JP2023173941A - Porous particle and method for producing the same - Google Patents

Porous particle and method for producing the same Download PDF

Info

Publication number
JP2023173941A
JP2023173941A JP2022086511A JP2022086511A JP2023173941A JP 2023173941 A JP2023173941 A JP 2023173941A JP 2022086511 A JP2022086511 A JP 2022086511A JP 2022086511 A JP2022086511 A JP 2022086511A JP 2023173941 A JP2023173941 A JP 2023173941A
Authority
JP
Japan
Prior art keywords
water
porous particles
resin
fine cellulose
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022086511A
Other languages
Japanese (ja)
Other versions
JP7154451B1 (en
Inventor
芳晴 待井
Yoshiharu Machii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushu Tokai Paper Co Ltd
Original Assignee
Tokushu Tokai Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushu Tokai Paper Co Ltd filed Critical Tokushu Tokai Paper Co Ltd
Priority to JP2022086511A priority Critical patent/JP7154451B1/en
Application granted granted Critical
Publication of JP7154451B1 publication Critical patent/JP7154451B1/en
Publication of JP2023173941A publication Critical patent/JP2023173941A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To efficiently obtain porous particles which have good dispersibility to resin and use an environment-friendly base material by a simple method at low cost.SOLUTION: A production method includes the steps of: mixing a fine cellulose fiber slurry and a water-soluble porosifying agent; and obtaining porous particles from the mixture by a spraying and drying device. Porous particles contain a fine cellulose fiber as a main component, and has a BET specific surface area of 20-100 m2/g, a bulk density of less than 200 g/L, and an average fiber diameter of the fiber cellulose fiber of 10-1,000 nm.SELECTED DRAWING: Figure 1

Description

本発明は微細セルロース繊維を主成分とする多孔質粒子、およびその製造方法に関する。また、多孔質粒子と樹脂とを複合化させた樹脂組成物、およびその樹脂組成物の成形体に関する。 The present invention relates to porous particles containing fine cellulose fibers as a main component, and a method for producing the same. The present invention also relates to a resin composition in which porous particles and a resin are composited, and a molded article of the resin composition.

ミクロフィブリル化セルロースやセルロースナノファイバー(CNF)と呼ばれる微細セルロース繊維は軽量でありながら高弾性率・高強度という特徴から、複合材料用途の開発が盛んになされてきた。微細セルロース繊維の製造方法には、TEMPO酸化処理、酸処理、酵素処理などの化学的処理による方法や、高圧ホモジナイザー、摩砕機などの機械的処理による方法があるが、いずれの方法でもパルプを水に分散させた状態で微細化させるため、微細セルロース繊維は水分散体で得られる。この水分散体は高粘度であるために固形分濃度が著しく低いスラリーである。そのため、樹脂との複合材料化の手段として、樹脂とともにドライパルプを混錬する方法、水分が揮発するまで混錬する方法、凍結乾燥や噴霧乾燥で水分を除去して樹脂に添加する方法などが提案されている。 Fine cellulose fibers called microfibrillated cellulose and cellulose nanofibers (CNF) are lightweight, yet have high modulus of elasticity and high strength, and have been actively developed for use in composite materials. There are two methods for producing fine cellulose fibers: chemical treatments such as TEMPO oxidation treatment, acid treatment, and enzyme treatment, and mechanical treatments such as high-pressure homogenizers and millers. Fine cellulose fibers are obtained in the form of an aqueous dispersion. This aqueous dispersion is a slurry with a significantly low solids concentration due to its high viscosity. Therefore, methods for making composite materials with resin include methods of kneading dry pulp together with resin, methods of kneading until the water evaporates, and methods of removing water by freeze drying or spray drying and adding it to resin. Proposed.

水分を除去したCNFを得る手法として、例えば特許文献1では、TEMPO酸化処理で得られる微細セルロース繊維を噴霧乾燥装置によって粉末化する方法が提案されている。しかし、この手法では乾燥すると微細セルロース繊維の繊維間に凝集力が働いてしまい、樹脂中では単繊維に分散させることができず、微細セルロース繊維が持つ本来の性能が発揮できない。 As a method for obtaining CNF from which water has been removed, for example, Patent Document 1 proposes a method in which fine cellulose fibers obtained by TEMPO oxidation treatment are powdered using a spray drying device. However, with this method, when dried, cohesive force acts between the fine cellulose fibers, making it impossible to disperse them into single fibers in the resin, making it impossible for the fine cellulose fibers to exhibit their original performance.

特許文献2では、CNFにt-ブタノール、ベンゼン、1,4-ジオキサンなどの有機溶剤を添加して凍結乾燥した後に粉砕することで比表面積の大きなCNFを製造する方法が提案されている。いずれの溶剤も氷点下では凍結するため、凍結乾燥することにより、繊維間に働く凝集力を阻害し、比表面積の大きい乾燥したCNFを得ることができ、後工程で粉末にすることも可能である。しかし、凍結乾燥はタクトタイムが長く、粉末状態でCNFを得るためには粉砕工程も必要となるため、非効率である。また、凍結乾燥以外の乾燥方法では、いずれの有機溶剤も沸点が低いため、他の高沸点有機溶剤で溶媒置換しない限り、水よりも先に有機溶剤が揮発してしまい、その後に水が揮発するため、繊維間に凝集力が働き高い比表面積を得ることはできない。また、溶媒置換は多量の有機溶剤を使用するためコストアップになり、さらに生産効率の観点やカーボンニュートラルやSDGsの観点から好ましくない。 Patent Document 2 proposes a method of producing CNF with a large specific surface area by adding an organic solvent such as t-butanol, benzene, or 1,4-dioxane to CNF, freeze-drying it, and then pulverizing it. Since both solvents freeze at below freezing temperatures, freeze-drying inhibits the cohesive force acting between the fibers, making it possible to obtain dry CNF with a large specific surface area, which can also be made into powder in a subsequent process. . However, freeze-drying is inefficient because it requires a long takt time and requires a pulverization step to obtain CNF in powder form. In addition, in drying methods other than freeze-drying, all organic solvents have low boiling points, so unless the solvent is replaced with another high-boiling point organic solvent, the organic solvent will volatilize before the water, and then the water will volatilize. Therefore, cohesive force acts between the fibers, making it impossible to obtain a high specific surface area. In addition, solvent replacement increases costs because a large amount of organic solvent is used, and is also unfavorable from the viewpoint of production efficiency, carbon neutrality, and SDGs.

特許文献3では、バクテリアセルロース又は微小繊維状セルロースに対してグリセリンや界面活性剤などの親水性液体および水溶性多糖類などの親水性固体を添加することで繊維間に働く凝集力を抑制し、多孔質化する方法が提案されている。多孔質であれば溶媒の浸透が良好となり、再分散性の改善や細孔への樹脂のアンカリングで微細セルロース繊維が有する特性の発現が期待できる。しかし、提案されている親水性液体は親水性が著しく高いため、多孔質化させる効果は低く、またセルロースとの親和性が良いため乾燥による除去が難しい。界面活性剤も同様に乾燥での除去はできない。不純物の残留は不都合が生じるおそれがあり、例えば混練後の樹脂組成物を利用する場面では不純物、特に界面活性剤がブリードアウトしてしまい、他部材との接着性や密着性に不具合が生じる。そのため、洗浄で界面活性剤を取り除く必要があり、非効率である一方、水溶性多糖類は繊維間の水素結合を阻害する効果はないため、そもそも多孔質化に貢献しない。 In Patent Document 3, a hydrophilic liquid such as glycerin or a surfactant and a hydrophilic solid such as a water-soluble polysaccharide are added to bacterial cellulose or microfibrous cellulose to suppress the cohesive force acting between the fibers, A method of making it porous has been proposed. If it is porous, the penetration of the solvent will be good, and it is expected that the properties of fine cellulose fibers will be exhibited by improving redispersibility and anchoring the resin in the pores. However, the proposed hydrophilic liquid has extremely high hydrophilicity, so the effect of making it porous is low, and it has a good affinity with cellulose, so it is difficult to remove by drying. Similarly, surfactants cannot be removed by drying. Remaining impurities may cause problems; for example, when using a resin composition after kneading, impurities, especially surfactants, may bleed out, causing problems in adhesion and adhesion with other parts. Therefore, it is necessary to remove the surfactant by washing, which is inefficient. On the other hand, water-soluble polysaccharides do not have the effect of inhibiting hydrogen bonds between fibers, so they do not contribute to porosity in the first place.

特許文献4では、微細セルロース繊維の水系分散液に、その分散溶媒よりも沸点が高い有機溶剤を加えることで、乾燥時に働く凝集力を阻害し、再分散可能な微細セルロース繊維分散液を得る方法が提案されている。しかし、沸点が高いだけでは効率的に、または均一に凝集力を阻害することができず、樹脂中に均一に単繊維で分散させることはできない。また、沸点や親水性が高い溶剤を使用した場合、微細セルロース繊維中に残留してしまう恐れもある。 Patent Document 4 discloses a method of obtaining a redispersible fine cellulose fiber dispersion by adding an organic solvent having a boiling point higher than that of the dispersion solvent to an aqueous dispersion of fine cellulose fibers to inhibit the cohesive force that acts during drying. is proposed. However, simply having a high boiling point does not effectively or uniformly inhibit the cohesive force, and it is not possible to uniformly disperse single fibers in the resin. Furthermore, if a solvent with a high boiling point or high hydrophilicity is used, there is a risk that it will remain in the fine cellulose fibers.

特許文献5では、微細繊維状セルロースに疎水性の無機微粒子を添加して再分散が可能となる方法が提案されているが、無機微粒子にはセルロース間の凝集を防ぐ効果が低いため、多孔質化させることはできず、さらに無機微粒子が原料中に残留するため、例えば不純物の混入が性能に直結しやすいプリント基板等の電子・電気部品用途等には適さない。 Patent Document 5 proposes a method that enables redispersion by adding hydrophobic inorganic fine particles to fine fibrous cellulose, but since inorganic fine particles have a low effect of preventing agglomeration between cellulose, porous Furthermore, since the inorganic fine particles remain in the raw material, it is not suitable for use in electronic/electrical parts such as printed circuit boards, where the contamination of impurities is likely to directly affect performance.

さらに、近年、カーボンニュートラルであることやマイクロプラスチックによる海洋汚染の社会問題から脱プラスチックの動きが盛んになっており、プラスチック製の微粒子を天然素材の環境にやさしい素材で代替する試みも盛んである。 Furthermore, in recent years, there has been a growing movement to move away from plastics due to carbon neutrality and the social problem of ocean pollution caused by microplastics, and there are also many attempts to replace plastic particles with natural, environmentally friendly materials. .

特許文献6では、マイクロビーズをセルロース粒子で代替する方法が提案されている。この手法も特許文献1と同じで微細セルロース繊維の水分散液を噴霧乾燥するため、表面が皴状であっても凝集はしており、樹脂中に均一に単繊維で分散させることはできないおそれがある。 Patent Document 6 proposes a method of replacing microbeads with cellulose particles. This method is the same as Patent Document 1, and since an aqueous dispersion of fine cellulose fibers is spray-dried, even if the surface is wrinkled, they are aggregated, and there is a risk that it may not be possible to uniformly disperse single fibers in the resin. There is.

国際公開2011/071156号公報International Publication No. 2011/071156 特開2020-158737号公報JP2020-158737A 特開平9-132601号公報Japanese Patent Application Publication No. 9-132601 特表2018-521168号公報Special table 2018-521168 publication 国際公開2017/047631号公報International Publication No. 2017/047631 国際公開2019/151486号公報International Publication 2019/151486

本発明は上述の状況を鑑みて為されたものであって、樹脂に対して分散性が良好で、効率的に樹脂と複合化できる多孔質粒子を得ることを課題とする。また、このような多孔質粒子を簡便な手法により効率よく低コストで得ることを可能とする製造方法を提供することを目的とする。さらには、環境に配慮された素材を使った多孔質粒子を目指す。 The present invention was made in view of the above-mentioned situation, and an object of the present invention is to obtain porous particles that have good dispersibility in resins and can be efficiently composited with resins. Another object of the present invention is to provide a manufacturing method that allows such porous particles to be obtained efficiently and at low cost using a simple method. Furthermore, we aim to create porous particles made from environmentally friendly materials.

