposed gas to the gas utilization target. The volume of gas after the decomposition reaction of ammonia is twice the volume of ammonia gas before the reaction. Therefore, the size of the booster that boosts the gas after the decomposition reaction is larger than the size of the booster that boosts the ammonia gas before the reaction. Further, the boosting power of the booster that boosts the gas after the decomposition reaction is larger than the boosting power of the booster that boosts the ammonia gas before the reaction. That is, this method increases equipment cost and running cost. On the other hand, in this embodiment, the ammonia before being supplied to the ammonia decomposition device is boosted to a pressure higher than the pressure in the combustor by the ammonia booster, and the bleed air before being supplied to the ammonia decomposition device is bleed. The air booster boosts the pressure to a level higher than the pressure inside the combustor. Therefore, in this embodiment, this gas can be guided into the combustor without boosting the pressure of the gas after decomposing ammonia. Moreover, in this embodiment, since the bleed air having a pressure higher than that of the atmosphere is boosted by the bleed air booster, the load on the bleed air booster is small. Therefore, in this aspect, the equipment cost and the running cost can be suppressed.
 また、以上のいずれかの前記態様のアンモニア分解設備において、前記アンモニア分解装置は、前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア供給ラインからの前記アンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、水素と窒素と残留アンモニアを含む分解ガスを生成するアンモニア自己熱分解装置と、前記アンモニア自己熱分解装置からの前記分解ガス中に含まれる前記残留アンモニアを除去し、前記分解ガスから前記残留アンモニアが除去されたガスを前記処理済みガスとして排出するアンモニア除去装置と、を有してもよい。 Further, in the ammonia decomposition equipment of any of the above embodiments, the ammonia decomposition apparatus uses the extracted air from the extracted air line as an oxidizing agent to burn a part of the ammonia from the ammonia supply line. Ammonia self-thermal decomposition device that self-decomposes the ammonia to generate a decomposition gas containing hydrogen, nitrogen, and residual ammonia, and removes the residual ammonia contained in the decomposition gas from the ammonia self-thermal decomposition device. It may also have an ammonia removing device for discharging the gas from which the residual ammonia has been removed from the decomposed gas as the treated gas.
 本態様のアンモニア分解装置は、アンモニア自己熱分解装置の他に、アンモニア自己熱分解装置からの分解ガス中に含まれる残留アンモニアを除去するアンモニア除去装置を有する。よって、本態様では、燃焼器に供給する燃料中の残留アンモニアを少なくすることができるため、燃料の燃焼で生成される排気ガス中に含まれるNOx濃度を抑えることができる。 In addition to the ammonia self-pyrolysis device, the ammonia decomposition device of this embodiment has an ammonia removing device that removes residual ammonia contained in the decomposition gas from the ammonia self-pyrolysis device. Therefore, in this embodiment, the residual ammonia in the fuel supplied to the combustor can be reduced, so that the NOx concentration contained in the exhaust gas generated by the combustion of the fuel can be suppressed.
 前記アンモニア自己熱分解装置を有する前記態様のアンモニア分解設備において、前記アンモニア自己熱分解装置は、アンモニア加熱器と、アンモニア自己熱分解器と、を有してもよい。この場合、前記アンモニア加熱器は、前記アンモニア供給ラインに設けられ、前記アンモニア供給ラインを流れる前記アンモニアと前記分解ガスとを熱交換させて、前記アンモニアを加熱する一方で、前記分解ガスを冷却する熱交換器である。また、この場合、前記アンモニア自己熱分解器は、前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア加熱器で加熱された後のアンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、前記分解ガスを生成する。 In the ammonia decomposition equipment of the embodiment having the ammonia self-pyrolysis device, the ammonia self-pyrolysis device may have an ammonia heater and an ammonia self-pyrolysis device. In this case, the ammonia heater is provided in the ammonia supply line, and heat exchanges the ammonia flowing through the ammonia supply line with the decomposition gas to heat the ammonia and cool the decomposition gas. It is a heat exchanger. Further, in this case, the ammonia self-pyrolyzer uses the extracted air from the extracted air line as an oxidant to burn a part of the ammonia after being heated by the ammonia heater, and self-produces the ammonia. It is thermally decomposed to generate the decomposed gas.
 本態様では、アンモニアを加熱するための熱として、アンモニア分解設備内で発生した分解ガスの熱を利用する。よって、本態様では、アンモニアを加熱するための熱として、アンモニア分解設備外の熱を利用する場合よりも、設備コスト及びランニングコストを抑えることができる。 In this embodiment, the heat of the decomposition gas generated in the ammonia decomposition equipment is used as the heat for heating the ammonia. Therefore, in this embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment is used as the heat for heating the ammonia.
 前記アンモニア除去装置を有する、以上のいずれかの前記態様のアンモニア分解設備において、前記アンモニア除去装置は、アンモニア吸収器と、アンモニア分離器と、を有してもよい。この場合、前記アンモニア吸収器は、前記アンモニア自己熱分解装置からの前記分解ガスと水とを接触させて、前記分解ガス中の前記残留アンモニアを前記水中に溶解させる一方で、前記処理済み分解ガスを排出する。前記アンモニア分離器は、分離塔と、水加熱器と、を有する。前記分離塔は、前記残留アンモニアが溶解した前記水であるアンモニア水と水蒸気と接触させ、前記アンモニア水を加熱して、前記アンモニア水からアンモニアを分離する。前記水加熱器は、前記アンモニア水からアンモニアが分離した水を加熱して水蒸気にした後、水蒸気を前記分離塔に戻す。 In the ammonia decomposition equipment of any of the above embodiments having the ammonia removing device, the ammonia removing device may have an ammonia absorber and an ammonia separator. In this case, the ammonia absorber brings the decomposition gas from the ammonia self-pyrolysis apparatus into contact with water to dissolve the residual ammonia in the decomposition gas in the water, while the treated decomposition gas. To discharge. The ammonia separator has a separation tower and a water heater. The separation tower brings the ammonia water, which is the water in which the residual ammonia is dissolved, into contact with water vapor, heats the ammonia water, and separates ammonia from the ammonia water. The water heater heats water in which ammonia is separated from the ammonia water to make steam, and then returns the steam to the separation tower.
 前記水加熱器を有する前記態様のアンモニア分解設備において、前記水加熱器は、前記アンモニア水からアンモニアが分離した水と前記分解ガスとを熱交換させて、前記水を加熱して水蒸気にする熱交換器であってもよい。 In the ammonia decomposition facility of the above embodiment having the water heater, the water heater heats the water to be steamed by exchanging heat between the water in which ammonia is separated from the ammonia water and the decomposition gas. It may be a exchanger.
 本態様では、水加熱器において、水を加熱するための熱として、アンモニア分解設備内で発生した分解ガスの熱を利用する。よって、本態様では、水加熱器において、水を加熱するための熱として、アンモニア分解設備外の熱を利用する場合よりも、設備コスト及びランニングコストを抑えることができる。 In this embodiment, in the water heater, the heat of the decomposition gas generated in the ammonia decomposition equipment is used as the heat for heating the water. Therefore, in this embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment is used as the heat for heating the water in the water heater.
 上記目的を達成するための発明に係る一態様としてのガスタービンプラントは、
 以上のいずれかの前記態様のアンモニア分解設備と、前記ガスタービンと、を備える。
The gas turbine plant as one aspect of the invention for achieving the above object is
The ammonia decomposition equipment of any of the above aspects and the gas turbine are provided.
 上記目的を達成するための発明に係る一態様としてのアンモニア分解方法は、
 アンモニア分解装置で、ガスタービンの圧縮機で圧縮された空気である圧縮空気の一部である抽気空気を酸化剤として、アンモニアの一部を燃焼させて、アンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスを生成するアンモニア分解工程と、前記アンモニア分解工程で生成された前記処理済みガスを燃料として前記ガスタービンの燃焼器に導く処理済みガス供給工程と、を実行する。
The method for decomposing ammonia as one aspect of the invention for achieving the above object is
In the ammonia decomposition device, part of the ammonia is burned using the extracted air, which is a part of the compressed air that is the air compressed by the compressor of the gas turbine, as an oxidizing agent, and the ammonia is self-thermally decomposed into hydrogen. An ammonia decomposition step of producing a processed gas containing nitrogen and a processed gas supply step of guiding the processed gas generated in the ammonia decomposition step to a combustor of the gas turbine as fuel are executed.
 ここで、前記態様のアンモニア分解方法において、前記アンモニア分解工程で自己熱分解される前のアンモニアを前記燃焼器内の圧力より高い圧力に昇圧してから、昇圧後のアンモニアを前記アンモニア分解装置に供給するアンモニア供給工程と、前記アンモニア分解工程で前記酸化剤として利用される前の前記抽気空気を前記燃焼器内の圧力より高い圧力に昇圧してから、昇圧後の抽気空気を前記アンモニア分解装置に供給する抽気空気供給工程と、を実行してもよい。 Here, in the ammonia decomposition method of the above embodiment, the ammonia before self-thermal decomposition in the ammonia decomposition step is pressurized to a pressure higher than the pressure in the combustor, and then the ammonia after the pressure is increased to the ammonia decomposition apparatus. The bleed air before being used as the oxidant in the ammonia supply step and the ammonia decomposition step is boosted to a pressure higher than the pressure in the combustor, and then the bleed air after the boost is boosted to the ammonia decomposition device. The bleed air supply step of supplying to the air may be performed.
 また、以上のいずれかの前記態様のアンモニア分解方法において、前記アンモニア分解工程は、前記酸化剤として利用される前の前記抽気空気を酸化剤として、前記アンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、水素と窒素と残留アンモニアとを含む分解ガスを生成するアンモニア自己熱分解工程と、前記分解ガスから前記残留アンモニアを除去し、前記分解ガスから前記残留アンモニアが除去されたガスを前記処理済みガスとして排出するアンモニア除去工程と、を含んでもよい。 Further, in the ammonia decomposition method of any of the above embodiments, in the ammonia decomposition step, a part of the ammonia is burned using the extracted air before being used as the oxidizing agent as the oxidizing agent, and the ammonia is produced. Ammonia self-thermal decomposition step of producing a decomposition gas containing hydrogen, nitrogen and residual ammonia, and the residual ammonia was removed from the decomposition gas, and the residual ammonia was removed from the decomposition gas. It may include an ammonia removing step of discharging the gas as the treated gas.
 前記アンモニア自己熱分解工程を実行する前記態様のアンモニア分解方法において、前記アンモニア自己熱分解工程は、アンモニア予熱工程と、アンモニア自己熱分解実行工程と、を含んでもよい。この場合、前記アンモニア予熱工程では、前記アンモニアと前記分解ガスとを熱交換させて、前記アンモニアを加熱する一方で、前記分解ガスを冷却する。また、前記アンモニア自己熱分解実行工程では、前記酸化剤として利用される前の前記抽気空気を酸化剤として、前記アンモニア予熱工程で加熱された後のアンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、前記分解ガスを生成する。 In the ammonia decomposition method of the embodiment for executing the ammonia self-pyrolysis step, the ammonia self-pyrolysis step may include an ammonia preheating step and an ammonia self-thermal decomposition execution step. In this case, in the ammonia preheating step, the ammonia and the decomposition gas are heat-exchanged to heat the ammonia while cooling the decomposition gas. Further, in the ammonia self-pyrolysis execution step, the extracted air before being used as the oxidizing agent is used as an oxidizing agent, and a part of the ammonia after being heated in the ammonia preheating step is burned to burn the ammonia. The decomposition gas is produced by self-pyrolysis.
 前記アンモニア除去工程を実行する、以上のいずれかの前記態様のアンモニア分解方法において、前記アンモニア除去工程は、アンモニア吸収工程と、アンモニア分離工程と、を含んでもよい。この場合、前記アンモニア吸収工程では、前記アンモニア自己熱分解工程の実行で得られた前記分解ガスと水とを接触させて、前記分解ガス中の前記残留アンモニアを水中に溶解させる一方で、前記処理済みガスを排出する。前記アンモニア分離工程では、分離実行工程と、水加熱工程と、を含む。前記分離実行工程では、前記残留アンモニアが溶解した水であるアンモニア水と水蒸気と接触させ、前記アンモニア水からアンモニアを蒸発分離する。前記水加熱工程では、前記アンモニア水からアンモニアが分離した水を加熱して、前記分離実行工程で用いる水蒸気にする。 In any of the above aspects of the ammonia decomposition method for executing the ammonia removal step, the ammonia removal step may include an ammonia absorption step and an ammonia separation step. In this case, in the ammonia absorption step, the decomposition gas obtained in the execution of the ammonia self-thermal decomposition step is brought into contact with water to dissolve the residual ammonia in the decomposition gas in water, while the treatment. Discharge the finished gas. The ammonia separation step includes a separation execution step and a water heating step. In the separation execution step, ammonia water, which is water in which the residual ammonia is dissolved, is brought into contact with water vapor, and ammonia is evaporated and separated from the ammonia water. In the water heating step, the water in which ammonia is separated from the ammonia water is heated to obtain steam used in the separation execution step.
 前記水加熱工程を実行する前記態様のアンモニア分解方法において、前記水加熱工程では、前記アンモニア水からアンモニアが分離した水と前記分解ガスとを熱交換させて、前記水を加熱して水蒸気にしてもよい。 In the ammonia decomposition method of the embodiment in which the water heating step is executed, in the water heating step, the water in which ammonia is separated from the ammonia water and the decomposition gas are heat-exchanged, and the water is heated to steam. May be good.
 以上のいずれかの前記態様のアンモニア分解方法において、前記処理済みガス中の残留アンモニア濃度を、所望の値になるようにしてもよい。この所望の値とは、排気ガス中の窒素酸化物濃度が本プラントの設置地点での窒素酸化物濃度の環境規制に適合する値、もしくは排ガスの経路に脱硝装置を設ける場合は脱硝後の窒素酸化物濃度が環境規制に適合する値となるように決定することができる。 In any of the above aspects of the ammonia decomposition method, the residual ammonia concentration in the treated gas may be set to a desired value. This desired value is a value at which the nitrogen oxide concentration in the exhaust gas conforms to the environmental regulation of the nitrogen oxide concentration at the installation point of this plant, or when a denitration device is installed in the exhaust gas path, nitrogen after denitration. The oxide concentration can be determined to be a value that complies with environmental regulations.
 本発明の一態様によれば、アンモニアの分解で得られるガスを燃料とするタービンプラントの設備コストを抑えることができる。 According to one aspect of the present invention, it is possible to reduce the equipment cost of a turbine plant that uses gas obtained by decomposing ammonia as fuel.
本発明に係る一実施形態におけるガスタービンプラントの系統図である。It is a system diagram of the gas turbine plant in one Embodiment which concerns on this invention. 本発明に係る一実施形態におけるアンモニア分解設備の系統図である。It is a system diagram of the ammonia decomposition equipment in one Embodiment which concerns on this invention. 本発明に係る第一実施形態におけるアンモニア分解装置でのアンモニア分解手順を示すフローチャートである。It is a flowchart which shows the ammonia decomposition procedure in the ammonia decomposition apparatus in 1st Embodiment which concerns on this invention. アンモニアの熱分解環境での各種温度及び各種圧力と残留アンモニア濃度との関係を示すグラフである。It is a graph which shows the relationship between various temperature and pressure in a thermal decomposition environment of ammonia, and residual ammonia concentration. 残留アンモニア濃度と排気ガス中のNOx濃度の予測値との関係を示すグラフである。It is a graph which shows the relationship between the residual ammonia concentration and the predicted value of NOx concentration in exhaust gas.
 以下、ガスタービンプラントの一実施形態及び各種変形例について、図面を用いて説明する。 Hereinafter, one embodiment of the gas turbine plant and various modifications will be described with reference to the drawings.
 「実施形態」
 ガスタービンプラントの一実施形態について、図1~図5を参照して説明する。
"Embodiment"
An embodiment of a gas turbine plant will be described with reference to FIGS. 1 to 5.
 本実施形態のガスタービンプラントは、図1に示すように、ガスタービン設備10と、排熱回収ボイラ20と、蒸気タービン設備30と、アンモニア分解設備Xと、を備える。 As shown in FIG. 1, the gas turbine plant of the present embodiment includes a gas turbine facility 10, an exhaust heat recovery boiler 20, a steam turbine facility 30, and an ammonia decomposition facility X.
 ガスタービン設備10は、ガスタービン11と、ガスタービン11へ燃料を導く燃料ライン12と、燃料ライン12を流れる燃料の流量を検知する流量計13と、燃料ライン12を流れる燃料を予熱する予熱器14と、ガスタービン11に供給する燃料の流量を調節する燃料調節弁15と、を備える。 The gas turbine equipment 10 includes a gas turbine 11, a fuel line 12 that guides fuel to the gas turbine 11, a flow meter 13 that detects the flow rate of fuel flowing through the fuel line 12, and a preheater that preheats the fuel flowing through the fuel line 12. A fuel control valve 15 for adjusting the flow rate of fuel supplied to the gas turbine 11 is provided.
 ガスタービン11は、空気を圧縮して圧縮空気を生成する空気圧縮機11aと、圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器11bと、燃焼ガスで駆動するタービン11cと、を有する。燃焼器11bは、水素を主成分とするガス燃料を安定して燃焼可能な構造となっている。空気圧縮機11aは、圧縮機ロータと、この圧縮機ロータを覆う圧縮機ケーシングと、を有する。タービン11cは、タービンロータと、このタービンロータを覆うタービンケーシングと、を有する。圧縮機ロータとタービンロータとは、互いに連結されてガスタービンロータ11dを成す。燃料ライン12は、燃焼器11bに接続されている。この燃料ライン12に、前述した、流量計13、予熱器14、及び燃料調節弁15が設けられている。 The gas turbine 11 includes an air compressor 11a that compresses air to generate compressed air, a combustor 11b that burns fuel in compressed air to generate combustion gas, and a turbine 11c that is driven by the combustion gas. Have. The combustor 11b has a structure capable of stably combusting a gas fuel containing hydrogen as a main component. The air compressor 11a has a compressor rotor and a compressor casing that covers the compressor rotor. The turbine 11c includes a turbine rotor and a turbine casing that covers the turbine rotor. The compressor rotor and the turbine rotor are connected to each other to form the gas turbine rotor 11d. The fuel line 12 is connected to the combustor 11b. The fuel line 12 is provided with the flow meter 13, the preheater 14, and the fuel control valve 15 described above.
 排熱回収ボイラ20は、ガスタービン11からの排気ガスEGが流れるボイラ枠21と、低圧蒸気発生系22と、中圧蒸気発生系23と、再熱蒸気系25と、高圧蒸気発生系26と、中圧ポンプ24と、高圧ポンプ27と、を有する。ここで、ボイラ枠21内の排気ガスEGの流れに関する上流側を単に上流側とし、その反対側を下流側とする。ボイラ枠21で最も下流側の端には、排気ガスEGを大気に排気するスタック29が接続されている。 The exhaust heat recovery boiler 20 includes a boiler frame 21 through which the exhaust gas EG from the gas turbine 11 flows, a low-pressure steam generation system 22, a medium-pressure steam generation system 23, a reheat steam system 25, and a high-pressure steam generation system 26. , A medium pressure pump 24 and a high pressure pump 27. Here, the upstream side regarding the flow of the exhaust gas EG in the boiler frame 21 is simply the upstream side, and the opposite side is the downstream side. A stack 29 that exhausts the exhaust gas EG to the atmosphere is connected to the most downstream end of the boiler frame 21.
 低圧蒸気発生系22は、節炭器22aと、蒸発器22bと、過熱器22cと、を有する。節炭器22aは、水と排気ガスEGとを熱交換させて、水を加熱して熱水にする。蒸発器22bは、節炭器22aからの熱水の一部と排気ガスEGとを熱交換させて、水を加熱して水蒸気にする。過熱器22cは、蒸発器22bからの水蒸気と排気ガスEGとを熱交換させて水蒸気を過熱する。節炭器22a、蒸発器22bの少なくとも一部、過熱器22cは、いずれも、ボイラ枠21内に配置されている。節炭器22a、蒸発器22bの少なくとも一部、過熱器22cは、この順序で、下流側から上流側に向かって並んでいる。 The low-pressure steam generator 22 has an economizer 22a, an evaporator 22b, and a superheater 22c. The economizer 22a exchanges heat between water and the exhaust gas EG to heat the water into hot water. The evaporator 22b heats the water into steam by exchanging heat between a part of the hot water from the economizer 22a and the exhaust gas EG. The superheater 22c heats the water vapor by exchanging heat between the water vapor from the evaporator 22b and the exhaust gas EG. The economizer 22a, at least a part of the evaporator 22b, and the superheater 22c are all arranged in the boiler frame 21. The economizer 22a, at least a part of the evaporator 22b, and the superheater 22c are arranged in this order from the downstream side to the upstream side.
