WO2015087868A1 - Cellulose fibers and method for producing same, ultrafine cellulose fiber dispersion and method for producing same, and method for producing ultrafine cellulose fibers - Google Patents

Cellulose fibers and method for producing same, ultrafine cellulose fiber dispersion and method for producing same, and method for producing ultrafine cellulose fibers Download PDF

Info

Publication number
WO2015087868A1
WO2015087868A1 PCT/JP2014/082533 JP2014082533W WO2015087868A1 WO 2015087868 A1 WO2015087868 A1 WO 2015087868A1 JP 2014082533 W JP2014082533 W JP 2014082533W WO 2015087868 A1 WO2015087868 A1 WO 2015087868A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose fiber
dispersion
drying
cellulose
cast film
Prior art date
Application number
PCT/JP2014/082533
Other languages
French (fr)
Japanese (ja)
Inventor
明 磯貝
賢志 高市
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2015087868A1 publication Critical patent/WO2015087868A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide

Definitions

  • the present invention relates to a cellulose fiber that can be finely dispersed in a solvent even after being dried, a fine cellulose fiber dispersion using the cellulose fiber as a raw material, a fine cellulose fiber thereof, a molded article comprising the fine cellulose fiber, and these It relates to a manufacturing method.
  • Fine cellulose fibers (hereinafter sometimes referred to as “cellulose nanofibers”), which are nano-sized materials, use cellulose, an abundantly existing biomass, as an oxidation catalyst using N-oxyl compounds as an oxidation catalyst. And then finely dispersed (hereinafter referred to as “nanodispersion”) by mechanical fibrillation treatment that imparts a shearing force in water to the oxidized cellulose (hereinafter sometimes referred to as “oxidized cellulose fiber”). Sometimes obtained).
  • the oxidized cellulose nanofiber dispersion in which the oxidized cellulose fibers are nano-dispersed can be used as a thickening agent as it is or in the form of a gel combined with other materials.
  • a material such as a sheet, a film, a foam, and an airgel can be produced by drying the oxidized cellulose nanofiber dispersion as it is or by combining it with another material (for example, Patent Documents). 1).
  • the oxidized cellulose nanofiber is a bio-based nanofiber with a uniform width and a high aspect ratio, and has an excellent nanodispersibility in water due to a large specific surface area, high strength, and introduced carboxyl groups. There are features. Therefore, it is expected to be used in various fields such as an oxygen barrier film, a general-purpose plastic reinforcing material, a medical material, a cell culture substrate, a catalyst carrier, an adsorbent, and a separating material.
  • oxidized cellulose nanofiber dispersion has a solid content concentration of 0.1% by mass to 5%. Mass% is very low. Therefore, when transporting the oxidized cellulose nanofiber dispersion used for producing a product using the oxidized cellulose nanofiber, there is a problem that a large amount of water is transported and the cost for transport is high. In addition, when the oxidized cellulose nanofiber dispersion is stored, there is a problem that it must be refrigerated or treated with a preservative as a countermeasure against microorganisms.
  • fibrous oxidized cellulose before defibration and nano-dispersion treatment (width 0.01 mm to 0.06 mm, length 0.1 mm to 5 mm, wood cellulose fiber before oxidation treatment) Squeezed in the washing and filtration process, and the solid concentration was raised to about 10% to 40% (that is, containing 90% to 60% water) in an undried state. It is conceivable to carry. If it is the said undried oxycellulose, a cellulose nanofiber dispersion can always be manufactured by the fibrillation process in water. However, there is still a problem that the amount of water is still large even in an undried state, and the cost for transportation is high, and that preservative measures during storage are necessary.
  • the present invention is a cellulose that can be finely dispersed in a solvent, even when it is once dried, as in the case of being prepared from an undried state, can reduce transportation costs, and has excellent storage stability.
  • Means for solving the problems are as follows. That is, ⁇ 1> An oxidation step in which an oxidized cellulose fiber is obtained by oxidizing a cellulosic raw material in a reaction solution containing an N-oxyl compound and a co-oxidant; A reduction step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers; A drying step of drying the reduced oxidized cellulose fiber, The cellulose fiber obtained by drying the reduced oxidized cellulose fiber can be finely dispersed in a solvent.
  • Cellulose fibers that can be finely dispersed in a solvent after drying, After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is It is a cellulose fiber characterized by having a birefringence of 80% or more.
  • ⁇ 5> A fine cellulose fiber dispersion in which cellulose fibers are finely dispersed in a solvent, The cellulose fiber is a cellulose fiber that can be finely dispersed in a solvent after drying, After drying the cellulose fiber at 105 ° C.
  • the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container.
  • the light transmittance at a wavelength of 600 nm of the dispersion is It is a fine cellulose fiber dispersion characterized by having a birefringence of 80% or more.
  • the conventional problems can be solved and the object can be achieved, and even if it is once dried, it can be finely dispersed in a solvent in the same manner as when prepared from an undried state.
  • Cellulose fibers that can be reduced in transportation costs and have excellent storage stability, a cellulose fiber production method that can easily produce the cellulose fibers with a low environmental load, and fine cellulose using the cellulose fibers
  • a fiber dispersion and a method for producing the same, and a method for producing fine cellulose fibers using the fine cellulose fiber dispersion can be provided.
  • FIG. 1 is a graph showing the results of measuring the light transmittance of the dispersions of Examples 1 and 2 and Comparative Example 1.
  • FIG. 2 is a photograph confirming the state of light transmission of the dispersions of Example 1 and Comparative Example 1.
  • FIG. 3 is a photograph observing the birefringence of the dispersions of Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the results of measuring the ultraviolet absorption spectrum of Test Example 1.
  • FIG. 5 is a graph showing the results of measuring the light transmittance of the dispersion in Test Example 2-1.
  • FIG. 6 is a graph showing the results of measuring the ultraviolet absorption spectrum of Test Example 2-2.
  • the cellulose fiber of this invention can be suitably manufactured with the manufacturing method of the cellulose fiber of this invention.
  • the cellulose fiber of this invention is demonstrated with description of the manufacturing method of the cellulose fiber of this invention.
  • the method for producing a cellulose fiber of the present invention includes at least an oxidation step, a reduction step, and a drying step, and further includes other steps such as a further oxidation step as necessary.
  • the oxidation step is a step of obtaining oxidized cellulose fibers by oxidizing a cellulosic material in a reaction solution containing an N-oxyl compound and a co-oxidant.
  • the cellulose-based raw material is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the cellulosic material may be subjected to a treatment for increasing the surface area such as beating.
  • N-oxyl compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • ““ Cellulose ”Vol. 10, 2003, pages 335-341. Shibata and A.I. Examples include the compounds described in “The Catalytic Oxidation of Cellulose Using TEMPO Derivatives: HPSEC and NMR Analysis of Oxidation Products” by Isogai. These may be used individually by 1 type and may use 2 or more types together.
  • N-oxyl compound examples include 2,2,6,6-tetramethylpiperidine-N-oxyl (hereinafter sometimes referred to as “TEMPO”), 4-acetamido TEMPO, 4-carboxy-TEMPO, 4-phosphonooxy-TEMPO and the like can be mentioned.
  • the content of the N-oxyl compound in the reaction solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a catalyst amount.
  • the co-oxidant is not particularly limited and may be appropriately selected depending on the intended purpose.
  • hypohalous acid or a salt thereof hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide And perorganic acids.
  • hypohalous acid or a salt thereof hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide And perorganic acids.
  • these may be used individually by 1 type and may use 2 or more types together.
  • Specific examples of the co-oxidant include sodium hypochlorite and sodium hypobromite.
  • the reaction liquid may contain other components other than the above-described cellulose-based material, N-oxyl compound, and co-oxidant.
  • bromide and iodide there is no restriction
  • the conditions such as pH of the reaction solution, reaction temperature, pressure, and reaction time in the oxidation step are not particularly limited and can be appropriately selected depending on the purpose.
  • the oxidized cellulose fiber obtained by the oxidation step has a carboxyl group content of 0.8 mmol / g to 2.2 mmol / g and an aldehyde group content of 0.8 mmol / g or less.
  • the amount of carboxyl group and aldehyde group in the oxidized cellulose fiber is determined according to “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cellulose. The effect of oxidative conditions in chemistry and chemistry. Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”, and can be measured by an additional oxidation treatment with sodium chlorite and conductivity titration.
  • an oxidized cellulose fiber that does not contain an aldehyde group can be obtained without performing a later-described additional oxidation step.
  • the conditions for the oxidation step not containing the aldehyde group are not particularly limited. For example, “S. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai,“ Individualization. of nano-sized plant cells fibers by direct surface carboxylating using TEMPO catalyst unneutral conditions, Biomacromolecules, Vol. 10, pp. 1992-1996, 2009 ”can be appropriately selected.
  • a further oxidation step may be included between the oxidation step and a reduction step described later.
  • the additional oxidation step is a step of further oxidizing the oxidized cellulose fiber obtained in the oxidation step with sodium chlorite.
  • the conditions for the additional oxidation process are not particularly limited. For example, “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cellulose chemistry and the conditions of oxidative conditions for chemistry. ", Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”can be appropriately selected. Oxidized cellulose fibers not containing an aldehyde group can be obtained by oxidizing the aldehyde group generated in a small amount at the C6 position to a carboxyl group by the additional oxidation step.
  • the oxidized cellulose fiber obtained in the oxidation step or the oxidized cellulose fiber obtained in the additional oxidation step may be used in a reduction step described later after suction filtration washing with water. Since the oxidized cellulose fibers are not dispersed evenly to the nanofiber unit at this stage, they can be washed by a normal water washing-suction filtration washing method. Specific examples of the washing method include a method of washing and washing with at least one of suction filtration and centrifugation. The number of times of washing may be one time or a plurality of times. The unreacted cooxidant and various byproducts can be removed by the washing.
  • the reduction step is a step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers.
  • a ketone group is generated at the C2 position and the C3 position in the oxidized cellulose fiber as a side reaction.
  • a small amount of an aldehyde group is generated at the C6 position in addition to the above-described ketone group.
  • the oxidation step is performed using TEMPO, NaClO, and NaClO 2 that are weakly acidic to neutral, there is no aldehyde at the C6 position of the oxidized cellulose fiber.
  • the oxidation step is performed using TEMPO, NaBr, and NaClO with weak alkalinity, and then the additional oxidation step is performed, the aldehyde group at the C6 position of the oxidized cellulose fiber does not exist.
  • the reduction step at least a part of the ketone group and / or aldehyde group is converted to an alcoholic hydroxyl group. That is, in the reduced oxidized cellulose fiber obtained in the reduction step, the amount of the ketone group or the amount of both the ketone group and the aldehyde group is less than the amount in the oxidized cellulose fiber.
  • the oxidized cellulose fiber is an oxidized cellulose fiber obtained by the oxidation process described above. There is no restriction
  • the reducing agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • sodium borohydride, thiourea, hydrosulfite, sodium bisulfite, sodium cyanoborohydride, lithium borohydride Etc may be used individually by 1 type and may use 2 or more types together.
  • sodium borohydride is preferable because of excellent selective reactivity.
  • the solvent in the reaction solution is preferably water.
  • the said reaction liquid may contain other components other than the oxidized cellulose fiber mentioned above and a reducing agent.
  • the other components are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
  • the pH of the reaction solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 7 to 11, more preferably 9 to 10, and particularly preferably 10.
  • the pH is in a more preferable range, the amount of ketone groups or the amount of ketone groups and aldehyde groups in the reduced oxidized cellulose fiber can be reduced, and when the pH is in a particularly preferable range, Even when the amount of reducing agent used is reduced, it is advantageous in that the amount of ketone groups or the amount of ketone groups and aldehyde groups in the reduced oxidized cellulose fiber can be further reduced.
  • restoration process there is no restriction
  • restoration process According to the objective, it can select suitably, For example, it can be set as a normal pressure.
  • restoration process Although it can select suitably according to the objective, 1 hour or more is preferable and 5 hours or more are more preferable.
  • the reduction step is preferably performed while stirring the reaction solution.
  • the reduced-type oxidized cellulose fiber obtained in the reduction step is preferably used in a drying step described later after washing.
  • the reduced oxidized cellulose fibers are not dispersed evenly to the nanofiber unit at this stage, and can be washed by a normal washing method.
  • Specific examples of the cleaning method include the same methods as those described in the above oxidation step.
  • the drying step is a step of drying the reduced oxidized cellulose fiber.
  • drying method using an oven dryer, the freeze-drying method, the spray-drying method etc. are mentioned.
  • the drying conditions are not particularly limited and may be appropriately selected depending on the purpose.
  • the cellulose fiber of the present invention can be suitably produced by the above-described method for producing a cellulose fiber of the present invention, and can be finely dispersed in a solvent even after drying.
  • the cellulose fibers can be finely dispersed in water at a solid content of 0.01% by mass to 5% by mass after drying at 105 ° C. for 3 hours.
  • the drying conditions at 105 ° C. for 3 hours are generally the absolutely dry conditions for cellulose fibers.
  • Whether or not the cellulose fiber can be finely dispersed in a solvent can be confirmed, for example, as follows.
  • the cellulose fiber (reduced oxidized cellulose fiber obtained in the drying step) is dried at 105 ° C. for 3 hours. After the drying, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion. The dispersion was placed in a 50 mL centrifuge tube (polypropylene; manufactured by Corning) and used as it was by using a double-cylindrical homogenizer (blade diameter 1.5 cm, Microtech Nichion NS-56). Defibration treatment is performed at 500 rpm for 2 minutes.
