JP2023174901A - Contact stress estimation method for rolling component, contact estimation program for rolling component, and contact stress estimation device for rolling component - Google Patents

Contact stress estimation method for rolling component, contact estimation program for rolling component, and contact stress estimation device for rolling component Download PDF

Info

Publication number
JP2023174901A
JP2023174901A JP2023180138A JP2023180138A JP2023174901A JP 2023174901 A JP2023174901 A JP 2023174901A JP 2023180138 A JP2023180138 A JP 2023180138A JP 2023180138 A JP2023180138 A JP 2023180138A JP 2023174901 A JP2023174901 A JP 2023174901A
Authority
JP
Japan
Prior art keywords
fatigue
rolling component
data
rolling
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023180138A
Other languages
Japanese (ja)
Inventor
直哉 嘉村
Naoya Kamura
直輝 藤村
Naoki Fujimura
工 藤田
Takumi Fujita
直哉 長谷川
Naoya Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of JP2023174901A publication Critical patent/JP2023174901A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a method for estimating a fatigue level of a rolling component, a device for estimating the fatigue level of the rolling component, and a program for estimating the fatigue level of a rolling component, which are capable of estimating the fatigue level of the rolling component with high accuracy.SOLUTION: A method for estimating a fatigue level of a rolling component includes: a step (S110) of acquiring data for estimating the degree of fatigue of the rolling component from the rolling component subjected to repeated loads due to rotation; a step (S120) of determining whether or not a structural change has occurred in a fatigued part of the rolling component based on the data obtained in the step (S110); and steps (S131 to S134, and S141) for estimating a first fatigue degree regarding internally originating damage of the rolling component based on the determination result in the step (S120) and the data obtained in the step (S110).SELECTED DRAWING: Figure 4

Description

この発明は、転動部品の疲労度推定方法、転動部品の疲労度推定装置、転動部品の疲労度推定プログラムおよび転動部品の接触応力推定方法に関する。 The present invention relates to a rolling component fatigue level estimation method, a rolling component fatigue level estimation device, a rolling component fatigue level estimation program, and a rolling component contact stress estimation method.

転がり軸受(以下、軸受とも呼ぶ)の寿命は、荷重や潤滑条件等の運転条件、硬度・組織・残留応力等の材料特性に依存することが知られている。従来より、軸受の寿命は、運転条件や材料特性から計算できる寿命計算式を使って推定されている。この計算式は、軸受をある条件で使用する際にどのくらいの期間使用できるのか、あるいは、要求される使用期間で軸受が破損しないためにどのような条件で軸受を使用すればよいのか、を見積もるために使用されている。一般に、軸受は、その寿命計算式に基づいて設定した使用条件で使用される。したがって、想定した条件で軸受が使用されている場合は、当該軸受の寿命が問題になることはないはずである。 It is known that the life of a rolling bearing (hereinafter also referred to as a bearing) depends on operating conditions such as load and lubrication conditions, and material properties such as hardness, structure, and residual stress. Conventionally, the life of a bearing has been estimated using a life calculation formula that can be calculated from operating conditions and material properties. This calculation formula estimates how long a bearing can be used under certain conditions, or under what conditions the bearing should be used to avoid damage during the required usage period. is used for. Generally, bearings are used under usage conditions set based on a lifespan calculation formula. Therefore, if the bearing is used under the assumed conditions, the life of the bearing should not be a problem.

しかしながら、市場では軸受寿命がしばしば問題となる。これは、実際の軸受が想定外の環境や条件で使用されることが原因の1つと考えられる。そのため,転がり軸受では,実際に使用した軸受の調査結果から、その疲労度を推定する方法が提案されている。 However, bearing life is often an issue in the market. One of the reasons for this is thought to be that the actual bearings are used in unexpected environments and conditions. Therefore, a method has been proposed for estimating the fatigue level of rolling bearings based on the results of surveys of actually used bearings.

たとえば、潤滑が良好な条件で使用される軸受で発生する内部起点型の損傷に対しては、非特許文献1に開示されているX線分析で得られる接触応力の推定方法を用いて軸受の動等価荷重を求め、その動等価荷重から計算した計算寿命とこれまでの使用時間とから疲労度を推定する方法がある(特許文献1参照)。上述した疲労度の推定方法では、転動部品において荷重が作用する転動面に繰り返し印加される応力と、当該応力によって生成した残留応力との間に対応関係があることを利用して、残留応力分布から転動部品の負荷荷重を推定する。その後、推定された負荷荷重に基づき寿命を算出し、当該寿命と転動部品の回転数または使用時間との比から、疲労度を推定している。 For example, in order to prevent internally originating damage that occurs in bearings that are used under good lubrication conditions, a contact stress estimation method obtained by X-ray analysis disclosed in Non-Patent Document 1 can be used to There is a method of determining the dynamic equivalent load and estimating the fatigue level from the calculated life calculated from the dynamic equivalent load and the past usage time (see Patent Document 1). The fatigue degree estimation method described above takes advantage of the fact that there is a correspondence between the stress repeatedly applied to the raceway surface on which a load acts in rolling parts and the residual stress generated by that stress. Estimating the load on rolling parts from stress distribution. Thereafter, the lifespan is calculated based on the estimated load, and the degree of fatigue is estimated from the ratio of the lifespan to the number of rotations or operating hours of the rolling parts.

また、X線応力測定の分析値と転動疲労度との関係に基づいて、転動部品の内部起点型の損傷に対する疲労度を推定する方法も提案されている(特許文献2参照)。 Furthermore, a method has been proposed for estimating the fatigue level of internally originating damage in rolling parts based on the relationship between the analysis value of X-ray stress measurement and the rolling fatigue level (see Patent Document 2).

特開2011-069681号公報JP2011-069681A 特公昭63-34423号公報Special Publication No. 63-34423

「X線応力測定の軸受破損解析への応用」、対馬全之他、ベアリングエンジニアNo.49、pp.25-34(1984)“Application of X-ray stress measurement to bearing failure analysis”, Masuyuki Tsushima et al., Bearing Engineer No. 49, pp. 25-34 (1984)

一般に、転がり軸受の転動体などに代表される転動部品の転動疲労の進行状況は、残留応力が生成される回転回数10回までの第1段階、残留応力が生成した後転動疲労は発生するが半値幅、残留オーステナイト量および残留応力が変化しなくなる第2段階、転動疲労時に比較的高い応力が作用した領域で起こる組織変化とそれに伴う残留応力の再分布が起こる第3段階に分けられる。そのため、転動部品において上記第3段階より前に生成
された残留応力は、転動部品の使用初期に作用した荷重条件を正確に反映している。一方、上記第3段階以降では、転動部品における応力が作用した領域での材料の組織変化の影響により、回転回数が増えるごとに残留応力の再分布が起こる。このことから、第3段階以降まで転動疲労が進行した転動部品では、残留応力による転動部品の荷重推定が不正確になり、上述した特許文献1に開示された方法により推定された疲労度の精度が低下する可能性がある。
In general, the progress of rolling contact fatigue in rolling parts, such as the rolling elements of rolling bearings, is as follows: the first stage is up to 103 rotations, when residual stress is generated, and the rolling fatigue stage occurs after residual stress is generated. occurs, but the half-width, amount of retained austenite, and residual stress do not change; the third stage is a structural change that occurs in the region where relatively high stress was applied during rolling contact fatigue, and the resulting redistribution of residual stress. It can be divided into Therefore, the residual stress generated in the rolling component before the third stage accurately reflects the load conditions that were applied to the rolling component at the initial stage of use. On the other hand, from the third stage onward, redistribution of residual stress occurs as the number of rotations increases due to changes in the structure of the material in the stress-applied region of the rolling component. For this reason, in rolling parts where rolling fatigue has progressed to the third stage or later, the load estimation of the rolling parts due to residual stress becomes inaccurate, and the fatigue estimated by the method disclosed in Patent Document 1 mentioned above becomes inaccurate. accuracy may decrease.

また、特許文献2に開示された疲労度の推定方法では、転動部品の内部で疲労が起こりやすい深さにおいて材料の組織変化を検出するためのX線分析(たとえば半価幅および残留オーステナイト量の測定)を行う。その後、当該X線分析により得られたデータの変化と転動部品の回転回数との関係のデータベースを用いて、転動部品の疲労度を推定している。この方法は、転動部品の回転回数によって材料の組織変化が徐々に起こる第3段階以降での疲労度の推定に適用できる。一方、転動部品の回転回数が変わっても転動疲労による組織変化が進まない第2段階では、転動部品の回転回数が変化しても当該組織変化に対応するX線分析による検出データは変化しない。このことから、特許文献2に開示された転動部品の疲労度の推定方法では、第2段階まで進行している転動疲労に関して疲労度を高い精度で推定することは難しかった。 In addition, in the fatigue degree estimation method disclosed in Patent Document 2, X-ray analysis (for example, half-width and residual austenite content) is performed to detect structural changes in the material at depths where fatigue is likely to occur inside rolling parts. measurement). Thereafter, the degree of fatigue of the rolling parts is estimated using a database of the relationship between changes in data obtained by the X-ray analysis and the number of rotations of the rolling parts. This method can be applied to estimate the degree of fatigue in the third and subsequent stages, where the structure of the material gradually changes depending on the number of rotations of the rolling component. On the other hand, in the second stage, where the structural changes due to rolling fatigue do not progress even if the number of rotations of the rolling parts changes, the data detected by X-ray analysis that corresponds to the structural changes even if the number of rotations of the rolling parts changes. It does not change. For this reason, in the method for estimating the degree of fatigue of rolling parts disclosed in Patent Document 2, it is difficult to estimate the degree of fatigue with high accuracy regarding rolling fatigue that has progressed to the second stage.

それゆえ、本発明の目的は、転動部品の疲労度を高い精度で推定することが可能な転動部品の疲労度推定方法、転動部品の疲労度推定装置および転動部品の疲労度推定プログラムを提供することである。 Therefore, an object of the present invention is to provide a method for estimating the fatigue level of rolling parts, a device for estimating the fatigue level of rolling parts, and a fatigue level estimation apparatus for rolling parts, which are capable of estimating the fatigue level of rolling parts with high accuracy. The goal is to provide programs.

また、本発明の目的は、転動部品の疲労度を高い精度で推定するために用いることが可能な、転動部品の接触応力推定方法を提供することである。 Another object of the present invention is to provide a method for estimating contact stress of rolling parts, which can be used to estimate the degree of fatigue of rolling parts with high accuracy.

本開示に従った転動部品の疲労度推定方法は、回転による繰り返し負荷が加えられる転動部品から転動部品の疲労度を推定するためのデータを取得するステップを備える。当該取得するステップは、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。転動部品の疲労度推定方法は、さらに、取得するステップにおいて得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステップと、当該判断するステップでの判断結果と取得するステップで得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を備える。第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップと、が実施される。また、第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていると判断された場合に、予め決定された第2データと第1疲労度との関係に基づき、第2データから第1疲労度を推定するステップが実施される。 A rolling component fatigue level estimation method according to the present disclosure includes the step of acquiring data for estimating the rolling component fatigue level from a rolling component to which repeated loads due to rotation are applied. The obtaining step includes a step of obtaining first data regarding the microstructure of the rolling component, and a step of obtaining first data regarding the microstructure of the rolling component, and first data that is measured data of X-ray analysis values regarding the rolling component by irradiating the fatigue part of the rolling component with X-rays. 2. Obtaining data. The method for estimating the fatigue level of rolling parts further includes a step of determining whether or not a structural change has occurred in a fatigued part of the rolling part based on the data obtained in the acquiring step; and a step of estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result and the data obtained in the obtaining step. The step of estimating the first degree of fatigue includes a step of estimating the load acting on the rolling component based on the second data when it is determined that no structural change has occurred in the determining step; A step of calculating the lifespan based on the usage conditions of the rolling component, and a step of calculating a first degree of fatigue of the rolling component from the number of rotations and the lifespan of the rolling component are performed. In addition, in the step of estimating the first fatigue degree, if it is determined that a tissue change has occurred in the determining step, the second fatigue degree is estimated based on the relationship between the predetermined second data and the first fatigue degree. A step of estimating a first fatigue level from the data is performed.

本開示に従った疲労度推定プログラムは、転動部品の疲労度推定プログラムであって、コンピュータに、回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップを実行させる。取得するステップは、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。上記疲労度推定プログラムは、コンピュータに、取得するステップにおいて得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステッ
プと、判断するステップでの判断結果と取得するステップで得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させる。第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップと、が実施される。第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていると判断された場合に、予め決定された第2データと第1疲労度との関係に基づき、第2データから第1疲労度を推定するステップが実施される。
A fatigue degree estimation program according to the present disclosure is a fatigue degree estimation program for rolling parts, and includes a step of, in a computer, acquiring data for estimating the fatigue degree from rolling parts to which repeated loads due to rotation are applied. Let it run. The obtaining step includes obtaining first data regarding the microstructure of the rolling component, and second data, which is measured data of X-ray analysis values regarding the rolling component, by irradiating X-rays to fatigued parts of the rolling component. and obtaining data. The above fatigue degree estimation program includes a step in which a computer determines whether or not a structural change has occurred in a fatigued part of a rolling component based on the data obtained in the acquisition step, and a determination result in the determination step. and a step of estimating a first fatigue degree regarding internally originating damage of the rolling component based on the data obtained in the obtaining step. The step of estimating the first degree of fatigue includes a step of estimating the load acting on the rolling component based on the second data when it is determined that no structural change has occurred in the determining step; A step of calculating the lifespan based on the usage conditions of the rolling component, and a step of calculating a first degree of fatigue of the rolling component from the number of rotations and the lifespan of the rolling component are performed. In the step of estimating the first fatigue degree, if it is determined that a tissue change has occurred in the determining step, based on the predetermined relationship between the second data and the first fatigue degree, A step of estimating a first fatigue level is performed.

本開示に従った転動部品の疲労度推定装置は、判断部と、荷重推定部と、寿命算出部と、第1疲労度算出部と、第1疲労度推定部とを備える。判断部は、転動部品のミクロ組織に関する第1データと、転動部品の疲労部にX線を照射することで得られる、転動部品に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断する。荷重推定部は、判断部において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定する。寿命算出部は、荷重と転動部品の使用条件とに基づき寿命を算出する。第1疲労度算出部は、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出する。第1疲労度推定部は、判断部において、組織変化が起こっていると判断された場合に、予め決定されたX線分析値と第1疲労度との関係に基づき、第2データから第1疲労度を推定する。 A rolling component fatigue level estimating device according to the present disclosure includes a determining unit, a load estimating unit, a life calculating unit, a first fatigue level calculating unit, and a first fatigue level estimating unit. The determination unit is configured to obtain first data regarding the microstructure of the rolling component and second data that is measured data of X-ray analysis values regarding the rolling component obtained by irradiating a fatigued portion of the rolling component with X-rays. Based on at least one of the following, it is determined whether or not a structural change has occurred in the fatigued part of the rolling component. The load estimating unit estimates the load acting on the rolling component based on the second data when the determining unit determines that no tissue change has occurred. The life calculation unit calculates the life based on the load and the usage conditions of the rolling parts. The first fatigue degree calculation unit calculates the first fatigue degree of the rolling component from the number of rotations and the life of the rolling component. The first fatigue degree estimating section calculates the first fatigue degree from the second data based on the relationship between the predetermined X-ray analysis value and the first fatigue degree when the determining section determines that a tissue change has occurred. Estimate fatigue level.

本開示に従った転動部品の疲労度推定方法は、回転による繰り返し負荷が加えられる転動部品から転動部品の疲労度を推定するためのデータを取得するステップを備える。当該取得するステップは、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。転動部品の疲労度推定方法は、さらに、取得するステップにおいて得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステップと、当該判断するステップでの判断結果と取得するステップで得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を備える。第2データは、転動部品に関するX線分析値の深さ方向での分布データを含む。第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップと、が実施される。判断するステップにおいて、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップとが実施される。 A rolling component fatigue level estimation method according to the present disclosure includes the step of acquiring data for estimating the rolling component fatigue level from a rolling component to which repeated loads due to rotation are applied. The obtaining step includes a step of obtaining first data regarding the microstructure of the rolling component, and a step of obtaining first data regarding the microstructure of the rolling component, and first data that is measured data of X-ray analysis values regarding the rolling component by irradiating the fatigue part of the rolling component with X-rays. 2. Obtaining data. The method for estimating the fatigue level of rolling parts further includes a step of determining whether or not a structural change has occurred in a fatigued part of the rolling part based on the data obtained in the acquiring step; and a step of estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result and the data obtained in the obtaining step. The second data includes distribution data in the depth direction of X-ray analysis values regarding the rolling component. The step of estimating the first degree of fatigue includes a step of estimating the load acting on the rolling component based on the second data when it is determined that no structural change has occurred in the determining step; A step of calculating the lifespan based on the usage conditions of the rolling component, and a step of calculating a first degree of fatigue of the rolling component from the number of rotations and the lifespan of the rolling component are performed. In the judgment step, if it is determined that a tissue change has occurred, a step of estimating the load acting on the rolling parts based on the distribution data in the depth direction, and the load and usage conditions of the rolling parts. and a step of calculating a first fatigue degree of the rolling component from the number of rotations and the life of the rolling component.

本開示に従った疲労度推定プログラムは、転動部品の疲労度推定プログラムであって、コンピュータに、回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップを実行させる。取得するステップは、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。上記疲労度推定プログラムは、コンピュータに、取得するステップにおいて得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステップと、判断するステップでの判断結果と取得するステップで得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させる。第2データは、転動部品に関するX線分析値の深さ方向での分布データを含む。第1疲労
度を推定するステップでは、判断するステップにおいて、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップと、が実施される。第1疲労度を推定するステップでは、判断するステップにおいて、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品に作用していた荷重を推定するステップと、荷重と転動部品の使用条件とに基づき寿命を算出するステップと、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップとが実施される。
A fatigue degree estimation program according to the present disclosure is a fatigue degree estimation program for rolling parts, and includes a step of, in a computer, acquiring data for estimating the fatigue degree from rolling parts to which repeated loads due to rotation are applied. Let it run. The obtaining step includes obtaining first data regarding the microstructure of the rolling component, and second data, which is measured data of X-ray analysis values regarding the rolling component, by irradiating X-rays to fatigued parts of the rolling component. and obtaining data. The above fatigue degree estimation program includes a step in which a computer determines whether or not a structural change has occurred in a fatigued part of a rolling component based on the data obtained in the acquisition step, and a determination result in the determination step. and a step of estimating a first fatigue degree regarding internally originating damage of the rolling component based on the data obtained in the obtaining step. The second data includes distribution data in the depth direction of X-ray analysis values regarding the rolling component. The step of estimating the first degree of fatigue includes a step of estimating the load acting on the rolling component based on the second data when it is determined that no structural change has occurred in the determining step; A step of calculating the lifespan based on the usage conditions of the rolling component, and a step of calculating a first degree of fatigue of the rolling component from the number of rotations and the lifespan of the rolling component are performed. In the step of estimating the first degree of fatigue, if it is determined that a structural change has occurred in the determining step, a step of estimating the load acting on the rolling component based on the distribution data in the depth direction. , a step of calculating a lifespan based on the load and usage conditions of the rolling component, and a step of calculating a first degree of fatigue of the rolling component from the number of rotations and the lifespan of the rolling component.

本開示に従った疲労度推定装置は、判断部と、荷重推定部と、寿命算出部と、第1疲労度算出部とを備える。判断部は、転動部品のミクロ組織に関する第1データと、転動部品の疲労部にX線を照射することで得られる、転動部品に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断する。荷重推定部は、第2データに基づき転動部品に作用していた荷重を推定する。寿命算出部は、荷重と転動部品の使用条件とに基づき寿命を算出する。第1疲労度算出部は、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出する。第2データは、転動部品に関するX線分析値の深さ方向での分布データを含む。荷重推定部は、判断部において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定する。荷重推定部は、判断部において、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品に作用していた荷重を推定する。 A fatigue level estimating device according to the present disclosure includes a determining unit, a load estimating unit, a life calculating unit, and a first fatigue level calculating unit. The determination unit is configured to obtain first data regarding the microstructure of the rolling component and second data that is measured data of X-ray analysis values regarding the rolling component obtained by irradiating a fatigued portion of the rolling component with X-rays. Based on at least one of the following, it is determined whether or not a structural change has occurred in the fatigued part of the rolling component. The load estimation unit estimates the load acting on the rolling component based on the second data. The life calculation unit calculates the life based on the load and the usage conditions of the rolling parts. The first fatigue degree calculation unit calculates the first fatigue degree of the rolling component from the number of rotations and the life of the rolling component. The second data includes distribution data in the depth direction of X-ray analysis values regarding the rolling component. The load estimating unit estimates the load acting on the rolling component based on the second data when the determining unit determines that no tissue change has occurred. The load estimating section estimates the load acting on the rolling component based on the distribution data in the depth direction when the determining section determines that a tissue change has occurred.

