JP2015215317A - Remaining life prediction method of rolling bearing - Google Patents

Remaining life prediction method of rolling bearing Download PDF

Info

Publication number
JP2015215317A
JP2015215317A JP2014099878A JP2014099878A JP2015215317A JP 2015215317 A JP2015215317 A JP 2015215317A JP 2014099878 A JP2014099878 A JP 2014099878A JP 2014099878 A JP2014099878 A JP 2014099878A JP 2015215317 A JP2015215317 A JP 2015215317A
Authority
JP
Japan
Prior art keywords
fatigue
ray
degree
remaining life
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014099878A
Other languages
Japanese (ja)
Inventor
理嗣 名取
Masahide Natori
理嗣 名取
弘樹 小俣
Hiroki Komata
弘樹 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014099878A priority Critical patent/JP2015215317A/en
Publication of JP2015215317A publication Critical patent/JP2015215317A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method which can further accurately predict a remaining life of a bearing without causing a variation.SOLUTION: An X-ray fatigue degree with respect to a fatigue progression degree is digitized in advance by measuring a reduction amount of a half value width of a martensite structure of a material, and a reduction amount of a remaining austenite amount with respect to a bearing constituting part by using an X-ray diffraction device, at least one of the followings (A) to (C) is measured after an operation for a prescribed time., and a remaining life of the bearing is predicted by making the X-ray fatigue degree associate with one of the followings. (A) A load of rolling during an operation. (B) At least one of a size, quantity and weight of a foreign matter in a lubricant. (C) At least one of a size and an occupation are of an impression which is formed on a raceway surface or a rolling surface.

Description

本発明は、転がり軸受の残存寿命を予測する方法に関する。   The present invention relates to a method for predicting the remaining life of a rolling bearing.

転がり軸受では、ある一定期間の使用後に軌道面が鱗状に剥がれ落ちるはく離現象が発生する。一般に、はく離は、鋼中の非金属介在物を起点とした内部起点型はく離と、潤滑剤中に混入した異物の噛み込みにより形成された圧痕を起点とする表面起点型はく離の2つのタイプに大別される。近年では、軸受材料の高清浄化に伴って市販品の大半が表面起点型はく離である。このはく離現象は転がり軸受にとって避けることができない現象であり、軌道面や転動面にはく離が生じると、使用時に振動が発生するなどの弊害が起こり、最悪の場合には製造製品への損傷や付帯設備の重大損傷へとつながる可能性がある。   In a rolling bearing, a peeling phenomenon occurs in which the raceway surface is peeled off after use for a certain period. In general, there are two types of delamination: internal-origin type delamination starting from non-metallic inclusions in steel and surface-origin type delamination starting from indentations formed by the inclusion of foreign matter mixed in the lubricant. Broadly divided. In recent years, with the high cleaning of bearing materials, most of the commercial products are surface-origin type peeling. This separation phenomenon is unavoidable for rolling bearings.If separation occurs on the raceway surface or rolling surface, vibrations may occur during use, and in the worst case damage to manufactured products may occur. It may lead to serious damage to incidental facilities.

このため、従来から転がり軸受の残存寿命を予測する方法が提案されている。残存寿命の予測方法では、転がり軸受の使用中に変化するパラメータを抽出し、そのパラメータに基づいて疲労の進行度合を検出する方法が有効と考えられており、使用中に変化するパラメータの1つとして軸受材料の疲労度合(材料寿命)が挙げられる。この材料寿命に関して特許文献1では、X線回折法によりマルテンサイト組織の半値幅の減少量と、残留オーステナイト量の減少量とを測定して疲労度インデックス(X線疲労度)を作製しておき、実際の測定値を基に、このX線疲労度から疲労進行度を評価する方法を提案している。   For this reason, methods for predicting the remaining life of rolling bearings have been proposed. In the method of predicting the remaining life, it is considered effective to extract a parameter that changes during use of the rolling bearing and detect the progress of fatigue based on the parameter. One of the parameters that change during use is considered. The degree of fatigue (material life) of the bearing material is given as an example. With respect to this material life, Patent Document 1 prepares a fatigue index (X-ray fatigue) by measuring the reduction in the half-value width of the martensite structure and the reduction in the amount of retained austenite by the X-ray diffraction method. Based on actual measured values, a method for evaluating the degree of fatigue progression from the X-ray fatigue degree is proposed.