  • the surroundings of the container are immediately cooled with ice water as they are, and the ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz) is used for 8 minutes.
  • the ultrasonic homogenizer US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz
  • the ultrasonic homogenizer US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz
  • the whole dispersion having a cellulose fiber concentration of 0.1% by mass obtained as described above (a dispersion without removing any defibrated material. There is no defibrated material after complete nano-dispersion.
  • Light transmittance at a wavelength of 600 nm (hereinafter sometimes referred to as “transmittance”) is measured, and if the light transmittance is 80% or more, it is finely dispersed (nanodispersed). I can judge. When the light transmittance does not reach 80%, it can be determined that the fiber contains undefibrated components that are not finely dispersed.
  • cellulose fibers can be finely dispersed in a solvent can also be confirmed by confirming whether or not the cellulose fiber dispersion exhibits birefringence.
  • the dispersion prepared by the measurement of the “light transmittance” if there is undefibrated residue, removed by centrifugation
  • the dispersion prepared by the measurement of the “light transmittance” is placed between orthogonal polarizing plates. It can be confirmed by observing the birefringence.
  • the cellulose fiber of the present invention is a reduced oxidation in which the amount of the ketone group or the amount of the ketone group and the aldehyde group is reduced by the reduction step compared to the amount in the oxidized cellulose fiber after the oxidation step or the additional oxidation step.
  • the reduced oxidized cellulose fiber can be refined in water (nanodispersion) even after the drying step.
  • the method for confirming that the amount of the ketone group or the amount of the ketone group and the aldehyde group is reduced is not particularly limited and can be appropriately selected according to the purpose. For example, it can be confirmed by measuring an ultraviolet absorption spectrum according to the following procedure.
  • cellulose fiber is dried at 105 ° C. for 3 hours. After the drying, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion.
  • the dispersion was placed in a 50 mL centrifuge tube (polypropylene; manufactured by Corning) and used as it was by using a double-cylindrical homogenizer (blade diameter 1.5 cm, Microtech Nichion NS-56). Defibration treatment is performed at 500 rpm for 2 minutes.
  • the surroundings of the container are immediately cooled with ice water as they are, and the ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz) is used for 8 minutes.
  • a defibrating treatment is performed to prepare a dispersion having a cellulose fiber concentration of 0.1% by mass.
  • a cycle of ultrasonic treatment for 2 minutes and standing and cooling for 1 minute is repeated, and the total ultrasonic treatment time is reached. For 8 minutes.
  • the concentration of the cellulose fiber in the dispersion can be appropriately selected within the range of 0.05% by mass to 0.5% by mass.
  • the undissolved cellulose fibers are removed by centrifuging with a centrifuge at 12,000 G for 10 minutes while leaving the container. A supernatant containing no cellulose fibers is obtained.
  • the absorbance at a wavelength of 600 nm of the dispersion subjected to the defibration treatment in water is less than 80%, and the weight ratio of the undefibrated portion removed by centrifuging and removing the dispersion is 10% or more.
  • the cellulose fiber contained in the dispersion is judged as “cannot be nanodispersed in water”.
  • the supernatant is poured into a petri dish, dried in a drier, and peeled from the petri dish to obtain a fine cellulose fiber film (hereinafter sometimes referred to as “cast film”).
  • the injection amount of the supernatant is adjusted so that the thickness of the cast film is 5 ⁇ m to 50 ⁇ m.
  • the cast film has a density of 1 g / cm 3 to 1.6 g / cm 3 .
  • the film thickness of the cast film may be adjusted by adjusting the size of the petri dish.
  • the temperature of the dryer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably room temperature to 50 ° C., more preferably 40 ° C.
  • the drying period is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 days to 6 days, and more preferably 5 days.
  • the amount of aldehyde group and ketone group in the original cellulose fiber can be measured from the absorbance value of the ultraviolet absorption spectrum. Specifically, when the C2-position and C3-position ketone groups are present in the original cellulose fiber, the absorbance at 290 nm of the ultraviolet absorption spectrum increases. Further, when an aldehyde group is present in the original cellulose fiber, the absorbance at 260 nm of the ultraviolet absorption spectrum increases.
  • the amount of sodium borohydride added to the oxidized cellulose fiber is sufficient in the reduction step (for example, when 0.01 g of sodium borohydride is added to 1 g of oxidized cellulose fiber)
  • There are no ketone groups or aldehyde groups in the cellulose fiber and no peak is observed at 290 nm and 260 nm when the ultraviolet absorption spectrum is measured.
  • the ultraviolet absorbance of the cast film affects the thickness of the film (the greater the thickness of the film, the greater the absorbance and the smaller the thickness). Therefore, by dividing the absorbance by the thickness of the film, it is possible to evaluate and compare with the normalized absorbance (standardized conditions).
  • the absorbance at 290 nm and 260 nm is corrected to the absorbance per 1 ⁇ m thickness of the cast film, and evaluated and compared.
  • absorption is observed at 235 nm.
  • the absorbance at 260 nm is overestimated, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 ⁇ m thickness of the dry cast film is corrected by multiplying by 0.7.
  • the cellulose fiber of the present invention is a value obtained by correcting the absorbance of the dry cast film at wavelengths of 290 nm and 260 nm to the absorbance per 1 ⁇ m thickness of the dry cast film (however, in the measurement of the ultraviolet absorption spectrum, it is derived from hexene uronic acid groups).
  • the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 ⁇ m thickness of the dry cast film is a value obtained by multiplying the corrected value by 0.7).
  • Both are preferably 0.020 or less.
  • the amount of aldehyde groups and ketone groups in cellulose fibers by the above method can be applied to undried cellulose fibers. Since the aldehyde group amount and the ketone group amount in the undried cellulose fiber and the dried cellulose fiber can be measured by the above method, whether or not the reduction step has been performed on the unknown cellulose fiber sample. Can be determined.
  • the cellulose fiber of the present invention can be finely dispersed in a solvent in the same manner as when prepared from an undried state, so that the cost for transportation can be reduced. Excellent storage stability.
  • the fine cellulose fiber dispersion of the present invention can be suitably produced by the method for producing a fine cellulose fiber dispersion of the present invention.
  • the fine cellulose fiber dispersion of the present invention will be described together with the description of the method for producing the fine cellulose fiber dispersion of the present invention.
  • the method for producing a fine cellulose fiber dispersion of the present invention includes at least a dispersion step, and further includes other steps as necessary.
  • distribution process is a process of disperse
  • the cellulose fiber can be finely dispersed by the dispersing step.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide Etc. These may be used individually by 1 type and may use 2 or more types together. Specific examples of the alcohols include methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, glycerin and the like.
  • ethers include ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran and the like.
  • ketones include acetone and methyl ethyl ketone.
  • solvents water is preferable.
  • the dispersion means used in the dispersion step (hereinafter also referred to as “defibration means”) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the conditions for the dispersion step are not particularly limited and may be appropriately selected depending on the purpose.
  • the above-mentioned “light transmittance” column and “fine amount of ketone group, amount of aldehyde group” “fine” Examples of the conditions for the preparation of the dispersion described in the column “Preparation of dispersion”.
  • the above-described cellulose fiber of the present invention is finely dispersed, and a fine cellulose fiber dispersion in which the fine cellulose fiber is dispersed is obtained.
  • the fine cellulose fibers are cellulose single microfibrils having a width of about 2 nm to 5 nm and a length of about 0.2 ⁇ m to 5 ⁇ m.
  • the fine cellulose fiber of this invention can be suitably manufactured with the manufacturing method of the fine cellulose fiber of this invention.
  • the fine cellulose fiber of this invention is demonstrated with description of the manufacturing method of the fine cellulose fiber of this invention.
  • the manufacturing method of the fine cellulose fiber of this invention includes a drying process at least, and also includes another process as needed.
  • the drying step is a step of drying the fine cellulose fiber dispersion of the present invention described above.
  • the drying method can carry out similarly to the drying process in the manufacturing method of the cellulose fiber of this invention mentioned above. Fine cellulose fibers can be obtained by the drying step.
  • the fine cellulose fiber can be suitably used in various fields such as an oxygen-preventing membrane, a general-purpose plastic reinforcing material, a medical material, a cell culture substrate, a catalyst carrier, an adsorbent, and a separating material.
  • the said fine cellulose fiber molded object can be suitably manufactured with the manufacturing method of the following fine cellulose fiber molded objects.
  • the said fine cellulose fiber molded object is demonstrated with description of the manufacturing method of a fine cellulose fiber molded object.
  • the manufacturing method of the said fine cellulose fiber molded object includes at least the process of removing a liquid component, hold
  • the method for removing the liquid component while holding the fine cellulose fiber dispersion in a predetermined shape is not particularly limited and may be appropriately selected depending on the purpose.
  • the fine cellulose fiber dispersion may be selected on a substrate such as a glass plate.
  • Examples include a method of forming a film by removing the liquid component of the dispersion by a drying method such as natural drying, air blowing drying, or vacuum drying after casting the cellulose fiber dispersion.
  • a fine cellulose fiber molded body can be obtained by peeling the film from the substrate.
  • a fine cellulose fiber molded object by forming a fine cellulose fiber layer on the molded object using the said fine cellulose fiber dispersion.
  • foil-like articles such as a film, a sheet
  • a material of the said molded object According to the objective, it can select suitably, For example, paper, paperboard, a plastics, a metal, these composites etc. are mentioned.
  • the structure of the molded product may be a single layer or multiple layers.
  • the said fine cellulose fiber composite body can be suitably manufactured with the manufacturing method of the following fine cellulose fiber composite bodies.
  • the said fine cellulose fiber composite is demonstrated with description of the manufacturing method of a fine cellulose fiber composite.
  • the method for producing the fine cellulose fiber composite includes at least a step of preparing a dispersion liquid obtained by mixing the above-described fine cellulose fiber dispersion of the present invention and a liquid material containing the composite material. And other steps.
  • the material of the composite is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include synthetic polymers such as polyvinyl alcohol, nylon (registered trademark), polypropylene, polyethylene terephthalate, and polyester. .
  • the synthetic polymer can be dissolved in an organic solvent and spun (solution spinning) or shaped into a film. Therefore, by using a dispersion obtained by mixing the fine cellulose fiber dispersion and a liquid material containing the synthetic polymer, a fibrous molded article or a film-like molded article that is the fine cellulose fiber composite is obtained. be able to.
  • a monomer and the fine cellulose fiber dispersion are mixed in an organic solvent, and the monomer is polymerized to synthesize a polymer, thereby forming a composite of the fine cellulose fiber and the synthetic polymer. You can also.
  • Example 1 After dispersing softwood bleached kraft pulp (corresponding to 4 g in dry mass), 62.4 mg of TEMPO, and 0.4 g of sodium bromide in 400 mL of distilled water, 13 g of aqueous sodium hypochlorite solution was added to 1 g of The reaction was started by adding sodium hypochlorite to the pulp in an amount of 5 mmol. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10, and the reaction was carried out with stirring at room temperature (20 ° C. to 25 ° C.).
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times, and the solid content is 9.3% by mass.
  • Some oxidized cellulose fibers were obtained (yield> 90%).
  • the amount of carboxyl groups of the oxidized cellulose fiber was 1.43 mmol / g, and the amount of aldehyde groups was 0.04 mmol / g.
  • the amount of carboxyl group and aldehyde group per gram of the oxidized cellulose is determined according to “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cell oxidization and qualitative chemistry and chemistry”. Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”, and was measured by an additional oxidation treatment with sodium chlorite and conductivity titration.
  • the reduced oxidized cellulose fiber obtained in the reduction step was dried at 105 ° C. for 3 hours or more using an oven to obtain reduced oxidized cellulose fiber having a solid content of 100% by mass.
  • ⁇ Dispersing process> Water was added to the reduced oxidized cellulose fiber obtained in the drying step, and 40 mL of a dispersion diluted to have a cellulose concentration of 0.1% by mass was centrifuged in a 50 mL container (made of polypropylene; manufactured by Corning). Then, using a double cylindrical homogenizer (blade diameter 1.5 cm, NS-56 manufactured by Microtech Nichion Co., Ltd.) for 2 minutes at 7,500 rpm. After the defibrating process with the double cylindrical homogenizer, it is defibrated with an ultrasonic homogenizer (Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz) for 8 minutes while immediately cooling the surroundings with ice water.
  • an ultrasonic homogenizer Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz
  • the light transmittance of the dispersion liquid (a dispersion liquid that remains unremoved even if there is undefibrated material, which may be completely nanodispersed and may have no undefibrated material) is measured by an ultraviolet-visible near infrared spectrophotometer
  • the results of measurement using V-670 manufactured by JASCO Corporation are shown in FIG. 1 (“NaBH 4 addition amount: 1/64 of the weight of pulp” in FIG. 1).
  • the light transmittance of the dispersion at a wavelength of 600 nm was 90.9%.
  • the state of light transmission of the dispersion is shown in FIG.
  • Example 1 In Example 1, except that the reduction step was not performed, a dispersion having a cellulose concentration of 0.1% by mass (a dispersion without being removed even if undefibrated material was present) in the same manner as in Example 1. ) The results of measuring the dispersion in the same manner as in Example 1 are shown in FIG. 1 (“untreated” in FIG. 1). The light transmittance of the dispersion at a wavelength of 600 nm was 39.4%. The state of light transmission of the dispersion is shown in FIG.