本発明者は上記課題を解決するために鋭意検討した結果、特定の物性を備える多孔質粒子が樹脂に対する分散性に優れ、樹脂と複合化した際に樹脂組成物の物性の向上が期待できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the inventors of the present invention found that porous particles with specific physical properties have excellent dispersibility in resins, and can be expected to improve the physical properties of resin compositions when composited with resins. The present invention has been completed.

すなわち、本発明は微細セルロース繊維を主成分とする多孔質粒子であって、BET比表面積が20~100m/g、嵩密度が200g/L未満、微細セルロース繊維の平均繊維径が10~1000nmであることを特徴とする多孔質粒子に関する。 That is, the present invention provides porous particles mainly composed of fine cellulose fibers, which have a BET specific surface area of 20 to 100 m 2 /g, a bulk density of less than 200 g/L, and an average fiber diameter of the fine cellulose fibers of 10 to 1000 nm. The present invention relates to porous particles characterized by the following.

前記多孔質粒子は水溶性高分子を含むことが好ましい。 Preferably, the porous particles contain a water-soluble polymer.

また、本発明は前記微細セルロース繊維と共に水溶性多孔質化剤を含むスラリーから得られる多孔質粒子に関する。 The present invention also relates to porous particles obtained from a slurry containing a water-soluble porosity-forming agent together with the fine cellulose fibers.

前記水溶性多孔質化剤の沸点が180℃以上、水オクタノール分配係数が-1.2~0.8であることが好ましい。 It is preferable that the water-soluble porosity-forming agent has a boiling point of 180°C or higher and a water-octanol partition coefficient of -1.2 to 0.8.

また、本発明は、前記多孔質粒子及び樹脂を含む、樹脂組成物に関する。 The present invention also relates to a resin composition containing the porous particles and resin.

さらに、本発明は、前記樹脂組成物を含む成形体に関する。 Furthermore, the present invention relates to a molded article containing the resin composition.

よりさらに、本発明は、微細セルロース繊維スラリーと水溶性多孔質化剤を混合する工程、前記混合物を噴霧乾燥装置によって多孔質粒子を得る工程を備える、多孔質粒子の製造方法に関する。水溶性多孔質化剤の沸点が180℃以上、且つ、水オクタノール分配係数が-1.2~0.8であることが好ましい。また、水溶性多孔質化剤がグリコールエーテル類またはカーボネート類であることが好ましい。 Furthermore, the present invention relates to a method for producing porous particles, which comprises the steps of mixing a fine cellulose fiber slurry and a water-soluble porosity-forming agent, and obtaining porous particles from the mixture using a spray drying device. It is preferable that the water-soluble porosity-forming agent has a boiling point of 180°C or higher and a water-octanol distribution coefficient of -1.2 to 0.8. Moreover, it is preferable that the water-soluble porosity-forming agent is a glycol ether or a carbonate.

本発明では、微細セルロース繊維を主成分とした多孔質粒子であり、その比表面積が大きいことから、樹脂と複合化した際に多孔質粒子が繊維状に離解しやすく粗大物の発生が少ないため、樹脂組成物の物性を向上することができる。さらに嵩密度が200g/L未満であることで複合化時のトルクを低くでき、樹脂組成物の成形性や生産効率に優れる。 In the present invention, the porous particles are mainly composed of fine cellulose fibers and have a large specific surface area, so when composited with a resin, the porous particles easily disintegrate into fibers and generate less coarse particles. , the physical properties of the resin composition can be improved. Furthermore, since the bulk density is less than 200 g/L, the torque during compounding can be lowered, and the moldability and production efficiency of the resin composition are excellent.

本発明の実施例1にかかるセルロース粒子1の電子顕微鏡画像Electron microscope image of cellulose particles 1 according to Example 1 of the present invention 本発明の実施例2にかかるセルロース粒子2の電子顕微鏡画像Electron microscope image of cellulose particles 2 according to Example 2 of the present invention 本発明の実施例3にかかるセルロース粒子3の電子顕微鏡画像Electron microscope image of cellulose particles 3 according to Example 3 of the present invention 本発明の実施例4にかかるセルロース粒子4の電子顕微鏡画像Electron microscope image of cellulose particles 4 according to Example 4 of the present invention 本発明の比較例1にかかるセルロース粒子Aの電子顕微鏡画像Electron microscope image of cellulose particles A according to Comparative Example 1 of the present invention 本発明の比較例2にかかるセルロース粒子Bの電子顕微鏡画像Electron microscope image of cellulose particles B according to Comparative Example 2 of the present invention 本発明の比較例3にかかるセルロース粒子Cの電子顕微鏡画像Electron microscope image of cellulose particles C according to Comparative Example 3 of the present invention 本発明の比較例4にかかるセルロース粒子Dの電子顕微鏡画像Electron microscope image of cellulose particles D according to Comparative Example 4 of the present invention 本発明の比較例5にかかるセルロース粒子Eの電子顕微鏡画像Electron microscope image of cellulose particles E according to Comparative Example 5 of the present invention

[多孔質粒子]
本発明の第1の態様は、微細セルロース繊維を主成分とする多孔質粒子であって、BET比表面積が20~100m/g、嵩密度が200g/L未満、微細セルロース繊維の平均繊維径が10~1000nmであることを特徴とする多孔質粒子である。「主成分」とは、多孔質粒子を構成する成分の中で最も含有率が高いものをいい、その含有比率が好ましくは50重量%以上、さらに好ましくは70重量%以上である。
[Porous particles]
A first aspect of the present invention is a porous particle mainly composed of fine cellulose fibers, which has a BET specific surface area of 20 to 100 m 2 /g, a bulk density of less than 200 g/L, and an average fiber diameter of the fine cellulose fibers. These porous particles are characterized by having a diameter of 10 to 1000 nm. The "main component" refers to the component with the highest content among the components constituting the porous particles, and the content is preferably 50% by weight or more, more preferably 70% by weight or more.

多孔質粒子のBET比表面積は20~100m/gである。比表面積の測定はBET法を用いる。BET比表面積が20m/g未満では比表面積が小さく、樹脂と複合化した際に、繊維状に分散することができず、樹脂組成物として期待される引張強度、弾性率、靭性といった強度物性の向上や耐熱性、低い線熱膨張率といった熱安定性の向上などの効果が乏しくなるおそれがある。多孔質粒子のBET比表面積が100m/gを超えると樹脂と複合化する際の粘度が著しく上昇し、例えば混錬機のローターに係るトルクが高くなる。この混錬トルクが高くなると、良好な分散状態を得るために投入されるエネルギーや時間を過分に要してしまい、生産効率が悪くコストがかかる。 The BET specific surface area of the porous particles is 20 to 100 m 2 /g. The BET method is used to measure the specific surface area. If the BET specific surface area is less than 20 m 2 /g, the specific surface area is small, and when composited with a resin, it cannot be dispersed in a fibrous form, and the strength physical properties such as tensile strength, elastic modulus, and toughness expected for a resin composition are There is a possibility that the effects of improving heat stability such as improvement in heat resistance and low coefficient of linear thermal expansion may become insufficient. When the BET specific surface area of the porous particles exceeds 100 m 2 /g, the viscosity when compounded with a resin increases significantly, and, for example, the torque applied to the rotor of a kneader increases. When this kneading torque becomes high, excessive energy and time are required to obtain a good dispersion state, resulting in poor production efficiency and increased cost.

多孔質粒子は嵩密度が200g/L未満である。嵩密度は公知の嵩密度測定器を用いて測定することができる。嵩密度が200g/L以上の場合、例えば混錬機を用いて、樹脂と多孔質粒子と複合化した際、混錬トルクが小さくなるというメリットはあるが、トルクが小さいということは比表面積が小さいということであり、多孔質粒子による樹脂の補強効果が小さくなる問題がある。 The porous particles have a bulk density of less than 200 g/L. The bulk density can be measured using a known bulk density measuring device. When the bulk density is 200 g/L or more, for example, when compounding resin and porous particles using a kneading machine, there is an advantage that the kneading torque is small, but the small torque means that the specific surface area is small. This means that the porous particles are small, and there is a problem that the reinforcing effect of the resin by the porous particles becomes small.

多孔質粒子は化学修飾されていてもよい。ここでの「化学修飾」とは、微細セルロース繊維の水酸基のすべて、もしくは部分的に水酸基とは異なる官能基に置換する任意の処理を意味する。混練等の樹脂との複合化の際に使用する樹脂に応じて、修飾に適切な官能基があるため、置換する官能基は任意に設計することが好ましい。例えば汎用樹脂として代表的であるポリプロピレンやポリエチレンには水酸基とアシル化やエステル化させてアルキル基、シリル基、フェニル基等の疎水性を付与する官能基で化学修飾することが好ましい。セルロースの水酸基とのアシル化、エステル化は当該技術分野で周知・慣用であり、また粉末、水分散体、有機溶媒分散体といった微細セルロース繊維の状態ごとに適用できる化学修飾方法が異なるため、使用する化学修飾材料は特に限定されるものではない。特に、化学修飾としては、疎水化剤を用いてセルロースの水酸基を疎水性基に置換することが好ましい。このような疎水化の処理としては、アシル化、エステル化、アルキル化、エーテル化、トシル化、エポキシ化等の任意の疎水化が挙げられる。 Porous particles may be chemically modified. "Chemical modification" here means any treatment that replaces all or part of the hydroxyl groups of the fine cellulose fibers with functional groups different from the hydroxyl groups. Since there are functional groups suitable for modification depending on the resin used during compounding with a resin such as kneading, it is preferable to design the functional group to be substituted arbitrarily. For example, polypropylene and polyethylene, which are typical general-purpose resins, are preferably chemically modified with a functional group that imparts hydrophobicity, such as an alkyl group, a silyl group, or a phenyl group, by acylation or esterification with a hydroxyl group. Acylation and esterification of cellulose with hydroxyl groups are well known and commonly used in the technical field, and the chemical modification methods that can be applied to each state of fine cellulose fibers, such as powder, water dispersion, and organic solvent dispersion, differ; The chemically modified material to be used is not particularly limited. In particular, as chemical modification, it is preferable to use a hydrophobizing agent to replace the hydroxyl groups of cellulose with hydrophobic groups. Examples of such hydrophobic treatment include any hydrophobic treatment such as acylation, esterification, alkylation, etherification, tosylation, and epoxidation.

[微細セルロース繊維]
本発明における微細セルロース繊維の平均繊維径は10nm~1000nmである。繊維径がこの範囲であることで樹脂と複合化した際の分散性が良好となり、後述するような、微細セルロース繊維により期待される種々の効果が発現する。微細セルロース繊維の平均繊維径は、好ましくは10nm~500nm、さらに好ましくは10nm~300nm、さらにより好ましくは20nm~200nmである。平均繊維径の測定は以下の手順で行う。まず、得られた(多孔質)粒子を試料台に載せ、高分解能電子顕微鏡(FE-SEM)で2万倍で観察し、得られたSEM画像の水平方向、および垂直方向にラインを引く。次に、二つのラインで交差する少なくとも20本以上のすべての繊維の繊維径を拡大画像から実測し、測定結果から数平均繊維径を算出する。さらに、試料台に載せた粉末の表面の少なくとも2箇所について同様に数平均繊維径を算出し、全ての数平均繊維径の平均値を平均繊維径とする。
[Fine cellulose fiber]
The average fiber diameter of the fine cellulose fibers in the present invention is 10 nm to 1000 nm. When the fiber diameter is within this range, the dispersibility when composited with a resin is improved, and various effects expected from fine cellulose fibers, as described below, are exhibited. The average fiber diameter of the fine cellulose fibers is preferably 10 nm to 500 nm, more preferably 10 nm to 300 nm, even more preferably 20 nm to 200 nm. The average fiber diameter is measured using the following procedure. First, the obtained (porous) particles are placed on a sample stage and observed with a high-resolution electron microscope (FE-SEM) at a magnification of 20,000 times, and lines are drawn in the horizontal and vertical directions of the obtained SEM image. Next, the fiber diameters of at least 20 or more fibers that intersect with the two lines are actually measured from the enlarged image, and the number average fiber diameter is calculated from the measurement results. Furthermore, the number average fiber diameters are similarly calculated for at least two locations on the surface of the powder placed on the sample stage, and the average value of all the number average fiber diameters is taken as the average fiber diameter.