本開示に従った転動部品の接触応力推定方法は、転動部品の疲労部の表面から内部にかけてX線を照射することで、疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきの深さ方向での分布データを得るステップと、深さ方向での分布データに基づき、転動部品の疲労部に繰り返し作用している接触応力を推定するステップとを備える。 A method for estimating contact stress of a rolling component according to the present disclosure is to irradiate X-rays from the surface to the inside of a fatigued part of a rolling component, thereby diffracting annular diffracted X-rays with respect to a central angle at the fatigued part. The present invention includes a step of obtaining distribution data of strength variations in the depth direction, and a step of estimating contact stress repeatedly acting on a fatigued part of a rolling component based on the distribution data in the depth direction.

上記によれば、転動部品の疲労度を高い精度で推定することが可能な転動部品の疲労度推定方法、転動部品の疲労度推定装置および転動部品の疲労度推定プログラムが得られる。 According to the above, it is possible to obtain a method for estimating the fatigue level of rolling parts, a device for estimating the fatigue level of rolling parts, and a program for estimating the fatigue level of rolling parts, which are capable of estimating the fatigue level of rolling parts with high accuracy. .

また、上記によれば、転動部品の疲労度を高い精度で推定するために用いることが可能な、転動部品の接触応力推定方法が得られる。 Moreover, according to the above, a method for estimating contact stress of rolling parts can be obtained, which can be used to estimate the degree of fatigue of rolling parts with high accuracy.

実施の形態1に係る疲労度推定システムの構成を表す模式図である。1 is a schematic diagram showing the configuration of a fatigue level estimation system according to Embodiment 1. FIG. 図1に示した疲労度推定装置のハードウエア構成を表す図である。FIG. 2 is a diagram showing the hardware configuration of the fatigue level estimation device shown in FIG. 1. FIG. 図1に示した疲労度推定装置の機能構成を表す図である。FIG. 2 is a diagram showing the functional configuration of the fatigue level estimation device shown in FIG. 1. FIG. 疲労度の推定処理の手順を表すフローチャートである。It is a flowchart showing the procedure of fatigue level estimation processing. 実施の形態2に係る疲労度推定システムの構成を表す模式図である。FIG. 2 is a schematic diagram showing the configuration of a fatigue level estimation system according to a second embodiment. 図5に示した疲労度推定装置の機能構成を表す図である。6 is a diagram showing the functional configuration of the fatigue level estimation device shown in FIG. 5. FIG. 疲労度の推定処理の手順を表すフローチャートである。It is a flowchart showing the procedure of fatigue level estimation processing. 実施の形態3に係る疲労度の推定処理の手順を表すフローチャートである。12 is a flowchart representing a procedure of fatigue level estimation processing according to Embodiment 3. FIG. 残留応力の相当応力の深さ分布を示すグラフである。It is a graph which shows the depth distribution of the equivalent stress of residual stress. 周方向入射で得られた回折強度のばらつきと試験時間との関係を示すグラフである。It is a graph which shows the relationship between the variation of the diffraction intensity obtained by circumferential incidence, and test time. 残留オーステナイトの減少率と試験時間との関係を示すグラフである。It is a graph showing the relationship between the reduction rate of retained austenite and test time. X線測定の際の座標系を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a coordinate system during X-ray measurement. 回折X線の模式図である。It is a schematic diagram of diffraction X-ray. 測定された環状の回折X線の模式図である。It is a schematic diagram of the measured annular diffraction X-ray. 回折強度のばらつきを説明するための模式図である。FIG. 3 is a schematic diagram for explaining variations in diffraction intensity. 第1試験片のX線測定結果である周方向残留応力の深さ方向分布を示すグラフである。It is a graph which shows the depth direction distribution of the circumferential direction residual stress which is an X-ray measurement result of the 1st test piece. 第1試験片のX線測定結果である回折強度のばらつきの深さ方向分布を示すグラフである。It is a graph which shows the depth direction distribution of the dispersion|variation of the diffraction intensity which is the X-ray measurement result of the 1st test piece. 第2試験片のX線測定結果である周方向残留応力の深さ方向分布を示すグラフである。It is a graph which shows the depth direction distribution of the circumferential direction residual stress which is an X-ray measurement result of the 2nd test piece. 第2試験片のX線測定結果である回折強度のばらつきの深さ方向分布を示すグラフである。It is a graph which shows the depth direction distribution of the dispersion|variation of the diffraction intensity which is the X-ray measurement result of the 2nd test piece. 第1試験片の接触応力の推定結果を示すグラフである。It is a graph which shows the estimation result of the contact stress of a 1st test piece. 第2試験片の接触応力の推定結果を示すグラフである。It is a graph which shows the estimation result of the contact stress of a 2nd test piece.

以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Embodiments of the present invention will be described below based on the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals and the description thereof will not be repeated.

(実施の形態1)
<疲労度推定システムの構成>
図1は、実施の形態1に係る疲労度推定システムの構成を表す模式図である。図1を参照して、疲労度推定システムは、疲労度推定装置14と、照射部11と、X線検出器12と、ミクロ組織観察部23とを備える。
(Embodiment 1)
<Configuration of fatigue level estimation system>
FIG. 1 is a schematic diagram showing the configuration of a fatigue level estimation system according to the first embodiment. Referring to FIG. 1, the fatigue level estimation system includes a fatigue level estimation device 14, an irradiation unit 11, an X-ray detector 12, and a microstructure observation unit 23.

照射部11は、被検査軸受部品である転動部品90に対向させることが可能なように設置されたX線管球を含んでいる。照射部11は、転動部品90に対してX線を照射する。照射されたX線は、転動部品90に対して所定の入射角で入射するように、矢印αに沿って照射される。転動部品90は、転がり軸受の転動体と、診断用または試験用の軸受部品である転がり軸受の軌道輪の一部または全部とを含む。X線は、たとえば、転がり軸受の軌道輪の一部に照射されることとしてもよい。 The irradiation unit 11 includes an X-ray tube installed so as to be able to face the rolling component 90, which is the bearing component to be inspected. The irradiation unit 11 irradiates the rolling component 90 with X-rays. The irradiated X-rays are irradiated along the arrow α so as to be incident on the rolling component 90 at a predetermined angle of incidence. The rolling component 90 includes a rolling element of a rolling bearing and a part or all of a bearing ring of a rolling bearing that is a bearing component for diagnosis or testing. For example, the X-rays may be applied to a part of the bearing ring of the rolling bearing.

X線検出器12は、転動部品90において回折した環状のX線(X線回折環)を検出する。具体的には、X線検出器12は、照射部11から照射したX線を通過させる中心部に形成された孔12Bと、転動部品90に対向させることが可能な平面状の検出部12Aを含む。検出部12Aとして、たとえばX線CCD(Charge Coupled Device)を用いるこ
とができる。矢印αに沿って転動部品90に入射したX線が、円錐面βを構成するように回折し、検出部12Aに到達する。そして、検出部12A においては、それぞれの画素
が出力するX線の強度に相当する強度の信号によりX線回折環が検出される。
The X-ray detector 12 detects annular X-rays (X-ray diffraction ring) diffracted by the rolling component 90. Specifically, the X-ray detector 12 includes a hole 12B formed in the center through which the X-rays irradiated from the irradiation section 11 pass, and a flat detection section 12A that can be opposed to the rolling component 90. including. For example, an X-ray CCD (Charge Coupled Device) can be used as the detection unit 12A. X-rays incident on the rolling component 90 along the arrow α are diffracted to form a conical surface β, and reach the detection unit 12A. Then, in the detection unit 12A, the X-ray diffraction ring is detected by a signal having an intensity corresponding to the intensity of the X-ray output from each pixel.

ミクロ組織観察部23は、転動部品90を構成する材料のミクロ組織の状態を測定する。ミクロ組織観察部23として、たとえば光学顕微鏡を用いることができる。測定する転動部品90の表面は、たとえば、転がり軸受の軌道輪の一部の断面、および転動体の断面としてもよい。 The microstructure observation unit 23 measures the state of the microstructure of the material constituting the rolling component 90. As the microstructure observation section 23, for example, an optical microscope can be used. The surface of the rolling component 90 to be measured may be, for example, a cross section of a portion of a bearing ring of a rolling bearing or a cross section of a rolling element.

疲労度推定装置14は、X線検出器12において検出されたX線回折環、およびミクロ組織観察部23で検出された転動部品90のミクロ組織の観察結果に基づいて転動部品90の疲労度を推定する。疲労度推定装置14は、たとえば、小型のコンピュータ装置(パーソナルコンピュータ等)としてもよい。 The fatigue level estimating device 14 estimates the fatigue of the rolling component 90 based on the observation results of the X-ray diffraction ring detected by the X-ray detector 12 and the microstructure of the rolling component 90 detected by the microstructure observation unit 23. Estimate degree. The fatigue level estimation device 14 may be, for example, a small computer device (such as a personal computer).

<疲労度推定装置のハードウエア構成>
図2は、図1に示した疲労度推定装置のハードウエア構成を表す図である。疲労度推定装置14は、入力部17と、CPU(Central Processing Unit)15と、メモリ16と
、表示部18とを備える。
<Hardware configuration of fatigue level estimation device>
FIG. 2 is a diagram showing the hardware configuration of the fatigue level estimation device shown in FIG. 1. The fatigue level estimation device 14 includes an input section 17 , a CPU (Central Processing Unit) 15 , a memory 16 , and a display section 18 .

入力部17には、ミクロ組織観察部23の測定結果、およびX線検出器12の検出結果が入力される。メモリ16は、疲労度推定プログラムなどを記憶することができる。CPU15は、入力部17に入力されたデータを用いて、メモリ16に記憶された疲労度推定プログラムを実行する。表示部18は、CPU15による疲労度推定結果を表示する。 The measurement results of the microstructure observation section 23 and the detection results of the X-ray detector 12 are input to the input section 17 . The memory 16 can store a fatigue level estimation program and the like. The CPU 15 uses the data input to the input unit 17 to execute a fatigue level estimation program stored in the memory 16. The display unit 18 displays the fatigue level estimation result by the CPU 15.

<疲労度推定装置の機能構成>
図3は、図1に示した疲労度推定装置の機能構成を表す図である。図3に示す疲労度推定装置14は、入力部17と、表示部18と、記憶部61と、制御部60と、データ準備部21と、判断部31と、荷重推定部32と、寿命算出部33と、第1疲労度算出部34と、第1疲労度推定部41と、診断部70とを備える。記憶部61はメモリ16によって実現される。制御部60と、データ準備部21と、判断部31と、荷重推定部32と、寿命算出部33と、第1疲労度算出部34と、第1疲労度推定部41と、診断部70とは、CPU15がメモリ16に記憶された疲労度推定プログラムを実行することによって実現される。
<Functional configuration of fatigue level estimation device>
FIG. 3 is a diagram showing the functional configuration of the fatigue level estimation device shown in FIG. 1. The fatigue level estimating device 14 shown in FIG. section 33 , a first fatigue degree calculation section 34 , a first fatigue degree estimation section 41 , and a diagnosis section 70 . The storage unit 61 is realized by the memory 16. The control section 60, the data preparation section 21, the judgment section 31, the load estimation section 32, the life calculation section 33, the first fatigue degree calculation section 34, the first fatigue degree estimation section 41, and the diagnosis section 70. is realized by the CPU 15 executing a fatigue level estimation program stored in the memory 16.

<疲労度推定方法の手順>
図4は、疲労度の推定処理の手順を表すフローチャートである。以下、図3および図4を参照しながら、図1に示した疲労度推定システムにおける疲労度の推定処理を説明する。
<Steps for fatigue level estimation method>
FIG. 4 is a flowchart showing the procedure of the fatigue level estimation process. Hereinafter, the fatigue level estimation process in the fatigue level estimation system shown in FIG. 1 will be explained with reference to FIGS. 3 and 4.

まず、データ取得ステップ(S110)が実施される。当該ステップ(S110)において、データ準備部21は、回転による繰り返し負荷が加えられる転動部品90から当該転動部品90の疲労度を推定するためのデータを取得する。このステップ(S110)では、後述する疲労度の段階の判断ステップ(S120)およびその後の疲労度の推定のための各ステップにおいて用いるデータを準備する。たとえば、図1に示したミクロ組織観察部23から入力部17を介して入力されたデータに基づき、データ準備部21は転動部品90の疲労部におけるミクロ組織に関する第1データを準備する。 First, a data acquisition step (S110) is performed. In this step (S110), the data preparation unit 21 acquires data for estimating the degree of fatigue of the rolling component 90 from the rolling component 90 to which repeated loads due to rotation are applied. In this step (S110), data to be used in the step of determining the fatigue level (S120) and subsequent steps for estimating the fatigue level, which will be described later, are prepared. For example, based on data input from the microstructure observation section 23 shown in FIG.

また、データ準備部21には、図1に示したX線検出器12からの入力部17を介して転動部品90に関するX線分析値の測定データが入力される。当該X線分析値の測定データが第2データとなる。X線分析値の測定データとしては、たとえば転動部品90の疲労部における残留応力に関するデータ、より具体的には、残留応力の深さ分布の測定データ等が挙げられる。 Furthermore, measurement data of X-ray analysis values regarding the rolling component 90 is input to the data preparation section 21 via the input section 17 from the X-ray detector 12 shown in FIG. The measurement data of the X-ray analysis value becomes the second data. Examples of the measurement data of the X-ray analysis values include data regarding residual stress in the fatigue portion of the rolling component 90, and more specifically, measurement data on the depth distribution of residual stress.

次に、疲労度の段階の判断ステップ(S120)が実施される。当該ステップ(S120)において、判断部31は、取得するステップ(S110)において得られたデータに基づき、転動部品90の疲労部において、組織変化が起こっているか否かを判断する。 Next, a step of determining the level of fatigue (S120) is performed. In this step (S120), the determining unit 31 determines whether or not a tissue change has occurred in the fatigue portion of the rolling component 90 based on the data obtained in the acquiring step (S110).

上記ステップ(S120)において、組織変化が起こっていないと判断された場合、つまり判断部31が転動部品90の疲労部において疲労が第3段階まで進んでいないと判断した場合、接触応力の推定ステップ(S131)が実施される。このステップ(S131)において、荷重推定部32は、第2データに含まれる転動部品90の疲労部における残留応力の深さ分布の測定データに基づき、転動部品90の疲労部における接触応力を推定する。 In the above step (S120), if it is determined that no structural change has occurred, that is, if the determination unit 31 determines that fatigue has not progressed to the third stage in the fatigue part of the rolling component 90, the contact stress is estimated. Step (S131) is performed. In this step (S131), the load estimating unit 32 calculates the contact stress in the fatigue portion of the rolling component 90 based on the measurement data of the depth distribution of residual stress in the fatigue portion of the rolling component 90 included in the second data. presume.

次に、荷重の推定ステップ(S132)が実施される。当該ステップ(S132)にお
いて、荷重推定部32は、転動部品90の疲労部における残留応力の深さ分布の測定データに基づき、転動部品90の疲労部における荷重を推定する。上記ステップ(S131)およびステップ(S132)において、荷重推定部32は、たとえば特許文献1において開示されている方法を用いて接触応力および荷重を推定してもよい。
Next, a load estimation step (S132) is performed. In this step (S132), the load estimation unit 32 estimates the load in the fatigue portion of the rolling component 90 based on the measurement data of the depth distribution of residual stress in the fatigue portion of the rolling component 90. In the above steps (S131) and (S132), the load estimation unit 32 may estimate the contact stress and load using the method disclosed in Patent Document 1, for example.

ここで、ステップ(S120)において、判断部31により、転動部品90の疲労部に組織変化が起こっていないと判断されている(つまり転動部品90の疲労が第3段階にまで進んでいない)ため、転動部品90の残留応力は当該転動部品90に作用した荷重条件を正確に反映している。従って、当該残留応力のデータに基づき上記のように接触応力および荷重を正確に推定できる。 Here, in step (S120), the determining unit 31 determines that no structural change has occurred in the fatigue portion of the rolling component 90 (that is, the fatigue of the rolling component 90 has not progressed to the third stage). ), the residual stress of the rolling component 90 accurately reflects the load conditions acting on the rolling component 90. Therefore, the contact stress and load can be accurately estimated as described above based on the residual stress data.

次に、10%寿命(L10)の推定ステップ(S133)が実施される。当該ステップ(S133)において、寿命算出部33は、上記荷重と転動部品90の使用条件とに基づき10%寿命(L10)を算出する。転動部品90の使用条件としては、たとえば転動部品90の回転速度、転動部品90の使用時の温度、転動部品90の使用時に供給される潤滑油の油種情報、および転動部品90の使用時に供給される潤滑油の汚染度の情報を含む。10%寿命の算出方法としては任意の方法を用いることができる。また、任意の破損確率に対する寿命Lは、たとえば10%寿命(L10)に信頼度係数a1をかけることにより算出することができる。具体的には、下記のように10%寿命から寿命Lnを算出することができる。 Next, a 10% lifespan (L 10 ) estimation step (S133) is performed. In this step (S133), the life calculation unit 33 calculates the 10% life (L 10 ) based on the load and the usage conditions of the rolling component 90. The usage conditions of the rolling parts 90 include, for example, the rotational speed of the rolling parts 90, the temperature when the rolling parts 90 are used, the oil type information of the lubricating oil supplied when the rolling parts 90 is used, and the rolling parts. Contains information on the degree of contamination of lubricating oil supplied when using 90. Any method can be used to calculate the 10% life. Further, the lifespan L n for any probability of failure can be calculated, for example, by multiplying the 10% lifespan (L 10 ) by the reliability coefficient a1. Specifically, the life Ln can be calculated from the 10% life as shown below.

Figure 2023174901000002
Figure 2023174901000002

次に、第1疲労度の算出ステップ(S134)が実施される。当該ステップ(S134)において、第1疲労度算出部34は、転動部品90の回転回数Nと上記10%寿命(L10)とから転動部品90の第1疲労度(N/L10)を算出する。なお、回転回数Nの代わりに転動部品90の使用時間を用いてもよい。 Next, a first fatigue degree calculation step (S134) is performed. In the step (S134), the first fatigue degree calculation unit 34 calculates the first fatigue degree (N/L 10 ) of the rolling component 90 from the number of rotations N of the rolling component 90 and the 10% life (L 10 ). Calculate. Note that the usage time of the rolling component 90 may be used instead of the number of rotations N.

一方、ステップ(S120)において、組織変化が起こっていると判断された場合、つまり判断部31が転動部品90の疲労部において疲労が第3段階まで進んでいると判断した場合、X線分析値と第1疲労度の関係を用いた第1疲労度の推定ステップ(S141)が実施される。当該ステップ(S141)において、第1疲労度推定部41は、予め決定された第2データとしてのX線分析値(X線応力測定結果)と第1疲労度との関係に基づき、X線分析値から第1疲労度(N/L10)を推定する。上記関係は、たとえば転動部品90に対して転動疲労寿命試験を行い、当該試験から得られる疲労度と当該疲労度まで転動させた試験片のX線応力測定結果との関係であってもよい。当該関係を示すデータは、記憶部61に記憶される。 On the other hand, in step (S120), if it is determined that a structural change has occurred, that is, if the determination unit 31 determines that fatigue has progressed to the third stage in the fatigue part of the rolling component 90, X-ray analysis A step (S141) of estimating the first fatigue level using the relationship between the value and the first fatigue level is performed. In the step (S141), the first fatigue degree estimating unit 41 performs an X-ray analysis based on the relationship between the predetermined X-ray analysis value (X-ray stress measurement result) as second data and the first fatigue degree. The first fatigue level (N/L 10 ) is estimated from the value. The above relationship is, for example, the relationship between the fatigue level obtained from a rolling fatigue life test performed on the rolling component 90 and the X-ray stress measurement result of a test piece rolled to that fatigue level. Good too. Data indicating this relationship is stored in the storage unit 61.