  • Example 1 and Comparative Example 1 From the results of Example 1 and Comparative Example 1, it was not possible to finely disperse the cellulose fibers after the drying process in the dispersion liquid of Comparative Example 1 in which the reduction process of the present invention was not performed. On the other hand, since the dispersion of Example 1 has a light transmittance of 600% or more at a wavelength of 600 nm and birefringence was observed, the reduction step of the present invention is performed, and then the drying step is performed. Even so, it has been shown that cellulose fibers can be finely dispersed.
  • Example 2 In the reduction step of Example 1, the cellulose concentration was 0.1 mass in the same manner as in Example 1 except that the amount of sodium borohydride used was 1/32 g with respect to 1 g of the oxidized cellulose fiber. % Dispersion (dispersion that remains unremoved even if undefibrated material is present). The results obtained by measuring the dispersion in the same manner as in Example 1 are shown in FIG. 1 (“NaBH 4 addition amount: 1/32 of the weight of the pulp” in FIG. 1). The light transmittance of the dispersion at a wavelength of 600 nm was 91.5%. Further, when it was confirmed whether or not birefringence was observed in the same manner as in Example 1, the birefringence was confirmed. Therefore, also in Example 2, it was shown that it is possible to finely disperse the cellulose fibers after the drying process.
  • “NaBH 4 addition amount: 1/64 of the weight of the pulp” uses the dispersion liquid of Example 1
  • “NaBH 4 addition amount: 1/32 of the weight of the pulp” uses the dispersion liquid of Example 2.
  • Used, “untreated” indicates the ultraviolet absorption spectrum of the cast film obtained using the dispersion of Comparative Example 1.
  • absorption at 235 nm derived from hexeneuronic acid groups was observed, so the absorbance per 1 ⁇ m thickness of the cast film was The value obtained by correcting and further multiplying the absorbance by 0.7 was defined as a “value corrected to the absorbance per 1 ⁇ m thickness of the cast film”.
  • the absorbance at 260 nm corresponds to the amount of aldehyde groups
  • the absorbance at 290 nm corresponds to the amount of ketone groups.
  • Table 1 in Comparative Example 1 in which the reduction process was not performed, the absorbance at 260 nm and the absorbance at 290 nm were 0.050 or more, whereas Example 1 in which the reduction process was performed and 2, the absorbance at 260 nm and the absorbance at 290 nm were both 0.020 or less. Therefore, it was shown that in order to finely disperse the cellulose fibers after the drying step, the absorbance at 260 nm and the absorbance at 290 nm must both be 0.020 or less.
  • Example 3 Undried TEMPO oxidized cellulose (manufactured by Nippon Paper Industries Co., Ltd., carboxyl group amount; 1.45 mmol / g, aldehyde group amount; 0.05 mmol / g, solid content rate: 15.95%) was measured for an absolute dry weight of 2 g. And dispersed in 200 mL of distilled water. The pH of this dispersion was adjusted to 10 with a 0.05 M aqueous sodium hydroxide solution, and 0.5 g of sodium borohydride was added to initiate the reaction. The reaction was carried out for 24 hours with stirring at room temperature.
  • the reduced oxidized cellulose fibers were dried at 105 ° C. for 3 hours or more using an oven to obtain reduced oxidized cellulose fibers having a solid content of 100% by mass.
  • Example 2-1 Light transmission and birefringence
  • 40 mL of a dispersion diluted with water so that the cellulose concentration was 0.1% by mass was centrifuged in a 50 mL container (made of polypropylene; Corning Then, the fiber was defibrated for 2 minutes at 7,500 rpm using a double cylinder type homogenizer (blade diameter 1.5 cm, NS-56 manufactured by Microtech Nichion Co., Ltd.).
  • the defibrating process with the double cylindrical homogenizer After the defibrating process with the double cylindrical homogenizer, it is defibrated with an ultrasonic homogenizer (Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz) for 8 minutes while immediately cooling the surroundings with ice water. Processed. In the sonication, in order to avoid the temperature rise of the dispersion, a cycle of sonicating for 2 minutes and allowing to cool for 1 minute is repeated so that the total sonication time becomes 8 minutes. went. With the above treatment, a dispersion liquid (including undefibrated parts) having a cellulose concentration of 0.1% by mass was obtained.
  • an ultrasonic homogenizer Natural Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz
  • FIG. 5 shows the results of measuring the light transmittance of each dispersion in the same manner as in Example 1.
  • the light transmittance at a wavelength of 600 nm of each of the dispersions was 91.1% for the dispersion of Example 3, whereas it was 68.7% for the dispersion of Comparative Example 2.
  • each said dispersion liquid an undisentangled part is removed by centrifugation, the dispersion liquid of supernatant is poured into a petri dish, dried for 5 days in a dryer at 40 ° C., and peeled from the petri dish to thereby remove the cellulose nanofiber film. Obtained (film thickness: 5 to 10 ⁇ m).
  • the obtained film was heat-treated with a dryer at 105 ° C. for 3 hours. Thereafter, an ultraviolet absorption spectrum (range of 190 nm to 400 nm) of the heat-treated film was measured. The results are shown in Table 2 and FIG.
  • Examples of the aspect of the present invention include the following. ⁇ 1> An oxidation step in which an oxidized cellulose fiber is obtained by oxidizing a cellulosic raw material in a reaction solution containing an N-oxyl compound and a co-oxidant; A reduction step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers; A drying step of drying the reduced oxidized cellulose fiber, The cellulose fiber obtained by drying the reduced oxidized cellulose fiber can be finely dispersed in a solvent.
  • ⁇ 2> The method for producing a cellulose fiber according to ⁇ 1>, further including a further oxidation step of further oxidizing the oxidized cellulose fiber obtained in the oxidation step with sodium chlorite between the oxidation step and the reduction step. .
  • ⁇ 3> The method for producing a cellulose fiber according to any one of ⁇ 1> to ⁇ 2>, wherein the pH of the reaction solution in the reduction step is 9 to 10.
  • ⁇ 5> Cellulose fibers that can be finely dispersed in a solvent after drying, After drying the cellulose fiber at 105 ° C.
  • the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container.
  • the light transmittance at a wavelength of 600 nm of the dispersion is It is a cellulose fiber characterized by having a birefringence of 80% or more. ⁇ 6> After drying the cellulose fiber at 105 ° C.
  • the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container.
  • defibrating for 2 minutes at 7,500 rpm using a double cylindrical homogenizer defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, and then undefibrated cellulose fibers in the dispersion
  • a cast film is prepared using the dispersion obtained by removing, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film.
  • ⁇ 7> At least one of the cellulose fiber produced by the method for producing a cellulose fiber according to any one of ⁇ 1> to ⁇ 3> and the cellulose fiber according to any one of ⁇ 4> to ⁇ 6>. It is a manufacturing method of the fine cellulose fiber dispersion characterized by including the dispersion
  • ⁇ 8> A fine cellulose fiber dispersion produced by the production method according to ⁇ 7>.
  • ⁇ 9> A fine cellulose fiber dispersion in which cellulose fibers are finely dispersed in a solvent, The cellulose fiber is a cellulose fiber that can be finely dispersed in a solvent after drying, After drying the cellulose fiber at 105 ° C.
  • the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container.
  • the light transmittance at a wavelength of 600 nm of the dispersion is It is a fine cellulose fiber dispersion characterized by having a birefringence of 80% or more. ⁇ 10> After drying the cellulose fiber at 105 ° C.
  • the cellulose fiber is diluted with water to a concentration of 0.1% by mass to form a 40 mL dispersion, and the dispersion is placed in a 50 mL container.
  • defibrating for 2 minutes at 7,500 rpm using a double cylindrical homogenizer defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, and then undefibrated cellulose fibers in the dispersion
  • a cast film is prepared using the dispersion obtained by removing, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film.
  • ⁇ 11> Dry to dry at least one of the fine cellulose fiber dispersion produced by the production method according to ⁇ 7> and the fine cellulose fiber dispersion according to any one of ⁇ 8> to ⁇ 10>. It is a manufacturing method of the fine cellulose fiber characterized by including a process. ⁇ 12> A fine cellulose fiber produced by the production method according to ⁇ 11>. ⁇ 13> At least one of the fine cellulose fiber dispersion produced by the production method according to ⁇ 7> and the fine cellulose fiber dispersion according to any one of ⁇ 8> to ⁇ 10> is formed into a predetermined shape. It is a manufacturing method of the fine cellulose fiber molded object characterized by removing a liquid component, hold
  • ⁇ 14> A fine cellulose fiber molded article produced by the production method according to ⁇ 13>.
  • ⁇ 15> A fine cellulose fiber dispersion produced by the production method according to ⁇ 7>, and at least one of the fine cellulose fiber dispersion according to any one of ⁇ 8> to ⁇ 10>, and a composite
  • a method for producing a fine cellulose fiber composite comprising using a dispersion obtained by mixing a liquid material containing a material.
  • ⁇ 16> A fine cellulose fiber composite produced by the production method according to ⁇ 15>.

Abstract

Provided is, for example, a method for producing cellulose fibers, which includes: an oxidation step of obtaining cellulose oxide fibers by oxidizing a cellulosic raw material in a reaction liquid that contains an N-oxyl compound and a co-oxidizing agent; a reduction step of obtaining reduced cellulose oxide fibers by reducing the cellulose oxide fibers in a reaction liquid that contains a reducing agent; and a drying step of drying the reduced cellulose oxide fibers. Cellulose fibers obtained by drying the reduced cellulose oxide fibers can be finely dispersed in a solvent.

Description

セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法Cellulose fiber and production method thereof, fine cellulose fiber dispersion and production method thereof, and production method of fine cellulose fiber
 本発明は、一旦乾燥した後でも溶媒に微細分散させることが可能なセルロース繊維、それを原料とする微細セルロース繊維分散体、及びその微細セルロース繊維、その微細セルロース繊維からなる成形体、並びにこれらの製造方法に関する。 The present invention relates to a cellulose fiber that can be finely dispersed in a solvent even after being dried, a fine cellulose fiber dispersion using the cellulose fiber as a raw material, a fine cellulose fiber thereof, a molded article comprising the fine cellulose fiber, and these It relates to a manufacturing method.
 ナノサイズの材料である微細セルロース繊維(以下、「セルロースナノファイバー」と称することがある)は、天然に多量に存在するバイオマスであるセルロースをN-オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより酸化させ、前記酸化させたセルロース(以下、「酸化セルロース繊維」と称することがある)を水中でせん断力を与えるような機械的な解繊処理で微細分散(以下、「ナノ分散」と称することがある)して得られる。前記酸化セルロース繊維をナノ分散させた酸化セルロースナノファイバー分散体はそのまま、あるいは他の材料と複合化したゲル状で増粘材として利用できる。また、酸化セルロースナノファイバー分散体をそのまま、あるいは他の材料と複合化して乾燥することで、シート状、フィルム状、発泡体状、エアロゲル状等の材料を製造することができる(例えば、特許文献1参照)。前記酸化セルロースナノファイバーは、均一の幅で、高アスペクト比のバイオ系ナノファイバーであり、大比表面積、高強度、及び導入されたカルボキシル基による水中での優れたナノ分散性を有するという優れた特徴がある。そのため、例えば、酸素バリア膜、汎用プラスチックの補強材、医療用材、細胞培養基材、触媒担体、吸着剤、分離材などの様々な分野への利用が期待されている。 Fine cellulose fibers (hereinafter sometimes referred to as “cellulose nanofibers”), which are nano-sized materials, use cellulose, an abundantly existing biomass, as an oxidation catalyst using N-oxyl compounds as an oxidation catalyst. And then finely dispersed (hereinafter referred to as “nanodispersion”) by mechanical fibrillation treatment that imparts a shearing force in water to the oxidized cellulose (hereinafter sometimes referred to as “oxidized cellulose fiber”). Sometimes obtained). The oxidized cellulose nanofiber dispersion in which the oxidized cellulose fibers are nano-dispersed can be used as a thickening agent as it is or in the form of a gel combined with other materials. In addition, a material such as a sheet, a film, a foam, and an airgel can be produced by drying the oxidized cellulose nanofiber dispersion as it is or by combining it with another material (for example, Patent Documents). 1). The oxidized cellulose nanofiber is a bio-based nanofiber with a uniform width and a high aspect ratio, and has an excellent nanodispersibility in water due to a large specific surface area, high strength, and introduced carboxyl groups. There are features. Therefore, it is expected to be used in various fields such as an oxygen barrier film, a general-purpose plastic reinforcing material, a medical material, a cell culture substrate, a catalyst carrier, an adsorbent, and a separating material.
 しかしながら、前記酸化セルロースナノファイバーの水分散液(以下、「酸化セルロースナノファイバー分散体」、又は「セルロースナノファイバー分散体」と称することがある)は、固形分濃度が0.1質量%~5質量%と非常に低い。そのため、酸化セルロースナノファイバーを用いた製品を製造するために用いる前記酸化セルロースナノファイバー分散体を輸送する際には、大量の水を運ぶこととなり輸送に係る費用が高いという問題がある。また、前記酸化セルロースナノファイバー分散体を保存する際には、微生物対策として、冷蔵保存をしたり、防腐剤処理を行ったりしなければならないという問題もある。 However, the aqueous dispersion of oxidized cellulose nanofibers (hereinafter sometimes referred to as “oxidized cellulose nanofiber dispersion” or “cellulose nanofiber dispersion”) has a solid content concentration of 0.1% by mass to 5%. Mass% is very low. Therefore, when transporting the oxidized cellulose nanofiber dispersion used for producing a product using the oxidized cellulose nanofiber, there is a problem that a large amount of water is transported and the cost for transport is high. In addition, when the oxidized cellulose nanofiber dispersion is stored, there is a problem that it must be refrigerated or treated with a preservative as a countermeasure against microorganisms.