 中圧蒸気発生系23、高圧蒸気発生系26は、図示されていないが、いずれも、低圧蒸気発生系22と同様、節炭器と、蒸発器と、過熱器と、を有する。中圧ポンプ24は、低圧蒸気発生系22の節炭器22aからの熱水の一部を昇圧してから、中圧蒸気発生系23の節炭器に送る。低圧蒸気発生系22の節炭器22aと高圧蒸気発生系26の節炭器とは、熱水ライン49で接続さている。高圧ポンプ27は、この熱水ライン49に設けられている。高圧ポンプ27は、低圧蒸気発生系22の節炭器22aからの熱水の一部を昇圧してから、高圧蒸気発生系26の節炭器に送る。 Although the medium-pressure steam generator system 23 and the high-pressure steam generator system 26 are not shown, they both have an economizer, an evaporator, and a superheater, similar to the low-pressure steam generator system 22. The medium-pressure pump 24 boosts a part of the hot water from the economizer 22a of the low-pressure steam generator 22 and then sends it to the economizer of the medium-pressure steam generator 23. The economizer 22a of the low-pressure steam generator 22 and the economizer of the high-pressure steam generator 26 are connected by a hot water line 49. The high-pressure pump 27 is provided in the hot water line 49. The high-pressure pump 27 boosts a part of the hot water from the economizer 22a of the low-pressure steam generator 22 and then sends it to the economizer of the high-pressure steam generator 26.
 各蒸気発生系22,23,26の過熱器のうち、高圧蒸気発生系26の過熱器は、ボイラ枠21内で、他の過熱器より上流側に配置されている。中圧蒸気発生系23の過熱器は、ボイラ枠21内で、高圧蒸気発生系26の過熱器より下流側に配置されている。低圧蒸気発生系22の過熱器22cは、ボイラ枠21内で、中圧蒸気発生系23の過熱器より下流側に配置されている。 Of the superheaters of the steam generators 22, 23, and 26, the superheater of the high-pressure steam generator 26 is arranged in the boiler frame 21 on the upstream side of the other superheaters. The superheater of the medium-pressure steam generator system 23 is arranged in the boiler frame 21 on the downstream side of the superheater of the high-pressure steam generator system 26. The superheater 22c of the low-pressure steam generator 22 is arranged in the boiler frame 21 on the downstream side of the superheater of the medium-pressure steam generator 23.
 再熱蒸気系25は、蒸気を排気ガスEGで過熱する再熱器のみを有する。この再熱蒸気系25は、高圧蒸気発生系26の過熱器より下流側で且つ中圧蒸気発生系23の過熱器より上流側に配置されている。 The reheat steam system 25 has only a reheater that superheats steam with the exhaust gas EG. The reheated steam system 25 is arranged on the downstream side of the superheater of the high-pressure steam generating system 26 and on the upstream side of the superheater of the medium-pressure steam generating system 23.
 蒸気タービン設備30は、低圧蒸気タービン31と、中圧蒸気タービン32と、高圧蒸気タービン33と、復水器35と、復水ポンプ36と、を有する。低圧蒸気タービン31は、低圧蒸気タービンロータと、低圧蒸気タービンロータを覆うケーシングとを有する。中圧蒸気タービン32は、中圧蒸気タービンロータと、中圧蒸気タービンロータを覆うケーシングとを有する。高圧蒸気タービン33は、高圧蒸気タービンロータと、高圧蒸気タービンロータを覆うケーシングとを有する。低圧蒸気タービンロータ、中圧蒸気タービンロータ、及び高圧蒸気タービンロータは、互いに連結されて一つの蒸気タービンロータ34を成す。この蒸気タービンロータ34の一端には、前述のガスタービンロータ11dが連結されている。また、この蒸気タービンロータ34の他端には、発電機39が接続されている。 The steam turbine equipment 30 includes a low-pressure steam turbine 31, a medium-pressure steam turbine 32, a high-pressure steam turbine 33, a condenser 35, and a condenser pump 36. The low pressure steam turbine 31 has a low pressure steam turbine rotor and a casing that covers the low pressure steam turbine rotor. The medium pressure steam turbine 32 has a medium pressure steam turbine rotor and a casing that covers the medium pressure steam turbine rotor. The high-pressure steam turbine 33 has a high-pressure steam turbine rotor and a casing that covers the high-pressure steam turbine rotor. The low pressure steam turbine rotor, the medium pressure steam turbine rotor, and the high pressure steam turbine rotor are connected to each other to form one steam turbine rotor 34. The gas turbine rotor 11d described above is connected to one end of the steam turbine rotor 34. A generator 39 is connected to the other end of the steam turbine rotor 34.
 高圧蒸気発生系26の過熱器と高圧蒸気タービン33の蒸気入口とは、高圧蒸気ライン44で接続されている。高圧蒸気タービン33の蒸気出口と再熱蒸気系25の蒸気入口とは、高圧排気蒸気ライン46で接続されている。再熱蒸気系25の蒸気入口は、さらに、中圧蒸気発生系23の過熱器と中圧蒸気ライン42で接続されている。再熱蒸気系25の蒸気出口と中圧蒸気タービン32の蒸気入口とは、再熱蒸気ライン43で接続されている。低圧蒸気発生系22の過熱器22cと低圧蒸気タービン31の蒸気入口とは、低圧蒸気ライン41で接続されている。低圧蒸気タービン31の蒸気入口は、さらに、中圧排気蒸気ライン45で、中圧蒸気タービン32の蒸気出口と接続されている。低圧蒸気タービン31の蒸気出口には、前述の復水器35が接続されている。この復水器35は、低圧蒸気タービン31から排気された蒸気を液相の水に戻す。復水器35と低圧蒸気発生系22の節炭器22aとは、給水ライン47で接続されている。この給水ライン47中に前述の復水ポンプ36が設けられている。 The superheater of the high-pressure steam generation system 26 and the steam inlet of the high-pressure steam turbine 33 are connected by a high-pressure steam line 44. The steam outlet of the high-pressure steam turbine 33 and the steam inlet of the reheat steam system 25 are connected by a high-pressure exhaust steam line 46. The steam inlet of the reheat steam system 25 is further connected to the superheater of the medium pressure steam generation system 23 by a medium pressure steam line 42. The steam outlet of the reheat steam system 25 and the steam inlet of the medium pressure steam turbine 32 are connected by a reheat steam line 43. The superheater 22c of the low-pressure steam generator 22 and the steam inlet of the low-pressure steam turbine 31 are connected by a low-pressure steam line 41. The steam inlet of the low pressure steam turbine 31 is further connected to the steam outlet of the medium pressure steam turbine 32 by a medium pressure exhaust steam line 45. The above-mentioned condenser 35 is connected to the steam outlet of the low-pressure steam turbine 31. The condenser 35 returns the steam exhausted from the low-pressure steam turbine 31 to the liquid phase water. The condenser 35 and the economizer 22a of the low-pressure steam generator 22 are connected by a water supply line 47. The above-mentioned condensate pump 36 is provided in the water supply line 47.
 アンモニア分解設備Xは、アンモニア分解装置50と、アンモニア供給ライン81と、アンモニア昇圧機80と、処理済みガス供給ライン82と、抽気空気ライン85と、抽気空気冷却器86と、抽気空気昇圧機87と、冷却媒体ライン88iと、冷却媒体回収ライン88oと、燃料バッファ89と、を備える。 The ammonia decomposition equipment X includes an ammonia decomposition device 50, an ammonia supply line 81, an ammonia booster 80, a processed gas supply line 82, an bleed air line 85, an bleed air cooler 86, and an bleed air booster 87. A cooling medium line 88i, a cooling medium recovery line 88o, and a fuel buffer 89 are provided.
 アンモニア供給ライン81は、液体アンモニアが蓄えられるアンモニアタンクTと、アンモニア分解装置50とを接続する。アンモニアタンクTに蓄えられている液体アンモニアは、例えば、水素を原料として製造されたものである。この水素は、例えば、風力や太陽光などの再生可能エネルギーで発電した電力を使って、水を電気分解することにより得られた水素、あるいは天然ガスを水蒸気改質することで得られた水素である。水素は、液化天然ガスと比較して、その輸送や溜蔵は容易ではない。このため、以上のように得られた水素を用いて、その輸送や溜蔵が容易な液体アンモニアを製造し、この液体アンモニアをアンモニアタンクTに蓄える。アンモニア昇圧機80は、アンモニア供給ライン81に設けられている。このアンモニア昇圧機80は、ポンプである。アンモニア昇圧機80は、アンモニア供給ライン81を流れる液体アンモニアを昇圧する。 The ammonia supply line 81 connects the ammonia tank T in which liquid ammonia is stored and the ammonia decomposition device 50. The liquid ammonia stored in the ammonia tank T is, for example, produced from hydrogen as a raw material. This hydrogen is, for example, hydrogen obtained by electrolyzing water using electricity generated by renewable energy such as wind power or sunlight, or hydrogen obtained by steam reforming natural gas. is there. Hydrogen is not as easy to transport and store as liquefied natural gas. Therefore, the hydrogen obtained as described above is used to produce liquid ammonia that can be easily transported and stored, and the liquid ammonia is stored in the ammonia tank T. The ammonia booster 80 is provided in the ammonia supply line 81. The ammonia booster 80 is a pump. The ammonia booster 80 boosts the liquid ammonia flowing through the ammonia supply line 81.
 抽気空気ライン85は、ガスタービン11の空気圧縮機11aにおける吐出口から燃焼器11bの圧縮空気入口までの間の圧縮空気通路11eと、アンモニア分解装置50とを接続する。よって、この抽気空気ライン85には、空気圧縮機11aで生成された圧縮空気の一部である抽気空気BAが流れる。なお、空気圧縮機11aで生成された圧縮空気の残りは、圧縮空気通路11eを介して燃焼器11bに送られる。抽気空気冷却器86は、この抽気空気ライン85に設けられ、この抽気空気ライン85を流れる抽気空気BAを冷却する。抽気空気昇圧機87は、抽気空気ライン85中で抽気空気冷却器86よりもアンモニア分解装置50側に位置に設けられている。この抽気空気昇圧機87は、抽気空気冷却器86により冷却された抽気空気BAを昇圧する。 The bleed air line 85 connects the compressed air passage 11e between the discharge port of the air compressor 11a of the gas turbine 11 to the compressed air inlet of the combustor 11b and the ammonia decomposition device 50. Therefore, the bleed air BA, which is a part of the compressed air generated by the air compressor 11a, flows through the bleed air line 85. The rest of the compressed air generated by the air compressor 11a is sent to the combustor 11b via the compressed air passage 11e. The bleed air cooler 86 is provided in the bleed air line 85 and cools the bleed air BA flowing through the bleed air line 85. The bleed air booster 87 is provided at a position closer to the ammonia decomposition device 50 than the bleed air cooler 86 in the bleed air line 85. The bleed air booster 87 boosts the bleed air BA cooled by the bleed air cooler 86.
 抽気空気冷却器86は、抽気空気BAと冷却媒体とを熱交換させ、抽気空気BAを冷却する一方で、冷却媒体を加熱する熱交換器である。この抽気空気冷却器86の冷却媒体入口には、冷却媒体ライン88iの一端が接続されている。この冷却媒体ライン88iの他端は、排熱回収ボイラ20の熱水ライン49中で、高圧ポンプ27よりも高圧蒸気発生系26側の位置に接続されている。よって、抽気空気冷却器86には、低圧蒸気発生系22の節炭器22aからの熱水の一部が、冷却媒体として供給される。抽気空気冷却器86の冷却媒体出口には、冷却媒体回収ライン88oの一端が接続されている。この冷却媒体回収ライン88oの他端は、高圧蒸気発生系26の節炭器に接続されている。よって、高圧蒸気発生系26の節炭器には、抽気空気BAとの熱交換で加熱された冷却媒体である熱水が流入する。なお、この高圧蒸気発生系26の節炭器には、熱水ライン49を介して、低圧蒸気発生系22の節炭器22aからの熱水も流入する。 The bleed air cooler 86 is a heat exchanger that heats the cooling medium while cooling the bleed air BA by exchanging heat between the bleed air BA and the cooling medium. One end of the cooling medium line 88i is connected to the cooling medium inlet of the bleed air cooler 86. The other end of the cooling medium line 88i is connected to a position on the high pressure steam generation system 26 side of the high pressure pump 27 in the hot water line 49 of the exhaust heat recovery boiler 20. Therefore, a part of the hot water from the economizer 22a of the low-pressure steam generator 22 is supplied to the bleed air cooler 86 as a cooling medium. One end of the cooling medium recovery line 88o is connected to the cooling medium outlet of the bleed air cooler 86. The other end of the cooling medium recovery line 88o is connected to the economizer of the high-pressure steam generator system 26. Therefore, hot water, which is a cooling medium heated by heat exchange with the bleed air BA, flows into the economizer of the high-pressure steam generation system 26. Hot water from the economizer 22a of the low-pressure steam generator 22 also flows into the economizer of the high-pressure steam generator 26 via the hot water line 49.
 アンモニア分解装置50は、抽気空気ライン85からの抽気空気BAを酸化剤として、アンモニア供給ライン81からのアンモニアの一部を燃焼させて、このときの熱でアンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスPGを生成する。 The ammonia decomposition device 50 uses the extracted air BA from the extracted air line 85 as an oxidant to burn a part of the ammonia from the ammonia supply line 81, and the heat at this time self-pyrolyzes the ammonia to generate hydrogen. Produces a treated gas PG containing nitrogen.
 処理済みガス供給ライン82の一端は、アンモニア分解装置50に接続されている。この処理済みガス供給ライン82には、アンモニア分解装置50で生成された処理済みガスPGが流れる。この処理済みガス供給ライン82の他端には、前述の燃料バッファ89が設けられている。この燃料バッファ89には、さらに、起動時燃料ライン16が接続されている。起動時燃料ライン16には、起動時燃料SFが流れる。起動時燃料SFとしては、例えば、水素や天然ガス等である。燃料バッファ89には、さらに、前述の燃料ライン12が接続されている。燃料バッファ89は、起動時燃料ライン16からの起動時燃料SFと、処理済みガス供給ライン82からの処理済みガスPGとを一時的に滞留させるためのバッファである。この燃料バッファ89は、起動時燃料SFから処理済みガスPGへの燃料切替時における燃焼器11bへの燃料供給の安定性を確保するために、起動時燃料ライン16と処理済みガス供給ライン82との合流部に設けられている。 One end of the treated gas supply line 82 is connected to the ammonia decomposition device 50. The treated gas PG generated by the ammonia decomposition apparatus 50 flows through the treated gas supply line 82. The fuel buffer 89 described above is provided at the other end of the processed gas supply line 82. A start-up fuel line 16 is further connected to the fuel buffer 89. The start-up fuel SF flows through the start-up fuel line 16. The start-up fuel SF is, for example, hydrogen, natural gas, or the like. The fuel line 12 described above is further connected to the fuel buffer 89. The fuel buffer 89 is a buffer for temporarily retaining the starting fuel SF from the starting fuel line 16 and the processed gas PG from the processed gas supply line 82. The fuel buffer 89 includes the start-up fuel line 16 and the treated gas supply line 82 in order to ensure the stability of the fuel supply to the combustor 11b when the fuel is switched from the start-up fuel SF to the treated gas PG. It is provided at the confluence of.
 アンモニア分解装置50は、アンモニア自己熱分解装置51と、アンモニア除去装置61とを有する。アンモニア自己熱分解装置51は、抽気空気昇圧機87で昇圧された抽気空気BAを酸化剤として、アンモニア昇圧機80で昇圧されたアンモニアの一部を燃焼させて、このときの熱でアンモニアを自己熱分解させて、水素と窒素と残留アンモニアとを含む分解ガスDGを生成する。アンモニア除去装置61は、アンモニア自己熱分解装置51からの分解ガスDG中に含まれる残留アンモニアを除去する。前述の処理済みガスPGは、分解ガスDGから残留アンモニアが除去されたガスである。 The ammonia decomposition device 50 includes an ammonia self-thermal decomposition device 51 and an ammonia removal device 61. The ammonia self-pyrolyzer 51 uses the extracted air BA boosted by the bleed air booster 87 as an oxidizing agent to burn a part of the ammonia boosted by the ammonia booster 80, and uses the heat at this time to self-produce ammonia. Pyrolysis is carried out to produce a decomposition gas DG containing hydrogen, nitrogen and residual ammonia. The ammonia removing device 61 removes residual ammonia contained in the decomposition gas DG from the ammonia self-thermal decomposition device 51. The treated gas PG described above is a gas from which residual ammonia has been removed from the decomposition gas DG.
 アンモニア自己熱分解装置51は、図2に示すように、第一アンモニア加熱器52aと、第二アンモニア加熱器52bと、アンモニア自己熱分解器53と、分解ガスライン54と、を有する。前述のアンモニア供給ライン81は、このアンモニア自己熱分解器53に接続されている。 As shown in FIG. 2, the ammonia self-pyrolysis apparatus 51 includes a first ammonia heater 52a, a second ammonia heater 52b, an ammonia self-pyrolysis device 53, and a decomposition gas line 54. The ammonia supply line 81 described above is connected to the ammonia self-pyrolyzer 53.
 第一アンモニア加熱器52aは、アンモニア供給ライン81中でアンモニア昇圧機80よりもアンモニア自己熱分解器53側の位置に設けられている。この第一アンモニア加熱器52aは、アンモニア昇圧機80で昇圧された液体アンモニアと、分解ガスDGとを熱交換させる熱交換器である。第一アンモニア加熱器52aは、液体アンモニアと分解ガスDGとの熱交換により、液体アンモニアを加熱して、この液体アンモニアを気相のアンモニアにする。第二アンモニア加熱器52bは、アンモニア供給ライン81中で第一アンモニア加熱器52aよりもアンモニア自己熱分解器53側の位置に設けられている。この第二アンモニア加熱器52bは、第一アンモニア加熱器52aからの気相のアンモニアと分解ガスDGとの熱交換により、気相のアンモニアをさらに加熱する。 The first ammonia heater 52a is provided at a position on the ammonia self-thermal decomposition device 53 side of the ammonia booster 80 in the ammonia supply line 81. The first ammonia heater 52a is a heat exchanger that exchanges heat between the liquid ammonia boosted by the ammonia booster 80 and the decomposition gas DG. The first ammonia heater 52a heats the liquid ammonia by heat exchange between the liquid ammonia and the decomposition gas DG, and turns the liquid ammonia into vapor phase ammonia. The second ammonia heater 52b is provided at a position on the ammonia self-thermal decomposition device 53 side of the first ammonia heater 52a in the ammonia supply line 81. The second ammonia heater 52b further heats the ammonia in the gas phase by heat exchange between the ammonia in the gas phase and the decomposition gas DG from the first ammonia heater 52a.