このような微細セルロース繊維は、セルロース繊維を微細化処理して得られる。セルロース繊維を微細化処理する装置は特に限定されるものではないが、例えば、高圧ホモジナイザー処理(マントン・ゴーリン型分散機による高圧分散処理)、ラニエタイプ圧力式ホモジナイザー、超高圧ホモジナイザー処理(アルテマイザーTM(スギノマシン株式会社製))、ビーズミルや流星ミル等の分散装置、マスコロイダー(増幸産業株式会社製)等のホモジナイザー等が挙げられる。前記微細化処理装置は、一般的に生産効率が低いため、叩解機であらかじめ前処理を施すと生産効率が高くなるため好ましい。セルロース繊維の叩解度は特に限定しないが、微細化処理する前にダブルディスクリファイナー、ビーター等製紙用で使用している叩解機を前処理に使用することも可能である。特に高圧ホモジナイザーなどのオリフィスを通すタイプの微細化処理装置の場合、前処理で叩解をしないと原料が詰まるなど、安定した微細化処理ができなくなるおそれがある。 Such fine cellulose fibers are obtained by micronizing cellulose fibers. The equipment for micronizing cellulose fibers is not particularly limited, but includes, for example, high-pressure homogenizer treatment (high-pressure dispersion treatment using a Manton-Gorlin type disperser), Lanier type pressure homogenizer, ultra-high pressure homogenizer treatment (UltamizerTM), etc. (manufactured by Sugino Machine Co., Ltd.), a dispersion device such as a bead mill or a meteor mill, and a homogenizer such as a mass colloider (manufactured by Masuko Sangyo Co., Ltd.). Since the production efficiency of the above-mentioned micronization processing apparatus is generally low, it is preferable to perform pretreatment in advance with a crusher because the production efficiency will be increased. Although the degree of beating of cellulose fibers is not particularly limited, it is also possible to use a beating machine used for paper manufacturing, such as a double disc refiner or a beater, for pretreatment before the finer treatment. In particular, in the case of a micronization processing device such as a high-pressure homogenizer that passes through an orifice, if beating is not performed in the pretreatment, there is a risk that the raw material will become clogged, making stable micronization processing impossible.

微細化処理にあたり、使用可能なセルロース繊維は、特に限定はなく公知のものが使用でき、例えば、針葉樹晒クラフトパルプ(NBKP)、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)等の木材漂白化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP)、ケミカルサーモメカニカルパルプ(BCTMP)等の機械パルプ;麻、竹、藁、ケナフ、三椏、楮、木綿等の非木材パルプ;古紙パルプが使用できる。これらのセルロース繊維の1種を単独で又は2種以上を組み合わせて用いることができる。本発明では、特にセルロースI型、セルロースII型等のセルロースの型は限定されないが、好ましくはコットン、コットンリンター、木材パルプに代表されるような、セルロースI型の天然繊維である。さらに好ましくは、繊維の解繊時に切断よりもフィブリル化が進行しやすい針葉樹由来の漂白木材パルプのNBKPである。再生セルロースに代表されるセルロースII型の繊維はセルロースI型の繊維に比べ結晶化度が低くフィブリル化処理を行う際に、短繊維化しやすく、樹脂と複合化した際の強度向上の効果が低くなるおそれがあるため好ましくない。 There are no particular limitations on the cellulose fibers that can be used in the micronization process, and known ones can be used, such as softwood bleached kraft pulp (NBKP), hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), etc. Mechanical pulps such as wood bleaching chemical pulp, ground wood pulp (GP), thermomechanical pulp (TMP), chemical thermomechanical pulp (BCTMP); non-wood pulps such as hemp, bamboo, straw, kenaf, mitsumata, mulberry, cotton; Waste paper pulp can be used. One type of these cellulose fibers can be used alone or two or more types can be used in combination. In the present invention, the type of cellulose such as cellulose type I and cellulose type II is not particularly limited, but cellulose type I natural fibers such as cotton, cotton linters, and wood pulp are preferred. More preferred is NBKP, which is a bleached wood pulp derived from coniferous trees in which fibrillation progresses more easily than cutting during fibrillation of fibers. Cellulose type II fibers, represented by regenerated cellulose, have a lower degree of crystallinity than cellulose type I fibers, so they tend to become short fibers during fibrillation treatment, and are less effective in improving strength when composited with resin. This is not preferable as there is a risk of this happening.

前記セルロース繊維を主体とするが、必要に応じてこれにカチオン化パルプ、マーセル化パルプ等の変性パルプ、レーヨン、ビニロン、ナイロン、アクリル、ポリエステル、ポリオレフィン、カーボン、アラミド等の合成繊維や化学繊維、またはミクロフィブリル化パルプを単独で、あるいは混合して併用することができる。本発明の多孔質粒子を構成する繊維全体あたり、セルロース繊維の比率は50重量%以上であり、60重量%以上が好ましく、70重量%以上がさらに好ましい。 The cellulose fibers are mainly used, but if necessary, modified pulps such as cationized pulp and mercerized pulp, synthetic fibers and chemical fibers such as rayon, vinylon, nylon, acrylic, polyester, polyolefin, carbon, and aramid, Alternatively, microfibrillated pulp can be used alone or in combination. The proportion of cellulose fibers is 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more, based on all the fibers constituting the porous particles of the present invention.

セルロース繊維はセルロース分子の持つ水酸基により、水に均一に分散することが可能であるが、そのスラリーの粘度は、セルロース繊維の繊維長と表面積に依存する。例えば、同じ重量のセルロース繊維が存在する場合であっても、セルロース繊維の繊維径が細ければ必然的に繊維本数が増え、それだけセルロースの表面積が増えるため、スラリーの粘度も必然的に上昇することになる。TEMPO酸化処理などの化学処理によって得られる微細セルロース繊維はシングルナノオーダーの繊維径で得られるが、上記の理由から極めて粘度が高いため高濃度のスラリーを使うことができない。微細セルロース繊維を主成分とする多孔質粒子を得る本発明においては、濃度はコストに大きく影響を受けるため、好ましくない。 Cellulose fibers can be uniformly dispersed in water due to the hydroxyl groups of cellulose molecules, but the viscosity of the slurry depends on the fiber length and surface area of the cellulose fibers. For example, even if cellulose fibers of the same weight exist, if the fiber diameter of the cellulose fibers is small, the number of fibers will inevitably increase, and the surface area of cellulose will increase accordingly, which will inevitably increase the viscosity of the slurry. It turns out. Fine cellulose fibers obtained by chemical treatments such as TEMPO oxidation treatment can be obtained with fiber diameters on the order of single nanometers, but for the above-mentioned reasons, their viscosity is extremely high, making it impossible to use highly concentrated slurry. In the present invention, in which porous particles mainly composed of fine cellulose fibers are obtained, the concentration is not preferred because it is greatly influenced by cost.

一方、TEMPO酸化処理などの化学処理によって得られる微細セルロース繊維は平均繊維径が10nm未満のシングルナノオーダーであり繊維間に働く凝集力が強いため、本発明では多孔質粒子として得られないおそれが高く、粒子の状態で平均繊維径を測定することも難しい。そのため、カルボキシ基含有量が0.1mmol/g以上、少なくとも1.2mmol/g以上といったTEMPO酸化処理されたCNFは本発明には好ましくない。よって、本発明の微細セルロース繊維は、カルボキシ基含有量が1.2mmol/g未満が好ましく、0.1mmol/g未満がさらに好ましい。仮に、平均繊維径を測定するのが困難な場合は透過型電子顕微鏡を用いる。0.05%濃度の微細セルロース繊維の分散液を調製し、この分散液を親水化処理したカーボン被覆グリッド上に塗布し、観察試料とする。観察は最も細い繊維が確認できる倍率で行い、得られたTEM画像の水平方向、および垂直方向にラインを引く。次に、二つのラインで交差する少なくとも20本以上のすべての繊維の繊維径を拡大画像から実測し、測定結果から数平均繊維径を算出する。さらに、観察試料の表面の少なくとも2箇所について同様に数平均繊維径を算出し、全ての数平均繊維径の平均値を平均繊維径とする。また、機械処理CNFのスラリーの平均繊維径を測定する場合も同様の方法で測定することができるが、観察は2万倍での倍率で行う。 On the other hand, fine cellulose fibers obtained by chemical treatments such as TEMPO oxidation treatment have an average fiber diameter of less than 10 nm, on the order of single nanometers, and the cohesive force acting between the fibers is strong, so there is a risk that they cannot be obtained as porous particles in the present invention. It is also difficult to measure the average fiber diameter in the particle state. Therefore, CNF subjected to TEMPO oxidation treatment with a carboxyl group content of 0.1 mmol/g or more, at least 1.2 mmol/g or more is not preferable for the present invention. Therefore, the carboxy group content of the fine cellulose fibers of the present invention is preferably less than 1.2 mmol/g, more preferably less than 0.1 mmol/g. If it is difficult to measure the average fiber diameter, use a transmission electron microscope. A dispersion of fine cellulose fibers with a concentration of 0.05% is prepared, and this dispersion is applied onto a hydrophilic carbon-coated grid to serve as an observation sample. Observation is performed at a magnification that allows the thinnest fibers to be seen, and lines are drawn in the horizontal and vertical directions of the obtained TEM image. Next, the fiber diameters of at least 20 or more fibers that intersect with the two lines are actually measured from the enlarged image, and the number average fiber diameter is calculated from the measurement results. Furthermore, the number average fiber diameters are similarly calculated for at least two locations on the surface of the observation sample, and the average value of all the number average fiber diameters is taken as the average fiber diameter. Further, when measuring the average fiber diameter of a slurry of mechanically treated CNF, the same method can be used, but the observation is performed at a magnification of 20,000 times.

前記のカルボキシ基含有量の測定方法は、次のとおりである。乾燥重量0.5gのセルロース繊維を100mLビーカーにとり、イオン交換水を加えて全体で55mLとし、そこに0.01M塩化ナトリウム水溶液5mLを加えて分散液を調製し、セルロース繊維が十分に分散するまで該分散液を攪拌する。この分散液に0.1M塩酸を加えてpHを2.5~3に調整し、自動滴定装置(AUT-50、東亜ディーケーケー(株)製)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で該分散液に滴下し、1分ごとの電導度及びpHの値を測定し、pH11程度になるまで測定を続け、電導度曲線を得る。この電導度曲線から、水酸化ナトリウム滴定量を求め、次式により、セルロース繊維のカルボキシル基含有量を算出する。

カルボキシ基含有量(mmol/g)=水酸化ナトリウム滴定量×水酸化ナトリウム水溶液濃度(0.05M)/セルロース繊維の重量(0.5g)
The method for measuring the carboxy group content is as follows. Take cellulose fibers with a dry weight of 0.5 g in a 100 mL beaker, add ion-exchanged water to make a total of 55 mL, add 5 mL of 0.01 M sodium chloride aqueous solution to prepare a dispersion liquid, and stir until the cellulose fibers are sufficiently dispersed. The dispersion is stirred. The pH was adjusted to 2.5 to 3 by adding 0.1M hydrochloric acid to this dispersion, and using an automatic titrator (AUT-50, manufactured by DKK Toa Co., Ltd.), a 0.05M aqueous sodium hydroxide solution was added to the solution for a waiting time. It is added dropwise to the dispersion for 60 seconds, and the conductivity and pH values are measured every minute. Measurements are continued until the pH reaches about 11 to obtain a conductivity curve. From this conductivity curve, the titer of sodium hydroxide is determined, and the carboxyl group content of the cellulose fibers is calculated using the following formula.