 前記問題への対応策としては、前記酸化セルロース繊維を乾燥させ、固形分濃度を90%以上に高めたものを輸送することが考えられる。しかしながら、凍結乾燥などの穏やかな乾燥方法を用いた場合であっても、一旦乾燥してしまうと、過酷な分散処理条件を行ってもセルロースナノファイバー分散体を製造することができないという問題がある。
 前記ナノ分散ができないと、前記酸化セルロースナノファイバーの均一超極細幅、高アスペクト比、ゲル及びフィルムの透明性という素材としての特徴は発現しないという問題がある。
As a countermeasure to the above problem, it is conceivable to transport the oxidized cellulose fiber dried and having a solid content concentration increased to 90% or more. However, even when a gentle drying method such as freeze drying is used, once dried, there is a problem that a cellulose nanofiber dispersion cannot be produced even under severe dispersion treatment conditions. .
If the nano-dispersion is not possible, there is a problem that the characteristics of the oxidized cellulose nanofiber such as uniform ultra-fine width, high aspect ratio, gel and film transparency are not exhibited.
 別の対応策としては、解繊し、ナノ分散処理する前の繊維状の酸化セルロース(幅が0.01mm~0.06mm、長さが0.1mm~5mmで、酸化処理前の木材セルロース繊維と同じ形状を保っている)を、洗浄及びろ過工程で圧搾し、固形分濃度を10%~40%程度に上げた(すなわち水を90%~60%含有した)未乾燥の状態で保存、運搬することが考えられる。前記未乾燥状態の酸化セルロースであれば、水中での解繊処理で常にセルロースナノファイバー分散体を製造することができる。しかし、未乾燥状態でも依然として水分量は多く、輸送にかかる費用が高いという問題や、保存中の防腐対策が必要という問題がある。 As another countermeasure, fibrous oxidized cellulose before defibration and nano-dispersion treatment (width 0.01 mm to 0.06 mm, length 0.1 mm to 5 mm, wood cellulose fiber before oxidation treatment) Squeezed in the washing and filtration process, and the solid concentration was raised to about 10% to 40% (that is, containing 90% to 60% water) in an undried state. It is conceivable to carry. If it is the said undried oxycellulose, a cellulose nanofiber dispersion can always be manufactured by the fibrillation process in water. However, there is still a problem that the amount of water is still large even in an undried state, and the cost for transportation is high, and that preservative measures during storage are necessary.
 また、これまでに、水への再分散が容易である増粘用セルロース繊維の製法として、酸化後のセルロースを、水以外の極性溶媒を50~75%含有する水性洗浄液を用い、かつpH5.5以上の条件下で精製後、乾燥させる方法が提案されている(例えば、特許文献2参照)。しかしながら、前記提案で得られる増粘用セルロース繊維は、分散液の透明度が低く、十分に分散できているとはいえず、また、極性溶媒を用いて洗浄及び乾燥を繰り返し行うことは、環境負荷の観点や、コスト面から実用化に適しているとはいえないという問題がある。 In addition, as a method for producing a thickening cellulose fiber that can be easily redispersed in water, an aqueous cleaning solution containing 50 to 75% of a polar solvent other than water and a cellulose after oxidation has been used, and a pH of 5. A method of drying after purification under conditions of 5 or more has been proposed (for example, see Patent Document 2). However, the thickening cellulose fiber obtained by the above proposal has low transparency of the dispersion and cannot be said to be sufficiently dispersed, and repeated washing and drying using a polar solvent is an environmental burden. From the viewpoint of cost and cost, there is a problem that it cannot be said that it is suitable for practical use.
 したがって、一旦乾燥させた場合であっても、未乾燥状態から調製した場合と同様に溶媒に微細分散させることができ、輸送に係る費用の低減が可能で、保存性に優れる酸化セルロース繊維を環境負荷が小さく、容易に製造することができる製造方法の速やかな開発が強く求められているのが現状である。 Therefore, even if it is once dried, it can be finely dispersed in a solvent in the same manner as when prepared from an undried state, and the cost for transportation can be reduced. The current situation is that there is a strong demand for rapid development of a manufacturing method that can be easily manufactured with a small load.
特許第4998981号公報Japanese Patent No. 4998981 特開2013-104133号公報JP 2013-104133 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、一旦乾燥させた場合であっても、未乾燥状態から調製した場合と同様に溶媒に微細分散させることができ、輸送に係る費用の低減が可能で、保存性に優れるセルロース繊維、前記セルロース繊維を環境負荷が小さく、容易に製造することができるセルロース繊維の製造方法、前記セルロース繊維を用いた微細セルロース繊維分散体及びその製造方法、並びに前記微細セルロース繊維分散体を用いた微細セルロース繊維の製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. In other words, the present invention is a cellulose that can be finely dispersed in a solvent, even when it is once dried, as in the case of being prepared from an undried state, can reduce transportation costs, and has excellent storage stability. Fiber, manufacturing method of cellulose fiber which can easily manufacture cellulose fiber with small environmental load, fine cellulose fiber dispersion using the cellulose fiber and manufacturing method thereof, and using the fine cellulose fiber dispersion It aims at providing the manufacturing method of a fine cellulose fiber.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> N-オキシル化合物、及び共酸化剤を含む反応液中でセルロース系原料を酸化して酸化セルロース繊維を得る酸化工程と、
 前記酸化セルロース繊維を、還元剤を含む反応液中で還元させ、還元型酸化セルロース繊維を得る還元工程と、
 前記還元型酸化セルロース繊維を乾燥する乾燥工程とを含み、
 前記還元型酸化セルロース繊維を乾燥して得られたセルロース繊維が、溶媒に微細分散可能であることを特徴とするセルロース繊維の製造方法である。
 <2> 前記<1>に記載の製造方法により製造され、溶媒に微細分散可能であることを特徴とするセルロース繊維である。
 <3> 乾燥後、溶媒に微細分散可能なセルロース繊維であって、
 前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とするセルロース繊維である。
 <4> 前記<1>に記載のセルロース繊維の製造方法で製造されたセルロース繊維、及び前記<2>から<3>のいずれかに記載のセルロース繊維の少なくともいずれかを溶媒に分散させる分散工程を含むことを特徴とする微細セルロース繊維分散体の製造方法である。
 <5> セルロース繊維が溶媒に微細分散された微細セルロース繊維分散体であって、
 前記セルロース繊維が、乾燥後、溶媒に微細分散可能なセルロース繊維であり、
 前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とする微細セルロース繊維分散体である。
 <6> 前記<4>に記載の製造方法により製造された微細セルロース繊維分散体、及び前記<5>に記載の微細セルロース繊維分散体の少なくともいずれかを乾燥する乾燥工程を含むことを特徴とする微細セルロース繊維の製造方法である。
Means for solving the problems are as follows. That is,
<1> An oxidation step in which an oxidized cellulose fiber is obtained by oxidizing a cellulosic raw material in a reaction solution containing an N-oxyl compound and a co-oxidant;
A reduction step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers;
A drying step of drying the reduced oxidized cellulose fiber,
The cellulose fiber obtained by drying the reduced oxidized cellulose fiber can be finely dispersed in a solvent.
<2> A cellulose fiber produced by the production method according to <1> and capable of being finely dispersed in a solvent.
<3> Cellulose fibers that can be finely dispersed in a solvent after drying,
After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is It is a cellulose fiber characterized by having a birefringence of 80% or more.
<4> A dispersion step of dispersing in a solvent at least one of the cellulose fiber produced by the method for producing a cellulose fiber according to <1> and the cellulose fiber according to any one of <2> to <3>. It is a manufacturing method of the fine cellulose fiber dispersion characterized by including.
<5> A fine cellulose fiber dispersion in which cellulose fibers are finely dispersed in a solvent,
The cellulose fiber is a cellulose fiber that can be finely dispersed in a solvent after drying,
After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is It is a fine cellulose fiber dispersion characterized by having a birefringence of 80% or more.
<6> A drying step of drying at least one of the fine cellulose fiber dispersion produced by the production method according to <4> and the fine cellulose fiber dispersion described in <5>, This is a method for producing fine cellulose fibers.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、一旦乾燥させた場合であっても、未乾燥状態から調製した場合と同様に溶媒に微細分散させることができ、輸送に係る費用の低減が可能で、保存性に優れるセルロース繊維、前記セルロース繊維を環境負荷が小さく、容易に製造することができるセルロース繊維の製造方法、前記セルロース繊維を用いた微細セルロース繊維分散体及びその製造方法、並びに前記微細セルロース繊維分散体を用いた微細セルロース繊維の製造方法を提供することができる。 According to the present invention, the conventional problems can be solved and the object can be achieved, and even if it is once dried, it can be finely dispersed in a solvent in the same manner as when prepared from an undried state. Cellulose fibers that can be reduced in transportation costs and have excellent storage stability, a cellulose fiber production method that can easily produce the cellulose fibers with a low environmental load, and fine cellulose using the cellulose fibers A fiber dispersion and a method for producing the same, and a method for producing fine cellulose fibers using the fine cellulose fiber dispersion can be provided.
図1は、実施例1及び2、並びに比較例1の分散液の光透過度を測定した結果を示すグラフである。FIG. 1 is a graph showing the results of measuring the light transmittance of the dispersions of Examples 1 and 2 and Comparative Example 1. 図2は、実施例1及び比較例1の分散液の光透過の様子を確認した写真である。FIG. 2 is a photograph confirming the state of light transmission of the dispersions of Example 1 and Comparative Example 1. 図3は、実施例1及び比較例1の分散液の複屈折を観察した写真である。FIG. 3 is a photograph observing the birefringence of the dispersions of Example 1 and Comparative Example 1. 図4は、試験例1の紫外線吸収スペクトルを測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring the ultraviolet absorption spectrum of Test Example 1. 図5は、試験例2-1における分散液の光透過度を測定した結果を示すグラフである。FIG. 5 is a graph showing the results of measuring the light transmittance of the dispersion in Test Example 2-1. 図6は、試験例2-2の紫外線吸収スペクトルを測定した結果を示すグラフである。FIG. 6 is a graph showing the results of measuring the ultraviolet absorption spectrum of Test Example 2-2.
(セルロース繊維及びその製造方法)
 本発明のセルロース繊維は、本発明のセルロース繊維の製造方法により好適に製造することができる。以下、本発明のセルロース繊維の製造方法の説明と併せて、本発明のセルロース繊維を説明する。
(Cellulose fiber and production method thereof)
The cellulose fiber of this invention can be suitably manufactured with the manufacturing method of the cellulose fiber of this invention. Hereinafter, the cellulose fiber of this invention is demonstrated with description of the manufacturing method of the cellulose fiber of this invention.
<セルロース繊維の製造方法>
 本発明のセルロース繊維の製造方法は、酸化工程と、還元工程と、乾燥工程とを少なくとも含み、必要に応じて更に追酸化工程などのその他の工程を含む。
<Method for producing cellulose fiber>
The method for producing a cellulose fiber of the present invention includes at least an oxidation step, a reduction step, and a drying step, and further includes other steps such as a further oxidation step as necessary.
<<酸化工程>>
 前記酸化工程は、N-オキシル化合物、及び共酸化剤を含む反応液中でセルロース系原料を酸化して酸化セルロース繊維を得る工程である。
<< Oxidation process >>
The oxidation step is a step of obtaining oxidized cellulose fibers by oxidizing a cellulosic material in a reaction solution containing an N-oxyl compound and a co-oxidant.
-セルロース系原料-
 前記セルロース系原料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、バクテリアセルロース、ホヤから単離されるセルロース、海草から単離されるセルロースなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記セルロース系原料は、叩解等の表面積を高める処理を施したものであってもよい。
-Cellulosic materials-
The cellulose-based raw material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, softwood pulp, hardwood pulp, cotton pulp such as cotton linter or cotton lint, straw pulp, bagasse pulp, etc. Non-wood pulp, bacterial cellulose, cellulose isolated from sea squirt, cellulose isolated from seaweed, and the like. These may be used individually by 1 type and may use 2 or more types together.
The cellulosic material may be subjected to a treatment for increasing the surface area such as beating.
 前記反応液における前記セルロース系原料の分散媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水などが挙げられる。
 前記反応液中における前記セルロース系原料の濃度としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as the dispersion medium of the said cellulose raw material in the said reaction liquid, According to the objective, it can select suitably, For example, water etc. are mentioned.
There is no restriction | limiting in particular as a density | concentration of the said cellulose raw material in the said reaction liquid, According to the objective, it can select suitably.
-N-オキシル化合物-
 前記N-オキシル化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、「「Cellulose」Vol.10、2003年、第335ページから341ページにおけるI. Shibata及びA. Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事」に記載されている化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記N-オキシル化合物の具体例としては、2,2,6,6-テトラメチルピペリジン-N-オキシル(以下、「TEMPO」と称することがある)、4-アセトアミドTEMPO、4-カルボキシ-TEMPO、4-フォスフォノオキシ-TEMPOなどが挙げられる。
 前記反応液における前記N-オキシル化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、触媒量などが挙げられる。
-N-oxyl compound-
The N-oxyl compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ““ Cellulose ”Vol. 10, 2003, pages 335-341. Shibata and A.I. Examples include the compounds described in “The Catalytic Oxidation of Cellulose Using TEMPO Derivatives: HPSEC and NMR Analysis of Oxidation Products” by Isogai. These may be used individually by 1 type and may use 2 or more types together.