しかし、非特許文献1では、特許文献1に記載された予測方法では、X線疲労度と疲労進行度とは良好な相関が認められるものの、バラツキが大きくなることを指摘している。その原因の1つとして、X線照射面積の広さ(φ数μm)が挙げられる。上記したように近年の大半の転がり軸受で起こっている表面起点型はく離は、特許文献1に記載された予測方法では、照射面積が広範囲であるため圧痕以外の材料組織変化もX線疲労度として捉えており、更に使用環境に応じて圧痕状態(数やサイズ等)が異なるため、X線疲労度も異なることが予測される。   However, in Non-Patent Document 1, it is pointed out that the prediction method described in Patent Document 1 shows that the X-ray fatigue degree and the fatigue progression degree have a good correlation, but the variation becomes large. One of the causes is the area of X-ray irradiation (φ several μm). As described above, the surface-origin-type delamination that has occurred in most rolling bearings in recent years is based on the prediction method described in Patent Document 1, and since the irradiation area is wide, the change in the material structure other than the indentation is also an X-ray fatigue degree. Furthermore, since the indentation state (number, size, etc.) differs depending on the use environment, the X-ray fatigue level is also expected to be different.

その対策の1つとして、非特許文献2では、圧痕近傍の材料組織変化を捉えるためにX線の照射面積を微小領域にした場合、バラツキが抑えられることを明らかにしている。しかし、この方法では、測定時間が長時間になってしまう。   As one of the countermeasures, Non-Patent Document 2 clarifies that variation can be suppressed when the X-ray irradiation area is set to a minute region in order to capture the change in the material structure near the indentation. However, this method requires a long measurement time.

特公昭63−34423号公報Japanese Patent Publication No. 63-34423

NSK Bearing Journal,1982,No.644,p.1)NSK Bearing Journal, 1982, No. 644, p. 1) Material Science Forum Vols.706−709,p.1679Material Science Forum Vols. 706-709, p. 1679

本発明はこのような状況に鑑みてなされたものであり、X線疲労度を利用した転がり軸受の残存寿命予測方法に改良を加え、バラツキがなく、より正確に軸受の残存寿命を予測し得る方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has improved the remaining life prediction method of a rolling bearing using the X-ray fatigue degree, and can predict the remaining life of the bearing more accurately without variation. It aims to provide a method.

上記課題を解決するために本発明は、下記に示す転がり軸受の残存寿命予測方法を提供する。
(1)稼動中の転がり軸受の残存寿命を予測する方法であって、
軸受構成部品について、X線回折装置を用いて材料のマルテンサイト組織の半値幅の減少量と、残留オーステナイト量の減少量とを測定して疲労進行度に対するX線疲労度を数値化しておき、所定時間稼動後に下記(A)〜(C)の少なくとも1つを測定し、前記X線疲労度と関連付けて残存寿命を予測することを特徴とする転がり軸受の残存寿命予測方法。
(A)稼動中の転がり軸受にかかる荷重
(B)潤滑剤中の異物のサイズ、量及び硬さの少なくとも1つ
(C)軌道面または転走面に形成された圧痕のサイズ及び圧痕の占有面積の少なくとも1つ
(2)外輪の軌道面、内輪の軌道面及び転動体の転動面の少なくとも1つについて、(A)〜(C)を測定し、測定値の中で最も疲労度が高い値から残存寿命を予測することを特徴とする上記(1)記載の転がり軸受の残存寿命予測方法。
(3)固定型X線回折装置に被測定軸受を装着して測定するか、移動式X線回折装置を用いて現場にて被測定軸受を測定することを特徴とする上記(1)または(2)記載の転がり軸受の残存寿命予測方法。
In order to solve the above problems, the present invention provides a method for predicting the remaining life of a rolling bearing shown below.
(1) A method for predicting the remaining life of a rolling bearing in operation,
For bearing components, the amount of reduction in half-value width of the martensite structure of the material and the amount of reduction in retained austenite are measured using an X-ray diffractometer, and the degree of X-ray fatigue relative to the degree of fatigue progress is quantified. A method for predicting a remaining life of a rolling bearing, comprising: measuring at least one of the following (A) to (C) after operation for a predetermined time and predicting a remaining life in association with the X-ray fatigue level.
(A) Load applied to the rolling bearing in operation (B) At least one of the size, amount and hardness of foreign matter in the lubricant (C) Size of the indentation formed on the raceway surface or rolling surface and occupation of the indentation At least one of the areas (2) (A) to (C) are measured for at least one of the raceway surface of the outer ring, the raceway surface of the inner ring, and the rolling surface of the rolling element, and the fatigue level is the highest among the measured values. The remaining life prediction method for a rolling bearing according to (1), wherein the remaining life is predicted from a high value.
(3) The above-described (1) or (1), wherein the measurement is performed by mounting the bearing to be measured on a fixed X-ray diffractometer or by measuring the bearing to be measured on-site using a mobile X-ray diffractometer. 2) A method for predicting the remaining life of the rolling bearing as described.