 アンモニア自己熱分解器53は、抽気空気ライン85からの抽気空気BAを酸化剤として、アンモニア供給ライン81からの気相のアンモニアの一部を燃焼させて、このときの熱でアンモニアを自己熱分解させて、水素と窒素と残留アンモニアとを含む分解ガスDGを生成する。このアンモニア自己熱分解器53内には、アンモニアの酸化(燃焼)及びアンモニアの熱分解を促進するための触媒が充填されている。触媒は、酸化(燃焼)反応や分解反応を活性化させる触媒成分と、触媒成分を担持する担体と、を有する。酸化(燃焼)反応を活性化する触媒成分としては、例えば、白金、パラジウム、ロジウム等の貴金属の粒子がある。また、分解反応を活性化する触媒成分としては、例えば、Ru等の貴金属の粒子、Ni、Co、Fe等の遷移金属を含む金属粒子がある。担体としては、Al、ZrO、Pr、La、MgO等の酸化金属がある。なお、触媒は、アンモニアの酸化(燃焼)反応や分解反応を活性化させるものであれば、以上で例示した触媒に限定されない。 The ammonia self-pyrolyzer 53 uses the extracted air BA from the extracted air line 85 as an oxidizing agent to burn a part of the ammonia in the gas phase from the ammonia supply line 81, and self-pyrolyzes the ammonia with the heat at this time. To generate a decomposition gas DG containing hydrogen, nitrogen and residual ammonia. The ammonia self-thermal decomposition device 53 is filled with a catalyst for promoting the oxidation (combustion) of ammonia and the thermal decomposition of ammonia. The catalyst has a catalyst component that activates an oxidation (combustion) reaction or a decomposition reaction, and a carrier that supports the catalyst component. Examples of the catalyst component that activates the oxidation (combustion) reaction include particles of a noble metal such as platinum, palladium, and rhodium. In addition, examples of the catalyst component that activates the decomposition reaction include particles of a noble metal such as Ru and metal particles containing a transition metal such as Ni, Co, and Fe. Examples of the carrier include metal oxides such as Al 2 O 3 , ZrO 2 , Pr 2 O 3 , La 2 O 3 , and MgO. The catalyst is not limited to the catalysts exemplified above as long as it activates the oxidation (combustion) reaction and decomposition reaction of ammonia.
 アンモニア自己熱分解器53には、アンモニア自己熱分解器53内で発生した分解ガスDGをアンモニア除去装置61に導く分解ガスライン54が接続されている。この分解ガスライン54は、第一ライン54a、第二ライン54b、第三ライン54c、第四ライン54dを有する。第一ライン54aの一端は、アンモニア自己熱分解器53の分解ガス出口に接続され、この第一ライン54aの他端は、第二アンモニア加熱器52bの熱媒体入口に接続されている。第二ライン54bの一端は、第二アンモニア加熱器52bの熱媒体出口に接続され、この第二ライン54bの他端は、後述のアンモニア除去装置61における水加熱器77の熱媒体入口に接続されている。第三ライン54cの一端は、アンモニア除去装置61における水加熱器77の熱媒体出口に接続され、この第三ライン54cの他端は、第一アンモニア加熱器52aの熱媒体入口に接続されている。第四ライン54dの一端は、第一アンモニア加熱器52aの熱媒体出口に接続され、この第四ライン54dの他端は、アンモニア除去装置61に接続されている。よって、アンモニア自己熱分解器53内で発生した分解ガスDGは、第一ライン54a、第二アンモニア加熱器52b、第二ライン54b、アンモニア除去装置61における水加熱器77、第三ライン54c、第一アンモニア加熱器52a、第四ライン54dを介して、アンモニア除去装置61に導かれる。前述した第二アンモニア加熱器52bにおいて、アンモニアと熱交換する分解ガスDGは、アンモニア自己熱分解器53から第一ライン54aを介して、第二アンモニア加熱器52bに流入した分解ガスDGである。また、前述した第一アンモニア加熱器52aにおいて、アンモニアと熱交換する分解ガスDGは、アンモニア除去装置61における水加熱器77から第三ライン54cを介して、第一アンモニア加熱器52aに流入した分解ガスDGである。 The ammonia self-thermal decomposition device 53 is connected to a decomposition gas line 54 that guides the decomposition gas DG generated in the ammonia self-thermal decomposition device 53 to the ammonia removal device 61. The decomposition gas line 54 has a first line 54a, a second line 54b, a third line 54c, and a fourth line 54d. One end of the first line 54a is connected to the decomposition gas outlet of the ammonia self-thermal decomposition device 53, and the other end of the first line 54a is connected to the heat medium inlet of the second ammonia heater 52b. One end of the second line 54b is connected to the heat medium outlet of the second ammonia heater 52b, and the other end of the second line 54b is connected to the heat medium inlet of the water heater 77 in the ammonia removing device 61 described later. ing. One end of the third line 54c is connected to the heat medium outlet of the water heater 77 in the ammonia removing device 61, and the other end of the third line 54c is connected to the heat medium inlet of the first ammonia heater 52a. .. One end of the fourth line 54d is connected to the heat medium outlet of the first ammonia heater 52a, and the other end of the fourth line 54d is connected to the ammonia removing device 61. Therefore, the decomposition gas DG generated in the ammonia self-thermal decomposition device 53 is the first line 54a, the second ammonia heater 52b, the second line 54b, the water heater 77 in the ammonia removing device 61, the third line 54c, and the first line. (1) It is guided to the ammonia removing device 61 via the ammonia heater 52a and the fourth line 54d. In the second ammonia heater 52b described above, the decomposition gas DG that exchanges heat with ammonia is the decomposition gas DG that has flowed into the second ammonia heater 52b from the ammonia self-thermal decomposition device 53 via the first line 54a. Further, in the first ammonia heater 52a described above, the decomposition gas DG that exchanges heat with ammonia flows into the first ammonia heater 52a from the water heater 77 in the ammonia removing device 61 via the third line 54c. Gas DG.
 アンモニア除去装置61は、図2に示すように、アンモニア吸収器62と、アンモニア分離器72と、を有する。 As shown in FIG. 2, the ammonia removing device 61 has an ammonia absorber 62 and an ammonia separator 72.
 アンモニア吸収器62は、分解ガス冷却器63と、吸収塔64と、水ライン65と、水供給ポンプ66と、水冷却器67と、を有する。前述の分解ガスライン54における第四ライン54dの他端は、吸収塔64に接続されている。分解ガス冷却器63は、分解ガスライン54の第四ライン54dに設けられている。この分解ガス冷却器63は、第二アンモニア加熱器52b及び第一アンモニア加熱器52a内でのアンモニアとの熱交換で冷却された分解ガスDGをさらに冷却する。吸収塔64は、吸収塔容器64vと、充填物64pと、を有する。充填物64pは、吸収塔容器64v内の上下方向における中間流域に配置されている。分解ガスライン54の第四ライン54dは、この吸収塔容器64v中で中間領域よりも下側に接続されている。水ライン65は、吸収塔容器64v中で中間領域よりも上側に接続されている。この水ライン65には、この水ライン65中を流れる水を昇圧する水供給ポンプ66と、この水ライン65中を流れる水を冷却する水冷却器67とが設けられている。吸収塔容器64vの頂部には、前述の処理済みガス供給ライン82の一端が接続されている。よって、処理済みガス供給ライン82は、吸収塔64と燃料バッファ89とを接続する。 The ammonia absorber 62 includes a decomposition gas cooler 63, an absorption tower 64, a water line 65, a water supply pump 66, and a water cooler 67. The other end of the fourth line 54d in the decomposition gas line 54 described above is connected to the absorption tower 64. The decomposition gas cooler 63 is provided on the fourth line 54d of the decomposition gas line 54. The decomposition gas cooler 63 further cools the decomposition gas DG cooled by heat exchange with ammonia in the second ammonia heater 52b and the first ammonia heater 52a. The absorption tower 64 has an absorption tower container 64v and a filling material 64p. The filling 64p is arranged in the intermediate basin in the vertical direction in the absorption tower container 64v. The fourth line 54d of the decomposition gas line 54 is connected below the intermediate region in the absorption tower container 64v. The water line 65 is connected above the intermediate region in the absorption tower container 64v. The water line 65 is provided with a water supply pump 66 that boosts the water flowing through the water line 65 and a water cooler 67 that cools the water flowing through the water line 65. One end of the treated gas supply line 82 described above is connected to the top of the absorption tower container 64v. Therefore, the processed gas supply line 82 connects the absorption tower 64 and the fuel buffer 89.
 吸収塔容器64v内には、この吸収塔容器64vの中間領域よりも下側から、分解ガス冷却器63で冷却された分解ガスDGが流入する。さらに、この吸収塔容器64v内には、この吸収塔容器64vの中間領域よりも上側から、水冷却器67で冷却された水が散布される。吸収塔容器64v内に流入した分解ガスDGは、吸収塔容器64v内を上昇する。一方、吸収塔容器64v内に散布された水は、この吸収塔容器64v内を下降する。水は、吸収塔容器64v内を下降する過程で、充填物64pに接する。充填物64pに接した水は、充填物64pの表面を覆う水膜を形成する。分解ガスDGは、吸収塔容器64v内を上昇する過程で、充填物64pの表面を覆う水膜に接する。この過程で、分解ガスDG中に含まれている残留アンモニアは、水に溶解する。残留アンモニアが溶解した水であるアンモニア水は、吸収塔容器64vの下部に溜まる。残留アンモニアが除去された分解ガスDGである処理済みガスPGは、吸収塔容器64v内を上昇して、処理済みガス供給ライン82に流入する。 The decomposition gas DG cooled by the decomposition gas cooler 63 flows into the absorption tower container 64v from below the intermediate region of the absorption tower container 64v. Further, water cooled by the water cooler 67 is sprayed into the absorption tower container 64v from above the intermediate region of the absorption tower container 64v. The decomposition gas DG that has flowed into the absorption tower container 64v rises in the absorption tower container 64v. On the other hand, the water sprayed in the absorption tower container 64v descends in the absorption tower container 64v. The water comes into contact with the filling 64p in the process of descending in the absorption tower container 64v. The water in contact with the filling 64p forms a water film covering the surface of the filling 64p. The decomposition gas DG comes into contact with the water film covering the surface of the filling 64p in the process of ascending in the absorption tower container 64v. In this process, the residual ammonia contained in the decomposition gas DG dissolves in water. Ammonia water, which is water in which residual ammonia is dissolved, collects in the lower part of the absorption tower container 64v. The treated gas PG, which is the decomposed gas DG from which the residual ammonia has been removed, rises in the absorption tower container 64v and flows into the treated gas supply line 82.
 アンモニア分離器72は、アンモニア水ライン73と、アンモニア水加熱器74と、分離塔75と、水循環ライン76と、水加熱器77と、凝縮器78と、を有する。アンモニア水ライン73の一端は、吸収塔容器64vの底部に接続されている。分離塔75は、分離塔容器75vと、多孔板タイプの棚段75pと、を有する。棚段75pを構成する複数の段は、分離塔容器75v内の上下方向における中間流域に、上下方向に並んで配置されている。前述のアンモニア水ライン73の他端は、棚段75pを構成する複数の段のうち、中間の段に接続されている。水循環ライン76の一端は、分離塔容器75vの底部に接続され、水循環ライン76の他端は、分離塔容器75v中で底部より上側で中間領域よりも下側に接続されている。水加熱器77は、この水循環ライン76に設けられている。この水加熱器77は、水循環ライン76を流れる水と、分解ガスライン54の第二ライン54bから流入した分解ガスDGとを熱交換させる熱交換器である。水加熱器77は、水と分解ガスDGとを熱交換させ、水を加熱して水蒸気にする一方で、分解ガスDGを冷却する。この水蒸気は、水循環ライン76を経て、分離塔容器75v内に流入する。一方、分解ガスDGは、前述したように、水加熱器77から、分解ガスライン54の第三ライン54cを介して第一アンモニア加熱器52aに流入する。 The ammonia separator 72 includes an ammonia water line 73, an ammonia water heater 74, a separation tower 75, a water circulation line 76, a water heater 77, and a condenser 78. One end of the ammonia water line 73 is connected to the bottom of the absorption tower container 64v. The separation tower 75 has a separation tower container 75v and a perforated plate type shelf 75p. A plurality of stages constituting the shelf stage 75p are arranged side by side in the vertical direction in the intermediate basin in the vertical direction in the separation tower container 75v. The other end of the above-mentioned ammonia water line 73 is connected to an intermediate stage among a plurality of stages constituting the shelf stage 75p. One end of the water circulation line 76 is connected to the bottom of the separation tower container 75v, and the other end of the water circulation line 76 is connected above the bottom and below the intermediate region in the separation tower container 75v. The water heater 77 is provided on the water circulation line 76. The water heater 77 is a heat exchanger that exchanges heat between the water flowing through the water circulation line 76 and the decomposition gas DG flowing in from the second line 54b of the decomposition gas line 54. The water heater 77 exchanges heat between the water and the decomposition gas DG, and heats the water into steam while cooling the decomposition gas DG. This water vapor flows into the separation tower container 75v via the water circulation line 76. On the other hand, as described above, the decomposition gas DG flows from the water heater 77 into the first ammonia heater 52a via the third line 54c of the decomposition gas line 54.
 分離塔容器75v内には、この分離塔容器75vの中間領域よりも下側から、水蒸気が流入する。さらに、この分離塔容器75v内には、棚段75pにおける中間の段から、アンモニア水ライン73からのアンモニア水が散布される。分離塔容器75v内に流入した水蒸気は、分離塔容器75v内を上昇する。棚段75pにおける中間の段に散布されたアンモニア水は、棚段75pのそれぞれの段に液層を形成しつつ、徐々に下の段に流下する。水蒸気は、棚段75pのそれぞれの段に設けられた多数の孔を経由して、アンモニア水と気液接触しながら上昇し、アンモニア水を加熱する。水よりも蒸発し易いアンモニアは、気相の水である水蒸気により加熱されて液相から気相に移行し、水は気相から液相に移行する。気相のアンモニアは、分離塔75内を上昇する。また、液相の水、より正確には、アンモニア濃度の低い水は、分離塔容器75vの下部に溜まる。この水の一部は、水循環ライン76及び水加熱器77を経て、水蒸気として、再び、分離塔容器75v内に流入する。 Water vapor flows into the separation tower container 75v from below the intermediate region of the separation tower container 75v. Further, in the separation tower container 75v, the ammonia water from the ammonia water line 73 is sprayed from the middle stage in the shelf stage 75p. The water vapor that has flowed into the separation tower container 75v rises in the separation tower container 75v. Ammonia water sprayed on the middle stage of the shelf stage 75p gradually flows down to the lower stage while forming a liquid layer on each stage of the shelf stage 75p. The water vapor rises in gas-liquid contact with the ammonia water via a large number of holes provided in each stage of the shelf 75p, and heats the ammonia water. Ammonia, which evaporates more easily than water, is heated by water vapor, which is water in the gas phase, to move from the liquid phase to the gas phase, and water moves from the gas phase to the liquid phase. Ammonia in the gas phase rises in the separation tower 75. Also, liquid phase water, or more precisely water with a low ammonia concentration, collects in the lower part of the separation tower container 75v. A part of this water flows into the separation tower container 75v again as steam through the water circulation line 76 and the water heater 77.
 水循環ライン76には、アンモニア吸収器62の水ライン65が接続されている。よって、分離塔容器75vの下部に溜まった水の一部は、水循環ライン76を経て、再び、分離塔容器75v内に戻り、分離塔容器75vの下部に溜まった水の他の一部は、水循環ライン76及び水ライン65を経て、吸収塔64内に流入する。 The water line 65 of the ammonia absorber 62 is connected to the water circulation line 76. Therefore, a part of the water collected in the lower part of the separation tower container 75v returns to the inside of the separation tower container 75v again through the water circulation line 76, and the other part of the water collected in the lower part of the separation tower container 75v becomes. It flows into the absorption tower 64 via the water circulation line 76 and the water line 65.
 アンモニア水加熱器74は、アンモニア水ライン73に設けられている。このアンモニア水加熱器74は、アンモニア水ライン73を流れるアンモニア水と水ライン65を流れる水とを熱交換させる熱交換器である。アンモニア水加熱器74は、アンモニア水と水との熱交換でアンモニア水を加熱する。加熱されたアンモニア水は、前述したように分離塔容器75v内に散布される。一方、アンモニア水との熱交換で冷却された水は、水ライン65、水供給ポンプ66、及び水冷却器67を経て、吸収塔容器64v内に散布される。 The ammonia water heater 74 is provided in the ammonia water line 73. The ammonia water heater 74 is a heat exchanger that exchanges heat between the ammonia water flowing through the ammonia water line 73 and the water flowing through the water line 65. The ammonia water heater 74 heats the ammonia water by heat exchange between the ammonia water and the water. The heated ammonia water is sprayed into the separation tower container 75v as described above. On the other hand, the water cooled by heat exchange with the ammonia water is sprayed into the absorption tower container 64v via the water line 65, the water supply pump 66, and the water cooler 67.
 アンモニア分解設備Xは、図2に示すように、さらに、アンモニア回収ライン83と、アンモニア圧縮機84と、を備える。 As shown in FIG. 2, the ammonia decomposition facility X further includes an ammonia recovery line 83 and an ammonia compressor 84.
 アンモニア回収ライン83の一端は、分離塔容器75vの頂部に接続され、アンモニア回収ライン83の他端は、アンモニア供給ライン81中で第一アンモニア加熱器52aと第二アンモニア加熱器52bとの間の位置に接続されている。アンモニア圧縮機84は、アンモニア回収ライン83を流れる気相のアンモニアを昇圧する。アンモニア圧縮機84で昇圧された気相のアンモニアは、アンモニア供給ライン81を流れる気相のアンモニアと合流した後、第二アンモニア加熱器52bを経てから、アンモニア自己熱分解器53に流入する。凝縮器78は、アンモニア回収ライン83に設けられている。この凝縮器78は、アンモニア回収ライン83を流れる気相のアンモニアを含むガスを冷却して、このガス中の水分及びアンモニアを凝縮させる。凝縮器78で凝縮した水は、水回収ライン79を経て、分離塔容器75v内の棚段75pより上の空間に戻る。棚段75pの段数は、この高濃度のアンモニア水が、所望の濃度の微量のアンモニア水になるために必要な段数で計画する。なお、アンモニア水ライン73から供給されるアンモニア水の濃度は、凝縮器78から排出される高濃度のアンモニア水よりも濃度が低い。そのため、アンモニア水ライン73から供給されるアンモニア水の分離に必要な棚段の段数は、凝縮器78からの高濃度のアンモニア水から計画した段数よりも少なくなる。そこで、アンモニア水ライン73から供給されるアンモニア水の接続先は、棚段75pを構成する複数の段のうち、中間の段とした。 One end of the ammonia recovery line 83 is connected to the top of the separation tower container 75v, and the other end of the ammonia recovery line 83 is between the first ammonia heater 52a and the second ammonia heater 52b in the ammonia supply line 81. It is connected to the position. The ammonia compressor 84 boosts the ammonia in the gas phase flowing through the ammonia recovery line 83. The vapor-phase ammonia boosted by the ammonia compressor 84 merges with the vapor-phase ammonia flowing through the ammonia supply line 81, passes through the second ammonia heater 52b, and then flows into the ammonia self-thermal decomposition device 53. The condenser 78 is provided on the ammonia recovery line 83. The condenser 78 cools a gas containing ammonia in the gas phase flowing through the ammonia recovery line 83 to condense the water and ammonia in the gas. The water condensed by the condenser 78 returns to the space above the shelf 75p in the separation tower container 75v via the water recovery line 79. The number of shelves 75p is planned to be the number of stages required for this high-concentration ammonia water to become a trace amount of ammonia water having a desired concentration. The concentration of the ammonia water supplied from the ammonia water line 73 is lower than that of the high-concentration ammonia water discharged from the condenser 78. Therefore, the number of shelves required for separating the ammonia water supplied from the ammonia water line 73 is smaller than the planned number of shelves from the high-concentration ammonia water from the condenser 78. Therefore, the connection destination of the ammonia water supplied from the ammonia water line 73 is an intermediate stage among the plurality of stages constituting the shelf stage 75p.
 次に、以上で説明したガスタービンプラントの動作及び作用について説明する。 Next, the operation and operation of the gas turbine plant described above will be described.