Specific examples of the N-oxyl compound include 2,2,6,6-tetramethylpiperidine-N-oxyl (hereinafter sometimes referred to as “TEMPO”), 4-acetamido TEMPO, 4-carboxy-TEMPO, 4-phosphonooxy-TEMPO and the like can be mentioned.
The content of the N-oxyl compound in the reaction solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a catalyst amount.
-共酸化剤-
 前記共酸化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、次亜ハロゲン酸又はその塩、亜ハロゲン酸又はその塩、過ハロゲン酸又はその塩、過酸化水素、過有機酸など挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記共酸化剤の具体例としては、次亜塩素酸ナトリウム、次亜臭素酸ナトリウムなどが挙げられる。
 前記反応液における前記共酸化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
-Co-oxidizer-
The co-oxidant is not particularly limited and may be appropriately selected depending on the intended purpose. For example, hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide And perorganic acids. These may be used individually by 1 type and may use 2 or more types together.
Specific examples of the co-oxidant include sodium hypochlorite and sodium hypobromite.
There is no restriction | limiting in particular as content of the said co-oxidant in the said reaction liquid, According to the objective, it can select suitably.
-その他の成分-
 前記反応液は、上述したセルロース系原料、N-オキシル化合物、及び共酸化剤以外のその他の成分を含んでいてもよい。
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化物、ヨウ化物、又はこれらの混合物などが挙げられる。
-Other ingredients-
The reaction liquid may contain other components other than the above-described cellulose-based material, N-oxyl compound, and co-oxidant.
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a bromide, iodide, or a mixture thereof etc. are mentioned.
--臭化物、ヨウ化物、又はこれらの混合物--
 前記臭化物、及びヨウ化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化アルカリ金属、ヨウ化アルカリ金属などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記反応液における前記臭化物、ヨウ化物、又はこれらの混合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
--Bromide, iodide, or a mixture thereof--
There is no restriction | limiting in particular as said bromide and iodide, According to the objective, it can select suitably, For example, an alkali metal bromide, an alkali metal iodide, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as content of the said bromide, iodide, or these mixtures in the said reaction liquid, According to the objective, it can select suitably.
 前記酸化工程における、反応液のpH、反応温度、圧力、反応時間などの条件としては、特に制限はなく、目的に応じて適宜選択することができる。 The conditions such as pH of the reaction solution, reaction temperature, pressure, and reaction time in the oxidation step are not particularly limited and can be appropriately selected depending on the purpose.
-酸化セルロース繊維-
 前記酸化工程により得られる酸化セルロース繊維は、カルボキシル基量が0.8mmol/g~2.2mmol/g、アルデヒド基量が0.8mmol/g以下である。
 前記酸化セルロース繊維中のカルボキシル基量とアルデヒド基量は、「T.Saito及びA.Isogai、「TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions」、Biomacromolecules、Vol.5、1983~1989ページ、2004年」に記載されている方法に従い、亜塩素酸ナトリウムによる追酸化処理と電導度滴定によって測定することができる。
-Oxidized cellulose fiber-
The oxidized cellulose fiber obtained by the oxidation step has a carboxyl group content of 0.8 mmol / g to 2.2 mmol / g and an aldehyde group content of 0.8 mmol / g or less.
The amount of carboxyl group and aldehyde group in the oxidized cellulose fiber is determined according to “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cellulose. The effect of oxidative conditions in chemistry and chemistry. Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”, and can be measured by an additional oxidation treatment with sodium chlorite and conductivity titration.
 また、前記酸化工程の条件を選択することで、後述の追酸化工程を行わなくてもアルデヒド基を含まない酸化セルロース繊維を得ることができる。
 前記アルデヒド基含まない酸化工程の条件としては、特に制限はなく、例えば、「S.Saito,M.Hirota,N.Tamura,S.Kimura,H.Fukuzumi,L.Heux,A.Isogai、「Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions」、Biomacromolecules、Vol.10、1992~1996ページ、2009年」に記載されている条件を適宜選択することができる。
Moreover, by selecting the conditions for the oxidation step, an oxidized cellulose fiber that does not contain an aldehyde group can be obtained without performing a later-described additional oxidation step.
The conditions for the oxidation step not containing the aldehyde group are not particularly limited. For example, “S. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai,“ Individualization. of nano-sized plant cells fibers by direct surface carboxylating using TEMPO catalyst unneutral conditions, Biomacromolecules, Vol. 10, pp. 1992-1996, 2009 ”can be appropriately selected.
<<<追酸化工程>>>
 前記酸化工程と、後述する還元工程との間に、追酸化工程を含んでいてもよい。
 前記追酸化工程は、前記酸化工程で得られた酸化セルロース繊維を亜塩素酸ナトリウムにより更に酸化する工程である。
 前記追酸化工程の条件としては、特に制限はなく、例えば、「T.Saito及びA.Isogai、「TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions」、Biomacromolecules、Vol.5、1983~1989ページ、2004年」に記載されている条件を適宜選択することができる。
 前記追酸化工程により、C6位に微量生成したアルデヒド基をカルボキシル基に酸化した、アルデヒド基を含まない酸化セルロース繊維を得ることができる。
<<< Additional oxidation process >>>
A further oxidation step may be included between the oxidation step and a reduction step described later.
The additional oxidation step is a step of further oxidizing the oxidized cellulose fiber obtained in the oxidation step with sodium chlorite.
The conditions for the additional oxidation process are not particularly limited. For example, “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cellulose chemistry and the conditions of oxidative conditions for chemistry. ", Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”can be appropriately selected.
Oxidized cellulose fibers not containing an aldehyde group can be obtained by oxidizing the aldehyde group generated in a small amount at the C6 position to a carboxyl group by the additional oxidation step.
 前記酸化工程で得られた酸化セルロース繊維、あるいは前記追酸化工程で得られた酸化セルロース繊維は、水による吸引ろ過洗浄をした後に、後述する還元工程に用いてもよい。
 前記酸化セルロース繊維は、この段階ではナノファイバー単位までバラバラに分散しているわけではないため、通常の水洗-吸引ろ過洗浄方法により洗浄することができる。
 前記洗浄方法の具体例としては、吸引ろ過あるいは遠心分離の少なくともいずれかで水洗、洗浄する方法が挙げられる。前記洗浄の回数は、1回であってもよいし、複数回であってもよい。前記洗浄により、未反応の共酸化剤や各種副生成物を除去することができる。
The oxidized cellulose fiber obtained in the oxidation step or the oxidized cellulose fiber obtained in the additional oxidation step may be used in a reduction step described later after suction filtration washing with water.
Since the oxidized cellulose fibers are not dispersed evenly to the nanofiber unit at this stage, they can be washed by a normal water washing-suction filtration washing method.
Specific examples of the washing method include a method of washing and washing with at least one of suction filtration and centrifugation. The number of times of washing may be one time or a plurality of times. The unreacted cooxidant and various byproducts can be removed by the washing.
<<還元工程>>
 前記還元工程は、前記酸化セルロース繊維を、還元剤を含む反応液中で還元させ、還元型酸化セルロース繊維を得る工程である。
 前記酸化工程では、副反応として、前記酸化セルロース繊維中のC2位及びC3位にケトン基が生成する。また弱アルカリ性での酸化反応条件を用いた場合では、上記のケトン基に加えてC6位にアルデヒド基が微量生成する。なお、前記酸化工程を弱酸性~中性でのTEMPO、NaClO、及びNaClOを用いて行った場合には、酸化セルロース繊維のC6位のアルデヒドは存在しない。また、前記酸化工程を弱アルカリ性でのTEMPO、NaBr、及びNaClOを用いて行い、次いで、前記追酸化工程を行った場合にも、酸化セルロース繊維のC6位のアルデヒド基は存在しない。
 前記還元工程では、前記ケトン基及び/又はアルデヒド基の少なくとも一部をアルコール性水酸基に変換する。即ち、前記還元工程で得られる還元型酸化セルロース繊維では、前記ケトン基の量、あるいは前記ケトン基とアルデヒド基の両方の量が前記酸化セルロース繊維における量よりも少なくなる。
<< Reduction process >>
The reduction step is a step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers.
In the oxidation step, a ketone group is generated at the C2 position and the C3 position in the oxidized cellulose fiber as a side reaction. In addition, when weakly alkaline oxidation reaction conditions are used, a small amount of an aldehyde group is generated at the C6 position in addition to the above-described ketone group. In addition, when the oxidation step is performed using TEMPO, NaClO, and NaClO 2 that are weakly acidic to neutral, there is no aldehyde at the C6 position of the oxidized cellulose fiber. Further, when the oxidation step is performed using TEMPO, NaBr, and NaClO with weak alkalinity, and then the additional oxidation step is performed, the aldehyde group at the C6 position of the oxidized cellulose fiber does not exist.
In the reduction step, at least a part of the ketone group and / or aldehyde group is converted to an alcoholic hydroxyl group. That is, in the reduced oxidized cellulose fiber obtained in the reduction step, the amount of the ketone group or the amount of both the ketone group and the aldehyde group is less than the amount in the oxidized cellulose fiber.
-酸化セルロース繊維-
 前記酸化セルロース繊維は、上述した酸化工程で得られた酸化セルロース繊維である。
 前記反応液中における前記酸化セルロース繊維の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
-Oxidized cellulose fiber-
The oxidized cellulose fiber is an oxidized cellulose fiber obtained by the oxidation process described above.
There is no restriction | limiting in particular as content of the said oxidized cellulose fiber in the said reaction liquid, According to the objective, it can select suitably.
-還元剤-
 前記還元剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水素化ホウ素ナトリウム、チオ尿素、ハイドロサルファイト、亜硫酸水素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化ホウ素リチウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記還元剤の中でも、選択的な反応性に優れる点で、水素化ホウ素ナトリウムが好ましい。
-Reducing agent-
The reducing agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, sodium borohydride, thiourea, hydrosulfite, sodium bisulfite, sodium cyanoborohydride, lithium borohydride Etc. These may be used individually by 1 type and may use 2 or more types together.
Among the reducing agents, sodium borohydride is preferable because of excellent selective reactivity.
 前記反応液における溶媒としては、水が好ましい。
 前記反応液における前記還元剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、絶乾1gの前記酸化セルロース繊維に対して、0.001g以上が好ましく、0.01g以上がより好ましい。
The solvent in the reaction solution is preferably water.
There is no restriction | limiting in particular as content of the said reducing agent in the said reaction liquid, Although it can select suitably according to the objective, 0.001g or more is preferable with respect to the said dry oxidized cellulose fiber, and 0 0.01 g or more is more preferable.
 前記反応液は、上述した酸化セルロース繊維、及び還元剤以外のその他の成分を含んでいてもよい。
 前記その他の成分としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
The said reaction liquid may contain other components other than the oxidized cellulose fiber mentioned above and a reducing agent.
The other components are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
-pH-
 前記反応液のpHとしては、特に制限はなく、目的に応じて適宜選択することができるが、7~11が好ましく、9~10がより好ましく、10が特に好ましい。前記pHがより好ましい範囲内であると、前記還元型酸化セルロース繊維におけるケトン基の量、あるいはケトン基とアルデヒド基の量をより少なくすることができ、前記pHが特に好ましい範囲であると、前記還元剤の使用量を少なくした場合であっても、前記還元型酸化セルロース繊維におけるケトン基の量、あるいはケトン基とアルデヒド基の量を更に少なくすることができる点で、有利である。
-PH-
The pH of the reaction solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 7 to 11, more preferably 9 to 10, and particularly preferably 10. When the pH is in a more preferable range, the amount of ketone groups or the amount of ketone groups and aldehyde groups in the reduced oxidized cellulose fiber can be reduced, and when the pH is in a particularly preferable range, Even when the amount of reducing agent used is reduced, it is advantageous in that the amount of ketone groups or the amount of ketone groups and aldehyde groups in the reduced oxidized cellulose fiber can be further reduced.
 前記還元工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4℃~40℃とすることができる。
 前記還元工程における圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、常圧とすることができる。
 前記還元工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上が好ましく、5時間以上がより好ましい。
 前記還元工程は、前記反応液を撹拌しながら行うことが好ましい。
There is no restriction | limiting in particular as reaction temperature in the said reduction | restoration process, According to the objective, it can select suitably, For example, it can be 4 to 40 degreeC.
There is no restriction | limiting in particular as a pressure in the said reduction | restoration process, According to the objective, it can select suitably, For example, it can be set as a normal pressure.
There is no restriction | limiting in particular as reaction time in the said reduction | restoration process, Although it can select suitably according to the objective, 1 hour or more is preferable and 5 hours or more are more preferable.
The reduction step is preferably performed while stirring the reaction solution.
 前記還元工程で得られた還元型酸化セルロース繊維は、洗浄した後に後述する乾燥工程に用いることが好ましい。
 前記還元型酸化セルロース繊維は、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の洗浄方法により洗浄することができる。
 前記洗浄方法の具体例としては、上述の酸化工程で記載した方法と同様の方法が挙げられる。
The reduced-type oxidized cellulose fiber obtained in the reduction step is preferably used in a drying step described later after washing.