Carboxy group content (mmol/g) = sodium hydroxide titration x sodium hydroxide aqueous solution concentration (0.05M)/weight of cellulose fiber (0.5g)

セルロース繊維はその水酸基により、脱水工程において繊維同士が水素結合を行う性質を持っている。この水素結合形成の工程において例えば紙などのシートの場合は強度が発現する一方で、繊維間の相互作用により乾燥工程における収縮が生じる。特に繊維径が細くなるに従い繊維の剛度が下がり、また繊維間に働く凝集力が大きくなるため、この収縮が顕著に見られる。また極度にフィブリル化が進んだ繊維を用いて作成したシートは繊維間が完全に密着するために作成したフィルムは透明化することが知られている。つまり、通常の脱水や乾燥方法では微細セルロース繊維の状態で粒子を得ることは困難である。このため、乾燥時の収縮を抑えること、または繊維間の水素結合を阻害させることが必要となる。これまでに提案されている具体的な手法は、微細セルロース繊維をアセトンのような親水性の溶媒に置換した後、更にトルエンとアセトンの混合溶媒といったより疎水性の高い溶媒に置換して乾燥させる等の方法が提案されている。しかしながら、この手法は2つの問題点がある。まず一つは分散溶媒の水からアセトンに溶媒置換する作業である。セルロース繊維は、繊維径が細くなるに従い保水性が高くなるため、水から溶媒への置換は非常に時間のかかる作業となっており実生産の面で生産性を下げる要因となっている。また、疎水性の高い溶媒で置換されているため、水素結合は阻害されており、溶媒の表面張力も低いため、凝集力も水に比べれば小さくなるものの、収縮は生じるため、微細セルロース繊維が本来有していた大きな比表面積の低下は免れない。 Due to its hydroxyl groups, cellulose fibers have the property of forming hydrogen bonds between fibers during the dehydration process. In the case of sheets such as paper, for example, strength is developed in the process of forming hydrogen bonds, while shrinkage occurs in the drying process due to interaction between fibers. In particular, as the fiber diameter decreases, the stiffness of the fibers decreases and the cohesive force acting between the fibers increases, so this shrinkage is noticeable. Furthermore, it is known that sheets made using extremely fibrillated fibers have complete adhesion between the fibers, so that the films made become transparent. In other words, it is difficult to obtain particles in the form of fine cellulose fibers using normal dehydration and drying methods. Therefore, it is necessary to suppress shrinkage during drying or to inhibit hydrogen bonding between fibers. The specific method that has been proposed so far is to replace fine cellulose fibers with a hydrophilic solvent such as acetone, then replace them with a more hydrophobic solvent such as a mixed solvent of toluene and acetone, and then dry them. Other methods have been proposed. However, this method has two problems. The first step is to replace the dispersion solvent, water, with acetone. Cellulose fibers have a higher water retention capacity as the fiber diameter becomes smaller, so replacing water with a solvent is a very time-consuming process and is a factor that reduces productivity in actual production. In addition, since the substitution is made with a highly hydrophobic solvent, hydrogen bonds are inhibited, and the surface tension of the solvent is also low, so although the cohesive force is smaller than that of water, shrinkage occurs, so that fine cellulose fibers are A decrease in the large specific surface area that it had was inevitable.

そこで、本発明の多孔質粒子は、微細セルロース繊維と共に水溶性多孔質化剤を含むスラリーから得られるものが好ましい。具体的には、微細化処理後の微細セルロース繊維を収縮、および凝集することなく水を除去する方法として、水溶性多孔質化剤を含むスラリーを乾燥することで、生産効率を大幅に改善することができる。この水溶性多孔質化剤は沸点が180℃以上であることが好ましい。更に、本発明では、水溶性多孔質剤の添加量の調整により多孔質粒子の比表面積を制御することができる。例えば、本発明では、微細セルロース繊維100重量(質量)部に対して水溶性多孔質化剤を好ましくは50~1000重量部の割合で使用することができる。 Therefore, the porous particles of the present invention are preferably obtained from a slurry containing fine cellulose fibers and a water-soluble porosity-forming agent. Specifically, as a method to remove water without shrinking or agglomerating fine cellulose fibers after micronization treatment, production efficiency is greatly improved by drying a slurry containing a water-soluble porosity-forming agent. be able to. This water-soluble porosity-forming agent preferably has a boiling point of 180°C or higher. Furthermore, in the present invention, the specific surface area of the porous particles can be controlled by adjusting the amount of the water-soluble porous agent added. For example, in the present invention, the water-soluble porosity-forming agent can be used preferably in a proportion of 50 to 1000 parts by weight per 100 parts by weight (mass) of fine cellulose fibers.

本発明で使用される水溶性多孔質化剤は特に限定されるものではないが、水溶性多孔質化剤の沸点は、180℃以上であることが好ましい。繊維間の水素結合は、乾燥時の水分が10~20重量%の間で形成されることが知られている。この水素結合が形成される際に水溶性多孔質化剤が粒子中に存在し、かつ繊維間に働く水素結合・凝集力を阻害し、多孔質化が可能となる。沸点が180℃未満の水溶性多孔質化剤を用いた場合は、添加量を多くしても乾燥工程において揮発してしまい、十分に多孔質化することができない。そのため沸点が180℃以上の水溶性多孔質化剤が好ましいが、より好ましくは200℃以上である。例えばヘキサノールよりも少ない分子量の一級アルコール等は、水溶性と疎水性をあわせ持つ材料であるが、乾燥工程において水よりも揮発しやすいため十分に水素結合、および凝集力を阻害することができないため本発明においては用いることはできない。但し、水溶性多孔質化剤の蒸気で満たした空気を用いて乾燥したり、水よりも蒸気圧の低い溶媒を用いて多段乾燥を用いる等の通常の乾燥条件とは異なる乾燥方法を用いた場合は必ずしも沸点が180℃以上である必要はない。 Although the water-soluble porosity-forming agent used in the present invention is not particularly limited, it is preferable that the boiling point of the water-soluble porosity-forming agent is 180°C or higher. It is known that hydrogen bonds between fibers are formed when the dry moisture content is between 10 and 20% by weight. When this hydrogen bond is formed, a water-soluble porosity-forming agent is present in the particles and inhibits the hydrogen bond and cohesive force acting between the fibers, making it possible to make the particles porous. If a water-soluble porosity-forming agent with a boiling point of less than 180° C. is used, even if the amount added is increased, it will volatilize during the drying process, and it will not be possible to achieve sufficient porosity. Therefore, a water-soluble porosity-forming agent having a boiling point of 180°C or higher is preferable, and more preferably 200°C or higher. For example, primary alcohols with a molecular weight lower than hexanol are materials that are both water-soluble and hydrophobic, but they are more volatile than water during the drying process and cannot sufficiently inhibit hydrogen bonding and cohesive force. It cannot be used in the present invention. However, drying methods different from normal drying conditions were used, such as drying using air filled with the vapor of a water-soluble porosity-forming agent, or using multi-stage drying using a solvent with a lower vapor pressure than water. In this case, the boiling point does not necessarily need to be 180°C or higher.

水溶性多孔質化剤は、水への溶解度が10重量%以上のものが好ましく、20重量%以上のものがより好ましい。水への溶解度が10重量%未満の多孔質化剤を用いた場合には、多孔質化剤の添加量が限られるため、目的とするBET比表面積を多孔質化剤の添加量のみでコントロールすることが困難となりうる。また乾燥が進むに従い溶媒量が減少することで溶解できない多孔質化剤が分離するため、均一に多孔化することが困難となりうる。なお、このような疎水性の多孔質化剤は乳化剤等によりエマルジョン化することで、ある程度均一に多孔化することが可能であるが、均一性は水溶性多孔質化剤に劣る。一方、水への溶解度が10重量%以上の多孔質化剤を用いた場合には、スラリーに均一に分散可能であり、また、水への溶解性が高いので乾燥工程で分離しないため、乾燥工程において均一に水素結合を阻害することで細孔を均一に作ることができる。 The water-soluble porosity-forming agent preferably has a solubility in water of 10% by weight or more, more preferably 20% by weight or more. When using a porosity-enhancing agent with a solubility in water of less than 10% by weight, the amount of porosity-enhancing agent added is limited, so the desired BET specific surface area can be controlled only by the amount of porosity-enhancing agent added. It can be difficult to do so. Further, as the drying progresses, the amount of solvent decreases and the porosity-forming agent that cannot be dissolved is separated, which may make it difficult to uniformly form pores. Note that such a hydrophobic porosity-forming agent can be emulsified with an emulsifier or the like to make the pores uniform to some extent, but the uniformity is inferior to that of a water-soluble porosity-forming agent. On the other hand, when a porosity-enhancing agent with a solubility in water of 10% by weight or more is used, it can be uniformly dispersed in the slurry, and since it has a high solubility in water, it does not separate during the drying process. By uniformly inhibiting hydrogen bonds during the process, uniform pores can be created.

水溶性多孔質化剤は、水オクタノール分配係数が-1.2~0.8であることが好ましく、-1.0~0.6であることがさらに好ましく、-0.5~0.5であることがより好ましく、0~0.4であることがさらにより好ましくい。水オクタノール分配係数は親水性および疎水性の評価値であり、n-オクタノールと水を入れたフラスコ中に水溶性多孔質化剤を添加した後、振とうし、それぞれの相における水溶性多孔質化剤の濃度から以下の式で算出される。

「水オクタノール分配係数」=Log10(オクタノール相中濃度/水相中濃度)

この水オクタノール分配係数の値が低すぎると高親水性のためにセルロース繊維間の凝集を引き起こすおそれがある。また、値が高すぎる場合は水溶性多孔質化剤の疎水性が高く、スラリーへ添加できる量が限られるため、目的とする性能が得られないおそれがある。
The water-soluble porosity-forming agent preferably has a water-octanol partition coefficient of -1.2 to 0.8, more preferably -1.0 to 0.6, and more preferably -0.5 to 0.5. It is more preferably 0 to 0.4, and even more preferably 0 to 0.4. The water-octanol partition coefficient is an evaluation value of hydrophilicity and hydrophobicity. After adding a water-soluble porosity-forming agent to a flask containing n-octanol and water, it is shaken to form a water-soluble porosity in each phase. It is calculated from the concentration of the curing agent using the following formula.

"Water-octanol partition coefficient" = Log10 (concentration in octanol phase/concentration in water phase)

If the value of this water-octanol partition coefficient is too low, there is a risk of causing aggregation between cellulose fibers due to high hydrophilicity. In addition, if the value is too high, the water-soluble porosity-forming agent has high hydrophobicity and the amount that can be added to the slurry is limited, so there is a risk that the desired performance may not be obtained.

本発明で用いることのできる水溶性多孔質化剤としては具体的には次のようなものがある。例えば1、5-ペンタンジオール、1-メチルアミノ-2,3-プロパンジオール等の高級アルコール類、イプロシンカプロラクトン、α-アセチル-γ-ブチルラクトン等のラクトン類、ジエチレングリコール、1,3-ブチレングリコール、プロピレングリコール等のグリコール類、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、エチレングリコールモノイソブチルーテル、トリプロピレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル等のグリコールエーテル類、プロピレンカーボネートやエチレンカーボートなどのカーボネート類、更にその他にグリセリン、N-メチルピロリドン等が挙げられるがその限りではない。これらの中でもグリコールエーテル類やカーボネート類は高沸点であり、かつ水への溶解度が高いものでも水/オクタノール分配係数が低いものが多いため、本発明において最も適している。 Specifically, the water-soluble porosity-forming agent that can be used in the present invention includes the following. For example, higher alcohols such as 1,5-pentanediol and 1-methylamino-2,3-propanediol, lactones such as iprosin caprolactone and α-acetyl-γ-butyllactone, diethylene glycol, and 1,3-butylene glycol. , glycols such as propylene glycol, triethylene glycol dimethyl ether, tripropylene glycol dimethyl ether, diethylene glycol monobutyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, triethylene glycol monobutyl ether , glycol ethers such as tetraethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, ethylene glycol monoisobutyl ether, tripropylene glycol monomethyl ether, diethylene glycol diethyl ether, propylene carbonate, ethylene carbonate, etc. Other examples include, but are not limited to, glycerin, N-methylpyrrolidone, and the like. Among these, glycol ethers and carbonates have high boiling points and many have low water/octanol partition coefficients even if they have high solubility in water, and are therefore most suitable for the present invention.