 ガスタービン11の起動時には、起動時燃料ライン16及び燃料ライン12を経て、燃焼器11bに起動時燃料SFが供給される。ガスタービン11の空気圧縮機11aは、前述したように、空気を圧縮して圧縮空気を生成する。燃焼器11bは、この圧縮空気中で起動時燃料SFを燃焼させて燃焼ガスを生成する。この燃焼ガスはタービン11cに供給されて、このタービン11cを駆動する。タービン11cを駆動した燃焼ガスである排気ガスEGは、排熱回収ボイラ20のボイラ枠21内に流入する。 When the gas turbine 11 is started, the start-up fuel SF is supplied to the combustor 11b via the start-up fuel line 16 and the fuel line 12. As described above, the air compressor 11a of the gas turbine 11 compresses the air to generate compressed air. The combustor 11b burns the starting fuel SF in the compressed air to generate a combustion gas. This combustion gas is supplied to the turbine 11c to drive the turbine 11c. The exhaust gas EG, which is the combustion gas that drives the turbine 11c, flows into the boiler frame 21 of the exhaust heat recovery boiler 20.
 排熱回収ボイラ20の各蒸気発生系22,23,26では、ボイラ枠21内を流れる排気ガスEGと水とを熱交換させて、液相の水を水蒸気にする。低圧蒸気発生系22の節炭器22aからの熱水の一部は、高圧ポンプ27で昇圧された後、高圧蒸気発生系26に送られる。この熱水の温度は、例えば、150℃である。高圧蒸気発生系26に送られた熱水は、排気ガスEGとの熱交換で高圧蒸気HSになる。この高圧蒸気HSは、例えば、約620℃の過熱蒸気である。この高圧蒸気HSは、高圧蒸気ライン44を介して、高圧蒸気タービン33に供給される。高圧蒸気タービン33は、この高圧蒸気HSにより駆動する。 In each of the steam generation systems 22, 23, and 26 of the exhaust heat recovery boiler 20, the exhaust gas EG flowing in the boiler frame 21 and water are exchanged for heat to turn the liquid phase water into steam. A part of the hot water from the economizer 22a of the low-pressure steam generator 22 is boosted by the high-pressure pump 27 and then sent to the high-pressure steam generator 26. The temperature of this hot water is, for example, 150 ° C. The hot water sent to the high-pressure steam generation system 26 becomes high-pressure steam HS by heat exchange with the exhaust gas EG. This high-pressure steam HS is, for example, superheated steam at about 620 ° C. This high-pressure steam HS is supplied to the high-pressure steam turbine 33 via the high-pressure steam line 44. The high-pressure steam turbine 33 is driven by the high-pressure steam HS.
 低圧蒸気発生系22の節炭器22aからの熱水の一部は、中圧ポンプ24で昇圧された後、中圧蒸気発生系23に送られる。中圧蒸気発生系23に送られた熱水は、排気ガスEGとの熱交換で中圧蒸気ISになる。この中圧蒸気ISは、例えば、300℃の過熱蒸気である。この中圧蒸気ISは、中圧蒸気ライン42を介して再熱蒸気系25に流入する。また、高圧蒸気タービン33から排気された蒸気は、高圧排気蒸気ライン46を介して再熱蒸気系25に流入する。すなわち、再熱蒸気系25には、中圧蒸気発生系23からの中圧蒸気ISと、高圧蒸気タービン33から排気された蒸気とが流入する。再熱蒸気系25では、この再熱蒸気系25に流入した蒸気を排気ガスEGとの熱交換で過熱して再熱蒸気RSにする。この再熱蒸気RSは、再熱蒸気ライン43を介して、中圧蒸気タービン32に供給される。中圧蒸気タービン32は、この中圧蒸気タービン32に供給された再熱蒸気RSにより駆動する。 A part of the hot water from the economizer 22a of the low-pressure steam generator 22 is boosted by the medium-pressure pump 24 and then sent to the medium-pressure steam generator 23. The hot water sent to the medium-pressure steam generation system 23 becomes medium-pressure steam IS by heat exchange with the exhaust gas EG. This medium pressure steam IS is, for example, superheated steam at 300 ° C. The medium pressure steam IS flows into the reheat steam system 25 via the medium pressure steam line 42. Further, the steam exhausted from the high-pressure steam turbine 33 flows into the reheated steam system 25 via the high-pressure exhaust steam line 46. That is, the medium-pressure steam IS from the medium-pressure steam generation system 23 and the steam exhausted from the high-pressure steam turbine 33 flow into the reheat steam system 25. In the reheated steam system 25, the steam flowing into the reheated steam system 25 is heated by heat exchange with the exhaust gas EG to form the reheated steam RS. The reheated steam RS is supplied to the medium pressure steam turbine 32 via the reheated steam line 43. The medium-pressure steam turbine 32 is driven by the reheated steam RS supplied to the medium-pressure steam turbine 32.
 低圧蒸気発生系22の節炭器22aからの熱水の一部は、この低圧蒸気発生系22の蒸発器22bで、排気ガスEGにより加熱されて蒸気になる。この蒸気は、この低圧蒸気発生系22の過熱器22cで、排気ガスEGにより過熱された低圧蒸気LSになる。この低圧蒸気LSは、例えば、250℃の過熱蒸気である。この低圧蒸気LSは、低圧蒸気ライン41を介して低圧蒸気タービン31に供給される。また、中圧蒸気タービン32から排気された蒸気は、中圧排気蒸気ライン45を介して低圧蒸気タービン31に供給される。すなわち、低圧蒸気タービン31には、低圧蒸気発生系22からの低圧蒸気LSと、中圧蒸気タービン32から排気された蒸気とが供給される。低圧蒸気タービン31は、この低圧蒸気タービン31に供給された蒸気により駆動する。 A part of the hot water from the economizer 22a of the low-pressure steam generator 22 is heated by the exhaust gas EG in the evaporator 22b of the low-pressure steam generator 22 to become steam. This steam becomes the low-pressure steam LS superheated by the exhaust gas EG in the superheater 22c of the low-pressure steam generation system 22. This low-pressure steam LS is, for example, superheated steam at 250 ° C. This low-pressure steam LS is supplied to the low-pressure steam turbine 31 via the low-pressure steam line 41. Further, the steam exhausted from the medium pressure steam turbine 32 is supplied to the low pressure steam turbine 31 via the medium pressure exhaust steam line 45. That is, the low-pressure steam LS from the low-pressure steam generation system 22 and the steam exhausted from the medium-pressure steam turbine 32 are supplied to the low-pressure steam turbine 31. The low-pressure steam turbine 31 is driven by the steam supplied to the low-pressure steam turbine 31.
 低圧蒸気タービン31から排気された蒸気は、復水器35で水に戻される。復水器35内の水は、給水ライン47を介して、低圧蒸気発生系22の節炭器22aに送られる。 The steam exhausted from the low-pressure steam turbine 31 is returned to water by the condenser 35. The water in the condenser 35 is sent to the economizer 22a of the low-pressure steam generator 22 via the water supply line 47.
 ガスタービン11が例えば定常運転になると、アンモニアタンクT内の液体アンモニア及びガスタービン11からの抽気空気BAがアンモニア自己熱分解装置51に供給されるようになる。以下、図3に示すフローチャートに従って、アンモニア分解設備Xによるアンモニア分解の手順について説明する。 When the gas turbine 11 is in steady operation, for example, the liquid ammonia in the ammonia tank T and the extracted air BA from the gas turbine 11 are supplied to the ammonia self-thermal decomposition device 51. Hereinafter, the procedure for ammonia decomposition by the ammonia decomposition equipment X will be described with reference to the flowchart shown in FIG.
 液体アンモニアは、沸点である-33.4℃以下の温度に冷却された状態で、且つほぼ大気圧の状態でアンモニアタンクT内に溜蔵されている。このアンモニアタンクT内の液体アンモニアは、アンモニア昇圧機80により、例えば、5.2MPa(絶対圧)程度まで昇圧されてから、アンモニア分解装置50に供給される(S1:アンモニア供給工程)。アンモニアの昇圧後の圧力は、液体アンモニアが処理済みガスPGになり、この処理済みガスPGが燃焼器11bに流入するまでの経路中の配管や各種機器での圧力損失を考慮して決定した圧力であり、処理済みガスPGをブーストアップしなくても、圧縮空気が流入している燃焼器11b内に処理済みガスPGを供給できる圧力である。このため、この圧力(約5.2MPa)は、燃焼器11b内の圧力より高い圧力である。なお、燃焼器11bに供給される圧縮空気の圧力は、例えば、約2.5MPaであり、この圧縮空気の温度は、例えば、約500℃である。 Liquid ammonia is stored in the ammonia tank T in a state of being cooled to a temperature of −33.4 ° C. or lower, which is the boiling point, and in a state of almost atmospheric pressure. The liquid ammonia in the ammonia tank T is boosted to, for example, about 5.2 MPa (absolute pressure) by the ammonia booster 80, and then supplied to the ammonia decomposition apparatus 50 (S1: ammonia supply step). The pressure after pressurization of ammonia is determined in consideration of the pressure loss in the piping and various devices in the path until the liquid ammonia becomes the treated gas PG and the treated gas PG flows into the combustor 11b. This is the pressure at which the processed gas PG can be supplied into the combustor 11b into which the compressed air is flowing without boosting up the processed gas PG. Therefore, this pressure (about 5.2 MPa) is higher than the pressure in the combustor 11b. The pressure of the compressed air supplied to the combustor 11b is, for example, about 2.5 MPa, and the temperature of the compressed air is, for example, about 500 ° C.
 以上のアンモニア供給工程(S1)と並行して、抽気空気供給工程(S2)が実行される。この抽気空気供給工程(S2)では、ガスタービン11の空気圧縮機11aで生成された圧縮空気の一部が抽気空気BAとして、抽気空気ライン85を介して、アンモニア分解装置50のアンモニア自己熱分解器53に供給される。空気圧縮機11aからの抽気空気BAは、例えば、500℃である。この抽気空気BAは、抽気空気ライン85を経て、抽気空気冷却器86に流入する。この抽気空気冷却器86には、抽気空気BAの他に、排熱回収ボイラにおける低圧蒸気発生器22の節炭器22aからの熱水が冷却媒体ライン88iを介して流入する。この熱水の温度は、約150℃である。この抽気空気冷却器86では、抽気空気BAと冷却媒体である熱水とが熱交換され、抽気空気BAが例えば約160℃にまで冷却される。その後、抽気空気BAは図示しない冷却器により例えば約35℃まで冷却される。この、約35℃まで冷却された抽気空気BAは、抽気空気昇圧機87で、例えば、約5.2MPaにまで昇圧されてから、アンモニア分解装置50のアンモニア自己熱分解器53に供給される。このように、抽気空気BAは、抽気空気冷却器86及び図示しない冷却器により約500℃から約35℃にまで冷却されてから、抽気空気昇圧機87に流入する。このため、抽気空気昇圧機87に流入する抽気空気BAの体積が小さくなり、抽気空気昇圧機87に必要な駆動力を小さくすることができる。抽気空気BAの昇圧後の圧力は、このガスの一部を含む処理済みガスPGが燃焼器11bに流入するまでの経路中の配管や各種機器での圧力損失を考慮して決定した圧力であり、処理済みガスPGをブーストアップしなくても、圧縮空気が流入している燃焼器11b内に処理済みガスPGを供給できる圧力である。このため、この圧力(約5.2MPa)は、燃焼器11b内の圧力(例えば、約2.5MPa)より高い圧力である。 The bleed air supply step (S2) is executed in parallel with the above ammonia supply step (S1). In this bleed air supply step (S2), a part of the compressed air generated by the air compressor 11a of the gas turbine 11 is used as the bleed air BA, and the ammonia self-thermal decomposition of the ammonia decomposition apparatus 50 is performed through the bleed air line 85. It is supplied to the vessel 53. The bleed air BA from the air compressor 11a is, for example, 500 ° C. The bleed air BA flows into the bleed air cooler 86 via the bleed air line 85. In addition to the bleed air BA, hot water from the economizer 22a of the low-pressure steam generator 22 in the exhaust heat recovery boiler flows into the bleed air cooler 86 via the cooling medium line 88i. The temperature of this hot water is about 150 ° C. In the bleed air cooler 86, the bleed air BA and the hot water as a cooling medium exchange heat, and the bleed air BA is cooled to, for example, about 160 ° C. After that, the bleed air BA is cooled to, for example, about 35 ° C. by a cooler (not shown). The bleed air BA cooled to about 35 ° C. is boosted to, for example, about 5.2 MPa by the bleed air booster 87, and then supplied to the ammonia self-thermal decomposer 53 of the ammonia decomposition apparatus 50. In this way, the bleed air BA is cooled from about 500 ° C. to about 35 ° C. by the bleed air cooler 86 and a cooler (not shown), and then flows into the bleed air booster 87. Therefore, the volume of the bleed air BA flowing into the bleed air booster 87 is reduced, and the driving force required for the bleed air booster 87 can be reduced. The pressure after the pressure of the extracted air BA is a pressure determined in consideration of the pressure loss in the piping and various devices in the path until the treated gas PG containing a part of this gas flows into the combustor 11b. The pressure is such that the processed gas PG can be supplied into the combustor 11b into which the compressed air is flowing without boosting up the processed gas PG. Therefore, this pressure (about 5.2 MPa) is higher than the pressure in the combustor 11b (for example, about 2.5 MPa).
 また、抽気空気冷却器86では、抽気空気BAとの熱交換で約150℃の熱水が例えば約330℃にまで加熱される。抽気空気冷却器86で加熱された熱水は、冷却媒体回収ライン88oを経て、排熱回収ボイラ20における高圧蒸気発生系26の節炭器に流入する。高圧蒸気発生系26の節炭器には、抽気空気冷却器86からの例えば約330℃の熱水の他に、低圧蒸気発生系22の節炭器22aからの例えば約150℃の熱水も流入する。これらの熱水は、高圧蒸気発生系26の蒸発器で加熱されて蒸気になった後、高圧蒸気発生系26の過熱器でさらに過熱されて高圧蒸気HSになる。このように、高圧蒸気発生系26の節炭器には、低圧蒸気発生系22の節炭器22aからの熱水の他に、この熱水より温度が高い熱水も流入する。このため、高圧蒸気発生系26で熱水を排気ガスにより加熱し、この熱水を高圧蒸気HSにするための熱量を抑えることができる。すなわち、高圧蒸気発生系26で消費する排気ガスの熱量を少なくすることができる。よって、排熱回収ボイラ20における高圧蒸気発生系26よりも下流で、排気ガスEGの熱を有効利用することができる。 Further, in the bleed air cooler 86, hot water at about 150 ° C. is heated to, for example, about 330 ° C. by heat exchange with the bleed air BA. The hot water heated by the bleed air cooler 86 flows into the economizer of the high-pressure steam generation system 26 in the exhaust heat recovery boiler 20 via the cooling medium recovery line 88o. The economizer of the high-pressure steam generator 26 includes hot water of, for example, about 330 ° C. from the bleed air cooler 86, and hot water of, for example, about 150 ° C. from the economizer 22a of the low-pressure steam generator 22. Inflow. These hot waters are heated by the evaporator of the high-pressure steam generation system 26 to become steam, and then further superheated by the superheater of the high-pressure steam generation system 26 to become high-pressure steam HS. As described above, in addition to the hot water from the economizer 22a of the low-pressure steam generator 22, hot water having a temperature higher than that of the hot water also flows into the economizer of the high-pressure steam generator system 26. Therefore, the hot water can be heated by the exhaust gas in the high-pressure steam generation system 26, and the amount of heat for converting the hot water into the high-pressure steam HS can be suppressed. That is, the amount of heat of the exhaust gas consumed by the high-pressure steam generation system 26 can be reduced. Therefore, the heat of the exhaust gas EG can be effectively used downstream of the high-pressure steam generation system 26 in the exhaust heat recovery boiler 20.
 アンモニア分解装置50では、抽気空気ライン85からの抽気空気BAを酸化剤として、アンモニア供給ラインからのアンモニアの一部を燃焼させて、この熱でアンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスPGを生成する(S3:アンモニア分解工程)。 In the ammonia decomposition apparatus 50, the extracted air BA from the extracted air line 85 is used as an oxidizing agent to burn a part of the ammonia from the ammonia supply line, and this heat self-pyrolyzes the ammonia to produce hydrogen and nitrogen. Produces a treated gas PG containing (S3: ammonia decomposition step).
 アンモニア分解工程(S3)では、アンモニア自己熱分解工程(S4)及びアンモニア除去工程(S7)が実行される。アンモニア自己熱分解工程(S4)では、抽気空気ライン85からの抽気空気BAを酸化剤として、アンモニア供給ライン81からのアンモニアの一部を燃焼させて、この熱でアンモニアを自己熱分解させて、水素と窒素と残留アンモニアとを含む分解ガスDGを生成する。このアンモニア自己熱分解工程(S4)では、アンモニア予熱工程(S5)及びアンモニア自己熱分解実行工程(S6)が実行される。 In the ammonia decomposition step (S3), the ammonia self-thermal decomposition step (S4) and the ammonia removal step (S7) are executed. In the ammonia self-pyrolysis step (S4), a part of the ammonia from the ammonia supply line 81 is burned using the extracted air BA from the bleed air line 85 as an oxidizing agent, and the ammonia is self-pyrolyzed by this heat. It produces a decomposition gas DG containing hydrogen, nitrogen and residual ammonia. In this ammonia self-pyrolysis step (S4), the ammonia preheating step (S5) and the ammonia self-thermal decomposition execution step (S6) are executed.
 アンモニア予熱工程(S3)では、第一アンモニア加熱器52a及び第二アンモニア加熱器52bで、アンモニアと分解ガスDGとが熱交換され、アンモニアが加熱される一方で、分解ガスDGが冷却される。アンモニア昇圧機80により約5.2MPsに昇圧された液体アンモニアは、アンモニア自己熱分解装置51の第一アンモニア加熱器52aに流入する。第一アンモニア加熱器52aでは、液体アンモニアと分解ガスDGとが熱交換され、液体アンモニアが約170℃にまで加熱される。液体アンモニアは、アンモニア昇圧機80により昇圧された圧力環境下で、90℃以上になると、蒸発して気体アンモニアになる。このため、第一アンモニア加熱器52aからは、約170℃の気体アンモニアが流出する。第一アンモニア加熱器52aからの気体アンモニアは、第二アンモニア加熱器52bに流入する。この第二アンモニア加熱器52bでは、気体アンモニアと分解ガスDGとが熱交換され、気体アンモニアが約400℃まで加熱される。この気体アンモニアは、アンモニア自己熱分解器53に流入する。 In the ammonia preheating step (S3), the first ammonia heater 52a and the second ammonia heater 52b exchange heat between the ammonia and the decomposition gas DG, and while the ammonia is heated, the decomposition gas DG is cooled. The liquid ammonia boosted to about 5.2 MPs by the ammonia booster 80 flows into the first ammonia heater 52a of the ammonia self-thermal decomposition device 51. In the first ammonia heater 52a, the liquid ammonia and the decomposition gas DG are heat-exchanged, and the liquid ammonia is heated to about 170 ° C. Liquid ammonia evaporates to gaseous ammonia at 90 ° C. or higher in a pressure environment boosted by the ammonia booster 80. Therefore, gaseous ammonia at about 170 ° C. flows out from the first ammonia heater 52a. The gaseous ammonia from the first ammonia heater 52a flows into the second ammonia heater 52b. In the second ammonia heater 52b, the gaseous ammonia and the decomposed gas DG are heat-exchanged, and the gaseous ammonia is heated to about 400 ° C. This gaseous ammonia flows into the ammonia self-pyrolyzer 53.
 アンモニア自己熱分解実行工程(S6)は、アンモニア自己熱分解器53内で実行される。アンモニア自己熱分解器53には、前述したように、約5.2MPaの気体アンモニアと約5.2MPaの抽気空気BAとが流入する。このアンモニア自己熱分解器53内では、以下の式(1)及び式(2)に示すように、触媒の作用により、まず、気体アンモニア等の一部が酸化(燃焼)反応し、反応熱を放出する。残っている一部の気体アンモニアは、この反応熱より約600℃にまで加熱されて、式(3)に示すように、熱分解して、約600℃の水素と約600℃の窒素に分解される。これら水素と窒素とは、熱分解しなかった気体アンモニア(残留アンモニア)と共にアンモニア自己熱分解器53から、約600℃の分解ガスDGとして流出する。
 NH+3/4O→1/2N+3/2HO+317kJ/mol  (1)
 H+1/2O→HO+242kJ/mol           (2)
 NH→1/2N+3/2H-46kJ/mol          (3)
The ammonia self-thermal decomposition execution step (S6) is executed in the ammonia self-thermal decomposition device 53. As described above, about 5.2 MPa of gaseous ammonia and about 5.2 MPa of bleed air BA flow into the ammonia self-pyrolyzer 53. In the ammonia self-pyrolyzer 53, as shown in the following formulas (1) and (2), first, a part of gaseous ammonia or the like undergoes an oxidation (combustion) reaction due to the action of the catalyst, and the heat of reaction is generated. discharge. Some of the remaining gaseous ammonia is heated to about 600 ° C from this heat of reaction and pyrolyzed as shown in formula (3) into hydrogen at about 600 ° C and nitrogen at about 600 ° C. Will be done. These hydrogen and nitrogen flow out from the ammonia self-thermal cracker 53 together with the gaseous ammonia (residual ammonia) that has not been thermally decomposed as a decomposed gas DG at about 600 ° C.