The reduced oxidized cellulose fibers are not dispersed evenly to the nanofiber unit at this stage, and can be washed by a normal washing method.
Specific examples of the cleaning method include the same methods as those described in the above oxidation step.
<<乾燥工程>>
 前記乾燥工程は、前記還元型酸化セルロース繊維を乾燥する工程である。
<< Drying process >>
The drying step is a step of drying the reduced oxidized cellulose fiber.
 前記乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オーブン乾燥機を用いた乾燥方法、凍結乾燥法、噴霧乾燥法などが挙げられる。
 前記乾燥の条件としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as said drying method, According to the objective, it can select suitably, For example, the drying method using an oven dryer, the freeze-drying method, the spray-drying method etc. are mentioned.
The drying conditions are not particularly limited and may be appropriately selected depending on the purpose.
<<その他の工程>>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
<< Other processes >>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
<セルロース繊維>
 本発明のセルロース繊維は、上述した本発明のセルロース繊維の製造方法により好適に製造することができ、乾燥後でも溶媒に微細分散可能である。
 前記セルロース繊維の乾燥の程度としては、特に制限はなく、目的に応じて適宜選択することができる。
<Cellulose fiber>
The cellulose fiber of the present invention can be suitably produced by the above-described method for producing a cellulose fiber of the present invention, and can be finely dispersed in a solvent even after drying.
There is no restriction | limiting in particular as a drying degree of the said cellulose fiber, According to the objective, it can select suitably.
-微細分散-
 前記セルロース繊維は、105℃で3時間乾燥した後に、固形分濃度0.01質量%~5質量%で水に微細分散可能である。
 前記105℃、3時間の乾燥条件は、一般にセルロース繊維の絶乾条件とされている。
-Fine dispersion-
The cellulose fibers can be finely dispersed in water at a solid content of 0.01% by mass to 5% by mass after drying at 105 ° C. for 3 hours.
The drying conditions at 105 ° C. for 3 hours are generally the absolutely dry conditions for cellulose fibers.
 前記セルロース繊維が溶媒に微細分散可能であるか否かは、例えば、以下のようにして確認することができる。 Whether or not the cellulose fiber can be finely dispersed in a solvent can be confirmed, for example, as follows.
--光透過度--
 前記セルロース繊維(前記乾燥工程で得られた還元型酸化セルロース繊維)を105℃で3時間乾燥する。前記乾燥後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とする。前記分散液を50mL容器の遠心分離管(ポリプロピレン製;コーニング社製)に入れ、そのまま二重円筒型ホモジナイザー(刃の直径1.5cm、マイクロテック・ニチオン社製 NS-56)を用いて7,500rpmで2分間解繊処理を行う。次いで、前記二重円筒型ホモジナイザーによる解繊処理後、そのまま直ちに氷水で容器の周りを冷やしながら超音波ホモジナイザー(日本精機社製 US-300T、プローブチップ7mm、出力300W、19.5kHz)で8分間解繊処理を行う。
 なお、前記超音波ホモジナイザーでの処理では、超音波処理による前記分散液の温度上昇を避けるために、2分間超音波処理して、1分間放置冷却するというサイクルを繰り返し、合計の超音波処理時間が8分間となるように行う。
 以上のようにして得られたセルロース繊維濃度が0.1質量%の分散液全体(未解繊物があったとしても除去しないままの分散液。完全ナノ分散化して未解繊物が存在しないこともある)の波長600nmにおける光透過度(以下、「透過率」と称することがある)を測定し、光透過度が80%以上であれば、微細分散された(ナノ分散された)と判断できる。光透過度が、80%に至らない場合には、微細分散されていない、未解繊成分を含有していると判断できる。
--- Light transmission ---
The cellulose fiber (reduced oxidized cellulose fiber obtained in the drying step) is dried at 105 ° C. for 3 hours. After the drying, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion. The dispersion was placed in a 50 mL centrifuge tube (polypropylene; manufactured by Corning) and used as it was by using a double-cylindrical homogenizer (blade diameter 1.5 cm, Microtech Nichion NS-56). Defibration treatment is performed at 500 rpm for 2 minutes. Next, after the defibrating treatment with the double cylinder type homogenizer, the surroundings of the container are immediately cooled with ice water as they are, and the ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz) is used for 8 minutes. Perform defibrating treatment.
In the treatment with the ultrasonic homogenizer, in order to avoid the temperature rise of the dispersion due to the ultrasonic treatment, a cycle of ultrasonic treatment for 2 minutes and standing and cooling for 1 minute is repeated, and the total ultrasonic treatment time is reached. For 8 minutes.
The whole dispersion having a cellulose fiber concentration of 0.1% by mass obtained as described above (a dispersion without removing any defibrated material. There is no defibrated material after complete nano-dispersion. Light transmittance at a wavelength of 600 nm (hereinafter sometimes referred to as “transmittance”) is measured, and if the light transmittance is 80% or more, it is finely dispersed (nanodispersed). I can judge. When the light transmittance does not reach 80%, it can be determined that the fiber contains undefibrated components that are not finely dispersed.
--複屈折--
 前記セルロース繊維が溶媒に微細分散可能であるか否かは、前記セルロース繊維の分散液が複屈折を示すか否かを確認することによっても、確認することができる。
 前記複屈折を確認する方法としては、例えば、前記「光透過度」の測定で調製した分散液(未解繊の残渣がある場合には、遠心分離処理により取り除いたもの)を直交偏光板の間に置き、複屈折が観察することにより確認することができる。
--- Birefringence--
Whether or not the cellulose fibers can be finely dispersed in a solvent can also be confirmed by confirming whether or not the cellulose fiber dispersion exhibits birefringence.
As a method for confirming the birefringence, for example, the dispersion prepared by the measurement of the “light transmittance” (if there is undefibrated residue, removed by centrifugation) is placed between orthogonal polarizing plates. It can be confirmed by observing the birefringence.
-ケトン基の量、アルデヒド基の量-
 本発明のセルロース繊維は、前記還元工程により、前記ケトン基の量、あるいはケトン基とアルデヒド基の量が、前記酸化工程あるいは追酸化工程後の酸化セルロース繊維における量よりも低減された還元型酸化セルロース繊維である。
 前記還元型酸化セルロース繊維は、前記乾燥工程を経ても水中での微細化(ナノ分散化)が可能である。
 前記還元型酸化セルロース繊維において、前記ケトン基の量、あるいはケトン基とアルデヒド基の量が低減されたことを確認する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、次に示す手順に従って、紫外線吸収スペクトルを測定することにより確認することができる。
-Amount of ketone group, amount of aldehyde group-
The cellulose fiber of the present invention is a reduced oxidation in which the amount of the ketone group or the amount of the ketone group and the aldehyde group is reduced by the reduction step compared to the amount in the oxidized cellulose fiber after the oxidation step or the additional oxidation step. Cellulose fiber.
The reduced oxidized cellulose fiber can be refined in water (nanodispersion) even after the drying step.
In the reduced oxidized cellulose fiber, the method for confirming that the amount of the ketone group or the amount of the ketone group and the aldehyde group is reduced is not particularly limited and can be appropriately selected according to the purpose. For example, it can be confirmed by measuring an ultraviolet absorption spectrum according to the following procedure.
--微細分散液の調製--
 前記セルロース繊維を105℃で3時間乾燥する。前記乾燥後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とする。前記分散液を50mL容器の遠心分離管(ポリプロピレン製;コーニング社製)に入れ、そのまま二重円筒型ホモジナイザー(刃の直径1.5cm、マイクロテック・ニチオン社製 NS-56)を用いて7,500rpmで2分間解繊処理を行う。次いで、前記二重円筒型ホモジナイザーによる解繊処理後、そのまま直ちに氷水で容器の周りを冷やしながら超音波ホモジナイザー(日本精機社製 US-300T、プローブチップ7mm、出力300W、19.5kHz)で8分間解繊処理を行い、セルロース繊維濃度が0.1質量%の分散液を調製する。
 なお、前記超音波ホモジナイザーでの処理では、超音波処理による前記分散液の温度上昇を避けるために、2分間超音波処理して、1分間放置冷却するというサイクルを繰り返し、合計の超音波処理時間が8分間となるように行う。
 また、前記分散液のセルロース繊維の濃度は、0.05質量%~0.5質量%の範囲で適宜選択することができる。
--- Preparation of fine dispersion-
The cellulose fiber is dried at 105 ° C. for 3 hours. After the drying, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion. The dispersion was placed in a 50 mL centrifuge tube (polypropylene; manufactured by Corning) and used as it was by using a double-cylindrical homogenizer (blade diameter 1.5 cm, Microtech Nichion NS-56). Defibration treatment is performed at 500 rpm for 2 minutes. Next, after the defibrating treatment with the double cylinder type homogenizer, the surroundings of the container are immediately cooled with ice water as they are, and the ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Co., Ltd., probe tip 7 mm, output 300 W, 19.5 kHz) is used for 8 minutes. A defibrating treatment is performed to prepare a dispersion having a cellulose fiber concentration of 0.1% by mass.
In the treatment with the ultrasonic homogenizer, in order to avoid the temperature rise of the dispersion due to the ultrasonic treatment, a cycle of ultrasonic treatment for 2 minutes and standing and cooling for 1 minute is repeated, and the total ultrasonic treatment time is reached. For 8 minutes.
The concentration of the cellulose fiber in the dispersion can be appropriately selected within the range of 0.05% by mass to 0.5% by mass.
 次いで、前記分散液における未解繊セルロース繊維を除去するために、前記容器のまま、12,000Gで10分間遠心分離機にて遠心分離を行って未解繊セルロース繊維を除去し、未解繊セルロース繊維を含まない上澄みを得る。なお、ここで、前記水中解繊処理した分散液の波長600nmの吸光度が80%未満であり、前記分散液を遠心分離し、除去した未解繊部分の重量割合が10%以上である場合には、前記分散液に含まれるセルロース繊維は、「水中ナノ分散化できない」と判断される。 Subsequently, in order to remove the undisentangled cellulose fibers in the dispersion, the undissolved cellulose fibers are removed by centrifuging with a centrifuge at 12,000 G for 10 minutes while leaving the container. A supernatant containing no cellulose fibers is obtained. Here, when the absorbance at a wavelength of 600 nm of the dispersion subjected to the defibration treatment in water is less than 80%, and the weight ratio of the undefibrated portion removed by centrifuging and removing the dispersion is 10% or more. The cellulose fiber contained in the dispersion is judged as “cannot be nanodispersed in water”.
--微細セルロース繊維フィルムの調製--
 前記上澄みをシャーレに注入し、乾燥機中で乾燥し、前記シャーレから剥離することで微細セルロース繊維フィルム(以下、「キャストフィルム」と称することがある)を得る。
 前記上澄みの注入量は、前記キャストフィルムの膜厚みが、5μm~50μmになるように調節する。前記キャストフィルムの密度は、1g/cm~1.6g/cmになる。前記キャストフィルムの膜厚みは、前記シャーレの大きさを調整することにより、調整してもよい。
 前記シャーレの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリスチレンなどが挙げられる。
 前記乾燥機の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、室温~50℃が好ましく、40℃がより好ましい。
 前記乾燥の期間としては、特に制限はなく、目的に応じて適宜選択することができるが、3日間~6日間が好ましく、5日間がより好ましい。
--- Preparation of fine cellulose fiber film--
The supernatant is poured into a petri dish, dried in a drier, and peeled from the petri dish to obtain a fine cellulose fiber film (hereinafter sometimes referred to as “cast film”).
The injection amount of the supernatant is adjusted so that the thickness of the cast film is 5 μm to 50 μm. The cast film has a density of 1 g / cm 3 to 1.6 g / cm 3 . The film thickness of the cast film may be adjusted by adjusting the size of the petri dish.
There is no restriction | limiting in particular as a material of the said petri dish, According to the objective, it can select suitably, For example, a polystyrene etc. are mentioned.
The temperature of the dryer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably room temperature to 50 ° C., more preferably 40 ° C.
The drying period is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 days to 6 days, and more preferably 5 days.
--紫外線吸収スペクトルの測定--
 前記キャストフィルムを105℃で3時間加熱した後、室温で冷却し、乾燥キャストフィルムとする。
 前記乾燥キャストフィルムの紫外線吸収スペクトル(190nm~400nmの範囲)を測定する。
--Measurement of UV absorption spectrum--
The cast film is heated at 105 ° C. for 3 hours and then cooled at room temperature to obtain a dry cast film.
The ultraviolet absorption spectrum (range of 190 nm to 400 nm) of the dried cast film is measured.