ここで、ステップ(S120)において転動部品90の疲労部に組織変化が起きている(つまり転動部品90の疲労が第3段階にまで進んでいる)と判断されているため、転動部品90では回転回数が増えるにつれて残留応力の再分布が起きていると考えられる。このため、転動部品90の材料組織の変化と疲労度との間に相関があることから、ステップ(S141)に示すように組織変化を反映したX線分析値と疲労度との関係に基づき第1疲労度を推定することにより、より正確な第1疲労度の推定が可能となっている。 Here, since it is determined in step (S120) that a structural change has occurred in the fatigue part of the rolling component 90 (that is, the fatigue of the rolling component 90 has progressed to the third stage), the rolling component 90, it is considered that redistribution of residual stress occurs as the number of rotations increases. Therefore, since there is a correlation between changes in the material structure of the rolling component 90 and the degree of fatigue, as shown in step (S141), based on the relationship between the X-ray analysis value reflecting the structure change and the degree of fatigue By estimating the first fatigue degree, it is possible to more accurately estimate the first fatigue degree.

次に、診断ステップ(S161)が実施される。当該ステップ(S161)において、診断部70は、上述のようにして得られた第1疲労度の値が、予め決定されていた基準値を超えているか否かを判断する。得られた第1疲労度の値が基準値を超えている場合、診断部70から制御部60へ、第1疲労度の値が基準値を超えたことを示す信号が送信される。当該信号を受信した制御部60は、たとえば表示部18に転動部品90の交換が必要であることを示すメッセージを表示する。得られた第1疲労度の値が基準値を超えていない場合、診断部70から制御部60へ、第1疲労度の値が基準値を超えていないことを示す信号が送信される。当該信号を受信した制御部60は、たとえば表示部18に転動部品90の交換が不要であることを示すメッセージを表示する。なお、上述した第1疲労度に関する基準値によっては、第1疲労度の値が基準値を超えた場合に表示部18に表示されるメッセージとして、転動部品90の交換時期を示すメッセージを用いてもよい。 Next, a diagnostic step (S161) is performed. In this step (S161), the diagnostic unit 70 determines whether the value of the first fatigue degree obtained as described above exceeds a predetermined reference value. If the obtained first fatigue level value exceeds the reference value, a signal indicating that the first fatigue level value has exceeded the reference value is transmitted from the diagnostic unit 70 to the control unit 60. The control unit 60 that has received the signal displays, for example, on the display unit 18 a message indicating that the rolling component 90 needs to be replaced. If the obtained first fatigue level value does not exceed the reference value, a signal indicating that the first fatigue level value does not exceed the reference value is transmitted from the diagnostic unit 70 to the control unit 60. The control unit 60 that has received the signal displays, for example, on the display unit 18 a message indicating that the rolling component 90 does not need to be replaced. Note that depending on the reference value regarding the first fatigue degree described above, a message indicating the time to replace the rolling component 90 may be used as the message displayed on the display unit 18 when the value of the first fatigue degree exceeds the reference value. You can.

<作用効果>
本開示に従った転動部品の疲労度推定方法は、回転による繰り返し負荷が加えられる転動部品から転動部品の疲労度を推定するためのデータを取得するステップ(ステップ(S110))を備える。当該取得するステップ(ステップ(S110))は、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。転動部品の疲労度推定方法は、さらに、取得するステップ(ステップ(S110))において得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステップ(ステップ(S120))と、当該判断するステップ(ステップ(S120))での判断結果と上記取得するステップ(ステップ(S110))で得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップ(ステップ(S131)~ステップ(S134)およびステップ(S141))と、を備える。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップ(ステップ(S132))と、荷重と転動部品の使用条件とに基づき寿命を算出するステップ(ステップ(S133))と、転動部品の回転回数と上記寿命とから転動部品の第1疲労度を算出するステップ(ステップ(S134))と、が実施される。また、第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていると判断された場合に、予め決定された第2データと第1疲労度との関係に基づき、第2データから第1疲労度を推定するステップ(ステップ(S141))が実施される。
<Effect>
A rolling component fatigue level estimation method according to the present disclosure includes a step (step (S110)) of acquiring data for estimating the rolling component fatigue level from rolling components to which repeated loads due to rotation are applied. . The acquiring step (step (S110)) includes the step of acquiring first data regarding the microstructure of the rolling component, and the acquisition of X-ray analysis values regarding the rolling component by irradiating X-rays to fatigued parts of the rolling component. obtaining second data that is measurement data of. The method for estimating the degree of fatigue of rolling parts further includes a step of determining whether or not a structural change has occurred in a fatigued part of the rolling part based on the data obtained in the step of acquiring (step (S110)). Based on the determination result in the determining step (step (S120)) and the data obtained in the acquiring step (step (S110)), internally originating damage of the rolling component is determined. estimating the first degree of fatigue related to (steps (S131) to (S134) and step (S141)). In the step of estimating the first degree of fatigue, if it is determined that no structural change has occurred in the step of determining (step (S120)), the load acting on the rolling component is estimated based on the second data. (step (S132)), a step (step (S133)) of calculating the lifespan based on the load and the usage conditions of the rolling parts, and a step (step (S133)) of calculating the lifespan of the rolling parts based on the number of rotations of the rolling parts and the above-mentioned lifespan. A step (step (S134)) of calculating a degree of fatigue is performed. Further, in the step of estimating the first fatigue degree, if it is determined that a tissue change has occurred in the determining step (step (S120)), the predetermined second data and the first fatigue degree are Based on the relationship, a step (step (S141)) of estimating the first fatigue level from the second data is performed.

このように、上述した転動部品の疲労度推定方法は、疲労部において組織変化が起こっているか否かを判断するステップ(ステップ(S120))を備えているので、転動部材の疲労部において組織変化が起こっているか否か、つまり転動疲労の進行が第3段階にまで達しているか否かに応じて、それぞれの状態に対応した疲労度の推定方法を使い分けることができる。したがって、転動部品の疲労度を高い精度で推定できる。 In this way, the method for estimating the degree of fatigue of rolling parts described above includes the step (step (S120)) of determining whether or not a structural change has occurred in the fatigued part. Depending on whether or not a structural change has occurred, that is, whether rolling contact fatigue has progressed to the third stage, it is possible to use different methods for estimating the degree of fatigue corresponding to each state. Therefore, the degree of fatigue of rolling parts can be estimated with high accuracy.

上記転動部品の疲労度推定方法において、転動部品の使用条件は、転動部品90の回転速度、転動部品90の使用時の温度、転動部品90の使用時に供給される潤滑油の油種情報、および転動部品90の使用時に供給される潤滑油の汚染度の情報を含んでいてもよい。 In the above method for estimating the fatigue level of rolling parts, the usage conditions of the rolling parts include the rotational speed of the rolling parts 90, the temperature when the rolling parts 90 are used, and the level of lubricating oil supplied when the rolling parts 90 are used. The information may include oil type information and information on the degree of contamination of the lubricating oil supplied when the rolling component 90 is used.

この場合、転動部品90の疲労部において組織変化が起こっていない場合(つまり転動疲労が第3段階まで進んでいない場合)に、10%寿命の推定ステップ(ステップ(S133))において10%寿命を精度良く推定でき、結果的に転動部品90の寿命を高い精度で算出することができる。 In this case, if no structural change has occurred in the fatigued part of the rolling component 90 (that is, if rolling fatigue has not progressed to the third stage), the 10% life estimation step (step (S133)) The lifespan can be estimated with high precision, and as a result, the lifespan of the rolling component 90 can be calculated with high precision.

上記転動部品の疲労度推定方法において、第2データは、転動部品90の疲労部における6成分の残留応力のデータ、転動部品90の疲労部における残留オーステナイト量のデータ、転動部品90の疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきを示すデータ、回折強度のピークの半価幅のデータ、回折強度の平均値のデータ、および回折強度の最小値と最大値との差のデータからなる群から選択される少なくとも1つのデータを含んでいてもよい。 In the method for estimating the fatigue level of a rolling component, the second data includes data on six components of residual stress in a fatigued part of the rolling component 90, data on the amount of retained austenite in the fatigued part of the rolling component 90, and data on the amount of retained austenite in the fatigued part of the rolling component 90. Data showing the variation in diffraction intensity with respect to the center angle of the annular diffraction X-ray diffracted at the fatigue part of It may include at least one data selected from the group consisting of data of the difference from the maximum value.

この場合、上述したデータは転動部品90の疲労状態と強い相関があるため、上述したデータを第2データとして用いることで転動部品90の疲労度を高い精度で推定できる。 In this case, since the data mentioned above has a strong correlation with the fatigue state of the rolling component 90, the degree of fatigue of the rolling component 90 can be estimated with high accuracy by using the data described above as the second data.

上記転動部品の疲労度推定方法は、第1疲労度に基づき、転動部品90が交換を要するか否か、または交換時期を通知するステップ(ステップ(S161))をさらに備えていてもよい。この場合、正確に推定された第1疲労度に基づき、転動部品90のメンテナンスを適切に行うことができる。 The rolling component fatigue level estimation method may further include a step (step (S161)) of notifying whether or not the rolling component 90 requires replacement or notifying the replacement time based on the first fatigue level. . In this case, maintenance of the rolling component 90 can be appropriately performed based on the accurately estimated first fatigue degree.

本開示に従った疲労度推定プログラムは、転動部品の疲労度推定プログラムであって、コンピュータに、回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップ(ステップ(S110))を実行させる。取得するステップ(ステップ(S110))は、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。上記疲労度推定プログラムは、コンピュータに、取得するステップ(ステップ(S110))において得られたデータに基づき、転動部品90の疲労部において、組織変化が起こっているか否かを判断するステップ(ステップ(S120))と、判断するステップ(ステップ(S120))での判断結果と取得するステップ(ステップ(S110))で得られたデータとに基づき、転動部品90の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させる。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品90に作用していた荷重を推定するステップ(ステップ(S132))と、荷重と転動部品90の使用条件とに基づき寿命を算出するステップ(ステップ(S133))と、転動部品90の回転回数と寿命とから転動部品90の第1疲労度を算出するステップ(ステップ(S134))と、が実施される。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていると判断された場合に、予め決定された第2データと第1疲労度との関係に基づき、第2データから第1疲労度を推定するステップ(ステップ(S141))が実施される。 The fatigue degree estimation program according to the present disclosure is a fatigue degree estimation program for rolling parts, and includes a step of acquiring data for estimating the fatigue degree from rolling parts to which repeated loads due to rotation are applied to a computer. Step (S110)) is executed. The acquiring step (step (S110)) includes the step of acquiring first data regarding the microstructure of the rolling component, and the acquisition of X-ray analysis values regarding the rolling component by irradiating X-rays to fatigued parts of the rolling component. and obtaining second data that is measurement data. The fatigue level estimation program includes a step (step S110) of determining whether or not a structural change has occurred in a fatigued portion of the rolling component 90 based on the data obtained in the step of acquiring (step (S110)). (S120)), the determination result in the determining step (step (S120)), and the data obtained in the acquiring step (step (S110)), 1. Estimating the degree of fatigue. In the step of estimating the first fatigue degree, if it is determined that no structural change has occurred in the step of determining (step (S120)), the load acting on the rolling component 90 is calculated based on the second data. A step of estimating (step (S132)), a step (step (S133)) of calculating the life based on the load and the usage conditions of the rolling component 90, and a step (step (S133)) of calculating the life of the rolling component based on the number of rotations and the life of the rolling component 90. A step (step (S134)) of calculating a first fatigue level of 90 is performed. In the step of estimating the first fatigue degree, if it is determined that a tissue change has occurred in the determining step (step (S120)), the relationship between the predetermined second data and the first fatigue degree is determined. Based on this, a step (step (S141)) of estimating the first fatigue degree from the second data is performed.

このように、上述した転動部品90の疲労度推定プログラムは、疲労部において組織変化が起こっているか否かを判断するステップ(ステップ(S120))をコンピュータに実施させるので、転動部品90の疲労部において組織変化が起こっているか否か、つまり転動疲労の進行が第3段階にまで達しているか否かに応じて、それぞれの状態に対応した推定方法を使い分けて第1疲労度を推定できる。したがって、転動部品90の疲労度を高い精度で推定できる。 In this way, the program for estimating the degree of fatigue of the rolling component 90 described above causes the computer to execute the step (step (S120)) of determining whether or not a structural change has occurred in the fatigued portion. The first degree of fatigue is estimated by using different estimation methods corresponding to each state, depending on whether or not a structural change has occurred in the fatigued part, that is, whether rolling contact fatigue has progressed to the third stage. can. Therefore, the degree of fatigue of the rolling component 90 can be estimated with high accuracy.

上記疲労度推定プログラムは、コンピュータに、第1疲労度に基づき、転動部品が交換を要するか否か、または転動部品の交換時期を通知するステップ(ステップ(S161))をさらに実行させてもよい。この場合、正確に推定された第1疲労度に基づき、転動部品90のメンテナンスに用いる情報を通知することができる。 The fatigue level estimation program further causes the computer to execute a step (step (S161)) of notifying whether or not the rolling parts require replacement or notifying the replacement time of the rolling parts based on the first fatigue level. Good too. In this case, information used for maintenance of the rolling component 90 can be notified based on the accurately estimated first fatigue degree.

本開示に従った転動部品の疲労度推定装置14は、判断部31と、荷重推定部32と、
寿命算出部33と、第1疲労度算出部34と、第1疲労度推定部41とを備える。判断部31は、転動部品90のミクロ組織に関する第1データと、転動部品90の疲労部にX線を照射することで得られる、転動部品に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、転動部品90の疲労部において、組織変化が起こっているか否かを判断する。荷重推定部32は、判断部31において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品90に作用していた荷重を推定する。寿命算出部33は、荷重と転動部品90の使用条件とに基づき寿命を算出する。第1疲労度算出部34は、転動部品90の回転回数と上記寿命とから転動部品90の第1疲労度を算出する。第1疲労度推定部41は、判断部31において、組織変化が起こっていると判断された場合に、予め決定されたX線分析値と第1疲労度との関係に基づき、第2データから第1疲労度を推定する。
The rolling component fatigue level estimating device 14 according to the present disclosure includes a determining unit 31, a load estimating unit 32,
It includes a lifespan calculation section 33, a first fatigue degree calculation section 34, and a first fatigue degree estimation section 41. The determining unit 31 receives first data regarding the microstructure of the rolling component 90 and first data that is measured data of X-ray analysis values regarding the rolling component obtained by irradiating the fatigue portion of the rolling component 90 with X-rays. Based on at least one of the two data, it is determined whether or not a structural change has occurred in the fatigue portion of the rolling component 90. The load estimating unit 32 estimates the load acting on the rolling component 90 based on the second data when the determining unit 31 determines that no tissue change has occurred. The lifespan calculation unit 33 calculates the lifespan based on the load and the usage conditions of the rolling component 90. The first fatigue degree calculation unit 34 calculates the first fatigue degree of the rolling component 90 from the number of rotations of the rolling component 90 and the above-mentioned lifespan. When the determining unit 31 determines that a tissue change has occurred, the first fatigue level estimating unit 41 calculates the second data based on the relationship between the predetermined X-ray analysis value and the first fatigue level. A first fatigue level is estimated.

このように、上述した転動部品の疲労度推定装置14は、疲労部において組織変化が起こっているか否かを判断する判断部31を備えているので、転動部品90の疲労部において組織変化が起こっているか否か、つまり転動疲労の進行が第3段階にまで達しているか否かに応じて、それぞれの状態に対応した疲労度の推定方法を使い第1疲労度を推定できる。したがって、転動部品90の第1疲労度を高い精度で推定できる。 In this way, since the above-described rolling component fatigue level estimating device 14 includes the determination unit 31 that determines whether or not a structural change has occurred in a fatigued portion, it is possible to detect a structural change in a fatigued portion of the rolling component 90. The first fatigue degree can be estimated using a fatigue degree estimation method corresponding to each state, depending on whether or not rolling fatigue has occurred, that is, whether rolling contact fatigue has progressed to the third stage. Therefore, the first fatigue degree of the rolling component 90 can be estimated with high accuracy.

(実施の形態2)
<疲労度推定システムの構成>
図5は、実施の形態2に係る疲労度推定システムの構成を表す模式図である。図5を参照して、疲労度推定システムは、基本的には図1に示した疲労度推定システムと同様の構成を備えるが、表面形状測定器13を備える点が図1に示した疲労度推定システムと異なっている。
(Embodiment 2)
<Configuration of fatigue level estimation system>
FIG. 5 is a schematic diagram showing the configuration of a fatigue level estimation system according to the second embodiment. Referring to FIG. 5, the fatigue level estimation system basically has the same configuration as the fatigue level estimation system shown in FIG. 1, but the fatigue level estimation system shown in FIG. The estimation system is different.

表面形状測定器13は、転動部品90の表面形状を測定する。表面形状測定器13として、たとえばレーザ顕微鏡を用いることができる。測定する表面は、たとえば、転動部品90としての転がり軸受の軌道輪の一部の表面、および転動部品90としての転動体の全表面としてもよい。 The surface shape measuring device 13 measures the surface shape of the rolling component 90. As the surface profile measuring device 13, for example, a laser microscope can be used. The surface to be measured may be, for example, a partial surface of a bearing ring of a rolling bearing as the rolling component 90, or the entire surface of a rolling element as the rolling component 90.

図5に示した疲労度推定装置14は、X線検出器12において検出されたX線回折環、およびミクロ組織観察部23で検出された転動部品90のミクロ組織の観察結果に加えて、上述した表面形状測定器13により測定された転動部品90の表面形状のデータに基づいて転動部品90の疲労度を推定する。なお、図5に示した疲労度推定装置14のハードウエア構成は、基本的に図2に示した実施の形態1に係る疲労度推定装置14のハードウエア構成と同様である。 The fatigue level estimating device 14 shown in FIG. The degree of fatigue of the rolling component 90 is estimated based on the data of the surface shape of the rolling component 90 measured by the surface shape measuring device 13 described above. The hardware configuration of the fatigue level estimation device 14 shown in FIG. 5 is basically the same as the hardware configuration of the fatigue level estimation device 14 according to the first embodiment shown in FIG. 2.

<疲労度推定装置の機能構成>
図6は、図5に示した疲労度推定装置の機能構成を表す図である。図6に示す疲労度推定装置14は、基本的に図3に示した疲労度推定装置14と同様の機能構成を備えるが、図3に示した疲労度推定装置14の構成に加えて、接触応力推定部51、寿命推定部53、第2疲労度推定部54、疲労度決定部55を備える点が図3に示した疲労度推定装置14と異なっている。制御部60と、データ準備部21と、判断部31と、荷重推定部32と、寿命算出部33と、第1疲労度算出部34と、第1疲労度推定部41と、診断部70と、接触応力推定部51と、寿命推定部53と、第2疲労度推定部54と、疲労度決定部55とは、CPU15がメモリ16に記憶された疲労度推定プログラムを実行することによって実現される。
<Functional configuration of fatigue level estimation device>
FIG. 6 is a diagram showing the functional configuration of the fatigue level estimation device shown in FIG. 5. The fatigue level estimating device 14 shown in FIG. 6 basically has the same functional configuration as the fatigue level estimating device 14 shown in FIG. 3, but in addition to the configuration of the fatigue level estimating device 14 shown in FIG. This differs from the fatigue level estimating device 14 shown in FIG. 3 in that it includes a stress estimating section 51, a life estimating section 53, a second fatigue level estimating section 54, and a fatigue level determining section 55. The control section 60, the data preparation section 21, the judgment section 31, the load estimation section 32, the life calculation section 33, the first fatigue degree calculation section 34, the first fatigue degree estimation section 41, and the diagnosis section 70. , the contact stress estimation section 51, the life estimation section 53, the second fatigue degree estimation section 54, and the fatigue degree determination section 55 are realized by the CPU 15 executing a fatigue degree estimation program stored in the memory 16. Ru.