NH 3 + 3/4O 2 → 1/2N 2 + 3 / 2H 2 O + 317kJ / mol (1)
H 2 + 1 / 2O 2 → H 2 O + 242kJ / mol (2)
NH 3 → 1 / 2N 2 + 3 / 2H 2 -46kJ / mol (3)
 気体アンモニアは、式(3)に示すように、反応後のモル数が増加する反応であるため、圧力が低い方が促進される。言い換えると、この熱分解反応は、圧力が高いと抑制される。また、この熱分解反応は、吸熱反応であることから、高温の方が促進される。また、式(3)の左辺のNHの発熱量は、317kJであり、同式の右辺の3/2Hの発熱量は363kJである。よって、式(3)の熱分解反応により、燃料の発熱量が46kJ増加することになる。しかし、この反応を起こすにはアンモニア1mol当たり46kJの反応熱が必要であり、その反応熱は、式(1)及び式(2)に示す酸化反応で生じる反応熱で補われる。よって、アンモニアの自己熱分解反応においては、システム全体の熱効率は基本的に変化しない。 As shown in the formula (3), gaseous ammonia is a reaction in which the number of moles after the reaction increases, so that the lower the pressure, the more promoted. In other words, this pyrolysis reaction is suppressed at high pressures. Further, since this pyrolysis reaction is an endothermic reaction, it is promoted at a higher temperature. The calorific value of NH 3 on the left side of the equation (3) is 317 kJ, and the calorific value of 3 / 2H 2 on the right side of the equation (3) is 363 kJ. Therefore, the heat generation amount of the fuel increases by 46 kJ due to the thermal decomposition reaction of the formula (3). However, the heat of reaction of 46 kJ per 1 mol of ammonia is required to cause this reaction, and the heat of reaction is supplemented by the heat of reaction generated by the oxidation reactions represented by the formulas (1) and (2). Therefore, in the self-pyrolysis reaction of ammonia, the thermal efficiency of the entire system basically does not change.
 ここで、各種条件下での気体アンモニアの熱分解反応後に残る残留アンモニア濃度について、図4に示すグラフを参照して説明する。なお、このグラフ中で横軸は熱分解反応環境の温度(Temperature[deg-C])であり、縦軸は残留アンモニア濃度(Concentration of Ammonia[%])である。このグラフは、熱分解反応環境の温度と圧力を変化させて、熱分解反応の平衡係数を用いて各温度及び各圧力に応じた濃度を試算した結果である。本実施形態における熱分解反応環境の温度は600℃であり、この熱分解反応環境の圧力は5.2MPaである。よって、本実施形態では、熱分解反応後の残留アンモニア濃度は約4%になる。ただし、図4に示すグラフは、原料ガスとしてアンモニアだけが存在する場合に、アンモニアの熱分解反応後に残る残留アンモニア濃度を示すグラフである。一方、本実施形態では、アンモニアの一部を酸化させるために、アンモニア自己熱分解器53に抽気空気BAを流入させている上に、式(1)及び式(2)での酸化反応により窒素と水蒸気が生成するため、アンモニア自己熱分解器53出口でのガス組成は、つまり、アンモニア自己熱分解器53から流出する分解ガスDGのガス組成は、水素が約48mol%、窒素が約39mol%、水が約10mol%、残留アンモニアが約3mol%になる。以上でアンモニア自己熱分解工程(S3)が終了する。 Here, the residual ammonia concentration remaining after the thermal decomposition reaction of gaseous ammonia under various conditions will be described with reference to the graph shown in FIG. In this graph, the horizontal axis is the temperature of the pyrolysis reaction environment (Temperature [deg-C]), and the vertical axis is the residual ammonia concentration (Concentration of Ammonia [%]). This graph is the result of trial calculation of the concentration corresponding to each temperature and each pressure by changing the temperature and pressure of the pyrolysis reaction environment and using the equilibrium coefficient of the pyrolysis reaction. The temperature of the pyrolysis reaction environment in the present embodiment is 600 ° C., and the pressure of this pyrolysis reaction environment is 5.2 MPa. Therefore, in the present embodiment, the residual ammonia concentration after the thermal decomposition reaction is about 4%. However, the graph shown in FIG. 4 is a graph showing the residual ammonia concentration remaining after the thermal decomposition reaction of ammonia when only ammonia is present as the raw material gas. On the other hand, in the present embodiment, in order to oxidize a part of ammonia, the extracted air BA is flowed into the ammonia self-thermal decomposition device 53, and nitrogen is produced by the oxidation reactions in the formulas (1) and (2). The gas composition at the outlet of the ammonia self-thermal decomposition device 53, that is, the gas composition of the decomposition gas DG flowing out from the ammonia self-thermal decomposition device 53 is about 48 mol% of hydrogen and about 39 mol% of nitrogen. , Water is about 10 mol% and residual ammonia is about 3 mol%. This completes the ammonia self-pyrolysis step (S3).
 なお、アンモニア自己熱分解器53から流出した約600℃の分解ガスDGは、前述したように、分解ガスライン54の第一ライン54aを介して、第二アンモニア加熱器52bに流入し、ここで約170℃の気体アンモニアとの熱交換により約350℃にまで冷却される。この分解ガスDGは、分解ガスライン54の第二ライン54bを介して、水加熱器77に流入し、ここで水との熱交換によりさらに約200℃にまで冷却される。この分解ガスDGは、分解ガスライン54の第三ライン54cを介して、第一アンモニア加熱器52aに流入し、ここで液体アンモニアとの熱交換により50℃にまで冷却される。 As described above, the decomposition gas DG at about 600 ° C. flowing out from the ammonia self-thermal decomposition device 53 flows into the second ammonia heater 52b via the first line 54a of the decomposition gas line 54, and here. It is cooled to about 350 ° C by heat exchange with gaseous ammonia at about 170 ° C. The decomposed gas DG flows into the water heater 77 via the second line 54b of the decomposed gas line 54, where it is further cooled to about 200 ° C. by heat exchange with water. The decomposition gas DG flows into the first ammonia heater 52a via the third line 54c of the decomposition gas line 54, where it is cooled to 50 ° C. by heat exchange with liquid ammonia.
 アンモニア自己熱分解工程(S4)が終了すると、このアンモニア自己熱分解工程(S4)で得られた分解ガスDGから残留アンモニアを除去するアンモニア除去工程(S7)が実行される。アンモニア除去工程(S7)では、アンモニア吸収工程(S8)とアンモニア分離工程(S12)とが実行される。 When the ammonia self-pyrolysis step (S4) is completed, the ammonia removal step (S7) for removing residual ammonia from the decomposition gas DG obtained in the ammonia self-pyrolysis step (S4) is executed. In the ammonia removal step (S7), the ammonia absorption step (S8) and the ammonia separation step (S12) are executed.
 アンモニア吸収工程(S8)では、まず、分解ガスライン54の第四ライン54dを流れる約50℃の分解ガスDGが、アンモニア吸収器62の分解ガス冷却器63により冷却されて、約30℃になる(S7:分解ガスDG冷却工程)。この分解ガスDGは、アンモニア吸収器62の吸収塔64に流入する。この吸収塔64内には、水冷却器67で冷却された約30℃の水が散布される。吸収塔64内では、前述したように、分解ガスDGと水とが接触し、分解ガスDG中の残留アンモニアが水に溶解する。残留アンモニアが溶解した水であるアンモニア水は、吸収塔容器64vの下部に溜まる(S10:アンモニア吸収実行工程)。このアンモニア水中のアンモニア濃度は、約7mol%である。気相のアンモニアが水に溶解する濃度は、気液平衡定数により定まる。この気相のアンモニアが水に溶解する濃度は、低温の方が高くなる。このため、吸収塔64内に流入する分解ガスDGの温度及び水の温度を約30℃にしている。 In the ammonia absorption step (S8), first, the decomposition gas DG at about 50 ° C. flowing through the fourth line 54d of the decomposition gas line 54 is cooled by the decomposition gas cooler 63 of the ammonia absorber 62 to reach about 30 ° C. (S7: Decomposition gas DG cooling step). This decomposed gas DG flows into the absorption tower 64 of the ammonia absorber 62. Water at about 30 ° C. cooled by the water cooler 67 is sprayed into the absorption tower 64. In the absorption tower 64, as described above, the decomposition gas DG comes into contact with water, and the residual ammonia in the decomposition gas DG dissolves in water. Ammonia water, which is water in which residual ammonia is dissolved, collects in the lower part of the absorption tower container 64v (S10: ammonia absorption execution step). The ammonia concentration in this ammonia water is about 7 mol%. The concentration of ammonia in the gas phase dissolved in water is determined by the vapor-liquid equilibrium constant. The concentration of ammonia in this gas phase dissolved in water is higher at low temperatures. Therefore, the temperature of the decomposition gas DG flowing into the absorption tower 64 and the temperature of the water are set to about 30 ° C.
 以上で、アンモニア吸収工程(S8)が終了する。 With the above, the ammonia absorption step (S8) is completed.
 残留アンモニアが除去された分解ガスDGである処理済みガスPGは、吸収塔容器64v内を上昇して、処理済みガス供給ライン82に流入する。本実施形態では、吸収塔64内に散布する水の質量流量を、吸収塔64内に流入する分解ガスDGの質量流量の1/3程度にすることで、処理済みガスPG中に含まれる残留アンモニアの濃度を約0.02mol%以下にしている。よって、本実施形態における処理済みガスPGのガス組成は、水素が約55mol%、窒素が約45mol%、残留アンモニアが約0.02mol%以下になる。 The treated gas PG, which is the decomposed gas DG from which the residual ammonia has been removed, rises in the absorption tower container 64v and flows into the treated gas supply line 82. In the present embodiment, the mass flow rate of the water sprayed into the absorption tower 64 is set to about 1/3 of the mass flow rate of the decomposition gas DG flowing into the absorption tower 64, so that the residue contained in the treated gas PG The concentration of ammonia is about 0.02 mol% or less. Therefore, the gas composition of the treated gas PG in the present embodiment is about 55 mol% of hydrogen, about 45 mol% of nitrogen, and about 0.02 mol% or less of residual ammonia.
 ガスタービン11の起動時には、アンモニア自己熱分解器53および内部の流体の温度が低く、アンモニアの分解反応が起こりにくい条件であり、アンモニア自己熱分解器53から発生する分解ガスDGの組成の大部分は残留アンモニア成分となる。残留アンモニア成分は吸収塔64で除去されるため、処理済みガス供給ライン82からガスタービン11に供給される処理済みガスPGの流量は計画値よりも少ない状態となる。ガスタービン11の起動開始後に時間が経過して、排熱回収ボイラ20から所定の量の第一熱媒体M1がアンモニア自己熱分解器53に供給されると、アンモニア自己熱分解器53および内部の流体の温度が計画値に到達し、アンモニアの分解反応が促進される。その結果として、分解ガスDGの組成の大部分は水素及び窒素となり、吸収塔64から十分な流量の処理済みガスPGが生成される。この過程に伴い、燃焼器11bに供給される燃料は、起動時燃料SFから処理済みガスPGに徐々に切り替えられる。すなわち、この処理済みガスPGが十分に生成されるようになると、起動時燃料SFの燃焼器11bへの供給が停止し、処理済みガスPGが処理済みガス供給ライン82及び燃料ライン12を経て、燃焼器11bへ供給されるようになる(S11:処理済みガス供給工程)。燃焼器11bに供給された処理済みガスPGは、燃焼器11b内で燃焼する。この燃焼の結果生成された燃焼ガスの温度は、1650℃級である。この燃焼ガスは、タービン11cに流入して、タービン11cを駆動させる。 At the time of starting the gas turbine 11, the temperature of the ammonia self-pyrolyzer 53 and the fluid inside is low, and the condition is such that the decomposition reaction of ammonia is unlikely to occur. Is a residual ammonia component. Since the residual ammonia component is removed by the absorption tower 64, the flow rate of the treated gas PG supplied from the treated gas supply line 82 to the gas turbine 11 becomes smaller than the planned value. When a predetermined amount of the first heat medium M1 is supplied from the exhaust heat recovery boiler 20 to the ammonia self-pyrolyzer 53 after a lapse of time after the start of the gas turbine 11, the ammonia self-pyrolyzer 53 and the inside The temperature of the fluid reaches the planned value, and the decomposition reaction of ammonia is promoted. As a result, most of the composition of the decomposed gas DG becomes hydrogen and nitrogen, and a sufficient flow rate of the treated gas PG is produced from the absorption tower 64. Along with this process, the fuel supplied to the combustor 11b is gradually switched from the starting fuel SF to the processed gas PG. That is, when the processed gas PG is sufficiently generated, the supply of the fuel SF at startup to the combustor 11b is stopped, and the processed gas PG passes through the processed gas supply line 82 and the fuel line 12. It will be supplied to the combustor 11b (S11: processed gas supply process). The processed gas PG supplied to the combustor 11b burns in the combustor 11b. The temperature of the combustion gas produced as a result of this combustion is in the 1650 ° C. class. This combustion gas flows into the turbine 11c to drive the turbine 11c.
 タービン11cから排気された排気ガスEGは、排熱回収ボイラ20に流入する。排熱回収ボイラ20の低圧蒸気発生系22では、前述と同様、排気ガスEGにより水を加熱して低圧蒸気LSを生成する。この低圧蒸気LSは、約250℃の過熱蒸気である。排熱回収ボイラ20の中圧蒸気発生系23では、前述と同様、排気ガスEGにより水を加熱して中圧蒸気ISを生成する。この中圧蒸気ISは、約300℃の過熱蒸気である。排熱回収ボイラ20の高圧蒸気発生系26では、前述と同様、排気ガスEGにより水を加熱して高圧蒸気HSを生成する。この高圧蒸気HSは、約620℃の過熱蒸気である。 The exhaust gas EG exhausted from the turbine 11c flows into the exhaust heat recovery boiler 20. In the low-pressure steam generation system 22 of the exhaust heat recovery boiler 20, water is heated by the exhaust gas EG to generate low-pressure steam LS, as described above. This low-pressure steam LS is superheated steam at about 250 ° C. In the medium-pressure steam generation system 23 of the exhaust heat recovery boiler 20, water is heated by the exhaust gas EG to generate the medium-pressure steam IS, as described above. This medium pressure steam IS is superheated steam at about 300 ° C. In the high-pressure steam generation system 26 of the exhaust heat recovery boiler 20, water is heated by the exhaust gas EG to generate high-pressure steam HS as described above. This high-pressure steam HS is superheated steam at about 620 ° C.
 ここで、燃料中に含まれる残留アンモニア濃度と、ガスタービン11から排気される排気ガスEG中のNOx濃度との関係について、図5に示すグラフを参照して説明する。なお、このグラフ中で横軸は残留アンモニア濃度(Concentration of Ammonia[%])で、縦軸は、排気ガスEG中のNOx濃度の予測値(NOx Prediction [ppm@15%O2])ある。このNOx濃度の予測値は、発明者が、CHEMKINのPREMIXコードにより1次元層流予混合火炎をモデル化して計算して得た値である。なお、CHEMKINは、計算プログラムである。このCHEMKINに関しては、以下の資料に詳細に解説されている。
 資料: R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia Report, SAND89-8009B (1995)
Here, the relationship between the residual ammonia concentration contained in the fuel and the NOx concentration in the exhaust gas EG exhausted from the gas turbine 11 will be described with reference to the graph shown in FIG. In this graph, the horizontal axis is the residual ammonia concentration (Concentration of Ammonia [%]), and the vertical axis is the predicted value of NOx concentration in the exhaust gas EG (NOx Prediction [ppm @ 15% O2]). The predicted value of the NOx concentration is a value calculated by the inventor by modeling a one-dimensional laminar flow premixed flame using the PREMIX code of CHEMKIN. CHEMKIN is a calculation program. This CHEMKIN is explained in detail in the following materials.
Source: R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia Report, SAND89-8009B (1995)
 本実施形態では、燃料中の残留アンモニア濃度が0.02mol%以下であることから、図5に示すグラフから、ガスタービン11出口でのNOx濃度は約60ppm以下と予測できる。よって、本実施形態のガスタービンプラントにおいて、排熱回収ボイラ20の内部又は外部に脱硝装置を設置することにより、スタック29の出口でのNOx濃度をさらに低い所望の濃度に抑制することができ、世界中の多くの地域の窒素酸化物濃度規制に適合させることが可能となる。 In this embodiment, since the residual ammonia concentration in the fuel is 0.02 mol% or less, the NOx concentration at the gas turbine 11 outlet can be predicted to be about 60 ppm or less from the graph shown in FIG. Therefore, in the gas turbine plant of the present embodiment, by installing a denitration device inside or outside the exhaust heat recovery boiler 20, the NOx concentration at the outlet of the stack 29 can be further suppressed to a desired concentration. It will be possible to comply with nitrogen oxide concentration regulations in many regions around the world.
 アンモニア吸収工程(S8)が終了すると、アンモニア吸収工程(S8)で生成されたアンモニア水からアンモニアを分離する前述のアンモニア分離工程(S12)が実行される。 When the ammonia absorption step (S8) is completed, the above-mentioned ammonia separation step (S12) for separating ammonia from the ammonia water generated in the ammonia absorption step (S8) is executed.
 アンモニア分離工程(S12)では、まず、吸収塔容器64vの下部に溜まっていた約30℃のアンモニア水がアンモニア水加熱器74に流入する。このアンモニア水加熱器74では、約30℃のアンモニア水が、約190℃の水との熱交換により、約170℃にまで加熱される(S13:アンモニア水加熱工程)。 In the ammonia separation step (S12), first, the ammonia water of about 30 ° C. accumulated in the lower part of the absorption tower container 64v flows into the ammonia water heater 74. In this ammonia water heater 74, ammonia water at about 30 ° C. is heated to about 170 ° C. by heat exchange with water at about 190 ° C. (S13: Ammonia water heating step).
 約170℃にまで加熱されたアンモニア水は、分離塔75内に流入する。この分離塔75は、水蒸気を用いて、アンモニア水からアンモニアを分離蒸留するために設けられた機器である。このため、水の飽和温度を下げるために、分離塔容器75v内の運転圧力を約1.4MPaにしている。吸収塔容器64v内の運転圧力は前述したように約5.2MPaである。吸収塔容器64v内の圧力と分離塔容器75v内の圧力との圧力差を駆動力として、吸収塔容器64v内のアンモニア水は、アンモニア水ライン73を経て、分離塔容器75v内に流入する。分離塔容器75v内には、さらに、約250℃の水蒸気が分離塔容器75vの下部から流入する。前述したように、吸収塔64内に散布する水の質量流量は、吸収塔64内に流入する分解ガスDGの質量流量の1/3程度であるため、分離塔75内に流入するアンモニア水の質量流量も、吸収塔64内に流入する分解ガスDGの質量流量の1/3程度になる。この質量流量のアンモニア水からアンモニアを蒸留分離するために必要な水蒸気の質量流量は、アンモニア水の質量流量の30%程度となる。 Ammonia water heated to about 170 ° C. flows into the separation tower 75. The separation tower 75 is a device provided for separating and distilling ammonia from aqueous ammonia using steam. Therefore, in order to lower the saturation temperature of water, the operating pressure in the separation tower container 75v is set to about 1.4 MPa. The operating pressure in the absorption tower container 64v is about 5.2 MPa as described above. Using the pressure difference between the pressure in the absorption tower container 64v and the pressure in the separation tower container 75v as a driving force, the ammonia water in the absorption tower container 64v flows into the separation tower container 75v via the ammonia water line 73. Further, water vapor at about 250 ° C. flows into the separation tower container 75v from the lower part of the separation tower container 75v. As described above, since the mass flow rate of the water sprayed into the absorption tower 64 is about 1/3 of the mass flow rate of the decomposition gas DG flowing into the absorption tower 64, the ammonia water flowing into the separation tower 75 The mass flow rate is also about 1/3 of the mass flow rate of the decomposed gas DG flowing into the absorption tower 64. The mass flow rate of water vapor required for distilling and separating ammonia from this mass flow rate of ammonia water is about 30% of the mass flow rate of ammonia water.