本発明によれば、軸受の残存寿命をバラツキがなく、より正確な予測することができる。   According to the present invention, the remaining life of the bearing can be predicted more accurately without variation.

条件1、条件12及び条件13における、疲労進行度とX線疲労度との関係を示すグラフである。It is a graph which shows the relationship between the fatigue progression degree and the X-ray fatigue degree in condition 1, condition 12 and condition 13. 条件2、条件3及び条件12における、疲労進行度とX線疲労度との関係を示すグラフである。It is a graph which shows the relationship between the fatigue progress degree in condition 2, condition 3 and condition 12, and X-ray fatigue degree. 条件6、条件9及び条件12における、疲労進行度とX線疲労度との関係を示すグラフである。It is a graph which shows the relationship between the fatigue progressing degree and the X-ray fatigue degree in the conditions 6, 9 and 12. 条件10、条件11及び条件12における、疲労進行度とX線疲労度との関係を示すグラフである。It is a graph which shows the relationship between the fatigue progression degree and the X-ray fatigue degree in the conditions 10, 11 and 12. 異物状態の違いによる、はく離時のX線疲労度の関係を説明するための図である。It is a figure for demonstrating the relationship of the X-ray fatigue degree at the time of peeling by the difference in a foreign material state. 異物状態ごとの、疲労進行度とX線疲労度との関係を示すグラフである。It is a graph which shows the relationship between the fatigue progression degree and a X-ray fatigue degree for every foreign material state. 異物の平均サイズと圧痕の平均サイズとの関係を示すグラフである。It is a graph which shows the relationship between the average size of a foreign material, and the average size of an indentation. 異物の含有量と軌道面に占める圧痕の割合との関係を示すグラフである。It is a graph which shows the relationship between content of a foreign material, and the ratio of the indentation which occupies for a track surface.

以下、本発明について図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の残存寿命の予測方法では、先ず、被測定軸受について、回転前及び所定時間回転が経過した後に、X線回折装置を用いて測定部のマルテンサイトの半値幅及び残留オーステナイト量を測定し、回転前からのマルテンサイト半値値の減少量(δa)及び残留オーステナイトの減少量(δb)を求め、下記(1)式からX線疲労度を算出する。
X線疲労度=(δa)+C×(δb)・・・(1)
(式中、Cは残留オーステナイト量に依存する材料係数である。)
In the method for predicting the remaining life of the present invention, first, with respect to the bearing to be measured, before the rotation and after a predetermined time has elapsed, the half-value width and the amount of retained austenite of the martensite of the measurement unit are measured using an X-ray diffractometer. Then, the amount of decrease in martensite half-value (δa) and the amount of decrease in retained austenite (δb) from before rotation are obtained, and the degree of X-ray fatigue is calculated from the following equation (1).
X-ray fatigue level = (δa) + C × (δb) (1)
(In the formula, C is a material coefficient depending on the amount of retained austenite.)