<疲労度推定方法の手順>
図7は、疲労度の推定処理の手順を表すフローチャートである。以下、図6および図7
を参照しながら、図5に示した疲労度推定システムにおける疲労度の推定処理を説明する。図7に示した疲労度の推定処理は、基本的には図4に示した疲労度の推定処理と同様の構成を備えるが、データ取得ステップ(S110)において取得されるデータの種類が増えている点、および表面起点型の損傷についての第2疲労度を推定するためのステップ(S151)~ステップ(S154)を備える点、および第1疲労度および第2疲労度のうち大きい方を転動部品の疲労度として決定するステップ(S155)を備える点が図4に示した疲労度の推定処理と異なっている。以下、具体的に説明する。
<Steps for fatigue level estimation method>
FIG. 7 is a flowchart showing the procedure of fatigue level estimation processing. Below, Figures 6 and 7
The fatigue level estimation process in the fatigue level estimation system shown in FIG. 5 will be explained with reference to FIG. The fatigue level estimation process shown in FIG. 7 basically has the same configuration as the fatigue level estimation process shown in FIG. 4, but the types of data acquired in the data acquisition step (S110) have increased. A point that includes steps (S151) to (S154) for estimating a second fatigue degree for surface-originated damage, and a rolling point that is larger of the first fatigue degree and the second fatigue degree. This process differs from the fatigue level estimation process shown in FIG. 4 in that it includes a step (S155) for determining the fatigue level of the component. This will be explained in detail below.

データ取得ステップ(S110)において、データ準備部21は、図3において説明した転動部品90の疲労部におけるミクロ組織に関する第1データと、転動部品90に関するX線分析値の測定データである第2データとに加え、転動部品90の疲労部の表面形状に関する第3データを準備する。当該第3データは、たとえば表面形状測定器13により転動部品90の表面が測定された測定形状のデータである。当該表面形状のデータは入力部17を介してデータ準備部21に入力される。また、第2データは、転動部品90の疲労部の表面における3軸の残留応力のデータおよびX線による残留応力の深さ分布データを含む。 In the data acquisition step (S110), the data preparation unit 21 obtains first data regarding the microstructure in the fatigue portion of the rolling component 90 described in FIG. In addition to the above data, third data regarding the surface shape of the fatigue portion of the rolling component 90 is prepared. The third data is, for example, data on a measured shape of the surface of the rolling component 90 measured by the surface shape measuring device 13. The surface shape data is input to the data preparation section 21 via the input section 17. Further, the second data includes triaxial residual stress data on the surface of the fatigue portion of the rolling component 90 and residual stress depth distribution data based on X-rays.

次に、図4に示した疲労度の推定処理と同様に、ステップ(S120)が実施される。当該ステップ(S120)の判断結果に応じて、図4に示した疲労度の推定処理と同様に、ステップ(S131)~ステップ(S134)またはステップ(S141)が実施される。この結果、内部起点型の損傷に関する第1疲労度が得られる。 Next, step (S120) is performed similarly to the fatigue level estimation process shown in FIG. Depending on the determination result of step (S120), steps (S131) to (S134) or step (S141) are performed, similar to the fatigue level estimation process shown in FIG. 4. As a result, a first fatigue degree for internally initiated damage is obtained.

一方、表面起点型の損傷に関する第2疲労度を得るため、真実接触部の接触応力の計算ステップ(S151)が実施される。ステップ(S151)において、接触応力推定部51は、上記第2データと第3データとに基づき、真実接触部の接触応力を算出する。当該接触応力の計算には、転動部品90の回転速度、使用温度、潤滑油の油種、加重などのデータを用いてもよい。ここで、表面形状のデータ(たとえば表面荒さのデータ)から真実接触部の応力を求める場合、接触荷重の値が必要である。当該接触荷重は、X線応力測定の深さ分析から求めた推定荷重を用いてもよいし、予め転動部品90の使用荷重が想定できる場合は当該使用荷重の値を用いてもよい。 On the other hand, in order to obtain a second degree of fatigue regarding surface-originated damage, a step (S151) of calculating the contact stress of the real contact portion is performed. In step (S151), the contact stress estimation unit 51 calculates the contact stress of the real contact portion based on the second data and the third data. Data such as the rotational speed of the rolling component 90, operating temperature, type of lubricating oil, and weight may be used to calculate the contact stress. Here, when determining the stress of the actual contact portion from surface shape data (for example, surface roughness data), the value of the contact load is required. For the contact load, an estimated load obtained from depth analysis of X-ray stress measurement may be used, or if the working load of the rolling component 90 can be estimated in advance, the value of the working load may be used.

次に、転動面の繰り返し応力の推定ステップ(S152)が実施される。ステップ(S152)において、接触応力推定部51は、上記ステップ(S151)により算出された真実接触部の接触応力に基づき、転動部品90の疲労部に繰り返し作用している接触応力を推定する。 Next, a step (S152) of estimating the repeated stress on the rolling surface is performed. In step (S152), the contact stress estimating unit 51 estimates the contact stress that repeatedly acts on the fatigued part of the rolling component 90 based on the contact stress of the real contact part calculated in the above step (S151).

次に、SN線図から10%寿命を推定するステップ(S153)を実施する。このステップ(S153)において、寿命推定部53は、予め求めておいた接触応力と寿命との関係、いわゆるSN線図を用いて10%寿命(L10)を推定する。SN線図は記憶部61に記憶されている。 Next, a step (S153) of estimating the 10% life from the SN diagram is performed. In this step (S153), the life estimating unit 53 estimates the 10% life (L 10 ) using the relationship between the contact stress and the life determined in advance, a so-called SN diagram. The SN diagram is stored in the storage unit 61.

次に、表面疲労度(第2疲労度)の推定ステップ(S154)を実施する。このステップ(S154)において、第2疲労度推定部54は、転動部品90の回転回数Nと上記10%寿命(L10)とから転動部品90の第2疲労度(N/L10)を算出する。なお、回転回数Nの代わりに転動部品90の使用時間を用いてもよい。 Next, a step (S154) of estimating the degree of surface fatigue (second degree of fatigue) is performed. In this step (S154), the second fatigue degree estimating unit 54 calculates a second fatigue degree (N/L 10 ) of the rolling component 90 from the number of rotations N of the rolling component 90 and the 10% life (L 10 ). Calculate. Note that the usage time of the rolling component 90 may be used instead of the number of rotations N.

次に、第1疲労度と第2疲労度とのうち値の大きい方を転動部品の疲労度として決定するステップ(S155)を実施する。ステップ(S155)において、疲労度決定部55は、ステップ(S134)またはステップ(S141)において得られた内部起点型の損傷に関する第1疲労度と、ステップ(S154)において得られた表面起点型の損傷に関
する第2疲労度とのうち、値の大きい方を転動部品90の疲労度として決定する。
Next, a step (S155) is performed in which the larger value of the first fatigue degree and the second fatigue degree is determined as the fatigue degree of the rolling component. In step (S155), the fatigue degree determination unit 55 determines the first fatigue degree regarding internal origin type damage obtained in step (S134) or step (S141) and the first fatigue degree regarding internal origin type damage obtained in step (S154). Among the second fatigue degrees related to damage, the larger value is determined as the fatigue degree of the rolling component 90.

次に、図4に示した疲労度の推定処理と同様に、診断ステップ(S161)が実施される。当該ステップ(S161)において、診断部70は、上述のようにして決定された疲労度の値が、予め決定されていた基準値を超えているか否かを判断する。決定された疲労度の値が基準値を超えている場合、診断部70から制御部60へ、疲労度の値が基準値を超えたことを示す信号が送信される。当該信号を受信した制御部60は、たとえば表示部18に転動部品90の交換が必要であることを示すメッセージを表示する。決定された疲労度の値が基準値を超えていない場合、診断部70から制御部60へ、疲労度の値が基準値を超えていないことを示す信号が送信される。当該信号を受信した制御部60は、たとえば表示部18に転動部品90の交換が不要であることを示すメッセージを表示する。 Next, similar to the fatigue level estimation process shown in FIG. 4, a diagnostic step (S161) is performed. In this step (S161), the diagnosis unit 70 determines whether the fatigue level value determined as described above exceeds a predetermined reference value. When the determined fatigue level value exceeds the reference value, a signal indicating that the fatigue level value exceeds the reference value is transmitted from the diagnostic unit 70 to the control unit 60. The control unit 60 that has received the signal displays, for example, on the display unit 18 a message indicating that the rolling component 90 needs to be replaced. If the determined fatigue level value does not exceed the reference value, a signal indicating that the fatigue level value does not exceed the reference value is transmitted from the diagnostic unit 70 to the control unit 60. The control unit 60 that has received the signal displays, for example, on the display unit 18 a message indicating that the rolling component 90 does not need to be replaced.

<作用効果>
上記転動部品の疲労度推定方法において、取得するステップ(ステップ(S110))は、転動部品90の疲労部を測定して表面形状に関する第3データを得るステップを含んでいてもよい。上記転動部品の疲労度推定方法は、取得するステップ(ステップ(S110))で得られたデータに基づき、転動部品90の表面起点型の損傷に関する第2疲労度を推定するステップ(ステップ(S151)~ステップ(S154)を備えていてもよい。第2疲労度を推定するステップは、第2データと第3データとに基づき、転動部品90の疲労部に繰り返し作用している接触応力を推定するステップ(ステップ(S152))と、予め決定された接触応力と寿命との関係(SN線図)に基づき、接触応力から、寿命を推定するステップ(ステップ(S153))と、転動部品90の回転回数と寿命とから転動部品90の第2疲労度を推定するステップ(ステップ(S154))とを含んでいてもよい。上記転動部品の疲労度推定方法は、第1疲労度と第2疲労度とのうち値の大きい方を転動部品90の疲労度として決定するステップ(ステップ(S155))を備えていてもよい。
<Effect>
In the method for estimating the fatigue level of a rolling component, the step of obtaining (step (S110)) may include a step of measuring the fatigue portion of the rolling component 90 to obtain third data regarding the surface shape. The above method for estimating fatigue level of rolling parts includes a step (step ( S151) to (S154) may be provided.The step of estimating the second degree of fatigue is based on the second data and the third data, and the contact stress that is repeatedly acting on the fatigue portion of the rolling component 90 is estimated. (step (S152)), a step (step (S153)) of estimating the life from contact stress based on the predetermined relationship between contact stress and life (SN diagram), and The method may include a step (step (S154)) of estimating a second fatigue degree of the rolling component 90 from the number of rotations and the life of the component 90. The rolling component 90 may have a step (step (S155)) of determining the larger value of the degree and the second degree of fatigue as the degree of fatigue of the rolling component 90.

この場合、内部起点型の損傷に関する第1疲労度と、表面起点型の損傷に関する第2疲労度との両方を考慮することで、より正確に転動部品90の疲労度を推定できる。 In this case, the degree of fatigue of the rolling component 90 can be estimated more accurately by considering both the first degree of fatigue regarding internally originating damage and the second degree of fatigue regarding surface originating damage.

上記転動部品の疲労度推定方法は、疲労度に基づき、転動部品90が交換を要するか否か、または転動部品90の交換時期を通知するステップをさらに備えていてもよい。この場合、正確に推定された疲労度に基づき、転動部品90のメンテナンスを適切に行うことができる。 The rolling component fatigue level estimation method may further include the step of notifying whether or not the rolling component 90 needs to be replaced or notifying when to replace the rolling component 90 based on the fatigue level. In this case, maintenance of the rolling component 90 can be appropriately performed based on the accurately estimated fatigue level.

上記疲労度推定プログラムにおいて、取得するステップ(ステップ(S110))は、転動部品90の疲労部を測定して表面形状に関する第3データを得るステップを含んでいてもよい。上記疲労度推定プログラムは、コンピュータに、取得するステップ(ステップ(S110))で得られたデータに基づき、転動部品90の表面起点型の損傷に関する第2疲労度を推定するステップ(ステップ(S151)~ステップ(S154))を実行させてもよい。第2疲労度を推定するステップは、第2データと第3データとに基づき、転動部品90の疲労部に繰り返し作用している接触応力を推定するステップ(ステップ(S152))と、予め決定された接触応力と寿命との関係に基づき、接触応力から、寿命を推定するステップ(ステップ(S153))と、転動部品90の回転回数と寿命とから転動部品90の第2疲労度を推定するステップ(ステップ(S154))とを含んでいてもよい。さらに、上記疲労度推定プログラムは、コンピュータに、第1疲労度と第2疲労度とのうち値の大きい方を転動部品の疲労度として決定するステップ(ステップ(S155))を実行させてもよい。 In the fatigue degree estimation program, the step of obtaining (step (S110)) may include a step of measuring the fatigue portion of the rolling component 90 to obtain third data regarding the surface shape. The fatigue degree estimation program includes a step (step (S151)) of estimating a second fatigue degree regarding surface-originated damage of the rolling component 90 based on the data obtained in the acquiring step (step (S110)). ) to (S154)) may be executed. The step of estimating the second degree of fatigue includes a step (step (S152)) of estimating the contact stress repeatedly acting on the fatigue portion of the rolling component 90 based on the second data and the third data, and a step (step (S152)) determined in advance. A step (step (S153)) of estimating the lifespan from the contact stress based on the relationship between the contact stress and the lifespan determined, and a second fatigue degree of the rolling part 90 from the number of rotations and the lifespan of the rolling part 90. It may also include a step of estimating (step (S154)). Further, the fatigue degree estimation program may cause the computer to execute a step (step (S155)) of determining the larger value of the first fatigue degree and the second fatigue degree as the fatigue degree of the rolling component. good.

この場合、内部起点型の損傷に関する第1疲労度と、表面起点型の損傷に関する第2疲
労度との両方を考慮することで、より正確に転動部品90の疲労度を推定できる。
In this case, the degree of fatigue of the rolling component 90 can be estimated more accurately by considering both the first degree of fatigue regarding internally originating damage and the second degree of fatigue regarding surface originating damage.

上記疲労度推定プログラムは、コンピュータに、上記疲労度に基づき、転動部品90が交換を要するか否か、または転動部品90の交換時期を通知するステップ(ステップS161)をさらに実行させてもよい。この場合、正確に推定された疲労度に基づき、転動部品90のメンテナンスに用いる情報を通知することができる。 The fatigue level estimation program may further cause the computer to execute a step (step S161) of notifying whether or not the rolling component 90 requires replacement or notifying the replacement time of the rolling component 90 based on the fatigue level. good. In this case, information used for maintenance of the rolling component 90 can be notified based on the accurately estimated fatigue level.

上記転動部品の疲労度推定装置14は、接触応力推定部51と、寿命推定部53と、第2疲労度推定部54と、疲労度決定部55とを備えてもよい。接触応力推定部51は、第2データと、転動部品90の疲労部を測定して得られる表面形状に関する第3データとに基づき、転動部品90の疲労部に繰り返し作用している接触応力を推定する。寿命推定部53は、予め決定された接触応力と任意の破損確率に対する寿命との関係(SN線図)に基づき、接触応力から、寿命を推定する。第2疲労度推定部54は、転動部品90の回転回数と寿命とから転動部品90の第2疲労度を推定する。疲労度決定部55は、第1疲労度と第2疲労度とのうち値の大きい方を転動部品90の疲労度として決定する。 The rolling component fatigue level estimating device 14 may include a contact stress estimating section 51, a life estimating section 53, a second fatigue level estimating section 54, and a fatigue level determining section 55. The contact stress estimating unit 51 estimates the contact stress repeatedly acting on the fatigue portion of the rolling component 90 based on the second data and third data regarding the surface shape obtained by measuring the fatigue portion of the rolling component 90. Estimate. The life estimating unit 53 estimates the life from the contact stress based on the relationship (SN diagram) between the predetermined contact stress and the life with respect to an arbitrary probability of failure. The second fatigue degree estimation unit 54 estimates the second fatigue degree of the rolling component 90 from the number of rotations and the life of the rolling component 90. The fatigue level determination unit 55 determines the larger value of the first fatigue level and the second fatigue level as the fatigue level of the rolling component 90.

この場合、内部起点型の損傷に関する第1疲労度と、表面起点型の損傷に関する第2疲労度との両方を考慮することで、より正確に転動部品90の疲労度を推定できる。 In this case, the degree of fatigue of the rolling component 90 can be estimated more accurately by considering both the first degree of fatigue regarding internally originating damage and the second degree of fatigue regarding surface originating damage.

(実施の形態3)
<疲労度推定の手順>
図8は、疲労度の推定処理の手順を表すフローチャートである。なお、図8に示した疲労度の推定処理を実施する、実施の形態3に係る疲労度推定装置を含む疲労度推定システムは、基本的には実施の形態2に係る疲労度推定システムと同様の構成を備える。以下、図8を参照しながら、本実施の形態に係る疲労度推定システムにおける疲労度の推定処理を説明する。
(Embodiment 3)
<Steps for estimating fatigue level>
FIG. 8 is a flowchart showing the procedure of fatigue level estimation processing. Note that the fatigue level estimation system including the fatigue level estimation device according to the third embodiment, which performs the fatigue level estimation process shown in FIG. 8, is basically the same as the fatigue level estimation system according to the second embodiment. It has the following configuration. Hereinafter, the fatigue level estimation process in the fatigue level estimation system according to the present embodiment will be explained with reference to FIG.

図8に示した疲労度の推定処理は、基本的には図7に示した疲労度の推定処理と同様の構成を備えるが、ステップ(S120)において組織変化が起こっていると判断された場合の処理が図7に示した疲労度の推定処理と異なっている。すなわち、図8に示した疲労度の推定処理では、上記ステップ(S120)において組織変化が起こっていると判断された場合、接触応力の推定ステップ(S171)が実施される。このステップ(S171)において、荷重推定部32(図6参照)は、第2データに含まれる転動部品90の疲労部における環状の回折X線の中心角に対する回折強度のばらつきの、深さ分布の測定データに基づき、転動部品90の疲労部における接触応力を推定する。たとえば、荷重推定部32は、後述するように上記環状の回折X線の中心角に対する回折強度のばらつきの深さ方向での分布データである深さ分布の測定データに基づき、回折強度のばらつきの値が最大となる第1深さを求めてもよい。荷重推定部32は、当該第1深さを用いて疲労部における他の部材との接触部である接触楕円における短軸半径を推定してもよい。 The fatigue degree estimation process shown in FIG. 8 basically has the same configuration as the fatigue degree estimation process shown in FIG. 7, but when it is determined that a tissue change has occurred in step (S120) This process is different from the fatigue level estimation process shown in FIG. That is, in the fatigue degree estimation process shown in FIG. 8, if it is determined in the above step (S120) that a tissue change has occurred, a contact stress estimation step (S171) is performed. In this step (S171), the load estimating unit 32 (see FIG. 6) calculates the depth distribution of the variation in diffraction intensity with respect to the central angle of the annular diffracted X-ray in the fatigue part of the rolling component 90 included in the second data. The contact stress at the fatigue portion of the rolling component 90 is estimated based on the measurement data. For example, the load estimating unit 32 calculates the variation in diffraction intensity based on measured data of depth distribution, which is the distribution data in the depth direction of the variation in diffraction intensity with respect to the center angle of the annular diffraction X-ray, as described later. The first depth at which the value is maximum may be determined. The load estimating unit 32 may use the first depth to estimate the minor axis radius of a contact ellipse that is a contact portion with another member in the fatigue portion.

なお、上述した深さ分布の測定データは、ステップ(S110)において、2次元検出器を用いて環状の回折X線の全体を測定することで得ても良いし、環状の回折X線の一部を検出する検出器を走査することで、環状の回折X線の全体を測定することで得ても良い。また、上記ステップ(S110)では、転動部品90の疲労部の表面に対して垂直方向または当該表面に対して傾斜した方向からX線を照射してもよい。 The above-mentioned depth distribution measurement data may be obtained in step (S110) by measuring the entire annular diffracted X-ray using a two-dimensional detector, or by measuring one part of the annular diffracted X-ray. It may also be obtained by measuring the entire ring-shaped diffracted X-ray by scanning a detector that detects the area. Further, in the above step (S110), the X-rays may be irradiated with the surface of the fatigued portion of the rolling component 90 in a direction perpendicular to the surface or in a direction inclined with respect to the surface.