 アンモニア水は、分離塔容器75v内で、前述したように、水蒸気により加熱されて、アンモニア水中のアンモニアが液相から気相に移行し、分離塔容器75v内を上昇する(S14:アンモニア分離実行工程)。一方、水蒸気は、液相の水に移行し、分離塔容器75vの下部に溜まる。この水の温度は、約190℃である。また、この水中のアンモニア濃度は、0.05mol%である。この水の一部は、水循環ライン76を経て水加熱器77に流入する。水加熱器77では、この水が、前述したように、分解ガスライン54の第二ライン54bから流入した約350℃の分解ガスDGと熱交換される。この水は、約350℃の分解ガスDGとの熱交換により、約250℃まで加熱されて、水蒸気になる(S15:水加熱工程)。この水蒸気は、水循環ライン76を経て、分離塔75に送られる。 Ammonia water is heated by steam in the separation tower container 75v as described above, and ammonia in the ammonia water shifts from the liquid phase to the gas phase and rises in the separation tower container 75v (S14: Ammonia separation execution). Process). On the other hand, the water vapor moves to the liquid phase water and collects in the lower part of the separation tower container 75v. The temperature of this water is about 190 ° C. The ammonia concentration in this water is 0.05 mol%. A part of this water flows into the water heater 77 via the water circulation line 76. In the water heater 77, as described above, this water is heat-exchanged with the decomposition gas DG at about 350 ° C. that has flowed in from the second line 54b of the decomposition gas line 54. This water is heated to about 250 ° C. by heat exchange with the decomposition gas DG at about 350 ° C. to become steam (S15: water heating step). This water vapor is sent to the separation tower 75 via the water circulation line 76.
 分離塔容器75vの下部に溜まった約190℃の水の他の一部は、水ライン65を経てアンモニア水加熱器74に流入する。このアンモニア水加熱器74では、前述したように、この約190℃の水と、アンモニア水ライン73を流れてきた約30℃のアンモニア水とが熱交換される。この熱交換により、水は、約50℃にまで冷却される一方で、アンモニア水は、前述したように、170℃にまで加熱される。以上で、アンモニア分解工程(S12)が終了する。なお、アンモニア水加熱器74で冷却された約50℃の水は、水供給ポンプ66で昇圧されてから、水冷却器67に流入し、この水冷却器67で冷却されて約30℃になる。この30℃の水は、前述したように、吸収塔64内に散布される。 The other part of the water at about 190 ° C. collected in the lower part of the separation tower container 75v flows into the ammonia water heater 74 via the water line 65. In the ammonia water heater 74, as described above, the water at about 190 ° C. and the ammonia water at about 30 ° C. flowing through the ammonia water line 73 are heat-exchanged. By this heat exchange, the water is cooled to about 50 ° C., while the aqueous ammonia is heated to 170 ° C. as described above. This completes the ammonia decomposition step (S12). The water at about 50 ° C. cooled by the ammonia water heater 74 is boosted by the water supply pump 66, then flows into the water cooler 67, and is cooled by the water cooler 67 to reach about 30 ° C. .. As described above, the water at 30 ° C. is sprayed into the absorption tower 64.
 分離塔容器75v内の気相のアンモニアを含むガスは、分離塔容器75vの頂部に接続されているアンモニア回収ライン83を経て凝縮器78に流入する。凝縮器78では、このガスが冷却されて、このガスに含まれている水分及びアンモニアが凝縮して、高濃度のアンモニア水になる。この高濃度のアンモニア水は、水回収ライン79を経て、分離塔容器75v内の棚段75pより上の空間に戻る。この高濃度のアンモニア水は、棚段75pのそれぞれの段を流下し、下方の段から供給される水蒸気と気液接触して、アンモニアが優先的に蒸発する。その結果、水中のアンモニア濃度が次第に低下し、最下部の棚段を通過する時にはアンモニア濃度が0.05mol%以下の熱水となる。一方、凝縮器78により水分等が除かれたガス、つまり気相のアンモニア濃度の高いガスは、アンモニア回収ライン83中に設けられているアンモニア圧縮機84で昇圧されてから、アンモニア供給ライン81及び第二アンモニア加熱器52bを経て、アンモニア自己熱分解器53に流入する(S16:アンモニア回収工程)。以上のように、本実施形態では、アンモニア除去装置61で除去された残留アンモニアがアンモニア供給ライン81に戻るので、原料としてのアンモニア中で無駄になる量を最小限に抑えることができる。 The gas containing ammonia in the gas phase in the separation tower container 75v flows into the condenser 78 via the ammonia recovery line 83 connected to the top of the separation tower container 75v. In the condenser 78, this gas is cooled, and the water and ammonia contained in this gas are condensed into high-concentration ammonia water. This high-concentration ammonia water returns to the space above the shelf 75p in the separation tower container 75v via the water recovery line 79. This high-concentration ammonia water flows down each stage of the shelf stage 75p and comes into gas-liquid contact with the water vapor supplied from the lower stage, and ammonia is preferentially evaporated. As a result, the ammonia concentration in the water gradually decreases, and when it passes through the lowermost shelf, it becomes hot water having an ammonia concentration of 0.05 mol% or less. On the other hand, the gas from which water and the like have been removed by the condenser 78, that is, the gas having a high ammonia concentration in the gas phase, is boosted by the ammonia compressor 84 provided in the ammonia recovery line 83, and then the ammonia supply line 81 and It flows into the ammonia self-thermal decomposition device 53 via the second ammonia heater 52b (S16: ammonia recovery step). As described above, in the present embodiment, the residual ammonia removed by the ammonia removing device 61 returns to the ammonia supply line 81, so that the amount of waste in ammonia as a raw material can be minimized.
 以上で、アンモニア分解設備Xによるアンモニア分解の一連の処理が終了する。 This completes a series of ammonia decomposition processing by the ammonia decomposition equipment X.
 アンモニアの熱分解に必要な熱として、ガスタービン11からの排気ガスEG、叉はこの排気ガスEGの熱で加熱された熱媒体を利用する場合、排気ガスEGや熱媒体をアンモニア分解器に導く設備や、この熱媒体を別途生成する排熱回収ボイラ等を新たに設計して、これを製造する必要がある。一方、本実施形態では、アンモニアの熱分解に必要な熱を、アンモニアの一部を燃焼させて得ている。すなわち、本実施形態では、アンモニアを自己熱分解させている。このため、本実施形態では、排気ガスEGや熱媒体をアンモニア分解器に導く設備や、この熱媒体を別途生成する排熱回収ボイラ等が不要になり、ガスタービンプラントの設備コストを抑えることができる。また、本実施形態では、既存のガスタービンコンバインドサイクルプラントにアンモニア分解設備Xを追加する改造工事を行う場合でも、このプラントに含まれる排熱回収ボイラ20をほとんど改造せずに利用できるため、改造コストを抑えることができる。 When the exhaust gas EG from the gas turbine 11 or the heat medium heated by the heat of the exhaust gas EG is used as the heat required for the thermal decomposition of ammonia, the exhaust gas EG or the heat medium is guided to the ammonia decomposer. It is necessary to newly design and manufacture equipment and an exhaust heat recovery boiler that separately generates this heat medium. On the other hand, in the present embodiment, the heat required for the thermal decomposition of ammonia is obtained by burning a part of ammonia. That is, in this embodiment, ammonia is self-pyrolyzed. Therefore, in the present embodiment, the equipment for guiding the exhaust gas EG and the heat medium to the ammonia decomposer, the exhaust heat recovery boiler for separately generating the heat medium, and the like are not required, and the equipment cost of the gas turbine plant can be suppressed. it can. Further, in the present embodiment, even when the remodeling work of adding the ammonia decomposition equipment X to the existing gas turbine combined cycle plant is performed, the exhaust heat recovery boiler 20 included in this plant can be used with almost no remodeling, so that the remodeling is performed. The cost can be suppressed.
 本実施形態では、アンモニアの分解で得られた水素を含む処理済みガスPGを燃焼器11bの主要な燃料にしている。このため、天然ガスのみを燃焼器11bの燃料にするプラントよりも、二酸化炭素の排出量を少なくすることができる。 In the present embodiment, the treated gas PG containing hydrogen obtained by decomposing ammonia is used as the main fuel for the combustor 11b. Therefore, carbon dioxide emissions can be reduced as compared with a plant that uses only natural gas as fuel for the combustor 11b.
 本実施形態のアンモニア分解装置50は、アンモニアを自己熱分解させて、水素と窒素と残留アンモニアを含む分解ガスDGを生成するアンモニア自己熱分解装置51の他に、アンモニア自己熱分解装置51からの分解ガスDG中に含まれる残留アンモニアを除去するアンモニア除去装置61を備える。よって、本実施形態では、燃焼器11bに供給する燃料中の残留アンモニアを少なくすることができるため、燃料の燃焼で生成される排気ガスEG中に含まれるNOx濃度を抑えることができる。 The ammonia decomposition device 50 of the present embodiment is obtained from the ammonia self-pyrolysis device 51 in addition to the ammonia self-pyrolysis device 51 that self-pyrolyzes ammonia to generate a decomposition gas DG containing hydrogen, nitrogen and residual ammonia. The ammonia removing device 61 for removing the residual ammonia contained in the decomposition gas DG is provided. Therefore, in the present embodiment, the residual ammonia in the fuel supplied to the combustor 11b can be reduced, so that the NOx concentration contained in the exhaust gas EG generated by the combustion of the fuel can be suppressed.
 アンモニアを自己熱分解させるための酸化剤として、酸素製造設備で製造した酸素を利用する方法が考えられる。一方、本実施形態では、アンモニアを自己熱分解させるための酸化剤として、ガスタービン11の空気圧縮機11aで生成された圧縮空気の一部である抽気空気BAを利用する。このため、本実施形態では、酸素製造設備が不要になり、この観点からも、ガスタービンプラントの設備コストを抑えることができる。 As an oxidizing agent for self-pyrolyzing ammonia, a method using oxygen produced in an oxygen production facility can be considered. On the other hand, in the present embodiment, bleed air BA, which is a part of compressed air generated by the air compressor 11a of the gas turbine 11, is used as an oxidant for self-pyrolyzing ammonia. Therefore, in the present embodiment, the oxygen production equipment becomes unnecessary, and from this viewpoint as well, the equipment cost of the gas turbine plant can be suppressed.
 さらに、アンモニアを自己熱分解させるための酸化剤として、ガスタービン11の空気圧縮機11aで生成された圧縮空気の一部である抽気空気BAを利用することで、以下のようなメリットがある。このメリットについて、表1及び表2を用いて説明する。なお、表1は、本実施形態と同様、アンモニアを自己熱分解させるための酸化剤として、ガスタービン11の空気圧縮機11aで生成された圧縮空気の一部である抽気空気BAを利用した場合(自己熱分解方式)の各処理過程でのガス質量流量、ガス組成、ガス発熱量等を示す。また、表2は、アンモニアを外部からの熱で熱分解させる場合(外部加熱方式)の各処理過程でのガス質量流量、ガス組成、ガス発熱量等を示す。 Further, by using the bleed air BA which is a part of the compressed air generated by the air compressor 11a of the gas turbine 11 as an oxidizing agent for self-pyrolyzing ammonia, there are the following merits. This merit will be described with reference to Tables 1 and 2. Note that Table 1 shows the case where the extracted air BA, which is a part of the compressed air generated by the air compressor 11a of the gas turbine 11, is used as the oxidizing agent for self-pyrolyzing ammonia as in the present embodiment. The gas mass flow rate, gas composition, gas calorific value, etc. in each treatment process of (self-pyrolysis method) are shown. In addition, Table 2 shows the gas mass flow rate, gas composition, gas calorific value, etc. in each treatment process when ammonia is thermally decomposed by heat from the outside (external heating method).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、ガスタービン11の空気圧縮機11aから抽気した抽気空気BA(C)には、約21vol%の酸素と約79vol%の窒素が含まれている。ここでは、空気圧縮機11aで生成された圧縮空気のうち、質量流量で8.9%の圧縮空気を抽気空気BAにする。この抽気空気BAをアンモニアの酸化剤として利用した場合、式(1)及び式(2)を用いて前述したように、酸化反応により窒素と水蒸気が生成される。このため、アンモニア自己熱分解器53出口での分解ガスDG(D)の組成は、水素が約48mol%、窒素が約39mol%、水が約10mol%、残留アンモニア約3 mol%となり、その単位発熱量は124kJ/molになる。この分解ガスDGは、アンモニア吸収塔64で、湿分及び残留アンモニアの大部分が除去され、処理済みガスPG(F)となる。この処理済みガスPGの単位発熱量は、分解ガスDGの単位発熱量より若干増加して、133kJ/molになる。 As shown in Table 1, the bleed air BA (C) extracted from the air compressor 11a of the gas turbine 11 contains about 21 vol% oxygen and about 79 vol% nitrogen. Here, of the compressed air generated by the air compressor 11a, 8.9% of the compressed air in terms of mass flow rate is used as the bleed air BA. When this bleed air BA is used as an oxidizing agent for ammonia, nitrogen and water vapor are generated by the oxidation reaction as described above using the formulas (1) and (2). Therefore, the composition of the decomposition gas DG (D) at the outlet of the ammonia self-pyrolyzer 53 is about 48 mol% of hydrogen, about 39 mol% of nitrogen, about 10 mol% of water, and about 3 mol% of residual ammonia. The calorific value is 124 kJ / mol. In the ammonia absorption tower 64, most of the moisture and residual ammonia are removed from the decomposed gas DG to become the treated gas PG (F). The unit calorific value of the treated gas PG is slightly increased from the unit calorific value of the decomposed gas DG to 133 kJ / mol.
 表2に示すように、アンモニアを外部からの熱で熱分解させる場合、アンモニア自己熱分解器53出口での分解ガスDG(D)の組成は、水素が約72mol%、窒素が約24mol%、残留アンモニアが約4mol%となり、その単位発熱量は186kJ/molとなる。この分解ガスDGは、アンモニア吸収塔64で、湿分及び残留アンモニアの大部分が除去され、処理済みガスPG(F)となる。この処理済みガスPGの単位発熱量は、分解ガスDGの単位発熱量より増加して、181kJ/molになる。 As shown in Table 2, when ammonia is thermally decomposed by heat from the outside, the composition of the decomposition gas DG (D) at the outlet of the ammonia self-thermal decomposition device 53 is about 72 mol% for hydrogen and about 24 mol% for nitrogen. Residual ammonia is about 4 mol%, and its unit calorific value is 186 kJ / mol. In the ammonia absorption tower 64, most of the moisture and residual ammonia are removed from the decomposed gas DG to become the treated gas PG (F). The unit calorific value of the treated gas PG increases from the unit calorific value of the decomposed gas DG to 181 kJ / mol.
 よって、自己熱分解方式での処理済みガスPG(F)の単位発熱量は、外部加熱方式での処理済みガスPG(F)の単位発熱量の約0.73倍になる。 Therefore, the unit calorific value of the treated gas PG (F) by the self-pyrolysis method is about 0.73 times the unit calorific value of the treated gas PG (F) by the external heating method.
 以上のように、自己熱分解方式では、ガスタービン11に投入する燃料の体積流量が増加する。ガスタービン11に投入する燃料の体積流量が増加すると、タービン11cのガスパスへ流入する作動流体の体積流量が多くなり、タービン11c側のガスパスの圧力損失が増大する。このため、タービン11cの圧力比が高くなり、ガスタービン11の空気圧縮機11aでサージ等の異常事象が発生するリスクが高くなる。このような空気圧縮機11aでのサージ等の異常事象を避けるためには、燃焼器11bにおける燃焼ガス温度を下げる必要がある。しかしながら、燃焼ガス温度を下げると、ガスタービン11およびガスタービンコンバインドサイクルとしての熱性能の低下に繋がる。 As described above, in the self-pyrolysis method, the volumetric flow rate of the fuel input to the gas turbine 11 increases. When the volumetric flow rate of the fuel charged into the gas turbine 11 increases, the volumetric flow rate of the working fluid flowing into the gas path of the turbine 11c increases, and the pressure loss of the gas path on the turbine 11c side increases. Therefore, the pressure ratio of the turbine 11c becomes high, and the risk of an abnormal event such as a surge occurring in the air compressor 11a of the gas turbine 11 increases. In order to avoid such an abnormal event such as a surge in the air compressor 11a, it is necessary to lower the temperature of the combustion gas in the combustor 11b. However, lowering the combustion gas temperature leads to a decrease in thermal performance of the gas turbine 11 and the gas turbine combined cycle.
 ところで、外部加熱方式の場合、表2に示すように、タービン11cに流入する作動流体の増加量は6.8%(吸気質量流量基準)になる。一方、本実施形態では、ガスタービン11の空気圧縮機11aで生成された圧縮空気の一部である抽気空気BAを酸化剤として用いることにより、表1に示すように、タービン11cに流入する作動流体の正味の増加量は5.9%(吸気質量流量基準)になる。また、自己熱分解方式において、ガスタービン11の圧縮空気以外の空気を酸化剤として用いた場合、タービン11cに流入する作動流体の増加量は、本実施形態よりも多くなることは自明である。よって、本実施形態では、タービン11cに流入する作動流体の増加量が外部加熱方式やガスタービン11の圧縮空気を用いない自己熱分解方式よりも少なくなる。このため、本実施形態では、外部加熱方式やガスタービン11の圧縮空気を用いない自己熱分解方式より、ガスタービン11の空気圧縮機11aでのサージ等の異常事象のリスクが軽減する。この結果、本実施形態では、ガスタービン11本来の燃焼ガス温度を維持することができ、ガスタービン11及びガスタービンコンバインドサイクルとしての熱性能を維持することができる。すなわち、本実施形態では、外部加熱方式やガスタービン11の圧縮空気を用いない自己熱分解方式よりも、ガスタービン11の空気圧縮機11aを流れる気体流量とガスタービン11のタービン11cを流れる気体流量とのマッチングがよくなり、熱性能が向上する。 By the way, in the case of the external heating method, as shown in Table 2, the amount of increase in the working fluid flowing into the turbine 11c is 6.8% (based on the intake mass flow rate). On the other hand, in the present embodiment, as shown in Table 1, the bleed air BA, which is a part of the compressed air generated by the air compressor 11a of the gas turbine 11, is used as an oxidizing agent to flow into the turbine 11c. The net increase in fluid is 5.9% (based on intake mass flow rate). Further, in the self-pyrolysis method, when air other than the compressed air of the gas turbine 11 is used as an oxidant, it is obvious that the amount of increase in the working fluid flowing into the turbine 11c is larger than that of the present embodiment. Therefore, in the present embodiment, the amount of increase in the working fluid flowing into the turbine 11c is smaller than that in the external heating method or the self-pyrolysis method in which the compressed air of the gas turbine 11 is not used. Therefore, in the present embodiment, the risk of an abnormal event such as a surge in the air compressor 11a of the gas turbine 11 is reduced as compared with the external heating method or the self-pyrolysis method that does not use the compressed air of the gas turbine 11. As a result, in the present embodiment, the original combustion gas temperature of the gas turbine 11 can be maintained, and the thermal performance of the gas turbine 11 and the gas turbine combined cycle can be maintained. That is, in the present embodiment, the gas flow rate flowing through the air compressor 11a of the gas turbine 11 and the gas flow rate flowing through the turbine 11c of the gas turbine 11 are higher than those of the external heating method and the self-thermal decomposition method that does not use the compressed air of the gas turbine 11. Matching with is improved and thermal performance is improved.