尚、測定部としては、内輪軌道面、外輪軌道面及び転動面の何れでもよい。   In addition, as a measurement part, any of an inner ring raceway surface, an outer ring raceway surface, and a rolling surface may be sufficient.

そして、被測定軸受に、サイズ、潤滑剤中の含有量または硬さの異なる異物を混入させた潤滑剤を封入し、荷重を変えて回転させ、異物のサイズ、含有量または硬さ、あるいは荷重の違いによる疲労進行度の相関を求める。尚、疲労進行度は、被測定軸受を回転させ、上記のX線回折測定を実施するまでの時間(測定実施時間)と、はく離に至る時間(はく離時間)とから、下記(2)式で求めることができる。
疲労進行度=(測定実施時間)/(はく離時間)×100
Then, in the bearing to be measured, a lubricant mixed with foreign matters having different sizes, contents in the lubricant, or hardness is enclosed, rotated under different loads, and the size, content or hardness of the foreign matters, or the load. Obtain the correlation of the degree of fatigue progression due to the difference in. The degree of fatigue progression is expressed by the following equation (2) from the time until the measured bearing is rotated and the above X-ray diffraction measurement is carried out (measurement execution time) and the time until peeling (peeling time). Can be sought.
Fatigue progress = (measurement time) / (peeling time) × 100

以下に、被測定軸受として転がり軸受「HR32017XJ」を用い、表1に示すように硬さ、含有量及び平均サイズの異なる異物を混入させた潤滑剤を封入し、表記の荷重にて回転させ、その時のX線疲労度と疲労進行度との関係を調べた。結果を表1に示す。   Below, using a rolling bearing “HR32017XJ” as a bearing to be measured, encapsulating a lubricant mixed with foreign matters having different hardness, content and average size as shown in Table 1, and rotating with the indicated load, The relationship between the degree of X-ray fatigue and the degree of fatigue progress was investigated. The results are shown in Table 1.

Figure 2015215317
Figure 2015215317

図1は、条件1、条件12及び条件13における疲労進行度とX線疲労度との関係を示すグラフであるが、各条件とも疲労進行度とX線疲労度とは良好な相関が得られている。また、条件1、条件12及び条件13では、異物の硬さ及び含有量が同一で、平均サイズもほぼ同じであり、実質的に荷重のみ異なる比較結果でもある。従って、同図から、荷重が大きくなるほど、はく離時のX線疲労度が大きくなることがわかる。   FIG. 1 is a graph showing the relationship between the degree of fatigue progression and the degree of X-ray fatigue under conditions 1, 12 and 13, and a good correlation is obtained between the degree of fatigue progression and the degree of X-ray fatigue under each condition. ing. Moreover, in the conditions 1, 12 and 13, the hardness and content of the foreign matter are the same, the average size is almost the same, and the comparison results are substantially different only in the load. Therefore, it can be seen from the figure that the greater the load, the greater the degree of X-ray fatigue during peeling.

図2は、条件2、条件3及び条件12における疲労進行度とX線疲労度との関係を示すグラフであるが、各条件とも疲労進行度とX線疲労度とは良好な相関が得られている。また、条件2、条件3及び条件12では、異物の含有量が同一で、平均サイズがほぼ同じであり、荷重が同一であることから、実質的に異物の硬さのみ異なる比較結果でもある。従って、同図から、異物が硬くなるほど、はく離時のX線疲労度が大きくなることがわかる。   FIG. 2 is a graph showing the relationship between the degree of fatigue progression and the degree of X-ray fatigue under conditions 2, 3 and 12, and a good correlation is obtained between the degree of fatigue progression and the degree of X-ray fatigue under each condition. ing. Moreover, in the conditions 2, 3 and 12, since the content of foreign matter is the same, the average size is almost the same, and the load is the same, it is also a comparison result that is substantially different only in the hardness of the foreign matter. Accordingly, it can be seen from the figure that the harder the foreign matter, the greater the degree of X-ray fatigue during peeling.