次に、荷重の推定ステップ(S172)が実施される。当該ステップ(S172)において、荷重推定部32は、転動部品90の疲労部における環状の回折X線の中心角に対する回折強度のばらつきの、深さ分布の測定データに基づき、転動部品90の疲労部における荷重を推定する。上記ステップ(S171)およびステップ(S172)において、荷
重推定部32は、図8のステップ(S131)およびステップ(S132)における推定方法と異なる方法であって、上述のように組織変化が起こっている状態に適した方法により接触応力および荷重を推定する。なお、詳細は後述する実施例において説明する。
Next, a load estimation step (S172) is performed. In this step (S172), the load estimating unit 32 estimates the depth distribution of the variation in diffraction intensity with respect to the center angle of the annular diffraction X-ray in the fatigue portion of the rolling component 90. Estimate the load at the fatigue part. In the above steps (S171) and (S172), the load estimating unit 32 uses a different estimation method from the estimation method in steps (S131) and (S132) in FIG. Estimate contact stress and load using methods appropriate to the situation. Note that details will be explained in Examples described later.

次に、10%寿命(L10)の推定ステップ(S173)が実施される。当該ステップ(S173)において、寿命算出部33は、上記荷重と転動部品90の使用条件とに基づき10%寿命(L10)を算出する。ステップ(S173)における処理は、基本的にステップ(S133)における処理と同様である。 Next, a 10% lifespan (L 10 ) estimation step (S173) is performed. In this step (S173), the life calculation unit 33 calculates the 10% life (L 10 ) based on the load and the usage conditions of the rolling component 90. The process in step (S173) is basically the same as the process in step (S133).

次に、内部疲労度(第1疲労度)の算出ステップ(S174)が実施される。当該ステップ(S174)において、第1疲労度算出部34は、転動部品90の回転回数Nと上記10%寿命(L10)とから転動部品90の第1疲労度(N/L10)を算出する。なお、回転回数Nの代わりに転動部品90の使用時間を用いてもよい。 Next, a step (S174) of calculating an internal fatigue level (first fatigue level) is performed. In the step (S174), the first fatigue degree calculation unit 34 calculates the first fatigue degree (N/L 10 ) of the rolling component 90 from the number of rotations N of the rolling component 90 and the 10% life (L 10 ). Calculate. Note that the usage time of the rolling component 90 may be used instead of the number of rotations N.

図8に示した疲労度の推定処理では、ステップ(S120)での判断結果に応じて、ステップ(S131)~ステップ(S134)または上述したステップ(S171)~ステップ(S174)のいずれかが実施されることにより、内部起点型の損傷に関する第1疲労度が得られる。 In the fatigue level estimation process shown in FIG. 8, either steps (S131) to (S134) or the above-mentioned steps (S171) to (S174) are performed depending on the determination result in step (S120). As a result, a first fatigue degree for internally originating damage is obtained.

また、図7に示した疲労度の推定処理と同様に、図8に示したステップ(S151)~ステップ(S155)およびステップ(S161)を実施することにより、転動部品90の疲労度の推定および当該疲労度に基づいた診断を行うことができる。 Similarly to the fatigue degree estimation process shown in FIG. 7, the fatigue degree of the rolling component 90 can be estimated by performing steps (S151) to (S155) and step (S161) shown in FIG. and diagnosis based on the degree of fatigue.

<作用効果>
本開示に従った転動部品の疲労度推定方法は、回転による繰り返し負荷が加えられる転動部品から転動部品の疲労度を推定するためのデータを取得するステップ(ステップ(S110))を備える。当該取得するステップ(ステップ(S110))は、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。転動部品の疲労度推定方法は、さらに、取得するステップ(ステップ(S110))において得られたデータに基づき、転動部品の疲労部において、組織変化が起こっているか否かを判断するステップ(ステップ(S120))と、当該判断するステップ(ステップ(S120))での判断結果と取得するステップ(ステップ(S110))で得られたデータとに基づき、転動部品の内部起点型の損傷に関する第1疲労度を推定するステップ(ステップ(S131)~ステップ(S134)およびステップ(S171)~ステップ(S174))と、を備える。第2データは、転動部品に関するX線分析値の深さ方向での分布データを含む。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップ(ステップ(S131、S132))と、荷重と転動部品の使用条件とに基づき寿命を算出するステップ(ステップ(S133))と、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップと、が実施される。判断するステップ(ステップ(S120))において、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品に作用していた荷重を推定するステップ(ステップ(S171、S172))と、荷重と転動部品の使用条件とに基づき寿命を算出するステップ(ステップ(S173))と、転動部品の回転回数と寿命とから転動部品の第1疲労度を算出するステップ(ステップ(S174))とが実施される。
<Effect>
A rolling component fatigue level estimation method according to the present disclosure includes a step (step (S110)) of acquiring data for estimating the rolling component fatigue level from rolling components to which repeated loads due to rotation are applied. . The acquiring step (step (S110)) includes the step of acquiring first data regarding the microstructure of the rolling component, and the acquisition of X-ray analysis values regarding the rolling component by irradiating X-rays to fatigued parts of the rolling component. obtaining second data that is measurement data of. The method for estimating the degree of fatigue of rolling parts further includes a step of determining whether or not a structural change has occurred in a fatigued part of the rolling part based on the data obtained in the step of acquiring (step (S110)). Based on the determination result in the determining step (step (S120)) and the data obtained in the acquiring step (step (S110)), The step of estimating the first fatigue level (steps (S131) to (S134) and steps (S171) to (S174)) is provided. The second data includes distribution data in the depth direction of X-ray analysis values regarding the rolling component. In the step of estimating the first degree of fatigue, if it is determined that no structural change has occurred in the step of determining (step (S120)), the load acting on the rolling component is estimated based on the second data. (steps (S131, S132)), a step (step (S133)) of calculating the life of the rolling parts based on the load and the operating conditions of the rolling parts, and a step (step (S133)) of calculating the life of the rolling parts based on the number of rotations and the life of the rolling parts. A step of calculating a first fatigue degree is performed. If it is determined that a tissue change has occurred in the step of determining (step (S120)), the step of estimating the load acting on the rolling component based on the distribution data in the depth direction (step (S171) , S172)), a step (step (S173)) of calculating the lifespan based on the load and the usage conditions of the rolling parts, and calculating a first fatigue degree of the rolling parts from the number of rotations and the lifespan of the rolling parts. The step (step (S174)) is performed.

このように、上述した転動部品の疲労度推定方法は、本発明の実施の形態1における疲労度推定方法と同様に、転動疲労の進行が第3段階にまで達しているか否かに応じて、そ
れぞれの状態に対応した疲労度の推定方法を使い分けることができる。したがって、転動部品の疲労度を高い精度で推定できる。
In this way, the above-described method for estimating the fatigue level of rolling parts, similar to the method for estimating the fatigue level in Embodiment 1 of the present invention, determines whether rolling fatigue has progressed to the third stage or not. Therefore, it is possible to use different methods for estimating the degree of fatigue that correspond to each state. Therefore, the degree of fatigue of rolling parts can be estimated with high accuracy.

上記転動部品の疲労度推定方法において、深さ方向での分布データは、転動部品の疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきを示すデータの深さ方向での分布データである。この場合、上記深さ方向での分布データが、疲労部での疲労が第3段階に入った状態において転動部品に作用していた荷重と一定の関係を有しているため、当該分布データに基づき上記荷重を推定できる。この結果、疲労の進行が第3段階に達した状態においても当該荷重に基づき第1疲労度を算出できる。 In the above method for estimating the fatigue level of rolling parts, the distribution data in the depth direction is data indicating the variation in the diffraction intensity with respect to the center angle of annular diffracted X-rays diffracted at the fatigued part of the rolling part. This is the distribution data. In this case, the above distribution data in the depth direction has a certain relationship with the load that was acting on the rolling parts when the fatigue at the fatigue part entered the third stage, so the distribution data The above load can be estimated based on. As a result, even when fatigue has progressed to the third stage, the first fatigue degree can be calculated based on the load.

以下、上述した転動部品の疲労度推定方法の作用効果についてより詳しく説明する。すでに述べたように、疲労が第3段階に達した場合には転動部品の疲労部において組織変化が生じる。この組織変化が生じた部分では結晶が特定の方向に配向する。このため、環状の回折X線の中心角に対する回折強度のばらつき(以下、回折強度のばらつき)が増加する。回折強度のばらつきは転動接触部の深さ方向に分布を有する。発明者は、回折強度のばらつきにおける上記分布のピーク値を示す深さが、接触楕円の短軸半径と対応関係を有するという知見を得た。この知見に基づき、非特許文献1における残留応力分布から接触応力を推定する方法と同様に、回折強度のばらつきの分布から接触応力と荷重とが推定できる。その後、推定した荷重と軸受の使用条件(たとえば回転速度、使用温度、潤滑油種、潤滑油汚染度)に基づいて10%寿命を求めることができる。さらに、軸受の回転回数あるいは使用時間と上記10%寿命との比から疲労度を求めることができる。 Hereinafter, the effects of the above-mentioned method for estimating the degree of fatigue of rolling parts will be explained in more detail. As already mentioned, when fatigue reaches the third stage, a structural change occurs in the fatigued part of the rolling component. In areas where this structural change has occurred, the crystals are oriented in a specific direction. Therefore, variations in diffraction intensity (hereinafter referred to as variations in diffraction intensity) with respect to the central angle of the annular diffracted X-rays increase. The variation in diffraction intensity has a distribution in the depth direction of the rolling contact portion. The inventors have found that the depth at which the peak value of the above-mentioned distribution of variations in diffraction intensity occurs has a corresponding relationship with the minor axis radius of the contact ellipse. Based on this knowledge, contact stress and load can be estimated from the distribution of variations in diffraction intensity, similar to the method of estimating contact stress from residual stress distribution in Non-Patent Document 1. Thereafter, the 10% life can be determined based on the estimated load and bearing usage conditions (for example, rotational speed, usage temperature, lubricating oil type, lubricating oil contamination level). Further, the degree of fatigue can be determined from the ratio of the number of rotations or usage time of the bearing to the above 10% life.

本開示に従った疲労度推定プログラムは、本発明の実施の形態2における疲労度推定装置14のCPU15において実行される転動部品の疲労度推定プログラムであって、コンピュータに、回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップ(ステップ(S110))を実行させる。取得するステップ(ステップ(S110))は、転動部品のミクロ組織に関する第1データを得るステップと、転動部品の疲労部にX線を照射することで、転動部品に関するX線分析値の測定データである第2データを得るステップと、を含む。上記疲労度推定プログラムは、コンピュータに、取得するステップ(ステップ(S110))において得られたデータに基づき、転動部品90の疲労部において、組織変化が起こっているか否かを判断するステップ(ステップ(S120))と、判断するステップ(ステップ(S120))での判断結果と取得するステップ(ステップ(S110))で得られたデータとに基づき、転動部品90の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させる。第2データは、転動部品90に関するX線分析値の深さ方向での分布データを含む。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品に作用していた荷重を推定するステップ(ステップ(S131、S132))と、荷重と転動部品の使用条件とに基づき寿命を算出するステップ(ステップ(S133))と、転動部品90の回転回数と寿命とから転動部品90の第1疲労度を算出するステップ(ステップ(S134))と、が実施される。第1疲労度を推定するステップでは、判断するステップ(ステップ(S120))において、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品90に作用していた荷重を推定するステップ(ステップ(S171、S172))と、荷重と転動部品90の使用条件とに基づき寿命を算出するステップ(ステップ(S173))と、転動部品90の回転回数と寿命とから転動部品90の第1疲労度を算出するステップ(ステップ(S174))とが実施される。この場合、本発明の実施の形態2における疲労度推定プログラムと同様の効果を得ることができる。 The fatigue degree estimation program according to the present disclosure is a fatigue degree estimation program for rolling parts that is executed in the CPU 15 of the fatigue degree estimation device 14 in the second embodiment of the present invention, and is a program for estimating the fatigue degree of rolling parts that is executed by the CPU 15 of the fatigue degree estimation device 14 according to the second embodiment of the present invention. A step (step (S110)) of acquiring data for estimating the degree of fatigue from the added rolling parts is executed. The acquiring step (step (S110)) includes the step of acquiring first data regarding the microstructure of the rolling component, and the acquisition of X-ray analysis values regarding the rolling component by irradiating X-rays to fatigued parts of the rolling component. and obtaining second data that is measurement data. The fatigue level estimation program includes a step (step S110) of determining whether or not a structural change has occurred in a fatigued portion of the rolling component 90 based on the data obtained in the step of acquiring (step (S110)). (S120)), the determination result in the determining step (step (S120)), and the data obtained in the acquiring step (step (S110)), 1. Estimating the degree of fatigue. The second data includes distribution data of X-ray analysis values regarding the rolling component 90 in the depth direction. In the step of estimating the first degree of fatigue, if it is determined that no structural change has occurred in the step of determining (step (S120)), the load acting on the rolling component is estimated based on the second data. a step (step (S131, S132)) of calculating the life of the rolling component based on the load and the usage conditions of the rolling component (step (S133)); and a step of calculating the life of the rolling component based on the number of rotations and the life of the rolling component 90. A step (step (S134)) of calculating a first fatigue level of 90 is performed. In the step of estimating the first degree of fatigue, if it is determined that a structural change has occurred in the step of determining (step (S120)), the first degree of fatigue is estimated based on the distribution data in the depth direction. A step (step (S171, S172)) of estimating the load that has been applied to the rolling component 90, a step (step (S173)) of calculating the life based on the load and the usage conditions of the rolling component 90, and a step (step (S173)) of estimating the number of rotations of the rolling component A step (step (S174)) of calculating the first fatigue degree of the rolling component 90 from the life span is performed. In this case, the same effects as the fatigue level estimation program in Embodiment 2 of the present invention can be obtained.

本開示に従った疲労度推定装置14は、判断部31と、荷重推定部32と、寿命算出部33と、第1疲労度算出部34とを備える。判断部31は、転動部品90のミクロ組織に
関する第1データと、転動部品90の疲労部にX線を照射することで得られる、転動部品90に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、転動部品90の疲労部において、組織変化が起こっているか否かを判断する。荷重推定部32は、第2データに基づき転動部品90に作用していた荷重を推定する。寿命算出部33は、荷重と転動部品90の使用条件とに基づき寿命を算出する。第1疲労度算出部34は、転動部品90の回転回数と寿命とから転動部品90の第1疲労度を算出する。第2データは、転動部品90に関するX線分析値の深さ方向での分布データを含む。荷重推定部32は、判断部31において、組織変化が起こっていないと判断された場合に、第2データに基づき転動部品90に作用していた荷重を推定する。荷重推定部32は、判断部31において、組織変化が起こっていると判断された場合に、深さ方向での分布データに基づき転動部品90に作用していた荷重を推定する。この場合、本発明の実施の形態2における疲労度推定装置14と同様の効果を得ることができる。
The fatigue level estimating device 14 according to the present disclosure includes a determining unit 31, a load estimating unit 32, a life calculating unit 33, and a first fatigue level calculating unit 34. The determining unit 31 is first data regarding the microstructure of the rolling component 90 and measurement data of X-ray analysis values regarding the rolling component 90 obtained by irradiating the fatigue portion of the rolling component 90 with X-rays. Based on at least one of the second data, it is determined whether or not a structural change has occurred in the fatigued portion of the rolling component 90. The load estimation unit 32 estimates the load acting on the rolling component 90 based on the second data. The lifespan calculation unit 33 calculates the lifespan based on the load and the usage conditions of the rolling component 90. The first fatigue degree calculation unit 34 calculates the first fatigue degree of the rolling component 90 from the number of rotations and the life of the rolling component 90. The second data includes distribution data of X-ray analysis values regarding the rolling component 90 in the depth direction. The load estimating unit 32 estimates the load acting on the rolling component 90 based on the second data when the determining unit 31 determines that no tissue change has occurred. The load estimating unit 32 estimates the load acting on the rolling component 90 based on the distribution data in the depth direction when the determining unit 31 determines that a tissue change has occurred. In this case, the same effect as the fatigue level estimation device 14 in the second embodiment of the present invention can be obtained.

本開示に従った転動部品の接触応力推定方法は、転動部品90の疲労部の表面から内部にかけてX線を照射することで、疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきの深さ方向での分布データを得るステップ(ステップ(S110))と、深さ方向での分布データに基づき、転動部品90の疲労部に繰り返し作用している接触応力を推定するステップ(ステップ(S171))とを備える。このようにすれば、上記深さ方向での分布データが、疲労部での疲労が第3段階に入った状態において転動部品に作用していた接触応力と一定の関係を有しているため、当該分布データに基づき上記接触応力を推定できる。 A method for estimating contact stress of a rolling component according to the present disclosure is to irradiate X-rays from the surface to the inside of a fatigued part of the rolling component 90, and to A step (step (S110)) of obtaining distribution data of the dispersion of diffraction intensity in the depth direction and estimating the contact stress that repeatedly acts on the fatigued part of the rolling component 90 based on the distribution data in the depth direction. (step (S171)). In this way, the distribution data in the depth direction has a certain relationship with the contact stress acting on the rolling parts when the fatigue in the fatigue part has entered the third stage. , the contact stress can be estimated based on the distribution data.

上記接触応力推定方法において、接触応力を推定するステップ(ステップ(S171))は、深さ方向での分布データに基づき、回折強度のばらつきの値が最大となる第1深さを求め、当該第1深さを用いて疲労部における他の部材との接触部の短軸半径を推定するステップと、短軸半径に基づき接触応力を推定するステップとを含んでもよい。 In the above contact stress estimating method, the step of estimating the contact stress (step (S171)) is to find the first depth at which the value of the dispersion of diffraction intensity is maximum based on the distribution data in the depth direction, and The method may include the steps of estimating the minor axis radius of the contact portion with another member in the fatigue portion using the same depth, and estimating the contact stress based on the minor axis radius.

上記接触応力推定方法において、深さ方向での分布データを得るステップ(ステップ(S110))では、2次元検出器を用いて環状の回折X線の全体を測定してもよい。上記接触応力推定方法において、深さ方向での分布データを得るステップ(ステップ(S110))では、環状の回折X線の一部を検出する検出器を走査することで、環状の回折X線の全体を測定してもよい。 In the above contact stress estimation method, in the step (step (S110)) of obtaining distribution data in the depth direction, a two-dimensional detector may be used to measure the entire annular diffracted X-ray. In the contact stress estimation method described above, in the step (step (S110)) of obtaining distribution data in the depth direction, a detector that detects a part of the annular diffraction X-rays is scanned, thereby detecting the annular diffraction X-rays. The whole may be measured.

上記接触応力推定方法において、深さ方向での分布データを得るステップ(ステップ(S110))では、転動部品90の疲労部の表面に対して垂直方向からX線を照射してもよい。上記接触応力推定方法において、深さ方向での分布データを得るステップ(ステップ(S110))では、転動部品90の疲労部の表面に対して傾斜した方向からX線を照射してもよい。 In the above contact stress estimating method, in the step (step (S110)) of obtaining distribution data in the depth direction, X-rays may be irradiated from a direction perpendicular to the surface of the fatigued part of the rolling component 90. In the above contact stress estimating method, in the step (step (S110)) of obtaining distribution data in the depth direction, X-rays may be irradiated from an oblique direction to the surface of the fatigued part of the rolling component 90.

(実施例1)
線接触試験機による寿命試験後の試験片に対して、本開示に従った疲労度推定を行った。試験条件を表1に示す。
(Example 1)
Fatigue degree estimation according to the present disclosure was performed on the test piece after the life test using a line contact tester. The test conditions are shown in Table 1.

Figure 2023174901000003
Figure 2023174901000003

以下に結果を説明する。
<疲労の進行が第3段階に至っていない場合の疲労度推定>
(1)残留応力のピーク位置の決定
疲労の進行が第3段階に至っていない場合、残留応力の深さ分布の測定結果から接触応力と荷重の推定を行う。以下の例では残留応力の相当応力を用いるが、周方向の残留応力および軸方向の残留応力を用いても荷重推定は可能である。
The results are explained below.
<Estimation of fatigue level when fatigue has not progressed to the third stage>
(1) Determining the peak position of residual stress If fatigue has not progressed to the third stage, estimate the contact stress and load from the measurement results of the depth distribution of residual stress. In the example below, the equivalent stress of the residual stress is used, but the load can also be estimated using the residual stress in the circumferential direction and the residual stress in the axial direction.