本発明で使用されるスラリーは、微細セルロース繊維と水溶性多孔質化剤以外に繊維間を繋ぐためのバインダーとして水溶性高分子を該セルロース繊維100重量部に対して3~80重量部、好ましくは5~50重量部、さらに好ましくは10~30重量部含むことが好ましい。水溶性高分子は、接着剤としての機能以外に、セルロースの分散性を向上させる機能を発揮することができる。均一な細孔を得るためには、スラリー中に繊維が均一に分散する必要があるが、水溶性高分子はセルロース繊維の表面に定着することで保護コロイドに似た役割を果たすため分散性が向上する。水溶性高分子の添加量が3重量部未満となると、微細セルロース繊維の分散性が悪化するため、均一な細孔を得ることが困難となる。一方、80重量部よりも多い場合には、水溶性高分子が細孔を埋めてしまう形となり、樹脂との複合化時に分散できないため好ましくない。 In addition to the fine cellulose fibers and the water-soluble porosity-forming agent, the slurry used in the present invention contains 3 to 80 parts by weight of a water-soluble polymer as a binder for connecting the fibers, preferably 3 to 80 parts by weight per 100 parts by weight of the cellulose fibers. It is preferable that the amount is 5 to 50 parts by weight, more preferably 10 to 30 parts by weight. In addition to its function as an adhesive, the water-soluble polymer can also function to improve the dispersibility of cellulose. In order to obtain uniform pores, it is necessary for the fibers to be uniformly dispersed in the slurry, but water-soluble polymers fix on the surface of cellulose fibers and play a role similar to a protective colloid, resulting in poor dispersibility. improves. If the amount of water-soluble polymer added is less than 3 parts by weight, the dispersibility of fine cellulose fibers will deteriorate, making it difficult to obtain uniform pores. On the other hand, if the amount is more than 80 parts by weight, the water-soluble polymer will fill the pores and cannot be dispersed when compounded with the resin, which is not preferable.

前記水溶性高分子としては、メチルセルロース、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシアルキルセルロース等のセルロース誘導体、リン酸エステル化デンプン、カチオン化デンプン、コーンスターチ等の多糖類の誘導体を使用することが好ましい。特に、セルロース誘導体はセルロース繊維との相性が良く、スラリー中の分散性を良好にできるため特に好ましい。 The water-soluble polymers include cellulose derivatives such as methylcellulose, carboxymethylcellulose (CMC), hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxyalkylcellulose, and polysaccharides such as phosphoesterified starch, cationized starch, and cornstarch. Preference is given to using derivatives of. In particular, cellulose derivatives are particularly preferred because they have good compatibility with cellulose fibers and can improve dispersibility in the slurry.

この他に微細セルロース繊維、及び水溶性多孔質化剤を含むスラリーには、前記水溶性高分子以外にも填料を含むことが可能である。例えば、シリカ粒子、アルミナ粒子といった無機填料、シリコーンパウダー等の有機填料等を使用することが可能である。これらの粒子は、多孔質粒子の細孔や比表面積に影響を与えない程度に添加可能であるが、できるだけ平均粒子径が2μm未満のものを使用する方が好ましい。平均粒子径が2μm以上になると、粒子間の隙間により細孔径の大きな孔が開いてしまい、嵩が高くなりすぎるため好ましくない。なお、これらの填料はスラリーの粘度を下げる効果があるためにスラリー濃度を上げることが可能となり生産効率を上げるのに好適である。一方、添加量が多すぎると、添加する粒子によっては比表面積の低下や逆に極端な上昇が起こり、また不純物を増やすことになるため好ましくない。 In addition, the slurry containing fine cellulose fibers and a water-soluble porosity-forming agent may contain fillers in addition to the water-soluble polymer. For example, inorganic fillers such as silica particles and alumina particles, organic fillers such as silicone powder, etc. can be used. These particles can be added to the extent that they do not affect the pores or specific surface area of the porous particles, but it is preferable to use particles with an average particle diameter of less than 2 μm as much as possible. If the average particle diameter is 2 μm or more, pores with large pore diameters will open due to gaps between particles, resulting in an excessively high bulk, which is not preferable. In addition, since these fillers have the effect of lowering the viscosity of the slurry, it is possible to increase the slurry concentration, which is suitable for increasing production efficiency. On the other hand, if the amount added is too large, the specific surface area may decrease or increase significantly depending on the particles added, and impurities may increase, which is not preferable.

本発明に用いるスラリーの溶媒は基本的に水を使用する必要があるが、乾燥効率を向上させることを目的としてメタノールやエタノール、t-ブチルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジエチルエーテル、エチルメチルエーテル等のエーテル類等の水よりも蒸気圧の高い溶媒を溶媒全体量の50重量%まで添加することが可能である。これらの溶媒を50重量%以上添加すると微細セルロース繊維の分散性が悪くなり細孔が不均一になるため好ましくない。 Basically, it is necessary to use water as the solvent for the slurry used in the present invention, but for the purpose of improving drying efficiency, alcohols such as methanol, ethanol, t-butyl alcohol, ketones such as acetone, methyl ethyl ketone, etc. It is possible to add up to 50% by weight of the total amount of solvents, such as ethers such as diethyl ether and ethyl methyl ether, which have a higher vapor pressure than water. Addition of 50% by weight or more of these solvents is not preferable because the dispersibility of fine cellulose fibers deteriorates and pores become non-uniform.

本発明において、微細セルロース繊維及び水溶性多孔質化剤を含むスラリーを粒子状に乾燥する手法としては、特に限定はされないが、噴霧乾燥を好適に用いることができる。 In the present invention, the method for drying the slurry containing fine cellulose fibers and a water-soluble porosity-forming agent into particles is not particularly limited, but spray drying can be suitably used.

噴霧乾燥は、公知の噴霧乾燥装置を用いることができる。噴霧機としては、ディスク型アトマイザ―や加圧ノズルによるものがあり、加圧ノズルには2流体ノズル、3流体ノズルが挙げられる。使用する噴霧機は粒径やスラリーの性状により適宜選択することができるが、本発明においてはノズル方式の場合、微細セルロース繊維の分散不良による目詰まりの懸念があるため、ディスク型アトマイザ―が好ましい。 For spray drying, a known spray drying device can be used. Examples of atomizers include disk-type atomizers and pressurized nozzles, and pressurized nozzles include two-fluid nozzles and three-fluid nozzles. The atomizer to be used can be appropriately selected depending on the particle size and properties of the slurry, but in the case of the nozzle method in the present invention, there is a risk of clogging due to poor dispersion of fine cellulose fibers, so a disk-type atomizer is preferable. .

本発明で用いる噴霧乾燥装置としては、前記仕様に限定されるものではないが、一般に市販されている噴霧乾燥装置、例えば大川原化工機株式会社製のCL-8iなどを用いることができる。 The spray drying device used in the present invention is not limited to the specifications described above, but commonly available spray drying devices such as CL-8i manufactured by Okawara Kakoki Co., Ltd. can be used.

噴霧機は一般的に乾燥炉内に設置してあるため、得られる粒子は乾燥状態で回収されるが、さらに他の乾燥装置を用いて、残留溶媒を揮発させてもよい。 Since the sprayer is generally installed in a drying oven, the resulting particles are collected in a dry state, but other drying equipment may be used to volatilize the residual solvent.

多孔質粒子の固形分は80重量%以上であることが好ましく、85重量%以上であることがさらに好ましく、90重量%以上であることがより好ましい。 The solid content of the porous particles is preferably 80% by weight or more, more preferably 85% by weight or more, and even more preferably 90% by weight or more.

[樹脂組成物]
本発明の第2の態様は、前記の多孔質粒子及び樹脂を含む、樹脂組成物である。
[Resin composition]
A second aspect of the present invention is a resin composition containing the porous particles and resin described above.

本発明の樹脂組成物には熱可塑性樹脂、熱硬化性樹脂、ゴムを用いることができる。使用できる樹脂の種類に特に制限はないが、熱可塑性樹脂の例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ乳酸樹脂、ポリビニルアルコール樹脂、ポリアミド樹脂、アクリロニトリル- ブタジエン- スチレン樹脂、アクリロニトリル- スチレン樹脂、ポリメチルメタクリレート樹脂、ポリ塩化ビニリデン樹脂、エチレンビニルアルコール樹脂、ポリアクリロニトリル樹脂、ポリアセタール樹脂、ポリケトン樹脂、および環状ポリオレフィン樹脂が挙げられる。熱硬化性樹脂の例としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂などが挙げられる。ゴムの例としては天然ゴム、ポリイソプレンゴム、スチレン- ブタジエン共重合体ゴム 、ポリブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム、アクリルゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルホン化ポリエチレン、ウレタンゴム、シリコーンゴムなど挙げられる。その他、本発明の性能を損なわない範囲で、樹脂組成物には消泡剤、防腐剤、充填剤、着色剤、可塑剤、レベリング剤、導電剤、帯電防止剤、紫外線吸収剤、消臭剤、耐熱材等の助剤等や強化繊維、導電繊維、耐熱繊維等の繊維材料を適宜混合することできる。 Thermoplastic resins, thermosetting resins, and rubbers can be used in the resin composition of the present invention. There are no particular restrictions on the type of resin that can be used, but examples of thermoplastic resins include polyethylene resin, polypropylene resin, polylactic acid resin, polyvinyl alcohol resin, polyamide resin, acrylonitrile-butadiene-styrene resin, acrylonitrile-styrene resin, and polystyrene resin. Examples include methyl methacrylate resin, polyvinylidene chloride resin, ethylene vinyl alcohol resin, polyacrylonitrile resin, polyacetal resin, polyketone resin, and cyclic polyolefin resin. Examples of thermosetting resins include epoxy resins, phenol resins, melamine resins, urea resins, and unsaturated polyester resins. Examples of rubber include natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, acrylic rubber, fluororubber, ethylene propylene rubber, chlorosulfonated polyethylene, urethane rubber, and silicone. Examples include rubber. In addition, the resin composition may include antifoaming agents, preservatives, fillers, colorants, plasticizers, leveling agents, conductive agents, antistatic agents, ultraviolet absorbers, and deodorants to the extent that the performance of the present invention is not impaired. , auxiliary agents such as heat-resistant materials, and fiber materials such as reinforcing fibers, conductive fibers, and heat-resistant fibers can be mixed as appropriate.

本発明の樹脂組成物は、様々な成形方法で成形品として得ることができる。樹脂の種類や求める成形品の形によって適切な成形方法は適宜使い分ける必要があるが、例えば、押出成形、射出成形、熱プレス成形、溶融押出成形、ブロー成形、真空成型、加熱成形などが挙げられる。 The resin composition of the present invention can be obtained as a molded article by various molding methods. Appropriate molding methods need to be used depending on the type of resin and the desired shape of the molded product; examples include extrusion molding, injection molding, hot press molding, melt extrusion molding, blow molding, vacuum molding, and heat molding. .

多孔質粒子は、本発明の第1の態様における上記説明が第2の態様にも当てはまる。 Regarding the porous particles, the above explanation regarding the first aspect of the present invention also applies to the second aspect.

多孔質粒子及び樹脂を複合化させる手法としては特に限定はなく、溶融混練、乾式混合等の公知の手法が挙げられるが、溶融混練をすることが好ましい。混練にあたり、微細セルロース繊維が多孔質の粒子状であることにより、樹脂と均一に分散することができる。また、樹脂の種類に応じた化学修飾を付与しておくことができる。混練には、押出機、ミキシングローラ、ニーダ、ミキサー等の公知の混練機を用いることができる。 There are no particular limitations on the method of compounding the porous particles and the resin, and known methods such as melt kneading and dry mixing may be used, but melt kneading is preferred. During kneading, the fine cellulose fibers are porous and particulate, so that they can be uniformly dispersed in the resin. Further, chemical modification depending on the type of resin can be applied. For kneading, a known kneader such as an extruder, mixing roller, kneader, or mixer can be used.

[成形体]
本発明の第3の態様は、樹脂組成物を含有する成形体である。
[Molded object]
A third aspect of the present invention is a molded article containing a resin composition.