図3は条件6、条件9及び条件12における疲労進行度とX線疲労度との関係を示すグラフであるが、各条件とも疲労進行度とX線疲労度とは良好な相関が得られている。また、条件6、条件9及び条件12では、異物の硬さが同一で、平均サイズもほぼ同じであり、荷重が同一であることから、実質的に異物の含有量のみ異なる比較結果でもある。従って、同図から、異物の含有量が増すほど、はく離時のX線疲労度が大きくなることがわかる。   FIG. 3 is a graph showing the relationship between the degree of fatigue progress and the degree of X-ray fatigue under conditions 6, 9 and 12, and there is a good correlation between the degree of fatigue progression and the degree of X-ray fatigue under each condition. Yes. Moreover, in the conditions 6, 9 and 12, since the hardness of the foreign matter is the same, the average size is almost the same, and the load is the same, it is a comparison result that is substantially different only in the content of the foreign matter. Therefore, it can be seen from the figure that as the content of foreign matter increases, the degree of X-ray fatigue during peeling increases.

図4は、条件10、条件11及び条件12における疲労進行度とX線疲労度との関係を示すグラフであるが、各条件とも疲労進行度とX線疲労度とは良好な相関が得られている。また、条件10、条件11及び条件12では、荷重が同一で、異物の硬さ及び含有量が同一であることから、異物の平均サイズのみ異なる比較結果でもある。従って、同図から、異物のサイズが大きくなるほど、はく離時のX線疲労度が大きくなることがわかる。   FIG. 4 is a graph showing the relationship between the degree of fatigue progression and the degree of X-ray fatigue under conditions 10, 11 and 12, and a good correlation is obtained between the degree of fatigue progression and the degree of X-ray fatigue under each condition. ing. Moreover, since the load is the same and the hardness and content of a foreign material are the same in the conditions 10, 11 and 12, it is also a comparison result in which only the average size of the foreign material is different. Therefore, it can be seen from the figure that as the size of the foreign matter increases, the degree of X-ray fatigue at the time of peeling increases.

このように、稼動中の荷重、並びに潤滑剤中の異物の硬さ、含有量及びサイズと、軸受の疲労度合との間には高い相関があり、稼動中の荷重が大きくなるほど、潤滑剤中の異物が硬くなるほど、異物の含有量が増すほど、異物が大きくなるほど軸受の疲労度合が大きくなり、残存寿命も短くなることがわかる。   Thus, there is a high correlation between the load during operation and the hardness, content and size of foreign matter in the lubricant, and the degree of fatigue of the bearing. It can be seen that the harder the foreign matter, the greater the content of foreign matter, and the larger the foreign matter, the greater the degree of fatigue of the bearing and the shorter the remaining life.

また、定期検査時等に軸受から回収した潤滑剤について、異物の平均サイズ及び含有量を測定した。尚、軸受の(P/C)は0.5である。そして、上記の結果を基に、異物の平均サイズ及び含有量からはく離時のX線疲労度を推定し、異物状態(平均サイズと含有量)ごとのX線疲労度に分類した。結果を図5に示すが、異物状態が厳しくなるほど、即ち、異物の平均サイズ及び含有量が増すほど、はく離時のX線疲労度が高くなることがわかる。   In addition, the average size and content of foreign matters were measured for the lubricant collected from the bearings during periodic inspections. Incidentally, (P / C) of the bearing is 0.5. And based on said result, the X-ray fatigue degree at the time of peeling was estimated from the average size and content of a foreign material, and it classified into the X-ray fatigue degree for every foreign material state (average size and content). The results are shown in FIG. 5, and it can be seen that the more severe the foreign material state, that is, the higher the average size and content of the foreign material, the higher the degree of X-ray fatigue during peeling.