図9は、残留応力の相当応力の深さ分布を示すグラフである。図9の横軸は試料の表面からの深さを示し、単位はμmである。図9のグラフの縦軸は残留応力の相当応力を示し、単位はMPaである。なお、図9に示したデータを得た試料の線接触試験機での試験時間は148分であった。図9に示すように、ここでは残留応力分布を2次関数で近似している。当該近似曲線がピークを示す位置を相当応力のピーク位置(最大値を示す深さ)Zσeqとする。図9では、ピーク位置Zσeqは210μmである。 FIG. 9 is a graph showing the depth distribution of equivalent stress of residual stress. The horizontal axis in FIG. 9 indicates the depth from the surface of the sample, and the unit is μm. The vertical axis of the graph in FIG. 9 indicates the equivalent stress of the residual stress, and the unit is MPa. Note that the test time for the sample from which the data shown in FIG. 9 was obtained using the line contact tester was 148 minutes. As shown in FIG. 9, the residual stress distribution is approximated by a quadratic function. The position where the approximate curve shows a peak is defined as the peak position (depth showing the maximum value) of the equivalent stress Zσeq. In FIG. 9, the peak position Zσeq is 210 μm.

(2)接触応力と荷重の推定
残留応力が最大を示す位置と転動体内部に生じる最大せん断応力τmaxの最大値が生じ
る位置Z45がほぼ一致する(Zσeq≒Z45)ことが知られている。また、線接触の場合、接触楕円の短軸半径bとZ45との間には下記の式(2)の関係がある。なお、ほとんどの軸受は接触楕円の長軸と短軸の比が10以上になるので、転動体の形状に関わらず式(2)を用いても問題ない。
(2) Estimation of contact stress and load It is known that the position where the residual stress is maximum and the position Z 45 where the maximum value of the maximum shear stress τmax occurring inside the rolling element almost coincides (Zσeq≒Z 45 ). . In addition, in the case of line contact, there is a relationship between the minor axis radius b of the contact ellipse and Z45 as expressed by the following equation (2). Note that in most bearings, the ratio of the long axis to the short axis of the contact ellipse is 10 or more, so there is no problem in using equation (2) regardless of the shape of the rolling elements.

Figure 2023174901000004
Figure 2023174901000004

接触する2つの転動体が平行二円筒である場合、短軸半径bと荷重Pとの間には下記の式(3)の関係がある。 When the two rolling elements in contact are two parallel cylinders, the following equation (3) exists between the short axis radius b and the load P.

Figure 2023174901000005
Figure 2023174901000005

ここで、lは円筒である2つの転動体1および転動体2の接触長さを示す。R、Rはそれぞれ転動体1、2の曲率半径を示す。υはそれぞれ転動体1、2のポアソ
ン比を示す。E、Eはそれぞれ転動体1、2のヤング率を示す。
Here, l indicates the contact length between the two cylindrical rolling elements 1 and 2. R 1 and R 2 indicate the radius of curvature of the rolling elements 1 and 2, respectively. υ 1 and υ 2 represent Poisson's ratios of rolling elements 1 and 2, respectively. E 1 and E 2 represent the Young's modulus of the rolling elements 1 and 2, respectively.

ここで、転動体1、2が同一の材質なら、上記式(3)は下記の式(4)に変形できる。 Here, if the rolling elements 1 and 2 are made of the same material, the above equation (3) can be transformed into the following equation (4).

Figure 2023174901000006
Figure 2023174901000006

上記式(2)および式(4)より、下記の式(5)が導かれる。 From the above equations (2) and (4), the following equation (5) is derived.

Figure 2023174901000007
Figure 2023174901000007

したがって、接触応力Pmaxは下記の式(6)で与えられる。 Therefore, the contact stress P max is given by the following equation (6).

Figure 2023174901000008
Figure 2023174901000008

上記式(5)に下記の表2に示す試験片の諸元と、前節で求めたZ45の値とを代入すると、P=18.84kNという値が得られる。また、上記式(6)を用いれば、接触応力Pmax=4.02GPaという値が得られる。 When the specifications of the test piece shown in Table 2 below and the value of Z 45 determined in the previous section are substituted into the above equation (5), a value of P=18.84 kN is obtained. Moreover, if the above formula (6) is used, a value of contact stress P max =4.02 GPa can be obtained.

Figure 2023174901000009
Figure 2023174901000009

(3)疲労度の計算
ここで、接触応力と寿命とは下記の式(7)の関係を有するものとする。
(3) Calculation of fatigue degree Here, it is assumed that contact stress and life have a relationship as shown in equation (7) below.

Figure 2023174901000010
Figure 2023174901000010

発明者が行った過去の試験では、Pmax=4.2GPaの線接触試験の場合はL10=2400分というデータが得られている。このデータと上記式(7)の関係とを用いて推定寿命L10est.と推定疲労度t/L10est.とを求める。なお、ここでtは試験時間を示す。その結果は、L10est.=3452.5分、t/L10est.=148/3452.5=0.0429となった。 In past tests conducted by the inventor, data of L 10 =2400 minutes was obtained in the case of a line contact test with P max =4.2 GPa. Using this data and the relationship of equation (7) above, the estimated life L 10est. and the estimated fatigue degree t/L 10est. are determined. Note that here t indicates the test time. The results were L 10est. = 3452.5 minutes, t/L 10est. = 148/3452.5 = 0.0429.

<疲労の進行が第3段階に至っている場合の疲労度推定>
あらかじめ実施しておいた転動疲労寿命試験で得られる疲労度とその疲労度まで転動させた試験片のX線応力測定結果のデータベースを用いて、X線応力測定結果から疲労度を推定する。ここでは、Pmax=4.2GPaの線接触試験で得られたデータを用いる。なお、当該試験における試験片の個数は22個である。
<Estimation of fatigue level when fatigue progresses to stage 3>
The fatigue level is estimated from the X-ray stress measurement results using a database of the fatigue level obtained from the rolling fatigue life test conducted in advance and the X-ray stress measurement results of test pieces rolled to that fatigue level. . Here, data obtained from a line contact test with P max =4.2 GPa is used. Note that the number of test pieces in this test was 22.

図10は、周方向入射で得られた回折強度のばらつきと試験時間との関係を示すグラフである。図10の横軸は試験時間であり、単位は分である。図10の縦軸は回折強度のばらつきを示している。回折強度の測定深さは試験片の表面から600μmの位置である。図10におけるプロットは測定値を示し、実線は回帰曲線である。図10の回帰曲線を用いると、例えば回折強度のばらつきの値が15000のとき、その試験片の試験時間は約1500分~2400分であるということが推定できる。図10の破線は測定値から推定される試験時間の下限である。この破線を用いればデータのばらつきを考慮した安全側の疲労度推定が可能となる。 FIG. 10 is a graph showing the relationship between the variation in diffraction intensity obtained with circumferential incidence and the test time. The horizontal axis of FIG. 10 is the test time, and the unit is minutes. The vertical axis in FIG. 10 indicates variations in diffraction intensity. The measurement depth of the diffraction intensity was 600 μm from the surface of the test piece. The plot in FIG. 10 shows the measured values, and the solid line is the regression curve. Using the regression curve in FIG. 10, for example, when the value of the variation in diffraction intensity is 15,000, it can be estimated that the test time for that test piece is about 1,500 to 2,400 minutes. The broken line in FIG. 10 is the lower limit of the test time estimated from the measured values. By using this broken line, it is possible to estimate the degree of fatigue on the safe side, taking into account the dispersion of data.

図10に基づいて、たとえば回折強度のばらつきの値が15000の時の疲労度t/L10を推定すると、t/L10=1500/2400~2400/2400=0.625~1となる。 Based on FIG. 10, when the fatigue degree t/ L10 is estimated when the value of the variation in diffraction intensity is 15000, for example, t/L10=1500/2400 to 2400/2400=0.625 to 1.

次に、残留オーステナイトを疲労度の指標として用いる場合を検討する。図11は、残留オーステナイトの減少率と試験時間との関係を示すグラフである。図11の横軸は試験時間を示し、単位は分である。図11の縦軸は残留オーステナイトの減少率を示し、単位
は%である。図11では、深さ210μmでのデータを菱形の凡例で示し、深さ600μmでのデータを四角形の凡例で示している。それぞれのデータについて、回帰直線が示されている。ここで、残留オーステナイトの減少率は以下のように定義した。
Next, we will consider the case where retained austenite is used as an index of fatigue level. FIG. 11 is a graph showing the relationship between the reduction rate of retained austenite and test time. The horizontal axis in FIG. 11 indicates the test time, and the unit is minutes. The vertical axis in FIG. 11 shows the reduction rate of retained austenite, and the unit is %. In FIG. 11, data at a depth of 210 μm is shown with a diamond legend, and data at a depth of 600 μm is shown with a square legend. A regression line is shown for each data. Here, the reduction rate of retained austenite was defined as follows.

Figure 2023174901000011
Figure 2023174901000011

残留オーステナイトの減少率を疲労度の指標として用いる場合、図11からも分かるように、疲労が最も進行しやすい深さ(たとえばZ45=210μm)より内部(たとえば深さ600μm)での測定値を用いたほうが線図の傾きが大きく、試験時間に対する残留オーステナイトの減少率の感度が高いことがわかる。これは、以下のような理由が考えら得る。すなわち、疲労が第3段階に入った時点でZ45付近の残留オーステナイト量はほぼ0%になっており、当該深さでの残留オーステナイト量はその後変化しない。一方、深さが600μmの領域では、上述したZ45と比較して接触応力が小さいため組織変化が緩やかに進行する。そのため、図11に示すように深さが600μmの領域でのデータの方が試験時間に対する感度が高い。 When using the reduction rate of retained austenite as an index of the degree of fatigue , as can be seen from FIG. It can be seen that the slope of the diagram is larger when using the test method, and the sensitivity of the reduction rate of retained austenite to the test time is higher. This may be due to the following reasons. That is, when the fatigue enters the third stage, the amount of retained austenite near Z45 is approximately 0%, and the amount of retained austenite at this depth does not change thereafter. On the other hand, in a region with a depth of 600 μm, the contact stress is smaller than in Z45 described above, so that the tissue change progresses slowly. Therefore, as shown in FIG. 11, data in a region with a depth of 600 μm has higher sensitivity to the test time.

図11に示された回帰直線を用いると、例えば残留オーステナイトの減少率が30%のとき、その試験片の試験時間は約1400分~2400分であるということが推定できる。ここで、図11に示す破線は測定値から推定される試験時間の下限である。この破線を用いればデータのばらつきを考慮した安全側の疲労度推定が可能である。 Using the regression line shown in FIG. 11, for example, when the reduction rate of retained austenite is 30%, it can be estimated that the test time of the test piece is about 1400 to 2400 minutes. Here, the broken line shown in FIG. 11 is the lower limit of the test time estimated from the measured values. By using this broken line, it is possible to estimate the degree of fatigue on the safe side, taking into account the dispersion of data.

図11に基づいて、たとえば残留オーステナイトの減少率が30%の時の疲労度t/L10を推定すると、t/L10=1400/2400~2400/2400=0.583~1となる。 Based on FIG. 11, if the fatigue degree t/ L10 is estimated when the reduction rate of retained austenite is 30%, for example, t/L10=1400/2400 to 2400/2400=0.583 to 1.

以上のように、疲労の進行が早いZ45での測定値ではなく、疲労が緩やかに進行する深さでの測定値を用いた方が正確な疲労度評価をできる場合があることがわかった。半価幅や残留応力など、他のX線分析値についても同様である。 As described above, it was found that it may be possible to more accurately evaluate the degree of fatigue by using the measurement values at the depth where fatigue progresses slowly, rather than the measurement values at Z 45 where fatigue progresses quickly. . The same applies to other X-ray analysis values such as half width and residual stress.

(実施例2)
上述した実施の形態3に係る疲労度推定方法に関連して、以下のような実験を行った。
(Example 2)
In connection with the fatigue level estimation method according to the third embodiment described above, the following experiment was conducted.

(1)接触応力(Pmax)の推定
<試験片の準備>
線接触型疲労試験機または軸受寿命試験機で寿命試験を行った試験片に対して、X線分析を実施した。線接触型疲労試験機を用いた寿命試験の試験条件を表3に、軸受寿命試験機を用いた寿命試験の試験条件を表4にそれぞれ示す。以下では、前者の試験片を「第1試験片」、後者の試験片を「第2試験片」と呼称する。
(1) Estimation of contact stress (Pmax) <Preparation of test piece>
X-ray analysis was performed on test pieces subjected to a life test using a line contact fatigue tester or a bearing life tester. Table 3 shows the test conditions for the life test using a line contact fatigue tester, and Table 4 shows the test conditions for the life test using a bearing life tester. Hereinafter, the former test piece will be referred to as a "first test piece", and the latter test piece will be referred to as a "second test piece".

Figure 2023174901000012
Figure 2023174901000012

Figure 2023174901000013
Figure 2023174901000013

X線測定には2次元検出器方式のX線応力測定装置であるμ-X360(パルステック工業(株)製)を使用した。X線測定条件を表5に示す。 For the X-ray measurement, μ-X360 (manufactured by Pulstech Industries Co., Ltd.), which is a two-dimensional detector type X-ray stress measuring device, was used. Table 5 shows the X-ray measurement conditions.

Figure 2023174901000014
Figure 2023174901000014

X線測定の際は座標系を図12に示すように定義した。ここで、図12はX線測定の際の座標系を説明するための模式図である。図12では、試料としての転動部品90を矢印81に示す方向に回転させながら、当該転動部品90の外周にX線を照射する場合を示している。転動部品90を回転させることにより、当該転動部品90の外周において疲労が発生している疲労部82にX線を照射している。以下では、図12の矢印αで示されるX線の照射方向(ψ,φ)が(0,0)である場合を垂直入射、X線の照射方向(ψ,φ
)が(30,0)である場合を周方向入射、X線の照射方向(ψ,φ)が(30,90)である場合を軸方向入射と呼称する。また、回折X線は図13に示すようにX線照射部
を頂点とした円錐面βを構成するように発生する。ここで、図13は回折X線の模式図である。図13に示すように、回折X線は、平面状の検出部を含むX線検出器12により検出できる。また、当該回折X線の一部を検出する検出器83を走査することで、回折X線を検出してもよい。
During X-ray measurement, the coordinate system was defined as shown in FIG. 12. Here, FIG. 12 is a schematic diagram for explaining a coordinate system during X-ray measurement. FIG. 12 shows a case where the outer periphery of the rolling component 90 as a sample is irradiated with X-rays while rotating the rolling component 90 as a sample in the direction shown by an arrow 81. By rotating the rolling component 90, X-rays are irradiated onto the fatigued portion 82 where fatigue has occurred on the outer periphery of the rolling component 90. In the following, the case where the X-ray irradiation direction (ψ, φ 0 ) shown by the arrow α in FIG.
0 ) is (30,0) is called circumferential incidence, and the case where the X-ray irradiation direction (ψ, φ 0 ) is (30,90) is called axial incidence. Further, the diffracted X-rays are generated so as to constitute a conical surface β with the X-ray irradiation part as the apex, as shown in FIG. Here, FIG. 13 is a schematic diagram of diffraction X-rays. As shown in FIG. 13, the diffracted X-rays can be detected by an X-ray detector 12 including a planar detection section. Alternatively, the diffracted X-rays may be detected by scanning the detector 83 that detects a portion of the diffracted X-rays.

図13に示した平面状の検出部を含むX線検出器12(2次元検出器)を用いる場合、図14に示すような円環状の回折X線が得られる。これを「環状の回折X線」と称する。ここで、図14は測定された環状の回折X線の模式図である。また、図15は、回折強度のばらつきを説明するための模式図である。図15の左側のグラフの横軸は図14に示した回折X線の中心角αを示し、縦軸は回折X線の回折強度を示している。図15の右側のグラフの縦軸は回折X線の回折強度を示しており、横軸は回折強度のデータ数を示している。図15の右側のグラフは回折強度の度数分布を示している。 When using the X-ray detector 12 (two-dimensional detector) including the planar detection section shown in FIG. 13, annular diffracted X-rays as shown in FIG. 14 are obtained. This is called "circular diffraction X-ray". Here, FIG. 14 is a schematic diagram of the measured annular diffraction X-ray. Further, FIG. 15 is a schematic diagram for explaining variations in diffraction intensity. The horizontal axis of the graph on the left side of FIG. 15 indicates the central angle α of the diffracted X-rays shown in FIG. 14, and the vertical axis indicates the diffraction intensity of the diffracted X-rays. The vertical axis of the graph on the right side of FIG. 15 indicates the diffraction intensity of diffracted X-rays, and the horizontal axis indicates the number of data of the diffraction intensity. The graph on the right side of FIG. 15 shows the frequency distribution of diffraction intensity.

図14および図15を参照して、後述するパラメータ「回折強度のばらつき」とは「環状の回折X線の中心角αに対する回折強度の標準偏差(図15の右側のグラフに示される標準偏差S)」として定義する。なお、上述した回折強度のばらつきは、環状の回折X線の一部を検出する、図13に示した0次元または1次元検出器である検出器83を用いても求めることができる。 Referring to FIGS. 14 and 15, the parameter "dispersion of diffraction intensity" described later is defined as "standard deviation of diffraction intensity with respect to the central angle α of the annular diffracted X-ray (standard deviation S shown in the graph on the right side of FIG. 15). )”. Note that the above-described variation in diffraction intensity can also be determined using the detector 83, which is a zero-dimensional or one-dimensional detector shown in FIG. 13 and detects a part of the annular diffracted X-ray.

<線接触型疲労試験機を用いた寿命試験の第1試験片に関する測定結果>
第1試験片に関する測定結果を、図16および図17を参照しながら説明する。図16は、第1試験片のX線測定結果である周方向残留応力の深さ方向分布を示すグラフである。図17は、第1試験片のX線測定結果である回折強度のばらつきの深さ方向分布を示すグラフである。なお、図16および図17に示した測定結果を得た第1試験片については、線接触型疲労試験機を用いた寿命試験の試験時間が1700分であった。また、第1試験片についてX線測定後に組織観察を行った結果、第1試験片は第3段階の疲労に達していることを確認した。
<Measurement results regarding the first test piece of the life test using a line contact fatigue testing machine>
The measurement results regarding the first test piece will be explained with reference to FIGS. 16 and 17. FIG. 16 is a graph showing the depth distribution of circumferential residual stress, which is the result of X-ray measurement of the first test piece. FIG. 17 is a graph showing the depth distribution of variations in diffraction intensity, which is the result of X-ray measurement of the first test piece. Note that for the first test piece from which the measurement results shown in FIGS. 16 and 17 were obtained, the test time of the life test using a line contact type fatigue tester was 1700 minutes. In addition, as a result of performing structural observation on the first test piece after X-ray measurement, it was confirmed that the first test piece had reached the third stage of fatigue.

図16および図17の横軸は試験片の表面からの深さを示し、単位はmmである。図16の縦軸は周方向残留応力の値を示し、単位はMPaである。図17の縦軸は回折強度のばらつきを示している。図16より、周方向残留応力が最大値を示す深さは約0.4mmであり、Z45より深い位置であることがわかる。また、図17より、垂直入射で得られる回折強度のばらつきはZ付近で最大値を示し、軸方向入射で得られる回折強度のばらつきはZとZ45との間で最大値を示している。一方、周方向入射で得られる回折強度のばらつきは他の2方向からの入射で得られる回折強度のばらつきのデータと比較して変化が小さく、明確な極大値を示していない。なお、例示した試験片以外の21個の他の第1試験片に対して同様の測定を行ったところ、図17に示した第1試験片と同様にZ付近で垂直入射および軸方向入射で得られる回折強度のばらつきが最大となる分布が得られた。 The horizontal axis in FIGS. 16 and 17 indicates the depth from the surface of the test piece, and the unit is mm. The vertical axis in FIG. 16 indicates the value of circumferential residual stress, and the unit is MPa. The vertical axis in FIG. 17 shows variations in diffraction intensity. From FIG. 16, it can be seen that the depth at which the circumferential residual stress reaches its maximum value is about 0.4 mm, which is a position deeper than Z45 . Furthermore, from FIG. 17, the dispersion of the diffraction intensity obtained with normal incidence shows the maximum value near Z 0 , and the dispersion of the diffraction intensity obtained with axial incidence shows the maximum value between Z 0 and Z 45 . There is. On the other hand, the variation in diffraction intensity obtained when the light is incident in the circumferential direction shows a small change compared to the data on the variation in the diffraction intensity obtained when the light is incident from the other two directions, and does not show a clear maximum value. In addition, when similar measurements were performed on 21 other first test pieces other than the exemplified test pieces, normal incidence and axial incidence were observed near Z 0 , similar to the first test piece shown in FIG. A distribution with the maximum variation in diffraction intensity was obtained.