 本実施形態では、タービン11cに流入する作動流体の正味の増加量は5.9%(吸気質量流量基準)であることから、表3に示すように、燃焼器11bには一般的な天然ガスの場合の108%の発熱量に相当する燃料の投入が必要となる。一方、アンモニア分解装置50において、一旦600℃程度の高温にしたアンモニア分解ガスを、吸収塔64の動作のために約30℃まで冷却する熱損失、アンモニア分離器72の水加熱器77において蒸発させた水蒸気を分離塔75の内部で凝縮させる熱損失などがあり、分解前のアンモニアの発熱量に換算すると一般的な天然ガスの場合の115%の発熱量に相当するアンモニア燃料の投入が必要となる。アンモニア分解設備Xの作動に必要な動力を考慮した発電端出力は110%であることから、本実施形態におけるプラントの発電効率は、天然ガス焚きのガスタービンコンバインドサイクルプラントの発電効率の96%程度になる。1650℃級の天然ガス焚きの場合におけるガスタービンコンバインドサイクルプラントの発電端効率は、63%(LHV基準)以上であることから、本実施形態におけるプラントの発電端効率は60%(LHV基準)以上が可能となる。このように、水素のエネルギーキャリアの一つであるアンモニアを利用することにより、高効率かつ二酸化炭素の排出量を大幅に削減したプラントが提供可能となる。 In the present embodiment, the net increase in the working fluid flowing into the turbine 11c is 5.9% (based on the intake mass flow rate). Therefore, as shown in Table 3, a general natural gas is used for the combustor 11b. It is necessary to input fuel corresponding to 108% of the calorific value in the case of. On the other hand, in the ammonia decomposition apparatus 50, the ammonia decomposition gas once heated to a high temperature of about 600 ° C. is cooled to about 30 ° C. for the operation of the absorption tower 64, and is evaporated in the water heater 77 of the ammonia separator 72. There is heat loss that condenses the water vapor inside the separation tower 75, and it is necessary to input ammonia fuel equivalent to 115% of the calorific value of general natural gas when converted to the calorific value of ammonia before decomposition. Become. Since the power generation end output considering the power required for the operation of the ammonia decomposition facility X is 110%, the power generation efficiency of the plant in this embodiment is about 96% of the power generation efficiency of the natural gas-fired gas turbine combined cycle plant. become. Since the power generation end efficiency of the gas turbine combined cycle plant in the case of natural gas burning of 1650 ° C. is 63% (LHV standard) or more, the power generation end efficiency of the plant in the present embodiment is 60% (LHV standard) or more. Is possible. In this way, by using ammonia, which is one of the energy carriers of hydrogen, it is possible to provide a plant with high efficiency and significantly reduced carbon dioxide emissions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 前述したように、アンモニアの熱分解は、低圧環境下の方が促進される。このため、低圧環境下でアンモニアを熱分解してから、分解後のガスを燃焼器11bに送るために昇圧機で昇圧する方法が考えられる。アンモニアの分解反応は、反応後のモル数が反応前のモル数の2倍になる反応である。燃料ガスを昇圧する昇圧機の流路断面積はガスの体積流量に略比例するため、分解後の分解ガスを昇圧するためには、分解前に昇圧する場合と比較して約2倍の流路断面積を持った大型の昇圧機(圧縮機)が必要となる。また、アンモニアガスの分解で得られた燃料ガスを昇圧する昇圧機の動力は、ガスの体積流量に略比例することから、分解前のアンモニアガスを昇圧する際の動力の約2倍となる。すなわち、この方法では、設備コスト及びランニングコストがかさむ。一方、本実施形態では、アンモニア自己熱分解装置51に供給する前の液体アンモニアを、アンモニア昇圧機(ポンプ)80で、燃焼器11b内の圧力より高い圧力にまで昇圧している上に、アンモニア分解装置50に供給する前の抽気空気BAを、抽気空気昇圧機87で、燃焼器11b内の圧力より高い圧力にまで昇圧している。このため、本実施形態では、アンモニアを分解した後のガスを昇圧してなくても、このガスを燃焼器11bに導くことができる。しかも、本実施形態では、大気よりも高圧な抽気空気BAを抽気空気昇圧機87で昇圧しているので、抽気空気昇圧機87の負担が小さい。よって、本実施形態では、以上の観点からも、設備コスト及びランニングコストを抑えることができる。 As mentioned above, the thermal decomposition of ammonia is promoted in a low-pressure environment. Therefore, a method of thermally decomposing ammonia in a low-pressure environment and then boosting the pressure with a booster to send the decomposed gas to the combustor 11b can be considered. The decomposition reaction of ammonia is a reaction in which the number of moles after the reaction is twice the number of moles before the reaction. Since the cross-sectional area of the flow path of the compressor that boosts the fuel gas is approximately proportional to the volumetric flow rate of the gas, in order to boost the cracked gas after decomposition, the flow is about twice that of the case where the pressure is boosted before cracking. A large booster (compressor) with a road cross-sectional area is required. Further, since the power of the booster for boosting the fuel gas obtained by decomposing the ammonia gas is substantially proportional to the volumetric flow rate of the gas, it is about twice the power for boosting the ammonia gas before decomposition. That is, this method increases equipment cost and running cost. On the other hand, in the present embodiment, the liquid ammonia before being supplied to the ammonia self-thermal decomposition device 51 is boosted to a pressure higher than the pressure in the combustor 11b by the ammonia booster (pump) 80, and the ammonia. The bleed air BA before being supplied to the decomposition device 50 is boosted to a pressure higher than the pressure in the combustor 11b by the bleed air booster 87. Therefore, in the present embodiment, this gas can be guided to the combustor 11b without boosting the pressure of the gas after decomposing ammonia. Moreover, in the present embodiment, since the bleed air BA whose pressure is higher than that of the atmosphere is boosted by the bleed air booster 87, the load on the bleed air booster 87 is small. Therefore, in the present embodiment, the equipment cost and the running cost can be suppressed from the above viewpoints as well.
 本実施形態では、アンモニアを加熱するための熱源、及び、アンモニア分離塔75からの水を加熱して水蒸気にするための熱源として、アンモニア分解設備X内で発生した分解ガスDGの熱を利用する。よって、本実施形態では、これらの熱源として、アンモニア分解設備X外の熱を利用する場合よりも、設備コスト及びランニングコストを抑えることができる。 In the present embodiment, the heat of the decomposition gas DG generated in the ammonia decomposition facility X is used as a heat source for heating ammonia and as a heat source for heating water from the ammonia separation tower 75 into steam. .. Therefore, in the present embodiment, the equipment cost and the running cost can be suppressed as compared with the case where the heat outside the ammonia decomposition equipment X is used as these heat sources.
 「変形例」
 本実施形態では、ガスタービンロータ11dと蒸気タービンロータ34とが連結されている。しかしながら、ガスタービンロータ11dと蒸気タービンロータ34とは連結されていなくてもよい。この場合、ガスタービンロータ11dと蒸気タービンロータ34とのそれぞれに発電機が連結されることになる。
"Modification example"
In this embodiment, the gas turbine rotor 11d and the steam turbine rotor 34 are connected. However, the gas turbine rotor 11d and the steam turbine rotor 34 may not be connected. In this case, a generator is connected to each of the gas turbine rotor 11d and the steam turbine rotor 34.
 本実施形態における蒸気タービン設備30は、流入蒸気の圧力が互いに異なる三種類の蒸気タービン31,32,33を有する。しかしながら、蒸気タービン設備は、蒸気タービンとして、一種類の蒸気タービンのみを有してもよい。この場合、排熱回収ボイラの蒸気発生系は、蒸気タービンを駆動させるための蒸気を発生する蒸気発生系として、一種類の蒸気発生系のみを有していればよい。 The steam turbine equipment 30 in the present embodiment has three types of steam turbines 31, 32, 33 in which the pressure of the inflow steam is different from each other. However, the steam turbine equipment may have only one type of steam turbine as the steam turbine. In this case, the steam generation system of the exhaust heat recovery boiler need only have one type of steam generation system as the steam generation system for generating steam for driving the steam turbine.
 本実施形態では、分解ガスDG中からアンモニアを除く方法として、吸収塔64において、分解ガスDGと水とを接触させる方法を採用している。しかしながら、分解ガスDG中からアンモニアを除く方法として、圧力変動吸着法(PSA)を採用してもよい。圧力変動吸着法は、乾式であることが特徴である。但し、この方法は、吸脱着切り替え時の圧力変動に注意する必要がある。 In the present embodiment, as a method of removing ammonia from the decomposition gas DG, a method of bringing the decomposition gas DG into contact with water is adopted in the absorption tower 64. However, a pressure fluctuation adsorption method (PSA) may be adopted as a method for removing ammonia from the decomposed gas DG. The pressure fluctuation adsorption method is characterized by being a dry method. However, in this method, it is necessary to pay attention to the pressure fluctuation at the time of switching between suction and desorption.
 本実施形態では、アンモニア分離器72における分離塔75の下部に溜まった水を、水加熱器77で、分解ガスDGとの熱交換で加熱する。しかしながら、この水と熱交換する熱媒体として、排熱回収ボイラ20で発生した蒸気を用いてもよい。この場合、例えば、中圧蒸気ISが流れる中圧蒸気ライン42、叉は、再熱蒸気RSが流れる再熱蒸気ライン43と、水加熱器77の熱媒体入口とを媒体ラインで接続し、中圧蒸気IS又は再熱蒸気RSを水と熱交換する熱媒体としてもよい。この場合、水蒸気の蒸発潜熱を利用すれば、比較的少ない流量の水蒸気で足りるため、水加熱器77の伝熱面積を小さくすることができる。但し、この場合、排熱回収ボイラ20からの蒸気の一部を利用するため、排熱回収ボイラ20からの蒸気で駆動する蒸気タービンの出力が低下して、プラント効率が低下する可能性がある。 In the present embodiment, the water accumulated in the lower part of the separation tower 75 in the ammonia separator 72 is heated by the water heater 77 by heat exchange with the decomposition gas DG. However, the steam generated by the exhaust heat recovery boiler 20 may be used as the heat medium for heat exchange with the water. In this case, for example, the medium-pressure steam line 42 through which the medium-pressure steam IS flows, or the reheated steam line 43 through which the reheated steam RS flows, and the heat medium inlet of the water heater 77 are connected by a medium line. The pressure steam IS or the reheat steam RS may be used as a heat medium for heat exchange with water. In this case, if the latent heat of vaporization of steam is used, a relatively small flow rate of steam is sufficient, so that the heat transfer area of the water heater 77 can be reduced. However, in this case, since a part of the steam from the exhaust heat recovery boiler 20 is used, the output of the steam turbine driven by the steam from the exhaust heat recovery boiler 20 may decrease, and the plant efficiency may decrease. ..
 本実施形態では、アンモニア分離器72における分離塔75の外部に水加熱器77が配置されている。すなわち、本実施形態では、分離塔75の下部に溜まった水を外部に引き出し、この水を水加熱器77で加熱する。しかしながら、アンモニア分離器72における分離塔75の下部空間内に水加熱器を配置してもよい。 In this embodiment, the water heater 77 is arranged outside the separation tower 75 in the ammonia separator 72. That is, in the present embodiment, the water accumulated in the lower part of the separation tower 75 is drawn out to the outside, and this water is heated by the water heater 77. However, a water heater may be arranged in the lower space of the separation tower 75 in the ammonia separator 72.
 本実施形態では、アンモニア分離器72における分離塔75の外部に凝縮器78が配置されている。すなわち、本実施形態では、分離塔75内のガスを外部に引き出し、このガスの一部を凝縮器78で凝縮させる。しかしながら、アンモニア分離器72における分離塔75内の上部空間内に凝縮器を配置してもよい。 In the present embodiment, the condenser 78 is arranged outside the separation tower 75 in the ammonia separator 72. That is, in the present embodiment, the gas in the separation tower 75 is drawn to the outside, and a part of this gas is condensed by the condenser 78. However, the condenser may be arranged in the upper space in the separation tower 75 of the ammonia separator 72.
 本実施形態では、アンモニア吸収器62における吸収塔64での気液接触方法として、充填物式を採用している。また、本実施形態では、アンモニア分離器72における分離塔75での気液接触方法として、棚段式を採用している。しかしながら、気液接触方法には、他の方式もあるので、吸収塔64及び分離塔75での気液接触方法として、他の方式を採用してもよい。気液接触方法を実現する複数の方式には、方式毎に、機器の大きさ、機器の資本費、機器の保守費、機器の圧力損失、機器の必要動力、機器の耐久性などに長所短所がある。このため、液接触方法を実現する複数の方式のうち、プラントの仕様や立地条件などに応じて最適な方式を選定すればよい。 In the present embodiment, a filling method is adopted as a gas-liquid contact method in the absorption tower 64 in the ammonia absorber 62. Further, in the present embodiment, a shelf type is adopted as a gas-liquid contact method in the separation tower 75 in the ammonia separator 72. However, since there are other methods for the gas-liquid contact method, other methods may be adopted as the gas-liquid contact method in the absorption tower 64 and the separation tower 75. The multiple methods that realize the gas-liquid contact method have advantages and disadvantages in terms of equipment size, equipment capital cost, equipment maintenance cost, equipment pressure loss, equipment required power, equipment durability, etc. There is. Therefore, among a plurality of methods for realizing the liquid contact method, the optimum method may be selected according to the plant specifications, location conditions, and the like.
 本実施形態では、起動時燃料SFとして、水素や天然ガスを想定している。しかしながら、起動時燃料SFとして、例えば、軽油等の液体燃料を用いていてもよい。この場合、気体燃料である処理済みガスPGと液体燃料とを共通の配管で燃焼器11bに送ることができない。このため、この場合には、液体燃料を燃焼器11bに供給するための配管を別途設ける必要がある。 In this embodiment, hydrogen or natural gas is assumed as the starting fuel SF. However, as the start-up fuel SF, for example, a liquid fuel such as light oil may be used. In this case, the processed gas PG which is a gaseous fuel and the liquid fuel cannot be sent to the combustor 11b through a common pipe. Therefore, in this case, it is necessary to separately provide a pipe for supplying the liquid fuel to the combustor 11b.
 本実施形態では、ガスタービン11が定常運転になった後、処理済みガスPGを燃焼器11bの燃料として専ら利用する。しかしながら、ガスタービン11が定常運転になった後、処理済みガスPGと天然ガス等の他の燃料ガスとを混合した混合燃料ガスを燃料として利用してもよい。この場合、ガスタービン11の起動時には、天然ガス等の他の燃料ガスのみを燃料として利用する。この場合、定常運転時において、液体アンモニアの消費量が本実施形態よりも少なくなるため、アンモニア分解設備Xを構成する各機器の容量や処理能力が、本実施形態のアンモニア分解設備Xを構成する各機器の容量や処理能力よりも小さくなる。具体的に、例えば、アンモニアタンクT、アンモニア自己熱分解器53、アンモニア分離器72などの容量は、本実施形態に比べて、すべて小さくなる。しかしながら、この場合、排気ガスEG中の二酸化炭素量が本実施形態に比べて多くなる。但し、この場合でも、定常運転時の燃料の一部として、処理済みガスPGを利用するので、定常運転時に天然ガスを燃料として専ら利用する場合よりも、排気ガスEG中の二酸化炭素量を低減することができる。 In the present embodiment, after the gas turbine 11 is in steady operation, the processed gas PG is exclusively used as fuel for the combustor 11b. However, after the gas turbine 11 is in steady operation, a mixed fuel gas obtained by mixing the processed gas PG and another fuel gas such as natural gas may be used as the fuel. In this case, when the gas turbine 11 is started, only other fuel gas such as natural gas is used as fuel. In this case, since the consumption of liquid ammonia is smaller than that in the present embodiment during steady operation, the capacity and processing capacity of each device constituting the ammonia decomposition facility X constitutes the ammonia decomposition facility X of the present embodiment. It is smaller than the capacity and processing capacity of each device. Specifically, for example, the capacities of the ammonia tank T, the ammonia self-pyrolyzer 53, the ammonia separator 72, and the like are all smaller than those of the present embodiment. However, in this case, the amount of carbon dioxide in the exhaust gas EG is larger than that in the present embodiment. However, even in this case, since the processed gas PG is used as a part of the fuel during the steady operation, the amount of carbon dioxide in the exhaust gas EG is reduced as compared with the case where the natural gas is exclusively used as the fuel during the steady operation. can do.
 本発明の一態様によれば、アンモニアの分解で得られるガスを燃料とするタービンプラントの設備コストを抑えることができる。 According to one aspect of the present invention, it is possible to reduce the equipment cost of a turbine plant that uses gas obtained by decomposing ammonia as fuel.
10:ガスタービン設備
11:ガスタービン
11a:空気圧縮機
11b:燃焼器
11c:タービン
11d:ガスタービンロータ
11e:圧縮空気通路
12:燃料ライン
13:流量計
14:予熱器
15:燃料調節弁
16:起動時燃料ライン
20:排熱回収ボイラ
21:ボイラ枠
22:低圧蒸気発生系
22a:節炭器
22b:蒸発器
22c:過熱器
23:中圧蒸気発生系
24:中圧ポンプ
25:再熱蒸気系
26:高圧蒸気発生系
27:高圧ポンプ
29:スタック
30:蒸気タービン設備
31:低圧蒸気タービン
32:中圧蒸気タービン
33:高圧蒸気タービン
34:蒸気タービンロータ
35:復水器
36:復水ポンプ
39:発電機
41:低圧蒸気ライン
42:中圧蒸気ライン
43:再熱蒸気ライン
44:高圧蒸気ライン
45:中圧排気蒸気ライン
46:高圧排気蒸気ライン
47:給水ライン
49:熱水ライン
T:アンモニアタンク
X:アンモニア分解設備
50:アンモニア分解装置
51:アンモニア自己熱分解装置
52a:第一アンモニア加熱器
52b:第二アンモニア加熱器
53:アンモニア自己熱分解器
54:分解ガスライン
54a:第一ライン
54b:第二ライン
54c:第三ライン
54d:第四ライン
61:アンモニア除去装置
62:アンモニア吸収器
63:分解ガス冷却器
64:吸収塔
64p:充填物
64v:吸収塔容器
65:水ライン
66:水供給ポンプ
67:水冷却器
72:アンモニア分離器
73:アンモニア水ライン
74:アンモニア水加熱器
75:分離塔
75v:分離塔容器
75p:棚段
76:水循環ライン
77:水加熱器
78:凝縮器
79:水回収ライン
80:アンモニア昇圧機
81:アンモニア供給ライン
82:処理済みガス供給ライン
83:アンモニア回収ライン
84:アンモニア圧縮機
85:抽気空気ライン
86:抽気空気冷却器
87:抽気空気昇圧機
88i:冷却媒体ライン
88o:冷却媒体回収ライン
89:燃料バッファ
BA:抽気空気
EG:排気ガス
LS:低圧蒸気
IS:中圧蒸気
RS:再熱蒸気
HS:高圧蒸気
DG:分解ガス
SF:起動時燃料
PG:処理済みガス
10: Gas turbine equipment 11: Gas turbine 11a: Air compressor 11b: Combustor 11c: Turbine 11d: Gas turbine rotor 11e: Compressed air passage 12: Fuel line 13: Flow meter 14: Preheater 15: Fuel control valve 16: At startup Fuel line 20: Exhaust heat recovery boiler 21: Boiler frame 22: Low pressure steam generating system 22a: Coal saving device 22b: Evaporator 22c: Superheater 23: Medium pressure steam generating system 24: Medium pressure pump 25: Condenser System 26: High-pressure steam generation system 27: High-pressure pump 29: Stack 30: Steam turbine equipment 31: Low-pressure steam turbine 32: Medium-pressure steam turbine 33: High-pressure steam turbine 34: Steam turbine rotor 35: Condenser 36: Condensation pump 39: Generator 41: Low pressure steam line 42: Medium pressure steam line 43: Condensed steam line 44: High pressure steam line 45: Medium pressure exhaust steam line 46: High pressure exhaust steam line 47: Water supply line 49: Hot water line T: Ammonia tank X: Ammonia decomposition equipment 50: Ammonia decomposition device 51: Ammonia self-thermal decomposition device 52a: First ammonia heater 52b: Second ammonia heater 53: Ammonia self-thermal decomposition device 54: Decomposition gas line 54a: First line 54b: Second line 54c: Third line 54d: Fourth line 61: Ammonia removal device 62: Ammonia absorber 63: Decomposition gas cooler 64: Absorption tower 64p: Filling 64v: Absorption tower container 65: Water line 66: Water supply pump 67: Water cooler 72: Ammonia separator 73: Ammonia water line 74: Ammonia water heater 75: Separation tower 75v: Separation tower container 75p: Shelf stage 76: Water circulation line 77: Water heater 78: Condenser 79: Water recovery line 80: Ammonia booster 81: Ammonia supply line 82: Treated gas supply line 83: Ammonia recovery line 84: Ammonia compressor 85: Extraction air line 86: Extraction air cooler 87: Extraction air booster 88i : Cooling medium line 88o: Cooling medium recovery line 89: Fuel buffer BA: Extracted air EG: Exhaust gas LS: Low pressure steam IS: Medium pressure steam RS: Condensed steam HS: High pressure steam DG: Decomposed gas SF: Fuel PG at startup : Processed gas

Claims (14)

  1.  空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気である圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を有するガスタービンに接続されているアンモニア分解設備において、
     前記ガスタービンに接続され、前記圧縮空気の一部が抽気空気として流れる抽気空気ラインと、
     アンモニアが流れるアンモニア供給ラインと、
     前記抽気空気ライン及び前記アンモニア供給ラインに接続され、前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア供給ラインからの前記アンモニアの一部を燃焼させて、アンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスを生成するアンモニア分解装置と、
     前記アンモニア分解装置で生成された前記処理済みガスを前記燃料として前記燃焼器に導く処理済みガス供給ラインと、
     を備えるアンモニア分解設備。
    A gas turbine having a compressor that compresses air, a combustor that burns fuel in compressed air that is the air compressed by the compressor to generate combustion gas, and a turbine that is driven by the combustion gas. In the connected ammonia decomposition facility
    An bleed air line connected to the gas turbine and a part of the compressed air flowing as bleed air,
    Ammonia supply line through which ammonia flows and
    It is connected to the bleed air line and the ammonia supply line, and the bleed air from the bleed air line is used as an oxidizing agent to burn a part of the ammonia from the ammonia supply line to self-decompose the ammonia. , Ammonia crackers that produce treated gas containing hydrogen and nitrogen,
    A processed gas supply line that guides the processed gas generated by the ammonia decomposition device to the combustor as the fuel, and
    Ammonia decomposition equipment equipped with.