この結果を基に、それぞれの異物状態のX線疲労度と、疲労進行度との関係を求めると、図6に示すように、異物状態ごとにX線疲労度と疲労進行度とが直線関係にあることがわかる。そのため、異物状態(ここでは異物のサイズ及び含有量)から、被測定軸受の残存寿命を予測することができる。   Based on this result, when the relationship between the X-ray fatigue degree of each foreign substance state and the fatigue progress degree is obtained, as shown in FIG. 6, the X-ray fatigue degree and the fatigue progress degree for each foreign substance state are linearly related. You can see that Therefore, the remaining life of the bearing to be measured can be predicted from the foreign material state (here, the size and content of the foreign material).

尚、図1に示したように、はく離時のX線疲労度は荷重によって変わるため、荷重ごとに図5に示す疲労度と異物状態との関係を求めておく必要がある。   As shown in FIG. 1, since the X-ray fatigue level at the time of peeling varies depending on the load, it is necessary to obtain the relationship between the fatigue level and the foreign material state shown in FIG. 5 for each load.

また、潤滑剤中の異物状態は、軸受の軌道面や転動面に形成される圧痕のサイズや量に影響する。例えば、異物のサイズと、軌道面に形成された圧痕のサイズとの関係を調べた結果を図7に、異物の含有量と、軌道面に形成された圧痕の占有面積(測定箇所に占める圧痕の面積)との関係を調べた結果を図8に示す。尚、何れも軸受の(P/C)は0.5である。   In addition, the state of foreign matter in the lubricant affects the size and amount of indentations formed on the raceway surface and rolling surface of the bearing. For example, the relationship between the size of the foreign matter and the size of the indentation formed on the raceway surface is shown in FIG. 7. The content of the foreign matter and the area occupied by the indentation formed on the raceway surface (the indentation occupying the measurement location) are shown in FIG. FIG. 8 shows the result of examining the relationship with the area. In all cases, the (P / C) of the bearing is 0.5.

図示されるように、異物のサイズと圧痕のサイズ、異物の含有量と圧痕の占有面積との間には高い相関が見られることから、上記した異物状態の代わりに圧痕のサイズや占有面積を用いることによっても被測定軸受の残存寿命を予測することができる。   As shown in the figure, since there is a high correlation between the size of the foreign matter and the size of the indentation, and the content of the foreign matter and the occupied area of the indentation, the size and occupied area of the indentation are set in place of the above-described foreign matter state. The remaining life of the bearing to be measured can also be predicted by using it.

以上のように、下記(A)〜(C)とX線疲労度との間には良好な相関があるため、下記(A)〜(C)の少なくとも1つ、より確度を高めるには全てを測定することにより、被測定軸受の残存寿命を予測することができる。
(A)稼動中の転がり軸受にかかる荷重
(B)潤滑剤中の異物のサイズ、量及び硬さの少なくとも1つ
(C)軌道面または転走面に形成された圧痕のサイズ及び圧痕の占有面積の少なくとも1つ
As described above, since there is a good correlation between the following (A) to (C) and the degree of X-ray fatigue, at least one of the following (A) to (C), all to increase the accuracy Can be used to predict the remaining life of the bearing to be measured.
(A) Load applied to the rolling bearing in operation (B) At least one of the size, amount and hardness of foreign matter in the lubricant (C) Size of the indentation formed on the raceway surface or rolling surface and occupation of the indentation At least one of the areas

また、(A)〜(C)の各測定値の中で最も疲労度が高い値を用いることにより、被測定軸受の残存寿命を、安全度をより高めて予測することができる。   Moreover, the remaining life of the bearing to be measured can be predicted with a higher degree of safety by using the value having the highest degree of fatigue among the measured values of (A) to (C).