樹脂組成物は、本発明の第2の態様における上記説明が第3の態様にも当てはまる。 Regarding the resin composition, the above explanation regarding the second aspect of the present invention also applies to the third aspect.

成形体とは、フィルム状、シート状、構造体等の任意の形態を指し、樹脂組成物を用いて作製される。成形体を作製する方法は特に限定はなく公知の手法が用いられ、例えば、射出成形、押出成形、ブロー成形、プレス成形等が適用できる。 The molded article refers to any form such as a film, a sheet, or a structure, and is produced using a resin composition. The method for producing the molded body is not particularly limited and any known method may be used, such as injection molding, extrusion molding, blow molding, press molding, etc.

成形体は、使用目的に応じて、その形態や作製方法を選択できる。電子機器、家電製品、各種の容器、建材、家具、文具、自動車、家庭用品に使用されている部材に代えて用いることができる。例えば、電子機器や家電製品の筐体および外装部品、各種の収納ケース、食器類、建材のインテリア部材、自動車の内装材、その他の日常生活用品にも使用することができる。 The form and manufacturing method of the molded body can be selected depending on the purpose of use. It can be used in place of parts used in electronic devices, home appliances, various containers, building materials, furniture, stationery, automobiles, and household goods. For example, it can be used for the housings and exterior parts of electronic devices and home appliances, various storage cases, tableware, interior parts of building materials, interior materials of automobiles, and other daily life items.

[多孔質粒子の製造方法]
本発明の第4の態様は、微細セルロース繊維スラリーと水溶性多孔質化剤を混合する工程、前記混合物を噴霧乾燥装置によって多孔質粒子を得る工程を備える、多孔質粒子の製造方法である。ここでの微細セルロース繊維、スラリー、水溶性多孔質化剤及び多孔質粒子については、本発明の他の態様における説明が第4の態様にも当てはまる。また、本発明の第4の態様の製造方法により、本発明の第1の態様である多孔質粒子を効率的に製造することができる。
[Method for manufacturing porous particles]
A fourth aspect of the present invention is a method for producing porous particles, comprising the steps of mixing a fine cellulose fiber slurry and a water-soluble porosity-forming agent, and obtaining porous particles from the mixture using a spray drying device. Regarding the fine cellulose fibers, slurry, water-soluble porosity-forming agent, and porous particles, the explanations in other aspects of the present invention also apply to the fourth aspect. Moreover, the porous particles according to the first aspect of the present invention can be efficiently manufactured by the manufacturing method according to the fourth aspect of the present invention.

本発明の多孔質粒子は、微細セルロース繊維スラリーと水溶性多孔質化剤を混合する工程、及び、前記混合物を噴霧乾燥装置によって多孔質粒子を得る工程を少なくとも含む製造方法により得ることができる。微細セルロース繊維スラリーと水溶性多孔質化剤を混合する工程には、さらに水溶性高分子を混合してもよい。水溶性高分子は、本発明の他の態様における説明がここでも当てはまる。 The porous particles of the present invention can be obtained by a manufacturing method that includes at least a step of mixing a fine cellulose fiber slurry and a water-soluble porosity-forming agent, and a step of obtaining porous particles from the mixture using a spray drying device. A water-soluble polymer may be further mixed in the step of mixing the fine cellulose fiber slurry and the water-soluble porosity-forming agent. Regarding the water-soluble polymer, the explanation in other aspects of the present invention also applies here.

以下、本発明を実施例及び比較例を用いてより具体的に説明するが、本発明の範囲は実施例に限定されるものではない。
(実施例中の測定項目および試験方法)
Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples, but the scope of the present invention is not limited to the Examples.
(Measurement items and test methods in Examples)

[セルロース粒子の固形分測定]
セルロース粒子を5g採取し、秤量瓶に入れて乾燥前の重量を測定後、105℃のオーブンで恒量に達するまで乾燥し、乾燥後の重量を測定する。秤量瓶の重量を差し引いた乾燥前後のセルロース粒子の重量から次式で算出した。

固形分(%) = 乾燥後重量(g)/ 乾燥前重量(g) × 100
[Measurement of solid content of cellulose particles]
5 g of cellulose particles are collected, placed in a weighing bottle, weighed before drying, dried in an oven at 105° C. until a constant weight is reached, and weighed after drying. It was calculated using the following formula from the weight of the cellulose particles before and after drying after subtracting the weight of the weighing bottle.

Solid content (%) = Weight after drying (g) / Weight before drying (g) × 100

[BET比表面積の測定]
測定には比表面積測定機(Belsorp max、マイクロトラック・ベル社製)を用いた。吸着ガス:窒素、サンプル量:0.1g、前処理:120℃・3時間の条件で測定を行い、相対圧0.05~0.30(P/P0)の範囲の測定データからBET Plotを作成し、BET比表面積を算出した。
[Measurement of BET specific surface area]
A specific surface area measuring device (Belsorp max, manufactured by Microtrac Bell Co., Ltd.) was used for the measurement. Measurement was performed under the conditions of adsorption gas: nitrogen, sample amount: 0.1 g, pretreatment: 120°C for 3 hours, and BET Plot was calculated from the measurement data in the relative pressure range of 0.05 to 0.30 (P/P0). The BET specific surface area was calculated.

[粒子径測定]
測定にはレーザー回折式粒度分布計(型式:LA-950、堀場製作所社製)を用いた。セルロース粒子をアセトン10mLに少量添加し、マグネチックスターラーで攪拌した後、超音波洗浄機(ブランソン社製)で10秒間分散させる。予めアセトンを入れておいた測定セルに測定領域に達するまで分散液を添加した後、測定を行う。屈折率はセルロース粒子:1.47、アセトン:1.3591に設定し、粒度分布を得た。平均粒子径はメディアン径(d50)とした。
[Particle size measurement]
A laser diffraction particle size distribution analyzer (model: LA-950, manufactured by Horiba, Ltd.) was used for the measurement. A small amount of cellulose particles are added to 10 mL of acetone, stirred with a magnetic stirrer, and then dispersed for 10 seconds with an ultrasonic cleaner (manufactured by Branson). The dispersion is added to a measurement cell that has been filled with acetone in advance until it reaches the measurement area, and then the measurement is performed. The refractive index was set to 1.47 for cellulose particles and 1.3591 for acetone, and the particle size distribution was obtained. The average particle diameter was defined as the median diameter (d50).

[嵩密度測定]
測定には嵩密度測定器(型式:KAM-1、アズワン社製)を用いて測定した。測定器のシュートにセルロース粒子を仕込み、シュート口を開いて下に設置した100mLの容器に落下させる。余剰分のセルロース粒子をすりきって除去した後、容器中のセルロース粒子の重量を測定し、次式から算出した。

嵩密度(g/mL) = 粒子重量(g)/ 粒子体積(mL)
[Bulk density measurement]
The measurement was carried out using a bulk density measuring device (model: KAM-1, manufactured by As One Corporation). Cellulose particles are loaded into the chute of the measuring device, opened, and dropped into a 100 mL container placed below. After removing the excess cellulose particles by scraping them off, the weight of the cellulose particles in the container was measured and calculated from the following formula.

Bulk density (g/mL) = particle weight (g) / particle volume (mL)

[複合化試験]
複合化試験には混錬機(商品名:ラボプラストミル、型式:4C-150、東洋精機社製)、ミキサー(型式:R60、東洋精機社製)を用いた。ポリプロピレン樹脂(型番:J105G、プライムポリマー社製)を41g計量し、220℃に加熱したミキサーに投入し、10rpmで予備混錬を行った。その後、30rpmに回転数を変更し、微細セルロース繊維粉末を1g計量して投入し、投入が完了したのちは50rpmに回転数を変更し、10分間混錬した。そして混錬終了時のトルク値を読み取った。
また、前記ポリプロピレン樹脂のみのトルク値を予め測定しておき、以下の基準において△以上を合格とした。

○:樹脂のみのトルク値の1.2倍以上~1.5倍未満
△:樹脂のみのトルク値の1.5倍以上2.0倍未満、もしくは1.1倍以上、1.2倍未満
×:樹脂のみのトルク値の2.0倍以上、もしくは1.0倍以上1.1倍未満
[Combined test]
For the compounding test, a kneader (trade name: Laboplasto Mill, model: 4C-150, manufactured by Toyo Seiki Co., Ltd.) and a mixer (model: R60, manufactured by Toyo Seiki Co., Ltd.) were used. 41 g of polypropylene resin (model number: J105G, manufactured by Prime Polymer Co., Ltd.) was weighed, put into a mixer heated to 220° C., and pre-kneaded at 10 rpm. Thereafter, the rotation speed was changed to 30 rpm, and 1 g of fine cellulose fiber powder was weighed and added. After the addition was completed, the rotation speed was changed to 50 rpm, and kneaded for 10 minutes. Then, the torque value at the end of kneading was read.
Further, the torque value of only the polypropylene resin was measured in advance, and a value of △ or higher was considered to be a pass based on the following criteria.

○: 1.2 times or more and less than 1.5 times the torque value of resin only △: 1.5 times or more and less than 2.0 times, or 1.1 times or more and less than 1.2 times the torque value of resin only ×: 2.0 times or more of the torque value of resin only, or 1.0 times or more and less than 1.1 times

[分散性評価]
複合樹脂を30mg計量し、スライドガラスに載せ、240℃のホットスターラー(商品名:REXIM、型式:RSH-6DN、アズワン社製)で加熱する。樹脂が溶融したところで、もう一枚のスライドガラスをかぶせてプレスし、冷却することで分散評価用サンプルを得る。
分散性評価には微分干渉装置と位相差装置を備えた生物顕微鏡(商品名:エクリプス、型式:Ni-U、ニコン社製)を用いた。倍率200倍でランダムに10視野を観察し、10μm以上の粗大物をカウントし、10視野の合計数をもとに以下の基準で△以上を合格とした。
〇:粗大物が10個未満
△:粗大物が10個以上~100個未満
×:粗大物が100個以上
[Dispersibility evaluation]
Weigh 30 mg of the composite resin, place it on a slide glass, and heat it with a hot stirrer (trade name: REXIM, model: RSH-6DN, manufactured by As One Corporation) at 240°C. Once the resin has melted, cover it with another glass slide, press it, and cool it to obtain a sample for dispersion evaluation.
A biological microscope (trade name: Eclipse, model: Ni-U, manufactured by Nikon Corporation) equipped with a differential interference device and a phase contrast device was used for dispersibility evaluation. 10 visual fields were randomly observed at a magnification of 200 times, coarse objects of 10 μm or more were counted, and based on the total number of 10 visual fields, △ or higher was considered to be a pass based on the following criteria.
〇: Less than 10 large objects △: 10 or more to less than 100 large objects ×: 100 or more large objects

[平均繊維径の測定]
微細セルロース繊維1および2で多孔質粒子が得られた場合、粒子表面を高分解能電子顕微鏡(型式:SU-8020、日立ハイテク社製)で観察し、得られた2万倍のSEM画像の水平方向、および垂直方向にラインを引く。次に、二つのラインに交差する少なくとも20本以上のすべての繊維の繊維径を拡大画像から実測し、測定結果から数平均繊維径を算出する。さらに、繊維シートの表面の2箇所について同様に数平均繊維径を算出し、数平均繊維径の平均値を平均繊維径とすし、多孔質粒子で得られなかった場合や微細セルロース繊維3の場合は、0.05%濃度の微細セルロース繊維の分散液を調製し、この分散液を親水化処理したカーボン被覆グリッド上に塗布し、観察試料とし、透過型電子顕微鏡(型式:JSM-2100、日本電子社製)で観察する。機械処理CNFの場合は2万倍、TEMPO酸化処理されたCNFの場合は最も細い繊維が確認できる倍率で得られたTEM画像の水平方向、および垂直方向にラインを引く。次に、二つのラインで交差する少なくとも20本以上のすべての繊維の繊維径を拡大画像から実測し、測定結果から数平均繊維径を算出する。さらに、観察試料の表面の少なくとも2箇所について同様に数平均繊維径を算出し、全ての数平均繊維径の平均値を平均繊維径とする。
[Measurement of average fiber diameter]
When porous particles are obtained using fine cellulose fibers 1 and 2, the particle surface is observed using a high-resolution electron microscope (Model: SU-8020, manufactured by Hitachi High-Technology), and the horizontal SEM image obtained at 20,000 times Draw a line in the direction and vertically. Next, the fiber diameters of at least 20 or more fibers intersecting the two lines are actually measured from the enlarged image, and the number average fiber diameter is calculated from the measurement results. Furthermore, the number average fiber diameter was calculated in the same way for two locations on the surface of the fiber sheet, and the average value of the number average fiber diameters was taken as the average fiber diameter. A dispersion of fine cellulose fibers with a concentration of 0.05% was prepared, and this dispersion was applied onto a hydrophilized carbon-coated grid as an observation sample using a transmission electron microscope (Model: JSM-2100, Japan). (manufactured by Denshisha). Lines are drawn in the horizontal and vertical directions of the TEM image obtained at a magnification of 20,000 times for mechanically treated CNF and at a magnification that allows the thinnest fibers to be seen for TEMPO oxidized CNF. Next, the fiber diameters of at least 20 or more fibers that intersect with the two lines are actually measured from the enlarged image, and the number average fiber diameter is calculated from the measurement results. Furthermore, the number average fiber diameters are similarly calculated for at least two locations on the surface of the observation sample, and the average value of all the number average fiber diameters is taken as the average fiber diameter.