  2.  請求項1に記載のアンモニア分解設備において、
     前記アンモニア供給ラインに設けられ、前記アンモニア供給ラインを流れる前記アンモニアを前記燃焼器内の圧力より高い圧力に昇圧するアンモニア昇圧機と、
     前記抽気空気ラインに設けられ、前記抽気空気ラインを流れる前記抽気空気を前記燃焼器内の圧力より高い圧力に昇圧する抽気空気昇圧機と、
     を備えるアンモニア分解設備。
    In the ammonia decomposition equipment according to claim 1,
    An ammonia booster provided in the ammonia supply line and boosting the ammonia flowing through the ammonia supply line to a pressure higher than the pressure in the combustor.
    An bleed air booster provided in the bleed air line and boosting the bleed air flowing through the bleed air line to a pressure higher than the pressure in the combustor.
    Ammonia decomposition equipment equipped with.
  3.  請求項1又は2に記載のアンモニア分解設備において、
     前記アンモニア分解装置は、
     前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア供給ラインからの前記アンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、水素と窒素と残留アンモニアを含む分解ガスを生成するアンモニア自己熱分解装置と、
     前記アンモニア自己熱分解装置からの前記分解ガス中に含まれる前記残留アンモニアを除去し、前記分解ガスから前記残留アンモニアが除去されたガスを前記処理済みガスとして排出するアンモニア除去装置と、
     を有する、
     アンモニア分解設備。
    In the ammonia decomposition equipment according to claim 1 or 2.
    The ammonia decomposition device is
    Using the extracted air from the extracted air line as an oxidizing agent, a part of the ammonia from the ammonia supply line is burned to self-pyrolyze the ammonia to produce a decomposed gas containing hydrogen, nitrogen and residual ammonia. Ammonia self-pyrolysis device to be generated and
    An ammonia removing device that removes the residual ammonia contained in the decomposition gas from the ammonia self-pyrolysis device and discharges the gas from which the residual ammonia has been removed from the decomposition gas as the processed gas.
    Have,
    Ammonia decomposition equipment.
  4.  請求項3に記載のアンモニア分解設備において、
     前記アンモニア自己熱分解装置は、アンモニア加熱器と、アンモニア自己熱分解器と、を有し、
     前記アンモニア加熱器は、前記アンモニア供給ラインに設けられ、前記アンモニア供給ラインを流れる前記アンモニアと前記分解ガスとを熱交換させて、前記アンモニアを加熱する一方で、前記分解ガスを冷却する熱交換器であり、
     前記アンモニア自己熱分解器は、前記抽気空気ラインからの前記抽気空気を酸化剤として、前記アンモニア加熱器で加熱された後のアンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、前記分解ガスを生成する
     アンモニア分解設備。
    In the ammonia decomposition equipment according to claim 3,
    The ammonia self-pyrolyzer has an ammonia heater and an ammonia self-pyrolyzer.
    The ammonia heater is provided in the ammonia supply line, and heat exchanges the ammonia flowing through the ammonia supply line with the decomposition gas to heat the ammonia while cooling the decomposition gas. And
    The ammonia self-pyrolyzer uses the extracted air from the bleed air line as an oxidant to burn a part of the ammonia after being heated by the ammonia heater to self-pyrolyze the ammonia. Ammonia decomposition equipment that produces the decomposition gas.
  5.  請求項3又は4に記載のアンモニア分解設備において、
     前記アンモニア除去装置は、アンモニア吸収器と、アンモニア分離器と、を有し、
     前記アンモニア吸収器は、前記アンモニア自己熱分解装置からの前記分解ガスと水とを接触させて、前記分解ガス中の前記残留アンモニアを前記水中に溶解させる一方で、前記処理済み分解ガスを排出し、
     前記アンモニア分離器は、分離塔と、水加熱器と、を有し、
     前記分離塔は、前記残留アンモニアが溶解した前記水であるアンモニア水と水蒸気と接触させ、前記アンモニア水を加熱して、前記アンモニア水からアンモニアを分離し、
     前記水加熱器は、前記アンモニア水からアンモニアが分離した水を加熱して水蒸気にした後、水蒸気を前記分離塔に戻す、
     アンモニア分解設備。
    In the ammonia decomposition equipment according to claim 3 or 4.
    The ammonia removing device includes an ammonia absorber and an ammonia separator.
    The ammonia absorber brings the decomposition gas from the ammonia self-pyrolysis apparatus into contact with water to dissolve the residual ammonia in the decomposition gas in the water, while discharging the treated decomposition gas. ,
    The ammonia separator has a separation tower and a water heater.
    In the separation tower, the ammonia water, which is the water in which the residual ammonia is dissolved, is brought into contact with steam, and the ammonia water is heated to separate ammonia from the ammonia water.
    The water heater heats water in which ammonia is separated from the ammonia water to make steam, and then returns the steam to the separation tower.
    Ammonia decomposition equipment.
  6.  請求項5に記載のアンモニア分解設備において、
     前記水加熱器は、前記アンモニア水からアンモニアが分離した水と前記分解ガスとを熱交換させて、前記水を加熱して水蒸気にする熱交換器である、
     アンモニア分解設備。
    In the ammonia decomposition equipment according to claim 5.
    The water heater is a heat exchanger that heats the water to steam by exchanging heat between the water in which ammonia is separated from the ammonia water and the decomposition gas.
    Ammonia decomposition equipment.
  7.  請求項1から6のいずれか一項に記載のアンモニア分解設備と、
     前記ガスタービンと、
     を備えるガスタービンプラント。
    The ammonia decomposition equipment according to any one of claims 1 to 6.
    With the gas turbine
    A gas turbine plant equipped with.
  8.  アンモニア分解装置で、ガスタービンの圧縮機で圧縮された空気である圧縮空気の一部である抽気空気を酸化剤として、アンモニアの一部を燃焼させて、アンモニアを自己熱分解させて、水素と窒素とを含む処理済みガスを生成するアンモニア分解工程と、
     前記アンモニア分解工程で生成された前記処理済みガスを燃料として前記ガスタービンの燃焼器に導く処理済みガス供給工程と、
     を実行するアンモニア分解方法。
    In the ammonia decomposition device, part of the ammonia is burned using the extracted air, which is a part of the compressed air that is the air compressed by the compressor of the gas turbine, as an oxidizing agent, and the ammonia is self-thermally decomposed into hydrogen. Ammonia decomposition step to generate treated gas containing nitrogen,
    A processed gas supply step of using the treated gas generated in the ammonia decomposition step as fuel and guiding it to the combustor of the gas turbine, and
    Ammonia decomposition method to perform.
  9.  請求項8に記載のアンモニア分解方法において、
     前記アンモニア分解工程で自己熱分解される前のアンモニアを前記燃焼器内の圧力より高い圧力に昇圧してから、昇圧後のアンモニアを前記アンモニア分解装置に供給するアンモニア供給工程と、
     前記アンモニア分解工程で前記酸化剤として利用される前の前記抽気空気を前記燃焼器内の圧力より高い圧力に昇圧してから、昇圧後の抽気空気を前記アンモニア分解装置に供給する抽気空気供給工程と、
     を実行するアンモニア分解方法。
    In the ammonia decomposition method according to claim 8,
    An ammonia supply step of boosting the ammonia before self-pyrolysis in the ammonia decomposition step to a pressure higher than the pressure in the combustor and then supplying the boosted ammonia to the ammonia decomposition device.
    An bleed air supply step in which the bleed air before being used as the oxidant in the ammonia decomposition step is pressurized to a pressure higher than the pressure in the combustor, and then the bleed air after the pressure is supplied to the ammonia decomposition apparatus. When,
    Ammonia decomposition method to perform.
  10.  請求項8又は9に記載のアンモニア分解方法において、
     前記アンモニア分解工程は、
     前記酸化剤として利用される前の前記抽気空気を酸化剤として、前記アンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、水素と窒素と残留アンモニアとを含む分解ガスを生成するアンモニア自己熱分解工程と、
     前記分解ガスから前記残留アンモニアを除去し、前記分解ガスから前記残留アンモニアが除去されたガスを前記処理済みガスとして排出するアンモニア除去工程と、
     を含む、
     アンモニア分解方法。
    In the ammonia decomposition method according to claim 8 or 9.
    The ammonia decomposition step is
    Using the extracted air before being used as the oxidant as an oxidant, a part of the ammonia is burned to self-pyrolyze the ammonia to generate a decomposition gas containing hydrogen, nitrogen and residual ammonia. Ammonia self-pyrolysis process and
    An ammonia removal step of removing the residual ammonia from the decomposition gas and discharging the gas from which the residual ammonia has been removed from the decomposition gas as the treated gas.
    including,
    Ammonia decomposition method.
  11.  請求項10に記載のアンモニア分解方法において、
     前記アンモニア自己熱分解工程は、アンモニア予熱工程と、アンモニア自己熱分解実行工程と、を含み、
     前記アンモニア予熱工程では、前記アンモニアと前記分解ガスとを熱交換させて、前記アンモニアを加熱する一方で、前記分解ガスを冷却し、
     前記アンモニア自己熱分解実行工程では、前記酸化剤として利用される前の前記抽気空気を酸化剤として、前記アンモニア予熱工程で加熱された後のアンモニアの一部を燃焼させて、前記アンモニアを自己熱分解させて、前記分解ガスを生成する、
     アンモニア分解方法。
    In the ammonia decomposition method according to claim 10,
    The ammonia self-pyrolysis step includes an ammonia preheating step and an ammonia self-pyrolysis execution step.
    In the ammonia preheating step, the ammonia and the decomposition gas are heat-exchanged to heat the ammonia while cooling the decomposition gas.
    In the ammonia self-pyrolysis execution step, a part of the ammonia after being heated in the ammonia preheating step is burned by using the extracted air before being used as the oxidizing agent as an oxidizing agent, and the ammonia is self-heated. Decompose to generate the decomposed gas,
    Ammonia decomposition method.
  12.  請求項10又は11に記載のアンモニア分解方法において、
     前記アンモニア除去工程は、アンモニア吸収工程と、アンモニア分離工程と、を含み、
     前記アンモニア吸収工程では、前記アンモニア自己熱分解工程の実行で得られた前記分解ガスと水とを接触させて、前記分解ガス中の前記残留アンモニアを水中に溶解させる一方で、前記処理済みガスを排出し、
     前記アンモニア分離工程では、分離実行工程と、水加熱工程と、を含み、
     前記分離実行工程では、前記残留アンモニアが溶解した水であるアンモニア水と水蒸気と接触させ、前記アンモニア水からアンモニアを蒸発分離し、
     前記水加熱工程では、前記アンモニア水からアンモニアが分離した水を加熱して、前記分離実行工程で用いる水蒸気にする、
     アンモニア分解方法。
    In the ammonia decomposition method according to claim 10 or 11.
    The ammonia removal step includes an ammonia absorption step and an ammonia separation step.
    In the ammonia absorption step, the decomposition gas obtained in the execution of the ammonia self-pyrolysis step is brought into contact with water to dissolve the residual ammonia in the decomposition gas in water, while the treated gas is dissolved. Discharge,
    The ammonia separation step includes a separation execution step and a water heating step.
    In the separation execution step, ammonia water, which is water in which the residual ammonia is dissolved, is brought into contact with water vapor, and ammonia is evaporated and separated from the ammonia water.
    In the water heating step, the water in which ammonia is separated from the ammonia water is heated to obtain steam used in the separation execution step.
    Ammonia decomposition method.
  13.  請求項12に記載のアンモニア分解方法において、
     前記水加熱工程では、前記アンモニア水からアンモニアが分離した水と前記分解ガスとを熱交換させて、前記水を加熱して水蒸気にする、
     アンモニア分解方法。
    In the ammonia decomposition method according to claim 12,
    In the water heating step, the water in which ammonia is separated from the ammonia water and the decomposition gas are heat-exchanged to heat the water into steam.
    Ammonia decomposition method.
  14.  請求項8から13のいずれか一項に記載のアンモニア分解方法において、
     前記処理済みガス中の残留アンモニア濃度を、前記ガスタービンから排気される排気ガス中の窒素酸化物濃度が所望の濃度未満になる濃度にする、
     アンモニア分解方法。
    In the ammonia decomposition method according to any one of claims 8 to 13.
    The residual ammonia concentration in the treated gas is adjusted to a concentration at which the nitrogen oxide concentration in the exhaust gas exhausted from the gas turbine becomes less than a desired concentration.
    Ammonia decomposition method.
PCT/JP2020/011223 2019-03-15 2020-03-13 Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia WO2020189575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048898A JP2020147478A (en) 2019-03-15 2019-03-15 Ammonia decomposition equipment, gas turbine plant with the same, ammonia decomposition method
JP2019-048898 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189575A1 true WO2020189575A1 (en) 2020-09-24

Family

ID=72430289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011223 WO2020189575A1 (en) 2019-03-15 2020-03-13 Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia

Country Status (2)

Country Link
JP (1) JP2020147478A (en)
WO (1) WO2020189575A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115614778A (en) * 2022-11-04 2023-01-17 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315763B1 (en) * 2020-11-05 2021-10-21 (주)씨이에스 Production system of purified hydrogen gas by decomposing ammonia gas
CN117120710A (en) * 2021-04-14 2023-11-24 株式会社Ihi Combustion device and gas turbine system
KR102538689B1 (en) 2022-02-15 2023-05-30 두산에너빌리티 주식회사 Combined power plant and operating method of the same
JP2023124601A (en) * 2022-02-25 2023-09-06 三菱重工業株式会社 Gas turbine plant and ammonia utilization method for the same
JP7480215B2 (en) 2022-03-30 2024-05-09 東京瓦斯株式会社 Steam Supply Equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351321A (en) * 1976-10-19 1978-05-10 Westinghouse Electric Corp Gas turbine generator
JPS53102899A (en) * 1977-02-09 1978-09-07 Otto & Co Gmbh Dr C Method of separating ammonia from ammoniaacontaining solution
JP2009035458A (en) * 2007-08-03 2009-02-19 Tama Tlo Kk Hydrogen generator
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
WO2017160154A1 (en) * 2016-03-14 2017-09-21 Statoil Petroleum As Ammonia cracking
JP2018076794A (en) * 2016-11-08 2018-05-17 三菱日立パワーシステムズ株式会社 Gas turbine power plant and method for operating the same
JP2018095512A (en) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 System for supplying hydrogen-containing fuel, thermal power plant, combustion unit, and method for remodeling the combustion unit
JP2018162936A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351321A (en) * 1976-10-19 1978-05-10 Westinghouse Electric Corp Gas turbine generator
JPS53102899A (en) * 1977-02-09 1978-09-07 Otto & Co Gmbh Dr C Method of separating ammonia from ammoniaacontaining solution
JP2009035458A (en) * 2007-08-03 2009-02-19 Tama Tlo Kk Hydrogen generator
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
WO2017160154A1 (en) * 2016-03-14 2017-09-21 Statoil Petroleum As Ammonia cracking
JP2018076794A (en) * 2016-11-08 2018-05-17 三菱日立パワーシステムズ株式会社 Gas turbine power plant and method for operating the same
JP2018095512A (en) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 System for supplying hydrogen-containing fuel, thermal power plant, combustion unit, and method for remodeling the combustion unit
JP2018162936A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115614778A (en) * 2022-11-04 2023-01-17 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method
CN115614778B (en) * 2022-11-04 2023-08-15 北京理工大学 Ammonia-hydrogen mixed combustion chamber and ammonia-hydrogen mixed combustion method

Also Published As

Publication number Publication date
JP2020147478A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020189566A1 (en) Ammonia decomposition facility, gas turbine plant equipped with same, and ammonia decomposition method
WO2020189575A1 (en) Equipment for decomposing ammonia, gas turbine plant provided with same, and method for decomposing ammonia
Romano et al. Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes
US11939915B2 (en) Raw material fluid treatment plant and raw material fluid treatment method
Carapellucci et al. The retrofitting of a coal-fired subcritical steam power plant for carbon dioxide capture: A comparison between MCFC-based active systems and conventional MEA
CA2542610C (en) Purification works for thermal power plant
Nord et al. Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant
EA031165B1 (en) System and method for high-efficiency energy generation using a nitrogen-based working fluid
US20080115500A1 (en) Combustion of water borne fuels in an oxy-combustion gas generator
US8375725B2 (en) Integrated pressurized steam hydrocarbon reformer and combined cycle process
JP2016514226A (en) Catalysts containing oxygen storage components for the treatment of gas turbine exhaust gas
Nazir et al. Gas switching reforming (GSR) for power generation with CO2 capture: process efficiency improvement studies
Nazir et al. Full plant scale analysis of natural gas fired power plants with pre-combustion CO2 capture and chemical looping reforming (CLR)
WO2017189785A1 (en) Carbon dioxide sequestration using molten carbonate fuel cell and hydrogen separation technology
RU2693777C1 (en) Power chemical plant for producing synthesis gas, electric and heat energy
JP7381631B2 (en) Supercritical CO2 power cycle using methane dry reforming
KR102666770B1 (en) Ammonia decomposition equipment, gas turbine plant equipped therewith, and ammonia decomposition method
JPH03258902A (en) Electric power plant
US8869502B2 (en) Fuel reformer system for a turbomachine system
JP2020159264A (en) gas turbine
JP6153162B2 (en) CO2 recovery type closed cycle gasification power generation system
WO2021234795A1 (en) Gas turbine
Rao Gas-fired combined-cycle power plant design and technology
JP2017133701A (en) Combustion gas supply system
Nord et al. HRSG Design for Integrated Reforming Combined Cycle With CO2 Capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774832

Country of ref document: EP

Kind code of ref document: A1