--ケトン基の量、あるいはケトン基とアルデヒド基の量が低減されたことの確認--
 前記紫外線吸収スペクトルの吸光度の値から、元のセルロース繊維中のアルデヒド基、及びケトン基の量を測定することができる。
 具体的には、元のセルロース繊維中にC2位、C3位のケトン基が存在すると、前記紫外線吸収スペクトルの290nmの吸光度が増加する。また、元のセルロース繊維中にアルデヒド基が存在すると前記紫外線吸収スペクトルの260nmの吸光度が増加する。一方、前記還元工程において、前記酸化セルロース繊維に添加する水素化ホウ素ナトリウム量が十分であれば(例えば、1gの酸化セルロース繊維に対して0.01gの水素化ホウ素ナトリウムを添加した場合)、得られるセルロース繊維におけるケトン基やアルデヒド基が存在せず、前記紫外線吸収スペクトルを測定したときに、290nmと260nmにピークは見られない。
 前記キャストフィルムの紫外線吸光度は、前記フィルムの厚さに影響する(フィルムの厚さが大きいと吸光度が大きくなり、薄いと小さくなる)。そこで、吸光度を前記フィルムの厚さで除すことで、規格化(条件を統一化)した吸光度で評価・比較できる。具体的には、290nmと260nmの吸光度を前記キャストフィルムの厚さ1μmあたりの吸光度に補正して評価・比較する。
 ただし、前記乾燥キャストフィルム中にヘキセンウロン酸基が存在する場合には、235nmに吸収が見られる。その場合には、260nmの吸光度が過大に評価されるため、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値に0.7を乗じて補正する。
 本発明のセルロース繊維は、前記乾燥キャストフィルムの波長290nm及び260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値(ただし、前記紫外線吸収スペクトルの測定において、ヘキセンウロン酸基に由来する235nmの吸収が見られた場合には、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値は、該補正した値に0.7を乗じた値とする)が、いずれも0.020以下であることが好ましい。
--- Confirmation that the amount of ketone groups or the amount of ketone groups and aldehyde groups has been reduced ---
The amount of aldehyde group and ketone group in the original cellulose fiber can be measured from the absorbance value of the ultraviolet absorption spectrum.
Specifically, when the C2-position and C3-position ketone groups are present in the original cellulose fiber, the absorbance at 290 nm of the ultraviolet absorption spectrum increases. Further, when an aldehyde group is present in the original cellulose fiber, the absorbance at 260 nm of the ultraviolet absorption spectrum increases. On the other hand, when the amount of sodium borohydride added to the oxidized cellulose fiber is sufficient in the reduction step (for example, when 0.01 g of sodium borohydride is added to 1 g of oxidized cellulose fiber) There are no ketone groups or aldehyde groups in the cellulose fiber, and no peak is observed at 290 nm and 260 nm when the ultraviolet absorption spectrum is measured.
The ultraviolet absorbance of the cast film affects the thickness of the film (the greater the thickness of the film, the greater the absorbance and the smaller the thickness). Therefore, by dividing the absorbance by the thickness of the film, it is possible to evaluate and compare with the normalized absorbance (standardized conditions). Specifically, the absorbance at 290 nm and 260 nm is corrected to the absorbance per 1 μm thickness of the cast film, and evaluated and compared.
However, when hexeneuronic acid groups are present in the dry cast film, absorption is observed at 235 nm. In this case, since the absorbance at 260 nm is overestimated, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film is corrected by multiplying by 0.7.
The cellulose fiber of the present invention is a value obtained by correcting the absorbance of the dry cast film at wavelengths of 290 nm and 260 nm to the absorbance per 1 μm thickness of the dry cast film (however, in the measurement of the ultraviolet absorption spectrum, it is derived from hexene uronic acid groups). When the absorption at 235 nm is observed, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film is a value obtained by multiplying the corrected value by 0.7). , Both are preferably 0.020 or less.
 なお、上記の方法によるセルロース繊維中のアルデヒド基量、ケトン基量は、未乾燥のセルロース繊維に対しても適用できる。
 上記の方法で、未乾燥のセルロース繊維、及び乾燥したセルロース繊維中のアルデヒド基量、及びケトン基量を測定することができるので、未知のセルロース繊維試料について、前記還元工程が行われたか否かを判定できる。
In addition, the amount of aldehyde groups and ketone groups in cellulose fibers by the above method can be applied to undried cellulose fibers.
Since the aldehyde group amount and the ketone group amount in the undried cellulose fiber and the dried cellulose fiber can be measured by the above method, whether or not the reduction step has been performed on the unknown cellulose fiber sample. Can be determined.
 本発明のセルロース繊維は、一旦乾燥させた場合であっても、未乾燥状態から調製した場合と同様に溶媒に微細分散させることができるので、輸送に係る費用を低減することができ、また、保存性に優れる。 Even when the cellulose fiber of the present invention is once dried, it can be finely dispersed in a solvent in the same manner as when prepared from an undried state, so that the cost for transportation can be reduced. Excellent storage stability.
(微細セルロース繊維分散体及びその製造方法)
 本発明の微細セルロース繊維分散体は、本発明の微細セルロース繊維分散体の製造方法により好適に製造することができる。以下、本発明の微細セルロース繊維分散体の製造方法の説明と併せて、本発明の微細セルロース繊維分散体を説明する。
(Fine cellulose fiber dispersion and production method thereof)
The fine cellulose fiber dispersion of the present invention can be suitably produced by the method for producing a fine cellulose fiber dispersion of the present invention. Hereinafter, the fine cellulose fiber dispersion of the present invention will be described together with the description of the method for producing the fine cellulose fiber dispersion of the present invention.
<微細セルロース繊維分散体の製造方法>
 本発明の微細セルロース繊維分散体の製造方法は、分散工程を少なくとも含み、必要に応じて更にその他の工程を含む。
<Method for producing fine cellulose fiber dispersion>
The method for producing a fine cellulose fiber dispersion of the present invention includes at least a dispersion step, and further includes other steps as necessary.
<<分散工程>>
 前記分散工程は、上述した本発明のセルロース繊維を溶媒に分散させる工程である。前記分散工程により、前記セルロース繊維を微細分散させることができる。
<< dispersion process >>
The said dispersion | distribution process is a process of disperse | distributing the cellulose fiber of this invention mentioned above in the solvent. The cellulose fiber can be finely dispersed by the dispersing step.
-溶媒-
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、水、アルコール類、エーテル類、ケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記アルコール類の具体例としては、メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリンなどが挙げられる。
 前記エーテル類の具体例としては、エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフランなどが挙げられる。
 前記ケトン類の具体例としては、アセトン、メチルエチルケトンなどが挙げられる。
 前記溶媒の中でも、水が好ましい。
-solvent-
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide Etc. These may be used individually by 1 type and may use 2 or more types together.
Specific examples of the alcohols include methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, glycerin and the like.
Specific examples of the ethers include ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran and the like.
Specific examples of the ketones include acetone and methyl ethyl ketone.
Among the solvents, water is preferable.
-分散-
 前記分散工程で用いる分散手段(以下、「解繊手段」と称することもある)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、二重円筒型ホモジナイザー、超音波ホモジナイザー、水流対向衝突型分散機、ビーター、ディスク型リファイナー、コニカル型リファイナー、ダブルディスク型リファイナー、グラインダー、二軸混練機などが挙げられる。
-dispersion-
The dispersion means used in the dispersion step (hereinafter also referred to as “defibration means”) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a screw mixer, paddle mixer, disperser Type mixer, turbine type mixer, homomixer under high speed rotation, high pressure homogenizer, super high pressure homogenizer, double cylinder type homogenizer, ultrasonic homogenizer, water flow collision type disperser, beater, disk type refiner, conical type refiner, double Examples thereof include a disk type refiner, a grinder, and a twin-screw kneader.
 前記分散工程の条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上記「光透過度」の欄、及び「ケトン基の量、アルデヒド基の量」の「微細分散液の調製」の欄に記載した分散液の調製における条件などが挙げられる。
 前記分散工程により、上述した本発明のセルロース繊維が微細分散され、微細セルロース繊維が分散した微細セルロース繊維分散体が得られる。
 前記微細セルロース繊維は、幅が2nm~5nm程度、長さが0.2μm~5μm程度のセルロースシングルミクロフィブリルである。
The conditions for the dispersion step are not particularly limited and may be appropriately selected depending on the purpose. For example, the above-mentioned “light transmittance” column and “fine amount of ketone group, amount of aldehyde group” “fine” Examples of the conditions for the preparation of the dispersion described in the column “Preparation of dispersion”.
By the dispersion step, the above-described cellulose fiber of the present invention is finely dispersed, and a fine cellulose fiber dispersion in which the fine cellulose fiber is dispersed is obtained.
The fine cellulose fibers are cellulose single microfibrils having a width of about 2 nm to 5 nm and a length of about 0.2 μm to 5 μm.
<<その他の工程>>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
<< Other processes >>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
(微細セルロース繊維、及び微細セルロース繊維の製造方法)
 本発明の微細セルロース繊維は、本発明の微細セルロース繊維の製造方法により好適に製造することができる。以下、本発明の微細セルロース繊維の製造方法の説明と併せて、本発明の微細セルロース繊維を説明する。
(Fine cellulose fiber and method for producing fine cellulose fiber)
The fine cellulose fiber of this invention can be suitably manufactured with the manufacturing method of the fine cellulose fiber of this invention. Hereinafter, the fine cellulose fiber of this invention is demonstrated with description of the manufacturing method of the fine cellulose fiber of this invention.
<微細セルロース繊維の製造方法>
 本発明の微細セルロース繊維の製造方法は、乾燥工程を少なくとも含み、必要に応じて更にその他の工程を含む。
<Method for producing fine cellulose fiber>
The manufacturing method of the fine cellulose fiber of this invention includes a drying process at least, and also includes another process as needed.
<<乾燥工程>>
 前記乾燥工程は、上述した本発明の微細セルロース繊維分散体を乾燥する工程である。
 前記乾燥の方法としては、特に制限はなく、上述した本発明のセルロース繊維の製造方法における乾燥工程と同様にして行うことができる。
 前記乾燥工程により、微細セルロース繊維を得ることができる。
<< Drying process >>
The drying step is a step of drying the fine cellulose fiber dispersion of the present invention described above.
There is no restriction | limiting in particular as said drying method, It can carry out similarly to the drying process in the manufacturing method of the cellulose fiber of this invention mentioned above.
Fine cellulose fibers can be obtained by the drying step.
<<その他の工程>>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
<< Other processes >>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
 前記微細セルロース繊維は、酸素防止膜、汎用プラスチックの補強材、医療用材、細胞培養基材、触媒担体、吸着剤、分離材などの様々な分野に好適に用いることができる。 The fine cellulose fiber can be suitably used in various fields such as an oxygen-preventing membrane, a general-purpose plastic reinforcing material, a medical material, a cell culture substrate, a catalyst carrier, an adsorbent, and a separating material.
(微細セルロース繊維成形体及びその製造方法)
 前記微細セルロース繊維成形体は、以下の微細セルロース繊維成形体の製造方法により好適に製造することができる。以下、微細セルロース繊維成形体の製造方法の説明と併せて、前記微細セルロース繊維成形体を説明する。
(Fine cellulose fiber molded body and production method thereof)
The said fine cellulose fiber molded object can be suitably manufactured with the manufacturing method of the following fine cellulose fiber molded objects. Hereinafter, the said fine cellulose fiber molded object is demonstrated with description of the manufacturing method of a fine cellulose fiber molded object.
<微細セルロース繊維成形体の製造方法>
 前記微細セルロース繊維成形体の製造方法は、上述した本発明の微細セルロース繊維分散体を所定形状に保持しつつ液体成分を除去する工程を少なくとも含み、必要に応じて更にその他の工程を含む。
<Manufacturing method of fine cellulose fiber molding>
The manufacturing method of the said fine cellulose fiber molded object includes at least the process of removing a liquid component, hold | maintaining the fine cellulose fiber dispersion of this invention mentioned above in the predetermined shape, and also includes another process as needed.
 前記微細セルロース繊維分散体を所定形状に保持しつつ液体成分を除去する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス板などの基板上に、前記微細セルロース繊維分散体を流延塗布した後、自然乾燥、送風乾燥、真空乾燥などの乾燥法により、前記分散体の液体成分を除去し、膜を形成する方法などが挙げられる。
 前記膜を基板から剥がすことにより、微細セルロース繊維成形体を得ることができる。
The method for removing the liquid component while holding the fine cellulose fiber dispersion in a predetermined shape is not particularly limited and may be appropriately selected depending on the purpose. For example, the fine cellulose fiber dispersion may be selected on a substrate such as a glass plate. Examples include a method of forming a film by removing the liquid component of the dispersion by a drying method such as natural drying, air blowing drying, or vacuum drying after casting the cellulose fiber dispersion.
A fine cellulose fiber molded body can be obtained by peeling the film from the substrate.
 また、成形物上に前記微細セルロース繊維分散体を用いて、微細セルロース繊維層を形成し、微細セルロース繊維成形体としてもよい。
 前記成形物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所望の形状及び大きさを有するフィルム、シート、織布、不織布などの箔状物、所望の形状及び大きさの箱、ボトルなどの立体容器などが挙げられる。
 前記成形物の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、紙、板紙、プラスチック、金属、これらの複合体などが挙げられる。
 前記成形物の構造としては、一層であってもよいし、多層であってもよい。
Moreover, it is good also as a fine cellulose fiber molded object by forming a fine cellulose fiber layer on the molded object using the said fine cellulose fiber dispersion.
There is no restriction | limiting in particular as said molded object, According to the objective, it can select suitably, For example, foil-like articles, such as a film, a sheet | seat, a woven fabric, and a nonwoven fabric which have desired shape and magnitude | size, desired shape, and A three-dimensional container such as a box or a bottle can be used.
There is no restriction | limiting in particular as a material of the said molded object, According to the objective, it can select suitably, For example, paper, paperboard, a plastics, a metal, these composites etc. are mentioned.
The structure of the molded product may be a single layer or multiple layers.