<軸受寿命試験機を用いた寿命試験の第2試験片に関する測定結果>
第2試験片に関する測定結果を、図18および図19を参照しながら説明する。図18は、第2試験片のX線測定結果である周方向残留応力の深さ方向分布を示すグラフである。図19は、第2試験片のX線測定結果である回折強度のばらつきの深さ方向分布を示すグラフである。なお、図18および図19に示した測定結果を得た第2試験片については、軸受寿命試験機を用いた寿命試験の試験時間が1196.3時間であった。また、第2試験片についてX線測定後に組織観察を行った結果、第2試験片は第3段階の疲労に達していることを確認した。
<Measurement results regarding the second test piece of the life test using a bearing life tester>
The measurement results regarding the second test piece will be explained with reference to FIGS. 18 and 19. FIG. 18 is a graph showing the depth distribution of circumferential residual stress, which is the result of X-ray measurement of the second test piece. FIG. 19 is a graph showing the depth distribution of variations in diffraction intensity, which is the result of X-ray measurement of the second test piece. Note that for the second test piece for which the measurement results shown in FIGS. 18 and 19 were obtained, the test time of the life test using a bearing life tester was 1196.3 hours. In addition, as a result of performing structural observation on the second test piece after X-ray measurement, it was confirmed that the second test piece had reached the third stage of fatigue.

図18および図19の縦軸および横軸は、図16および図17の縦軸及び横軸と同様で
ある。図18より、周方向残留応力が最大値を示す深さは約0.2mmであり、Z45より深い位置であることがわかる。図19より、回折強度のばらつきはいずれの入射方向でもZ付近で最大値を示していることがわかる。なお、例示した試験片以外の20個の第2試験片に対して同様の測定を行ったところ、図19に示した第2試験片と同様にZ付近で回折強度のばらつきが最大となる分布が得られた。
The vertical and horizontal axes in FIGS. 18 and 19 are the same as the vertical and horizontal axes in FIGS. 16 and 17. From FIG. 18, it can be seen that the depth at which the circumferential residual stress reaches its maximum value is approximately 0.2 mm, which is a position deeper than Z45 . From FIG. 19, it can be seen that the variation in diffraction intensity has a maximum value near Z 0 in any incident direction. In addition, when similar measurements were performed on 20 second test pieces other than the exemplified test pieces, the variation in diffraction intensity was maximum near Z 0 , similar to the second test piece shown in FIG. 19. distribution was obtained.

以上の結果より、回折強度のばらつきはZ付近で最大となる分布となることがわかった。図17および図19から分かるように、第1試験片と第2試験片とで同様の傾向となっている。この性質を利用することで、疲労が第3段階に進んでいる場合でも軸受の負荷である接触応力(Pmax)を推定することが可能となる。なお、回折強度のばらつきに変化が見られる場合に、試料における疲労が第3段階に進んでいると判断する。 From the above results, it was found that the dispersion of diffraction intensity has a maximum distribution near Z0 . As can be seen from FIGS. 17 and 19, the first test piece and the second test piece have similar trends. By utilizing this property, it is possible to estimate the contact stress (Pmax), which is the load on the bearing, even when fatigue has progressed to the third stage. Note that when a change is observed in the dispersion of diffraction intensity, it is determined that the fatigue in the sample has progressed to the third stage.

<接触応力(Pmax)の計算>
以下に接触応力(Pmax)を求める計算式を示す。線接触の場合、接触楕円の短軸半径bとZとの間には下記の式(9)に示す関係がある。なお、ほとんどの軸受は接触楕円の長軸と短軸との比が10以上になるので、転動体の形状に関わらず下記式(9)を用いることができる。
<Calculation of contact stress (Pmax)>
The calculation formula for calculating the contact stress (Pmax) is shown below. In the case of line contact, there is a relationship between the minor axis radius b of the contact ellipse and Z 0 as shown in equation (9) below. Note that in most bearings, the ratio of the long axis to the short axis of the contact ellipse is 10 or more, so the following equation (9) can be used regardless of the shape of the rolling elements.

Figure 2023174901000015
Figure 2023174901000015

接触する2つの転動体1、2が平行二円筒である場合、短軸半径bと荷重Pとの間には下記の式(10)の関係がある。なお、下記の式(10)は実施例1で説明した式(3)と同様である。 When the two rolling elements 1 and 2 in contact are two parallel cylinders, the following equation (10) exists between the short axis radius b and the load P. Note that the following equation (10) is the same as the equation (3) explained in Example 1.

Figure 2023174901000016
Figure 2023174901000016

転動体1、2が同一の材質なら、上記式(10)は下記の式(11)に変形できる。 If the rolling elements 1 and 2 are made of the same material, the above equation (10) can be transformed into the following equation (11).

Figure 2023174901000017
Figure 2023174901000017

上記式(9)および式(11)より、下記式(12)が導かれる。 From the above equations (9) and (11), the following equation (12) is derived.

Figure 2023174901000018
Figure 2023174901000018

したがって、接触応力Pmaxは下記の式(13)で与えられる。 Therefore, the contact stress P max is given by the following equation (13).

Figure 2023174901000019
Figure 2023174901000019

一方、実施例1でも述べたように、短軸半径bと荷重Pとの間には下記の式(14)の関係がある。 On the other hand, as described in Example 1, there is a relationship between the minor axis radius b and the load P as expressed by the following equation (14).

Figure 2023174901000020
Figure 2023174901000020

上記式(11)および式(14)より、下記の式(15)が導かれる。 From the above equations (11) and (14), the following equation (15) is derived.

Figure 2023174901000021
Figure 2023174901000021

したがって、接触応力Pmaxは下記の式(16)で与えられる。 Therefore, the contact stress P max is given by the following equation (16).

Figure 2023174901000022
Figure 2023174901000022

としては、回折強度のばらつきが最大値を示す深さを用い、Z45としては残留応力が最大値を示す深さを用いる。疲労が第1段階または第2段階にある場合、たとえば図7および図8のステップ(S131)においては、接触応力Pmaxの推定に上記式(16)を用いる。一方、疲労が第3段階にある場合、たとえば図8のステップ(S171)においては、接触応力Pmaxの推定に上記式(13)を用いる。以下にPmaxの推定結果を示す。 As Z 0 , the depth where the dispersion of diffraction intensity shows the maximum value is used, and as Z 45 , the depth where the residual stress shows the maximum value is used. When fatigue is in the first or second stage, for example in step (S131) in FIGS. 7 and 8, the above equation (16) is used to estimate the contact stress Pmax. On the other hand, when the fatigue is in the third stage, for example in step (S171) in FIG. 8, the above equation (13) is used to estimate the contact stress Pmax. The estimation results of Pmax are shown below.

<第1試験片のPmax推定結果>
下記の表6に示した条件で試験後の第1試験片の測定結果から、式(13)を用いて接触応力Pmaxを推定した結果を図20に示す。
<Pmax estimation results of the first test piece>
FIG. 20 shows the results of estimating the contact stress Pmax using equation (13) from the measurement results of the first test piece after testing under the conditions shown in Table 6 below.

Figure 2023174901000023
Figure 2023174901000023

図20は、第1試験片の接触応力の推定結果を示すグラフである。図20の横軸は各試験片での試験時間を示し、単位は分である。図20の縦軸は推定した接触応力Pmax(
推定面圧)を示し、単位はGPaである。第1試験片に関する試験面圧(接触応力)の公称値は4.2GPaであったのに対し、図20に示すように推定されたPmaxの平均値は4.31GPaであり、標準偏差は0.12GPaであった。
FIG. 20 is a graph showing the estimation results of the contact stress of the first test piece. The horizontal axis in FIG. 20 indicates the test time for each test piece, and the unit is minutes. The vertical axis of FIG. 20 is the estimated contact stress Pmax (
(estimated surface pressure), and the unit is GPa. The nominal value of the test surface pressure (contact stress) for the first test piece was 4.2 GPa, whereas the estimated average value of Pmax was 4.31 GPa as shown in Figure 20, with a standard deviation of 0. It was .12 GPa.

<第2試験片のPmax推定結果>
下記の表7に示した条件で試験後の第2試験片の測定結果から、式(13)を用いて接触応力Pmaxを推定した結果を図21に示す。
<Pmax estimation result of second test piece>
FIG. 21 shows the results of estimating the contact stress Pmax using equation (13) from the measurement results of the second test piece after testing under the conditions shown in Table 7 below.

Figure 2023174901000024
Figure 2023174901000024

図21は、第2試験片の接触応力の推定結果を示すグラフである。図21の横軸は各試験片での試験時間を示し、単位は時間である。図21の縦軸は推定した接触応力Pmax(推定面圧)を示し、単位はGPaである。第2試験片に関する試験面圧(接触応力)の公称値は3.2GPaであったのに対し、図21に示すように推定されたPmaxの平均値は3.44GPaであり、標準偏差は0.27GPaであった。 FIG. 21 is a graph showing the estimation results of the contact stress of the second test piece. The horizontal axis in FIG. 21 indicates the test time for each test piece, and the unit is time. The vertical axis in FIG. 21 indicates the estimated contact stress Pmax (estimated surface pressure), and the unit is GPa. The nominal value of the test surface pressure (contact stress) for the second specimen was 3.2 GPa, whereas the average value of estimated P max was 3.44 GPa, as shown in Figure 21, and the standard deviation was It was 0.27 GPa.

<疲労度の計算>
前節で推定した第1試験片および第2試験片に関する接触応力を基に疲労度を計算する。接触応力と寿命とは下記の式(17)の関係を有するものとする。
<Calculation of fatigue level>
The degree of fatigue is calculated based on the contact stress regarding the first test piece and the second test piece estimated in the previous section. It is assumed that contact stress and life have a relationship expressed by the following equation (17).

Figure 2023174901000025
Figure 2023174901000025

発明者が行った過去の試験では、Pmax=4.2GPaの線接触型疲労試験機を用いた寿命試験の場合はL10=2400分というデータが得られている。また、Pmax=3.2GPaの軸受寿命試験機を用いた寿命試験の場合はL10=1622時間というデータが得られている。これらのデータと上記式(17)の関係とを用いて、各試料について推定寿命L10est.と推定疲労度t/L10est.とを求める。なお、ここでtは試験時間を示す。その結果を表6および表7に示す。以上のように、回折強度のばらつきから推定した接触応力Pmaxを用いて疲労度を計算することができる。 In past tests conducted by the inventor, data of L 10 =2400 minutes was obtained in the case of a life test using a line contact fatigue testing machine with P max =4.2 GPa. Furthermore, in the case of a life test using a bearing life tester with P max =3.2 GPa, data of L 10 =1622 hours was obtained. Using these data and the relationship of equation (17) above, the estimated life L 10est. and estimated fatigue degree t/L 10est. are determined for each sample. Note that here t indicates the test time. The results are shown in Tables 6 and 7. As described above, the degree of fatigue can be calculated using the contact stress Pmax estimated from the variation in diffraction intensity.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 The embodiments and examples disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.

11 照射部、12 X線検出器、12A 検出部、12B 孔、13 表面形状測定器、14 疲労度推定装置、16 メモリ、17 入力部、18 表示部、21 データ準備部、23 ミクロ組織観察部、31 判断部、32 荷重推定部、33 寿命算出部、34 第1疲労度算出部、41 第1疲労度推定部、51 接触応力推定部、53 寿命推定部、54 第2疲労度推定部、55 疲労度決定部、60 制御部、61 記憶部、70 診断部、81 矢印、 82 疲労部、 83 検出器、90 転動部品。 11 irradiation section, 12 X-ray detector, 12A detection section, 12B hole, 13 surface profile measuring device, 14 fatigue level estimation device, 16 memory, 17 input section, 18 display section, 21 data preparation section, 23 microstructure observation section , 31 judgment section, 32 load estimation section, 33 life calculation section, 34 first fatigue degree calculation section, 41 first fatigue degree estimation section, 51 contact stress estimation section, 53 life estimation section, 54 second fatigue degree estimation section, 55 Fatigue level determining section, 60 Control section, 61 Storage section, 70 Diagnosis section, 81 Arrow, 82 Fatigue section, 83 Detector, 90 Rolling parts.

Claims (22)