尚、X線疲労度を測定するために用いるX線回折装置は、固定式でも可動式でも構わない。固定式X線回折装置を用いる場合は被測定軸受をX線回折装置の設置施設に持ち込む必要がある。これに対して、可動式X線回折装置では、定期検査時に現場に持ち込んで非破壊で被測定軸受のX線疲労度を測定することができる。この可動式X線回折装置は、X線出力を低電圧・低電流に抑えることができ、かつ、ゴニオメータ機構が不要な小型・軽量のX線回折装置であり、例えばバルテック工業(株)製のポータブル型X線残留応力装置などを使用することができる。   The X-ray diffractometer used for measuring the X-ray fatigue degree may be fixed or movable. When using a fixed X-ray diffractometer, it is necessary to bring the bearing to be measured into the installation facility of the X-ray diffractometer. On the other hand, in the movable X-ray diffractometer, the X-ray fatigue degree of the bearing to be measured can be measured non-destructively by bringing it into the field at the time of periodic inspection. This movable X-ray diffractometer is a small and lightweight X-ray diffractometer that can suppress the X-ray output to a low voltage and low current and does not require a goniometer mechanism. A portable X-ray residual stress device or the like can be used.

Claims (3)

稼動中の転がり軸受の残存寿命を予測する方法であって、
軸受構成部品について、X線回折装置を用いて材料のマルテンサイト組織の半値幅の減少量と、残留オーステナイト量の減少量とを測定して疲労進行度に対するX線疲労度を数値化しておき、所定時間稼動後に下記(A)〜(C)の少なくとも1つを測定し、前記X線疲労度と関連付けて残存寿命を予測することを特徴とする転がり軸受の残存寿命予測方法。
(A)稼動中の転がり軸受にかかる荷重
(B)潤滑剤中の異物のサイズ、量及び硬さの少なくとも1つ
(C)軌道面または転走面に形成された圧痕のサイズ及び圧痕の占有面積の少なくとも1つ
A method for predicting the remaining life of a rolling bearing in operation,
For bearing components, the amount of reduction in half-value width of the martensite structure of the material and the amount of reduction in retained austenite are measured using an X-ray diffractometer, and the degree of X-ray fatigue relative to the degree of fatigue progress is quantified. A method for predicting a remaining life of a rolling bearing, comprising: measuring at least one of the following (A) to (C) after operation for a predetermined time and predicting a remaining life in association with the X-ray fatigue level.
(A) Load applied to the rolling bearing in operation (B) At least one of the size, amount and hardness of foreign matter in the lubricant (C) Size of the indentation formed on the raceway surface or rolling surface and occupation of the indentation At least one of the areas
外輪の軌道面、内輪の軌道面及び転動体の転動面の少なくとも1つについて、(A)〜(C)を測定し、測定値の中で最も疲労度が高い値から残存寿命を予測することを特徴とする請求項1記載の転がり軸受の残存寿命予測方法。   Measure (A) to (C) for at least one of the raceway surface of the outer ring, the raceway surface of the inner ring, and the rolling surface of the rolling element, and predict the remaining life from the value with the highest fatigue level among the measured values. The method for predicting the remaining life of a rolling bearing according to claim 1. 固定型X線回折装置に被測定軸受を装着して測定するか、移動式X線回折装置を用いて現場にて被測定軸受を測定することを特徴とする請求項1または2記載の転がり軸受の残存寿命予測方法。   The rolling bearing according to claim 1 or 2, wherein the measurement is performed by mounting the bearing to be measured on a fixed X-ray diffractometer, or the bearing to be measured is measured on-site using a mobile X-ray diffractometer. For predicting the remaining life of
JP2014099878A 2014-05-13 2014-05-13 Remaining life prediction method of rolling bearing Pending JP2015215317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099878A JP2015215317A (en) 2014-05-13 2014-05-13 Remaining life prediction method of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099878A JP2015215317A (en) 2014-05-13 2014-05-13 Remaining life prediction method of rolling bearing

Publications (1)

Publication Number Publication Date
JP2015215317A true JP2015215317A (en) 2015-12-03

Family

ID=54752318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099878A Pending JP2015215317A (en) 2014-05-13 2014-05-13 Remaining life prediction method of rolling bearing

Country Status (1)