(実施例1)
[微細セルロース繊維の調成工程1]
針葉樹晒クラフトパルプをイオン交換水中に2重量%濃度になるように分散させ、前処理としてダブルディスクリファイナーを用いて叩解し、さらに高圧ホモジナイザー(型式:LAB1000、エスエムテー社製)を用いて750barの圧力に調整して10回処理することにより微細セルロース繊維スラリー1を得た。
(Example 1)
[Preparation process 1 of fine cellulose fiber]
Bleached softwood kraft pulp was dispersed in ion-exchanged water to a concentration of 2% by weight, beaten using a double-disc refiner as a pretreatment, and further heated to a pressure of 750 bar using a high-pressure homogenizer (model: LAB1000, manufactured by SMT). Fine cellulose fiber slurry 1 was obtained by adjusting the temperature and performing the treatment 10 times.

[調合工程]
上記調成工程で得られた微細セルロース繊維スラリー1に微細セルロース繊維の固形分100重量部に対し、1重量%濃度になるようイオン交換水に溶解したカルボキシメチルセルロース(商品名:サンローズ 型番:MAC-200HC、日本製紙社製)を20重量部、水溶性多孔質化剤としてプロピレンカーボネートを500重量部添加し、最終的に固形分濃度が0.7重量%となるようにイオン交換水を加えたスラリーをホモミキサー(型式:CM-100、アズワン社製) で均一に混ざるまで分散を行い、微細セルロース繊維含有物1を得た。
[Mixing process]
In the fine cellulose fiber slurry 1 obtained in the above preparation step, carboxymethyl cellulose (product name: Sunrose, model number: MAC) was dissolved in ion-exchanged water to a concentration of 1% by weight based on 100 parts by weight of solid content of fine cellulose fibers. -200HC, manufactured by Nippon Paper Industries Co., Ltd.), 500 parts by weight of propylene carbonate as a water-soluble porosity-forming agent, and ion-exchanged water was added so that the final solid content concentration was 0.7% by weight. The slurry was dispersed using a homomixer (model: CM-100, manufactured by As One Corporation) until it was uniformly mixed, to obtain a fine cellulose fiber-containing material 1.

[噴霧乾燥工程]
上記調合工程で得られた微細セルロース繊維含有物1をディスクアトマイザーMC-50を備えたスプレードライヤー(型式:CL-8i、大川原化工機社製)を用いて噴霧乾燥し、セルロース粒子1を得た。噴霧乾燥は流量:35mL/min、アトマイザ回転数:35,000rpm、入口温度:180℃、出口温度:100℃、サイクロン差圧:0.60kPaの条件で実施した。
[Spray drying process]
The fine cellulose fiber-containing material 1 obtained in the above preparation step was spray-dried using a spray dryer equipped with a disc atomizer MC-50 (model: CL-8i, manufactured by Okawara Kakoki Co., Ltd.) to obtain cellulose particles 1. . Spray drying was carried out under the following conditions: flow rate: 35 mL/min, atomizer rotation speed: 35,000 rpm, inlet temperature: 180°C, outlet temperature: 100°C, and cyclone differential pressure: 0.60 kPa.

(実施例2)
上記調合工程で、カルボキシメチルセルロースを無添加とする以外は実施例1と全く同様にして、セルロース粒子2を得た。
(Example 2)
Cellulose particles 2 were obtained in the same manner as in Example 1 except that no carboxymethyl cellulose was added in the above preparation step.

(実施例3)
上記調合工程で、プロピレンカーボネートをジエチレングリコールモノブチルエーテルに変え、添加部数を350重量部とした以外は実施例1と同様にして、セルロース粒子3を得た。
(Example 3)
Cellulose particles 3 were obtained in the same manner as in Example 1, except that propylene carbonate was changed to diethylene glycol monobutyl ether in the above preparation step, and the number of parts added was 350 parts by weight.

(実施例4)
[微細セルロース繊維の調成工程2]
上記微細セルロース繊維調成工程1で、得られた微細セルロース繊維スラリー1を0.3重量%に希釈し、1500Gで上澄みの濃度が0.04~0.06%になるよう時間を調整して遠心分離を行い、上澄み液を採取した。その上澄みを、ポアサイズ0.05μmのポリエーテルスルホン製MF膜をセットしたガラスフィルターに入れ、卓上撹拌機で攪拌しながら1重量%濃度になるまで上澄み液をつぎ足しながら濃縮を行い、微細セルロース繊維スラリー2を得た。
(Example 4)
[Preparation process 2 of fine cellulose fiber]
The fine cellulose fiber slurry 1 obtained in the above fine cellulose fiber preparation step 1 was diluted to 0.3% by weight, and the time was adjusted so that the concentration of the supernatant was 0.04 to 0.06% at 1500G. Centrifugation was performed and the supernatant liquid was collected. The supernatant is poured into a glass filter equipped with a polyethersulfone MF membrane with a pore size of 0.05 μm, and the supernatant is concentrated while stirring with a tabletop stirrer until the concentration is 1% by weight, resulting in a fine cellulose fiber slurry. I got 2.

[調合工程]
微細セルロース繊維スラリー1から、この微細セルロース繊維スラリー2に変えた以外は実施例1と全く同様にして、セルロース粒子4を得た。
[Blending process]
Cellulose particles 4 were obtained in exactly the same manner as in Example 1 except that the fine cellulose fiber slurry 1 was changed to this fine cellulose fiber slurry 2.

(比較例1)
上記調合工程で、プロピレンカーボネートを無添加とする以外は実施例1と同様にしてセルロース粒子Aを得た。
(Comparative example 1)
Cellulose particles A were obtained in the same manner as in Example 1 except that propylene carbonate was not added in the above preparation step.

(比較例2)
[微細セルロース繊維の調成工程3]
針葉樹晒クラフトパルプを用い、酸化触媒としてTEMPO(Aldrich社製)を用い、酸化剤として次亜塩素酸ナトリウム(富士フィルム和光純薬社製、Cl:5%)を用い、共酸化剤として臭化ナトリウム(富士フィルム和光純薬社製)を用いた。針葉樹晒クラフトパルプをイオン交換水中に1重量%になるように分散させ、TEMPOを対パルプ1.25重量%、臭化ナトリウムを対パルプ12.5重量%、次亜塩素酸ナトリウムを対パルプ28.4重量%、それぞれを順に添加し、0.5Mの水酸化ナトリウムの滴下により、pHを10.5に保持し、酸化反応を行った。120分間の酸化時間で水酸化ナトリウムの滴下を停止し、酸化パルプを得た。この酸化パルプをイオン交換水で十分に洗浄し、再度1重量%になるように希釈し、ホモミキサー(型式:CM-100、アズワン社製)で解繊し、微細セルロース繊維スラリー3を得た。
(Comparative example 2)
[Preparation process 3 of fine cellulose fiber]
Bleached softwood kraft pulp was used, TEMPO (manufactured by Aldrich) was used as an oxidation catalyst, sodium hypochlorite (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Cl: 5%) was used as an oxidizing agent, and bromide was used as a co-oxidizing agent. Sodium (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used. Bleached softwood kraft pulp was dispersed in ion-exchanged water to a concentration of 1% by weight, TEMPO was added to the pulp at 1.25% by weight, sodium bromide was added to the pulp at 12.5% by weight, and sodium hypochlorite was added to the pulp at 28% by weight. 0.4% by weight of each was added in order, and the pH was maintained at 10.5 by dropwise addition of 0.5M sodium hydroxide to carry out the oxidation reaction. Dripping of sodium hydroxide was stopped after an oxidation time of 120 minutes to obtain oxidized pulp. This oxidized pulp was thoroughly washed with ion-exchanged water, diluted again to 1% by weight, and defibrated using a homomixer (model: CM-100, manufactured by As One Corporation) to obtain fine cellulose fiber slurry 3. .

[調合工程]
微細セルロース繊維スラリー1から、この微細セルロース繊維スラリー3に変えた以外は実施例2と全く同様にして、セルロース粒子Bを得た。
[Blending process]
Cellulose particles B were obtained in exactly the same manner as in Example 2, except that the fine cellulose fiber slurry 1 was changed to the fine cellulose fiber slurry 3.

(比較例3)
調合工程でカルボキシメチルセルロースを無添加とし、酸化チタン(型番:TTO-51(C)、石原産業社製)を10重量部添加した以外は比較例1と同様にして、セルロース粒子Cを得た。
(Comparative example 3)
Cellulose particles C were obtained in the same manner as in Comparative Example 1, except that carboxymethylcellulose was not added in the preparation step and 10 parts by weight of titanium oxide (model number: TTO-51(C), manufactured by Ishihara Sangyo Co., Ltd.) was added.

(比較例4)
調合工程で、プロピレンカーボネートをトリエチレングリコールモノメチルエーテルに変え、添加部数を350重量部とした以外は実施例1と同様にして、セルロース粒子Dを得た。
(Comparative example 4)
Cellulose particles D were obtained in the same manner as in Example 1, except that propylene carbonate was replaced with triethylene glycol monomethyl ether in the blending step, and the number of parts added was 350 parts by weight.

(比較例5)
調合工程で、プロピレンカーボネートをジプロピレングリコールジメチルエーテルに変え、添加部数を350重量部とした以外は実施例1と同様にして、セルロース粒子Eを得た。
(Comparative example 5)
Cellulose particles E were obtained in the same manner as in Example 1, except that propylene carbonate was replaced with dipropylene glycol dimethyl ether in the preparation step, and the number of parts added was 350 parts by weight.

Figure 2023173941000002
Figure 2023173941000002

Figure 2023173941000003
Figure 2023173941000003

Figure 2023173941000004
Figure 2023173941000004

図1~4は実施例1~4で得られた粒子の電子顕微鏡画像であり、これらの画像から得られた粒子が多孔質であることがわかる。さらに、表3に示す実施例1~4の結果から、本発明の微細セルロースを主成分とする多孔質粒子が樹脂との複合化において、混錬時に樹脂添加による混錬トルクの上昇が確認できており、かつ分散性が良好であるため、樹脂の性能向上が期待できることがわかる。 1 to 4 are electron microscope images of the particles obtained in Examples 1 to 4, and it can be seen from these images that the particles obtained are porous. Furthermore, from the results of Examples 1 to 4 shown in Table 3, it was confirmed that when the porous particles of the present invention mainly composed of fine cellulose were combined with resin, the kneading torque increased due to the addition of resin during kneading. It can be seen that the performance of the resin can be expected to improve because it has good dispersibility and good dispersibility.