回転による繰り返し負荷が加えられる転動部品から前記転動部品の疲労度を推定するためのデータを取得するステップを備え、
前記取得するステップは、
前記転動部品のミクロ組織に関する第1データを得るステップと、
前記転動部品の疲労部にX線を照射することで、前記転動部品に関するX線分析値の測定データである第2データを得るステップと、を含み、さらに、
前記取得するステップにおいて得られた前記データに基づき、前記転動部品の前記疲労部において、組織変化が起こっているか否かを判断するステップと、
前記判断するステップでの判断結果と前記取得するステップで得られた前記データとに基づき、前記転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を備え、
前記第1疲労度を推定するステップでは、
前記判断するステップにおいて、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップと、が実施され、
前記判断するステップにおいて、前記組織変化が起こっていると判断された場合に、予め決定された前記第2データと前記第1疲労度との関係に基づき、前記第2データから前記第1疲労度を推定するステップが実施される、転動部品の疲労度推定方法。
comprising the step of acquiring data for estimating the degree of fatigue of the rolling parts from the rolling parts to which repeated loads are applied due to rotation;
The obtaining step includes:
obtaining first data regarding the microstructure of the rolling component;
obtaining second data that is measurement data of X-ray analysis values regarding the rolling component by irradiating the fatigue portion of the rolling component with X-rays;
a step of determining whether or not a structural change has occurred in the fatigue portion of the rolling component based on the data obtained in the acquiring step;
estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result in the determining step and the data obtained in the acquiring step;
In the step of estimating the first fatigue level,
In the step of determining, if it is determined that the tissue change has not occurred, estimating the load acting on the rolling component based on the second data, and calculating the difference between the load and the rolling component. and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifetime,
In the determining step, when it is determined that the tissue change has occurred, the first fatigue degree is calculated from the second data based on the predetermined relationship between the second data and the first fatigue degree. A method for estimating fatigue level of rolling parts, the method comprising: estimating fatigue level of rolling parts.
前記第2データは、前記転動部品の前記疲労部における6成分の残留応力のデータ、前記転動部品の前記疲労部における残留オーステナイト量のデータ、前記転動部品の前記疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきを示すデータ、前記回折強度のピークの半価幅のデータ、前記回折強度の平均値のデータ、および前記回折強度の最小値と最大値との差のデータからなる群から選択される少なくとも1つのデータを含む、請求項1に記載の転動部品の疲労度推定方法。 The second data includes data on the residual stress of six components in the fatigue part of the rolling part, data on the amount of retained austenite in the fatigue part of the rolling part, and data on the amount of residual austenite in the fatigue part of the rolling part. Data showing the variation in diffraction intensity with respect to the central angle of the annular diffraction The method for estimating fatigue level of rolling parts according to claim 1, comprising at least one data selected from the group consisting of difference data. 回転による繰り返し負荷が加えられる転動部品から前記転動部品の疲労度を推定するためのデータを取得するステップを備え、
前記取得するステップは、
前記転動部品のミクロ組織に関する第1データを得るステップと、
前記転動部品の疲労部にX線を照射することで、前記転動部品に関するX線分析値の測定データである第2データを得るステップと、を含み、さらに、
前記取得するステップにおいて得られた前記データに基づき、前記転動部品の前記疲労部において、組織変化が起こっているか否かを判断するステップと、
前記判断するステップでの判断結果と前記取得するステップで得られた前記データとに基づき、前記転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を備え、
前記第2データは、前記転動部品に関する前記X線分析値の深さ方向での分布データを含み、
前記第1疲労度を推定するステップでは、
前記判断するステップにおいて、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップと、が実施され、
前記判断するステップにおいて、前記組織変化が起こっていると判断された場合に、前
記深さ方向での分布データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップとが実施される、転動部品の疲労度推定方法。
comprising the step of acquiring data for estimating the degree of fatigue of the rolling parts from the rolling parts to which repeated loads are applied due to rotation;
The obtaining step includes:
obtaining first data regarding the microstructure of the rolling component;
obtaining second data that is measurement data of X-ray analysis values regarding the rolling component by irradiating the fatigue portion of the rolling component with X-rays;
a step of determining whether or not a structural change has occurred in the fatigue portion of the rolling component based on the data obtained in the acquiring step;
estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result in the determining step and the data obtained in the acquiring step;
The second data includes distribution data in the depth direction of the X-ray analysis values regarding the rolling component,
In the step of estimating the first fatigue level,
In the step of determining, if it is determined that the tissue change has not occurred, estimating the load acting on the rolling component based on the second data, and calculating the difference between the load and the rolling component. and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifetime,
In the determining step, when it is determined that the tissue change has occurred, a step of estimating the load acting on the rolling component based on the distribution data in the depth direction; A rolling component comprising: calculating a lifespan based on usage conditions of the rolling component; and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifespan. A method for estimating the fatigue level of parts.
前記深さ方向での分布データは、前記転動部品の前記疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきを示すデータの深さ方向での分布データである、請求項3に記載の転動部品の疲労度推定方法。 The distribution data in the depth direction is distribution data in the depth direction of data indicating variations in diffraction intensity with respect to the center angle of annular diffracted X-rays diffracted at the fatigue portion of the rolling component. The method for estimating the fatigue level of rolling parts according to item 3. 前記転動部品の前記使用条件は、前記転動部品の回転速度、前記転動部品の使用時の温度、前記転動部品の使用時に供給される潤滑油の油種情報、および前記転動部品の使用時に供給される前記潤滑油の汚染度の情報を含む、請求項1から請求項4のいずれか1項に記載の転動部品の疲労度推定方法。 The usage conditions of the rolling parts include the rotational speed of the rolling parts, the temperature when the rolling parts are used, oil type information of lubricating oil supplied when the rolling parts are used, and the rolling parts. The method for estimating the degree of fatigue of a rolling component according to any one of claims 1 to 4, comprising information on the degree of contamination of the lubricating oil supplied during use. 前記第1疲労度に基づき、前記転動部品が交換を要するか否か、または交換時期を通知するステップをさらに備える、請求項1~請求項5のいずれか1項に記載の転動部品の疲労度推定方法。 The rolling component according to any one of claims 1 to 5, further comprising the step of notifying whether or not the rolling component requires replacement or notifying a replacement time based on the first fatigue degree. Fatigue level estimation method. 前記取得するステップは、前記転動部品の前記疲労部を測定して表面形状に関する第3データを得るステップを含み、
前記取得するステップで得られた前記データに基づき、前記転動部品の表面起点型の損傷に関する第2疲労度を推定するステップを備え、
前記第2疲労度を推定するステップは、
前記第2データと前記第3データとに基づき、前記転動部品の前記疲労部に繰り返し作用している接触応力を推定するステップと、
予め決定された前記接触応力と寿命との関係に基づき、前記接触応力から、前記寿命を推定するステップと、
前記転動部品の前記回転回数と前記寿命とから前記転動部品の前記第2疲労度を推定するステップとを含み、さらに、
前記第1疲労度と前記第2疲労度とのうち値の大きい方を前記転動部品の疲労度として決定するステップを備える、請求項1~請求項5のいずれか1項に記載の転動部品の疲労度推定方法。
The obtaining step includes measuring the fatigue portion of the rolling component to obtain third data regarding the surface shape,
a step of estimating a second degree of fatigue regarding surface-originated damage of the rolling component based on the data obtained in the obtaining step;
The step of estimating the second fatigue level includes:
estimating contact stress repeatedly acting on the fatigue portion of the rolling component based on the second data and the third data;
estimating the life from the contact stress based on a predetermined relationship between the contact stress and the life;
estimating the second degree of fatigue of the rolling component from the number of rotations and the life of the rolling component, further comprising:
The rolling element according to any one of claims 1 to 5, comprising the step of determining the larger of the first fatigue degree and the second fatigue degree as the fatigue degree of the rolling component. A method for estimating the fatigue level of parts.
前記疲労度に基づき、前記転動部品が交換を要するか否か、または前記転動部品の交換時期を通知するステップをさらに備える、請求項7に記載の転動部品の疲労度推定方法。 8. The method for estimating the degree of fatigue of a rolling component according to claim 7, further comprising the step of notifying whether or not the rolling component needs to be replaced or notifying the time to replace the rolling component based on the degree of fatigue. 転動部品の疲労度推定プログラムであって、
コンピュータに、
回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップを実行させ、
前記取得するステップは、
前記転動部品のミクロ組織に関する第1データを得るステップと、
前記転動部品の疲労部にX線を照射することで、前記転動部品に関するX線分析値の測定データである第2データを得るステップと、を含み、さらに、
前記コンピュータに、
前記取得するステップにおいて得られた前記データに基づき、前記転動部品の前記疲労部において、組織変化が起こっているか否かを判断するステップと、
前記判断するステップでの判断結果と前記取得するステップで得られた前記データとに基づき、前記転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させ、
前記第1疲労度を推定するステップでは、
前記判断するステップにおいて、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップと、が実施され、
前記判断するステップにおいて、前記組織変化が起こっていると判断された場合に、予め決定された前記第2データと前記第1疲労度との関係に基づき、前記第2データから前記第1疲労度を推定するステップが実施される、転動部品の疲労度推定プログラム。
A fatigue degree estimation program for rolling parts,
to the computer,
executing a step of acquiring data for estimating the degree of fatigue from rolling parts subjected to repeated loads due to rotation;
The obtaining step includes:
obtaining first data regarding the microstructure of the rolling component;
obtaining second data that is measurement data of X-ray analysis values regarding the rolling component by irradiating the fatigue portion of the rolling component with X-rays;
to the computer;
a step of determining whether or not a structural change has occurred in the fatigue portion of the rolling component based on the data obtained in the acquiring step;
estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result in the determining step and the data obtained in the acquiring step;
In the step of estimating the first fatigue level,
In the step of determining, if it is determined that the tissue change has not occurred, estimating the load acting on the rolling component based on the second data, and calculating the difference between the load and the rolling component. and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifetime,
In the determining step, when it is determined that the tissue change has occurred, the first fatigue degree is calculated from the second data based on the predetermined relationship between the second data and the first fatigue degree. A program for estimating the degree of fatigue of rolling parts, in which the step of estimating the fatigue level of rolling parts is performed.
転動部品の疲労度推定プログラムであって、
コンピュータに、
回転による繰り返し負荷が加えられる転動部品から疲労度を推定するためのデータを取得するステップを実行させ、
前記取得するステップは、
前記転動部品のミクロ組織に関する第1データを得るステップと、
前記転動部品の疲労部にX線を照射することで、前記転動部品に関するX線分析値の測定データである第2データを得るステップと、を含み、さらに、
前記コンピュータに、
前記取得するステップにおいて得られた前記データに基づき、前記転動部品の前記疲労部において、組織変化が起こっているか否かを判断するステップと、
前記判断するステップでの判断結果と前記取得するステップで得られた前記データとに基づき、前記転動部品の内部起点型の損傷に関する第1疲労度を推定するステップと、を実行させ、
前記第2データは、前記転動部品に関する前記X線分析値の深さ方向での分布データを含み、
前記第1疲労度を推定するステップでは、
前記判断するステップにおいて、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップと、が実施され、
前記判断するステップにおいて、前記組織変化が起こっていると判断された場合に、前記深さ方向での分布データに基づき前記転動部品に作用していた荷重を推定するステップと、前記荷重と前記転動部品の使用条件とに基づき寿命を算出するステップと、前記転動部品の回転回数と前記寿命とから前記転動部品の前記第1疲労度を算出するステップとが実施される、転動部品の疲労度推定プログラム。
A fatigue degree estimation program for rolling parts,
to the computer,
executing a step of acquiring data for estimating the degree of fatigue from rolling parts subjected to repeated loads due to rotation;
The obtaining step includes:
obtaining first data regarding the microstructure of the rolling component;
obtaining second data that is measurement data of X-ray analysis values regarding the rolling component by irradiating the fatigue portion of the rolling component with X-rays;
to the computer;
a step of determining whether or not a structural change has occurred in the fatigue portion of the rolling component based on the data obtained in the acquiring step;
estimating a first degree of fatigue regarding internally originating damage of the rolling component based on the determination result in the determining step and the data obtained in the acquiring step;
The second data includes distribution data in the depth direction of the X-ray analysis values regarding the rolling component,
In the step of estimating the first fatigue level,
In the step of determining, if it is determined that the tissue change has not occurred, estimating the load acting on the rolling component based on the second data, and calculating the difference between the load and the rolling component. and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifetime,
In the determining step, when it is determined that the tissue change has occurred, a step of estimating the load acting on the rolling component based on the distribution data in the depth direction; A rolling component comprising: calculating a lifespan based on usage conditions of the rolling component; and calculating the first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifespan. Part fatigue estimation program.
前記コンピュータに、
前記第1疲労度に基づき、前記転動部品が交換を要するか否か、または前記転動部品の交換時期を通知するステップをさらに実行させる、請求項9または請求項10に記載の転動部品の疲労度推定プログラム。
to the computer;
The rolling component according to claim 9 or 10, further comprising a step of notifying whether or not the rolling component needs to be replaced or notifying a replacement time of the rolling component based on the first fatigue degree. A fatigue level estimation program.
前記取得するステップは、前記転動部品の前記疲労部を測定して表面形状に関する第3データを得るステップを含み、
前記コンピュータに、
前記取得するステップで得られた前記データに基づき、前記転動部品の表面起点型の損傷に関する第2疲労度を推定するステップを実行させ、
前記第2疲労度を推定するステップは、
前記第2データと前記第3データとに基づき、前記転動部品の前記疲労部に繰り返し作
用している接触応力を推定するステップと、
予め決定された前記接触応力と寿命との関係に基づき、前記接触応力から、前記寿命を推定するステップと、
前記転動部品の回転回数と前記寿命とから前記転動部品の前記第2疲労度を推定するステップとを含み、さらに、
前記コンピュータに、
前記第1疲労度と前記第2疲労度とのうち値の大きい方を前記転動部品の疲労度として決定するステップを実行させる、請求項9または請求項10に記載の転動部品の疲労度推定プログラム。
The obtaining step includes measuring the fatigue portion of the rolling component to obtain third data regarding the surface shape,
to the computer;
performing a step of estimating a second fatigue degree regarding surface-originated damage of the rolling component based on the data obtained in the obtaining step;
The step of estimating the second fatigue level includes:
estimating contact stress repeatedly acting on the fatigue portion of the rolling component based on the second data and the third data;
estimating the life from the contact stress based on a predetermined relationship between the contact stress and the life;
estimating the second degree of fatigue of the rolling component from the number of rotations and the life of the rolling component, further comprising:
to the computer;
The degree of fatigue of a rolling component according to claim 9 or 10, wherein the step of determining a larger value of the first degree of fatigue and the second degree of fatigue as the degree of fatigue of the rolling component is executed. Estimation program.
前記コンピュータに、
前記疲労度に基づき、前記転動部品が交換を要するか否か、または前記転動部品の交換時期を通知するステップをさらに実行させる、請求項12に記載の転動部品の疲労度推定プログラム。
to the computer;
13. The rolling component fatigue level estimation program according to claim 12, further comprising the step of notifying whether or not the rolling component requires replacement or notifying the replacement timing of the rolling component based on the fatigue level.
転動部品のミクロ組織に関する第1データと、前記転動部品の疲労部にX線を照射することで得られる、前記転動部品に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、前記転動部品の疲労部において、組織変化が起こっているか否かを判断する判断部と、
前記判断部において、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定する荷重推定部と、
前記荷重と前記転動部品の使用条件とに基づき寿命を算出する寿命算出部と、
前記転動部品の回転回数と前記寿命とから前記転動部品の第1疲労度を算出する第1疲労度算出部と、
前記判断部において、前記組織変化が起こっていると判断された場合に、予め決定された前記X線分析値と前記第1疲労度との関係に基づき、前記第2データから前記第1疲労度を推定する第1疲労度推定部とを備える、転動部品の疲労度推定装置。
at least first data regarding the microstructure of the rolling component and second data that is measurement data of an X-ray analysis value regarding the rolling component obtained by irradiating a fatigued part of the rolling component with X-rays. a determination unit that determines whether or not a structural change has occurred in the fatigue portion of the rolling component based on either one;
a load estimating unit that estimates a load acting on the rolling component based on the second data when the determining unit determines that the tissue change has not occurred;
a lifespan calculation unit that calculates the lifespan based on the load and the usage conditions of the rolling component;
a first fatigue degree calculation unit that calculates a first fatigue degree of the rolling component from the number of rotations of the rolling component and the lifespan;
When the determination unit determines that the tissue change has occurred, the first fatigue degree is determined from the second data based on the relationship between the predetermined X-ray analysis value and the first fatigue degree. A fatigue degree estimating device for rolling parts, comprising: a first fatigue degree estimating section that estimates the fatigue degree of a rolling component.
転動部品のミクロ組織に関する第1データと、前記転動部品の疲労部にX線を照射することで得られる、前記転動部品に関するX線分析値の測定データである第2データとの少なくともいずれか一方に基づき、前記転動部品の疲労部において、組織変化が起こっているか否かを判断する判断部と、
前記第2データに基づき前記転動部品に作用していた荷重を推定する荷重推定部と、
前記荷重と前記転動部品の使用条件とに基づき寿命を算出する寿命算出部と、
前記転動部品の回転回数と前記寿命とから前記転動部品の第1疲労度を算出する第1疲労度算出部と、を備え、
前記第2データは、前記転動部品に関する前記X線分析値の深さ方向での分布データを含み、
前記荷重推定部は、
前記判断部において、前記組織変化が起こっていないと判断された場合に、前記第2データに基づき前記転動部品に作用していた荷重を推定し、
前記判断部において、前記組織変化が起こっていると判断された場合に、前記深さ方向での分布データに基づき前記転動部品に作用していた荷重を推定する、転動部品の疲労度推定装置。
at least first data regarding the microstructure of the rolling component and second data that is measurement data of an X-ray analysis value regarding the rolling component obtained by irradiating a fatigued part of the rolling component with X-rays. a determination unit that determines whether or not a structural change has occurred in the fatigue portion of the rolling component based on either one;
a load estimation unit that estimates a load acting on the rolling component based on the second data;
a lifespan calculation unit that calculates the lifespan based on the load and the usage conditions of the rolling component;
a first fatigue degree calculation unit that calculates a first fatigue degree of the rolling component from the number of rotations and the life of the rolling component;
The second data includes distribution data in the depth direction of the X-ray analysis values regarding the rolling component,
The load estimating unit is
In the judgment unit, when it is judged that the tissue change has not occurred, estimating the load acting on the rolling component based on the second data,
Fatigue degree estimation of rolling parts, estimating the load acting on the rolling parts based on the distribution data in the depth direction when the judgment unit determines that the structural change has occurred. Device.
前記第2データと、前記転動部品の前記疲労部を測定して得られる表面形状に関する第3データとに基づき、前記転動部品の前記疲労部に繰り返し作用している接触応力を推定する接触応力推定部と、
予め決定された前記接触応力と寿命との関係に基づき、前記接触応力から、前記寿命を推定する寿命推定部と、
前記転動部品の前記回転回数と前記寿命とから前記転動部品の第2疲労度を推定する第2疲労度推定部と、
前記第1疲労度と前記第2疲労度とのうち値の大きい方を前記転動部品の疲労度として決定する疲労度決定部とを備える、請求項14または請求項15に記載の転動部品の疲労度推定装置。
Contact for estimating contact stress repeatedly acting on the fatigue portion of the rolling component based on the second data and third data regarding the surface shape obtained by measuring the fatigue portion of the rolling component. A stress estimator,
a life estimating unit that estimates the life from the contact stress based on a predetermined relationship between the contact stress and the life;
a second fatigue degree estimation unit that estimates a second fatigue degree of the rolling component from the number of rotations and the life of the rolling component;
The rolling component according to claim 14 or 15, further comprising a fatigue level determining unit that determines the larger of the first fatigue level and the second fatigue level as the fatigue level of the rolling component. Fatigue level estimation device.
転動部品の疲労部の表面から内部にかけてX線を照射することで、前記疲労部にて回折した環状の回折X線の中心角に対する回折強度のばらつきの深さ方向での分布データを得るステップと、
前記深さ方向での分布データに基づき、前記転動部品の前記疲労部に繰り返し作用している接触応力を推定するステップとを備える、転動部品の接触応力推定方法。
Obtaining distribution data in the depth direction of variations in diffraction intensity with respect to a central angle of annular diffracted X-rays diffracted at the fatigued part by irradiating X-rays from the surface to the inside of the fatigued part of the rolling component. and,
A method for estimating contact stress of a rolling component, comprising the step of estimating a contact stress that repeatedly acts on the fatigue portion of the rolling component based on the distribution data in the depth direction.
前記接触応力を推定するステップは、
前記深さ方向での分布データに基づき、前記回折強度のばらつきの値が最大となる第1深さを求め、前記第1深さを用いて前記疲労部における他の部材との接触部の短軸半径を推定するステップと、
前記短軸半径に基づき接触応力を推定するステップとを含む、請求項17に記載の転動部品の接触応力推定方法。
The step of estimating the contact stress includes:
Based on the distribution data in the depth direction, a first depth at which the value of the dispersion of the diffraction intensity is maximum is determined, and using the first depth, the shortness of the contact part with another member in the fatigue part is determined. estimating the shaft radius;
The method for estimating contact stress of a rolling component according to claim 17, comprising the step of estimating contact stress based on the minor axis radius.
前記深さ方向での分布データを得るステップでは、2次元検出器を用いて前記環状の回折X線の全体を測定する、請求項17または請求項18に記載の転動部品の接触応力推定方法。 The contact stress estimation method for a rolling component according to claim 17 or 18, wherein in the step of obtaining the distribution data in the depth direction, the entire annular diffraction X-ray is measured using a two-dimensional detector. . 前記深さ方向での分布データを得るステップでは、前記環状の回折X線の一部を検出する検出器を走査することで、前記環状の回折X線の全体を測定する、請求項17または請求項18に記載の転動部品の接触応力推定方法。 In the step of obtaining the distribution data in the depth direction, the entire annular diffracted X-ray is measured by scanning a detector that detects a part of the annular diffracted X-ray. 19. The method for estimating contact stress of rolling parts according to item 18. 前記深さ方向での分布データを得るステップでは、前記転動部品の前記疲労部の前記表面に対して垂直方向から前記X線を照射する、請求項17から請求項20のいずれか1項に記載の転動部品の接触応力推定方法。 According to any one of claims 17 to 20, in the step of obtaining distribution data in the depth direction, the X-rays are irradiated from a direction perpendicular to the surface of the fatigue portion of the rolling component. The described contact stress estimation method for rolling parts. 前記深さ方向での分布データを得るステップでは、前記転動部品の前記疲労部の前記表面に対して傾斜した方向から前記X線を照射する、請求項17から請求項20のいずれか1項に記載の転動部品の接触応力推定方法。 Any one of claims 17 to 20, wherein in the step of obtaining distribution data in the depth direction, the X-rays are irradiated from a direction oblique to the surface of the fatigue portion of the rolling component. Contact stress estimation method for rolling parts described in .
JP2023180138A 2019-02-22 2023-10-19 Contact stress estimation method for rolling component, contact estimation program for rolling component, and contact stress estimation device for rolling component Pending JP2023174901A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019030815 2019-02-22
JP2019030815 2019-02-22
JP2020000890A JP7372155B2 (en) 2019-02-22 2020-01-07 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020000890A Division JP7372155B2 (en) 2019-02-22 2020-01-07 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Publications (1)

Publication Number Publication Date
JP2023174901A true JP2023174901A (en) 2023-12-08

Family

ID=72280277

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020000890A Active JP7372155B2 (en) 2019-02-22 2020-01-07 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts
JP2023180138A Pending JP2023174901A (en) 2019-02-22 2023-10-19 Contact stress estimation method for rolling component, contact estimation program for rolling component, and contact stress estimation device for rolling component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020000890A Active JP7372155B2 (en) 2019-02-22 2020-01-07 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Country Status (1)

Country Link
JP (2) JP7372155B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315171A (en) * 2002-04-26 2003-11-06 Toshiba Corp X-ray residual stress measuring device and method
JP5076719B2 (en) * 2007-08-07 2012-11-21 日本精工株式会社 Predicting remaining life of rolling bearings
WO2009076972A1 (en) * 2007-12-14 2009-06-25 Ab Skf Method of determining fatigue life and remaining life
JP5339253B2 (en) * 2009-07-24 2013-11-13 国立大学法人金沢大学 X-ray stress measurement method
JP2011069684A (en) * 2009-09-25 2011-04-07 Ntn Corp Method of estimating use condition on rolling bearing
JP5958999B2 (en) * 2012-07-04 2016-08-02 Ntn株式会社 Bearing part inspection method and bearing part inspection apparatus
JP2015215317A (en) * 2014-05-13 2015-12-03 日本精工株式会社 Remaining life prediction method of rolling bearing
JP6695243B2 (en) * 2016-09-09 2020-05-20 Ntn株式会社 Bearing component life diagnosis method, bearing component life diagnosis device, and bearing component life diagnosis program
JP6762817B2 (en) * 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
JP6762818B2 (en) * 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
JP6819218B2 (en) * 2016-10-28 2021-01-27 株式会社ジェイテクト Rolling bearing fatigue degree acquisition method and equipment

Also Published As

Publication number Publication date
JP2020139944A (en) 2020-09-03
JP7372155B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP5958999B2 (en) Bearing part inspection method and bearing part inspection apparatus
JP6762817B2 (en) Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
US9074970B2 (en) Method for fatigue assessment of rolling bearing
EP2873961B1 (en) Device for estimating service life and method for estimating service life of rolling bearing
JP2012149892A (en) Life estimating device and life estimating method for roller bearings
JP6695243B2 (en) Bearing component life diagnosis method, bearing component life diagnosis device, and bearing component life diagnosis program
JP2008139220A (en) Inspection method of nano-indentation test
Danielsen et al. 3D X-ray computerized tomography of White Etching Cracks (WEC)
JP6802921B2 (en) A method for monitoring the functional status of the system for computed tomography inspection of workpieces
Szala Application of computer image analysis software for determining incubation period of cavitation erosion–preliminary results
JP7372155B2 (en) Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts
JP7360977B2 (en) Bearing parts lifespan diagnosis method, bearing parts lifespan diagnosis device, and bearing parts lifespan diagnosis program
JP6762818B2 (en) Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
JP4617168B2 (en) Bearing damage evaluation apparatus and bearing damage evaluation method
JP7064383B2 (en) Performance evaluation method for rolling parts
JP2000304710A (en) Method for measuring degree of fatigue due to rolling fatigue
KR20150132632A (en) Measuring apparatus and method of elastic modulus for diagnosing material damages
RU2498263C1 (en) Method for detection of microcracks in metal
JP5583489B2 (en) Method and apparatus for evaluating damage of metal materials
Rabeyee et al. Diagnosing the change in the internal clearances of rolling element bearings based on vibration signatures
Siew et al. Fault severity trending in rolling element bearings
WO2018047774A1 (en) Method for diagnosing service life of bearing component, device for diagnosing service life of bearing component, and program for diagnosing service life of bearing component
JP2011237221A (en) Stress state estimation method for austenitic stainless steel
JP2018155495A (en) Material damage evaluation method
RU2789616C1 (en) Method for diagnostics of the rolling element jams in the bearing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507