Country Link
JP (1) JP2015215317A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769051A (en) * 2017-03-10 2017-05-31 哈尔滨理工大学 A kind of rolling bearing remaining life Forecasting Methodology based on MCEA KPCA and combination S VR
CN108760301A (en) * 2018-05-08 2018-11-06 中铁工程装备集团有限公司 One kind quantifying predictor method for tunnel piercing main bearing service life state
JP2019215241A (en) * 2018-06-13 2019-12-19 いすゞ自動車株式会社 Estimation apparatus and estimation method
CN114341610A (en) * 2019-12-24 2022-04-12 日立建机株式会社 Method and system for determining reusability of gear
JP7372155B2 (en) 2019-02-22 2023-10-31 Ntn株式会社 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769051A (en) * 2017-03-10 2017-05-31 哈尔滨理工大学 A kind of rolling bearing remaining life Forecasting Methodology based on MCEA KPCA and combination S VR
CN106769051B (en) * 2017-03-10 2019-07-23 哈尔滨理工大学 A kind of rolling bearing remaining life prediction technique based on MCEA-KPCA and combination S VR
CN108760301A (en) * 2018-05-08 2018-11-06 中铁工程装备集团有限公司 One kind quantifying predictor method for tunnel piercing main bearing service life state
CN108760301B (en) * 2018-05-08 2020-03-31 中铁工程装备集团有限公司 Method for quantitatively estimating service life state of main bearing of tunnel boring machine
JP2019215241A (en) * 2018-06-13 2019-12-19 いすゞ自動車株式会社 Estimation apparatus and estimation method
WO2019240161A1 (en) * 2018-06-13 2019-12-19 いすゞ自動車株式会社 Estimation device and estimation method
CN112334749A (en) * 2018-06-13 2021-02-05 五十铃自动车株式会社 Estimation device and estimation method
JP7081319B2 (en) 2018-06-13 2022-06-07 いすゞ自動車株式会社 Estimator and estimation method
US11480242B2 (en) 2018-06-13 2022-10-25 Isuzu Motors Limited Fatigue damage degree estimation device and method
JP7372155B2 (en) 2019-02-22 2023-10-31 Ntn株式会社 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts
CN114341610A (en) * 2019-12-24 2022-04-12 日立建机株式会社 Method and system for determining reusability of gear

Similar Documents

Publication Publication Date Title
JP2015215317A (en) Remaining life prediction method of rolling bearing
Shah et al. A review of dynamic modeling and fault identifications methods for rolling element bearing
Shimizu et al. New data analysis of probabilistic stress-life (P–S–N) curve and its application for structural materials
JP5615726B2 (en) Life estimation apparatus and life estimation method for rolling bearing
JP2017219469A (en) State monitoring device and state monitoring method
JP6408222B6 (en) Fatigue life prediction method for components for rolling support devices and power transmission devices
Yakout et al. Rolling element bearings absolute life prediction using modal analysis
Gurumoorthy et al. Failure investigation of a taper roller bearing: A case study
JP2014514555A (en) Fatigue evaluation method for rolling bearings
JP2014055941A (en) Prediction method for progression degree of fatigue or remaining life of rolling bearing
JP5908356B2 (en) Life estimation apparatus and life estimation method for rolling bearing
JP6156873B2 (en) Rolling fatigue crack growth test method and rolling fatigue life prediction method
Styp-Rekowski et al. Tribological problems in shaft hoist ropes wear process
JP2011069684A (en) Method of estimating use condition on rolling bearing
JP5910124B2 (en) Bearing remaining life prediction method
JP2014098409A (en) Residual life prediction method of rolling bearing
Kotzalas Statistical distribution of tapered roller bearing fatigue lives at high levels of reliability
Li et al. Simulation and experimental validation of tapered roller bearing vibration induced by geometrical imperfection on cup raceway
Smolnicki et al. Degradation of a geared bearing of a stacker
CN103424307A (en) Accelerated rolling contact fatigue test method of metal material in small slip ratio
Czichos Physics of failure
JP2015129523A (en) Use method of rolling bearing
RU2534045C1 (en) Method of predicting resource capacity of steel of reactor vessels vver-1000
Siew et al. Fault severity trending in rolling element bearings
Stamboliska et al. Condition monitoring techniques for low-speed machines