比較例1では、水溶性多孔質化剤が無添加であるため、図5の電子顕微鏡画像で示されるように細孔がなく、表3に示すBET比表面積が小さい。このことにより混錬時の分散性が悪く粗大物が目立ち、またトルクが樹脂のみと同等であったため、樹脂の性能向上が期待できないことがわかる。比較例1は非多孔質のため、繊維径は微細セルロース繊維1が分散液の状態でのTEM観察による測定結果を記載した。 In Comparative Example 1, since no water-soluble porosity-forming agent was added, there were no pores as shown in the electron microscope image of FIG. 5, and the BET specific surface area shown in Table 3 was small. As a result, the dispersibility during kneading was poor and coarse particles were noticeable, and the torque was equivalent to that of the resin alone, so it can be seen that no improvement in the performance of the resin can be expected. Since Comparative Example 1 is non-porous, the fiber diameter is measured by TEM observation when the fine cellulose fibers 1 are in a dispersion state.

比較例2では、微細セルロース繊維に平均繊維径が10nm未満のTEMPO酸化処理されたCNFを用いているため、繊維間の凝集力が強く、図6の電子顕微鏡画像で皺状の外観がみられるが細孔が生じておらず、BET比表面積が小さい。このことにより、混錬時の分散性が悪く粗大物が目立ち、またトルクが樹脂のみと同等であったため、樹脂の性能向上が期待できないことがわかる。 In Comparative Example 2, TEMPO oxidized CNF with an average fiber diameter of less than 10 nm is used for the fine cellulose fibers, so the cohesive force between the fibers is strong, and a wrinkled appearance is seen in the electron microscope image in Figure 6. However, no pores are formed and the BET specific surface area is small. This shows that the dispersibility during kneading was poor and coarse particles were noticeable, and the torque was equivalent to that of the resin alone, so it can be seen that no improvement in the performance of the resin can be expected.

比較例3では、水溶性多孔質化剤が無添加でかわりに酸化チタンを配合しているが、セルロース繊維間の凝集を防ぐことができず、図7で示されるように細孔が生じず、BET比表面積が小さい。このことにより混錬時の分散性が悪く粗大物が目立ち、またトルクが樹脂のみと同等であったため、樹脂の性能向上が期待できないことがわかる。比較例3は非多孔質のため、繊維径は微細セルロース繊維1が分散液の状態でのTEM観察による測定結果を記載した。 In Comparative Example 3, a water-soluble porosity-forming agent was not added and titanium oxide was added instead, but it was not possible to prevent agglomeration between cellulose fibers, and no pores were formed as shown in Figure 7. , BET specific surface area is small. As a result, the dispersibility during kneading was poor and coarse particles were noticeable, and the torque was equivalent to that of the resin alone, so it can be seen that no improvement in the performance of the resin can be expected. Since Comparative Example 3 is non-porous, the fiber diameter is measured by TEM observation when the fine cellulose fibers 1 are in a dispersion state.

比較例4では、水溶性多孔質化剤の種類を水/オクタノール分配係数の数値がマイナス側に大きく、親水性の高いトリエチレングリコールモノメチルエーテルに変えたところ、セルロース繊維間の凝集を防ぐことができず、図8で示されるように細孔が生じないため、BET比表面積が小さい。このことにより混錬時の分散性が悪く粗大物が目立ち、またトルクが樹脂のみと同等であったため、樹脂の性能向上が期待できないことがわかる。さらに、親水性が高いため、セルロースとの親和性が高く、粒子への残留が多くなり、樹脂との複合材料にした際、悪影響を及ぼす可能性がある。比較例4は非多孔質のため、繊維径は微細セルロース繊維1が分散液の状態でのTEM観察による測定結果を記載した。 In Comparative Example 4, when the type of water-soluble porosity-forming agent was changed to triethylene glycol monomethyl ether, which has a large negative water/octanol partition coefficient value and is highly hydrophilic, it was found that aggregation between cellulose fibers could be prevented. As shown in FIG. 8, since no pores are formed, the BET specific surface area is small. As a result, the dispersibility during kneading was poor and coarse particles were noticeable, and the torque was equivalent to that of the resin alone, so it can be seen that no improvement in the performance of the resin can be expected. Furthermore, since it is highly hydrophilic, it has a high affinity with cellulose, and a large amount remains in particles, which may have an adverse effect when made into a composite material with a resin. Since Comparative Example 4 was non-porous, the fiber diameter was measured by TEM observation when the fine cellulose fibers 1 were in a dispersion state.

比較例5では、水溶性多孔質化剤の種類を沸点が180℃未満であるトリエチレングリコールモノメチルエーテルに変えたところ、スラリーの乾燥時に水よりも先にとりエチレングリコールモノメチルエーテルが揮発してしまうためにセルロース繊維間の凝集を防ぐことができず、図9で示されるように細孔が生じないため、BET比表面積が小さい。このことにより混錬時の分散性が悪く粗大物が目立ち、またトルクが樹脂のみと同等であったため、樹脂の性能向上が期待できないことがわかる。比較例5は非多孔質のため、繊維径は微細セルロース繊維1が分散液の状態でのTEM観察による測定結果を記載した。 In Comparative Example 5, when the type of water-soluble porosity-forming agent was changed to triethylene glycol monomethyl ether, which has a boiling point of less than 180°C, the ethylene glycol monomethyl ether volatilized before the water when drying the slurry. Since aggregation between cellulose fibers cannot be prevented and pores are not generated as shown in FIG. 9, the BET specific surface area is small. As a result, the dispersibility during kneading was poor and coarse particles were noticeable, and the torque was equivalent to that of the resin alone, so it can be seen that no improvement in the performance of the resin can be expected. Since Comparative Example 5 is non-porous, the fiber diameter is measured by TEM observation when the fine cellulose fibers 1 are in a dispersion state.

Claims (13)

微細セルロース繊維を主成分とする多孔質粒子であって、BET比表面積が20~100m/g、嵩密度が200g/L未満、微細セルロース繊維の平均繊維径が10~1000nmであることを特徴とする多孔質粒子。 Porous particles mainly composed of fine cellulose fibers, characterized by having a BET specific surface area of 20 to 100 m 2 /g, a bulk density of less than 200 g/L, and an average fiber diameter of the fine cellulose fibers of 10 to 1000 nm. porous particles. さらに水溶性高分子を含む、請求項1に記載の多孔質粒子。 The porous particle according to claim 1, further comprising a water-soluble polymer. 前記微細セルロース繊維と共に水溶性多孔質化剤を含むスラリーから得られる、請求項1または2に記載の多孔質粒子。 Porous particles according to claim 1 or 2, obtained from a slurry containing a water-soluble porosity-forming agent together with the fine cellulose fibers. 前記水溶性多孔質化剤の沸点が180℃以上、且つ、水オクタノール分配係数が-1.2~0.8である、請求項3に記載の多孔質粒子。 The porous particles according to claim 3, wherein the water-soluble porosity-forming agent has a boiling point of 180°C or higher and a water-octanol partition coefficient of -1.2 to 0.8. 請求項1または2に記載の多孔質粒子及び樹脂を含む、樹脂組成物。 A resin composition comprising the porous particles according to claim 1 or 2 and a resin. 請求項3に記載の多孔質粒子及び樹脂を含む、樹脂組成物。 A resin composition comprising the porous particles according to claim 3 and a resin. 請求項4に記載の多孔質粒子及び樹脂を含む、樹脂組成物。 A resin composition comprising the porous particles according to claim 4 and a resin. 請求項5の樹脂組成物を含有することを特徴とする、成形体。 A molded article containing the resin composition according to claim 5. 請求項6の樹脂組成物を含有することを特徴とする、成形体。 A molded article containing the resin composition according to claim 6. 請求項7の樹脂組成物を含有することを特徴とする、成形体。 A molded article containing the resin composition according to claim 7. 微細セルロース繊維スラリーと水溶性多孔質化剤を混合する工程、前記混合物を噴霧乾燥装置によって多孔質粒子を得る工程を備える、多孔質粒子の製造方法。 A method for producing porous particles, comprising the steps of mixing a fine cellulose fiber slurry and a water-soluble porosity-forming agent, and obtaining porous particles from the mixture using a spray drying device. 前記水溶性多孔質化剤の沸点が180℃以上、且つ、水オクタノール分配係数が-1.2~0.8である、請求項11記載の多孔質粒子の製造方法。 The method for producing porous particles according to claim 11, wherein the water-soluble porosity-forming agent has a boiling point of 180° C. or higher and a water-octanol partition coefficient of -1.2 to 0.8. 前記水溶性多孔質化剤がグリコールエーテル類またはカーボネート類である、請求項11または12記載の多孔質粒子の製造方法。 The method for producing porous particles according to claim 11 or 12, wherein the water-soluble porosity-forming agent is a glycol ether or a carbonate.
JP2022086511A 2022-05-27 2022-05-27 Porous particles and method for producing the same Active JP7154451B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022086511A JP7154451B1 (en) 2022-05-27 2022-05-27 Porous particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022086511A JP7154451B1 (en) 2022-05-27 2022-05-27 Porous particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP7154451B1 JP7154451B1 (en) 2022-10-17
JP2023173941A true JP2023173941A (en) 2023-12-07

Family

ID=83637952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022086511A Active JP7154451B1 (en) 2022-05-27 2022-05-27 Porous particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP7154451B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073286A1 (en) * 2004-01-30 2005-08-11 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and formed product composition comprising the same
US20200032454A1 (en) * 2017-03-30 2020-01-30 Borregaard As Microfibrillated cellulose foams
JP2021172671A (en) * 2020-04-17 2021-11-01 特種東海製紙株式会社 Powdery fine cellulose fiber, resin composition, molding and method for producing the same
JP2022030885A (en) * 2020-08-07 2022-02-18 国立大学法人広島大学 Cellulose/magnetic substance composite particle and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073286A1 (en) * 2004-01-30 2005-08-11 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and formed product composition comprising the same
US20200032454A1 (en) * 2017-03-30 2020-01-30 Borregaard As Microfibrillated cellulose foams
JP2021172671A (en) * 2020-04-17 2021-11-01 特種東海製紙株式会社 Powdery fine cellulose fiber, resin composition, molding and method for producing the same
JP2022030885A (en) * 2020-08-07 2022-02-18 国立大学法人広島大学 Cellulose/magnetic substance composite particle and method for producing the same

Also Published As

Publication number Publication date
JP7154451B1 (en) 2022-10-17

Similar Documents

Publication Publication Date Title
Yang et al. Surface and interface engineering for nanocellulosic advanced materials
Samyn et al. Nanoparticles and nanostructured materials in papermaking
JP5622412B2 (en) Molding material and manufacturing method thereof
Hassan et al. Nanofibers from bagasse and rice straw: process optimization and properties
Lavoine et al. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review
Siró et al. Microfibrillated cellulose and new nanocomposite materials: a review
US9243128B2 (en) Composite material
González et al. From paper to nanopaper: evolution of mechanical and physical properties
EP3041758B1 (en) Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose
JP5638001B2 (en) Cellulose nanofiber
JP5398180B2 (en) Lignin-containing microfibrillated plant fiber and method for producing the same
JP2019509403A (en) Cellulose material and methods of making and using the same
JP2014015512A (en) Cellulose fiber-containing resin composition
Lengowski et al. Nanocellulose in the paper making
CN106164348A (en) There is the fiber of filler
WO2015050126A1 (en) Nanocomposite and nanocomposite-manufacturing process
CN112673133B (en) Molded body of cellulose fiber and method for producing same
Chitbanyong et al. Characterization of bamboo nanocellulose prepared by TEMPO-mediated oxidation
JP2021509416A (en) Film of microfibrillated cellulose
Hashemzehi et al. A comprehensive review of nanocellulose modification and applications in papermaking and packaging: challenges, technical solutions, and perspectives
EP3728450B1 (en) A method to produce a fibrous product comprising microfibrillated cellulose
Guo et al. Improving the compatibility, surface strength, and dimensional stability of cellulosic fibers using glycidyl methacrylate grafting
JP6186982B2 (en) Nonwoven fabric / resin composite and method for producing the same
JP7154451B1 (en) Porous particles and method for producing the same
JP2023079480A (en) Cellulose particles and cellulose particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221004

R150 Certificate of patent or registration of utility model

Ref document number: 7154451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150