 前記成形物上に前記微細セルロース繊維分散体を付与する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布法、噴霧法、浸漬法などが挙げられる。
 また、膜状に形成した微細セルロース繊維成形体を、前記成形物の表面に貼り合わせてもよい。前記貼り合わせる方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、接着剤を用いる方法、熱融着法などが挙げられる。
There is no restriction | limiting in particular as a method to provide the said fine cellulose fiber dispersion on the said molded object, According to the objective, it can select suitably, For example, the apply | coating method, the spraying method, the immersion method etc. are mentioned.
Further, a fine cellulose fiber molded body formed in a film shape may be bonded to the surface of the molded product. There is no restriction | limiting in particular as the said bonding method, According to the objective, it can select suitably, For example, the method of using an adhesive agent, the heat sealing | fusion method, etc. are mentioned.
<<その他の工程>>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
<< Other processes >>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
(微細セルロース繊維複合体及びその製造方法)
 前記微細セルロース繊維複合体は、以下の微細セルロース繊維複合体の製造方法により好適に製造することができる。以下、微細セルロース繊維複合体の製造方法の説明と併せて、前記微細セルロース繊維複合体を説明する。
(Fine cellulose fiber composite and its production method)
The said fine cellulose fiber composite body can be suitably manufactured with the manufacturing method of the following fine cellulose fiber composite bodies. Hereinafter, the said fine cellulose fiber composite is demonstrated with description of the manufacturing method of a fine cellulose fiber composite.
<微細セルロース繊維複合体の製造方法>
 前記微細セルロース繊維複合体の製造方法は、上述した本発明の微細セルロース繊維分散体と、複合体の材料を含む液体材料とを混合してなる分散液を調製する工程を少なくとも含み、必要に応じて更にその他の工程を含む。
<Method for producing fine cellulose fiber composite>
The method for producing the fine cellulose fiber composite includes at least a step of preparing a dispersion liquid obtained by mixing the above-described fine cellulose fiber dispersion of the present invention and a liquid material containing the composite material. And other steps.
 前記複合体の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルアルコール、ナイロン(登録商標)、ポリプロピレン、ポリエチレンテレフタレート、ポリエステル等の合成高分子などが挙げられる。
 前記合成高分子は、有機溶媒に溶解させて紡糸(溶液紡糸)したり、フィルムに整形したりすることができる。
 したがって、前記微細セルロース繊維分散体と、前記合成高分子を含む液体材料とを混合してなる分散液を用いることで、前記微細セルロース繊維複合体である繊維状成形物やフィルム状成形物を得ることができる。
 また、有機溶媒中で、モノマーと、前記微細セルロース繊維分散体とを混合させ、前記モノマーを重合させて高分子を合成することにより、微細セルロース繊維と、合成高分子との複合体を形成することもできる。
The material of the composite is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include synthetic polymers such as polyvinyl alcohol, nylon (registered trademark), polypropylene, polyethylene terephthalate, and polyester. .
The synthetic polymer can be dissolved in an organic solvent and spun (solution spinning) or shaped into a film.
Therefore, by using a dispersion obtained by mixing the fine cellulose fiber dispersion and a liquid material containing the synthetic polymer, a fibrous molded article or a film-like molded article that is the fine cellulose fiber composite is obtained. be able to.
Also, a monomer and the fine cellulose fiber dispersion are mixed in an organic solvent, and the monomer is polymerized to synthesize a polymer, thereby forming a composite of the fine cellulose fiber and the synthetic polymer. You can also.
<<その他の工程>>
 前記その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができる。
<< Other processes >>
The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
 以下に実施例等を挙げて本発明を具体的に説明するが、本発明はこれらの実施例等に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples and the like.
(実施例1)
<酸化工程>
 針葉樹漂白クラフトパルプ(乾燥質量で4g相当分)、62.4mgのTEMPO、及び0.4gの臭化ナトリウムを蒸留水400mLに分散させた後、13質量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が5mmolとなるように加えて反応を開始した。反応中は、0.5Mの水酸化ナトリウム水溶液を滴下してpHを10に保ち、室温(20℃~25℃)で撹拌しながら反応を行った。pHに変化が見られなくなった時点で反応終了とみなし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分含量が9.3質量%である酸化セルロース繊維を得た(収率 >90%)。
 前記酸化セルロース繊維のカルボキシル基量は1.43mmol/gであり、アルデヒド基量は0.04mmol/gであった。前記酸化セルロース1gあたりのカルボキシル基量及びアルデヒド基量は、「T.Saito及びA.Isogai、「TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions」、Biomacromolecules、Vol.5、1983~1989ページ、2004年」に記載されている方法に従い、亜塩素酸ナトリウムによる追酸化処理と電導度滴定によって測定した。
Example 1
<Oxidation process>
After dispersing softwood bleached kraft pulp (corresponding to 4 g in dry mass), 62.4 mg of TEMPO, and 0.4 g of sodium bromide in 400 mL of distilled water, 13 g of aqueous sodium hypochlorite solution was added to 1 g of The reaction was started by adding sodium hypochlorite to the pulp in an amount of 5 mmol. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10, and the reaction was carried out with stirring at room temperature (20 ° C. to 25 ° C.). When the change in pH is no longer observed, the reaction is considered to be complete, the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times, and the solid content is 9.3% by mass. Some oxidized cellulose fibers were obtained (yield> 90%).
The amount of carboxyl groups of the oxidized cellulose fiber was 1.43 mmol / g, and the amount of aldehyde groups was 0.04 mmol / g. The amount of carboxyl group and aldehyde group per gram of the oxidized cellulose is determined according to “T. Saito and A. Isogai”, “TEMPO-mediated oxidation of native cell oxidization and qualitative chemistry and chemistry”. Biomacromolecules, Vol. 5, pp. 1983 to 1989, 2004 ”, and was measured by an additional oxidation treatment with sodium chlorite and conductivity titration.
<還元工程>
 1gの前記酸化セルロース繊維に対して、蒸留水を100mLと、水素化ホウ素ナトリウムを1/64g加え、pHを0.5Mの水酸化ナトリウム水溶液により10に調整して反応を開始した。室温(20℃~25℃)で撹拌しながら反応を24時間行った。反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分含量が4.4質量%である未乾燥(含水状態の)還元型酸化セルロース繊維を得た(収率 80%)。
<Reduction process>
To 1 g of the oxidized cellulose fiber, 100 mL of distilled water and 1/64 g of sodium borohydride were added, and the pH was adjusted to 10 with a 0.5 M sodium hydroxide aqueous solution to start the reaction. The reaction was carried out for 24 hours with stirring at room temperature (20 ° C. to 25 ° C.). After filtering the reaction product with a glass filter, washing with a sufficient amount of water and filtration were repeated 5 times to obtain an undried (hydrated) reduced oxidized cellulose fiber having a solid content of 4.4% by mass. (Yield 80%).
<乾燥工程>
 前記還元工程で得られた還元型酸化セルロース繊維を、オーブンを用いて105℃で3時間以上乾燥させ、固形分含量が100質量%の還元型酸化セルロース繊維を得た。
<Drying process>
The reduced oxidized cellulose fiber obtained in the reduction step was dried at 105 ° C. for 3 hours or more using an oven to obtain reduced oxidized cellulose fiber having a solid content of 100% by mass.
<分散工程>
 前記乾燥工程で得られた還元型酸化セルロース繊維に水を加えて、セルロース濃度が0.1質量%になるように希釈した分散液40mLを50mL容器の遠心分離管(ポリプロピレン製;コーニング社製)に入れ、そのまま二重円筒型ホモジナイザー(刃の直径1.5cm、マイクロテック・ニチオン社製 NS-56)を用いて7,500rpmで2分間解繊処理を行った。前記二重円筒型ホモジナイザーによる解繊処理後、そのまま直ちに氷水で容器の周りを冷やしながら超音波ホモジナイザー(日本精機社製 US-300T、プローブチップ7mm、出力300W、19.5kHz)で8分間解繊処理を行った。なお、前記超音波処理では、前記分散液の温度上昇を避けるために、2分間超音波処理して、1分間放置冷却するというサイクルを繰り返し、合計の超音波処理時間が8分間となるように行った。以上の処理で、セルロース濃度が0.1質量%の分散液を得た。
<Dispersing process>
Water was added to the reduced oxidized cellulose fiber obtained in the drying step, and 40 mL of a dispersion diluted to have a cellulose concentration of 0.1% by mass was centrifuged in a 50 mL container (made of polypropylene; manufactured by Corning). Then, using a double cylindrical homogenizer (blade diameter 1.5 cm, NS-56 manufactured by Microtech Nichion Co., Ltd.) for 2 minutes at 7,500 rpm. After the defibrating process with the double cylindrical homogenizer, it is defibrated with an ultrasonic homogenizer (Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz) for 8 minutes while immediately cooling the surroundings with ice water. Processed. In the sonication, in order to avoid the temperature rise of the dispersion, a cycle of sonicating for 2 minutes and allowing to cool for 1 minute is repeated so that the total sonication time becomes 8 minutes. went. With the above treatment, a dispersion having a cellulose concentration of 0.1% by mass was obtained.
<光透過>
 前記分散液(未解繊物があったとしても除去しないままの分散液。完全ナノ分散化して未解繊物が存在しないこともある)の光透過度を、紫外可視近赤外分光光度計(日本分光株式会社社製V-670)を用いて測定した結果を図1(図1中の「NaBH添加量:パルプの重量の1/64」)に示す。前記分散液の波長600nmにおける光透過度は、90.9%だった。
 また、前記分散液の光透過の様子を図2に示す。
<Light transmission>
The light transmittance of the dispersion liquid (a dispersion liquid that remains unremoved even if there is undefibrated material, which may be completely nanodispersed and may have no undefibrated material) is measured by an ultraviolet-visible near infrared spectrophotometer The results of measurement using V-670 manufactured by JASCO Corporation are shown in FIG. 1 (“NaBH 4 addition amount: 1/64 of the weight of pulp” in FIG. 1). The light transmittance of the dispersion at a wavelength of 600 nm was 90.9%.
The state of light transmission of the dispersion is shown in FIG.
<複屈折>
 前記分散液において、未解繊の残渣がある場合には、遠心分離処理により取り除いた。この遠心分離処理した分散液を直交偏光板の間に置き、複屈折が見られるか否かを確認した。結果を図3に示す。
<Birefringence>
In the dispersion liquid, when there was an undefibrated residue, it was removed by centrifugation. This centrifuged dispersion was placed between orthogonal polarizing plates, and it was confirmed whether birefringence was observed. The results are shown in FIG.
(比較例1)
 前記実施例1において、還元工程を行わなかった以外は、実施例1と同様にして、セルロース濃度が0.1質量%の分散液(未解繊物があったとしても除去しないままの分散液)を得た。前記分散液を前記実施例1と同様にして測定した結果を図1(図1中の「未処理」)に示す。前記分散液の波長600nmにおける光透過度は、39.4%だった。
 また、前記分散液の光透過の様子を図2に示す。
(Comparative Example 1)
In Example 1, except that the reduction step was not performed, a dispersion having a cellulose concentration of 0.1% by mass (a dispersion without being removed even if undefibrated material was present) in the same manner as in Example 1. ) The results of measuring the dispersion in the same manner as in Example 1 are shown in FIG. 1 (“untreated” in FIG. 1). The light transmittance of the dispersion at a wavelength of 600 nm was 39.4%.
The state of light transmission of the dispersion is shown in FIG.
 前記比較例1の分散液について、前記実施例1と同様にして、複屈折が見られるか否かを確認した。結果を図3に示す。 Whether or not birefringence was observed was confirmed in the same manner as in Example 1 for the dispersion of Comparative Example 1. The results are shown in FIG.
 前記実施例1及び比較例1の結果から、本発明の還元工程を行わなかった比較例1の分散液では、乾燥工程を行った後のセルロース繊維を微細分散させることができなかった。一方、実施例1の分散液は、波長600nmの光透過度が80%以上であり、また、複屈折が観察されたことから、本発明の還元工程を行うことにより、乾燥工程を行った後であっても、セルロース繊維を微細分散させることが可能であることが示された。 From the results of Example 1 and Comparative Example 1, it was not possible to finely disperse the cellulose fibers after the drying process in the dispersion liquid of Comparative Example 1 in which the reduction process of the present invention was not performed. On the other hand, since the dispersion of Example 1 has a light transmittance of 600% or more at a wavelength of 600 nm and birefringence was observed, the reduction step of the present invention is performed, and then the drying step is performed. Even so, it has been shown that cellulose fibers can be finely dispersed.
(実施例2)
 前記実施例1の還元工程において、水素化ホウ素ナトリウムの使用量を1gの前記酸化セルロース繊維に対して、1/32gとした以外は、実施例1と同様にして、セルロース濃度が0.1質量%の分散液(未解繊物があったとしても除去しないままの分散液)を得た。前記分散液を前記実施例1と同様にして測定した結果を図1(図1中の「NaBH添加量:パルプの重量の1/32」)に示す。前記分散液の波長600nmにおける光透過度は、91.5%だった。
 また、前記分散液について、前記実施例1と同様にして、複屈折が見られるか否かを確認したところ、複屈折が確認された。
 したがって、実施例2によっても、乾燥工程を行った後のセルロース繊維を微細分散させることが可能であることが示された。
(Example 2)
In the reduction step of Example 1, the cellulose concentration was 0.1 mass in the same manner as in Example 1 except that the amount of sodium borohydride used was 1/32 g with respect to 1 g of the oxidized cellulose fiber. % Dispersion (dispersion that remains unremoved even if undefibrated material is present). The results obtained by measuring the dispersion in the same manner as in Example 1 are shown in FIG. 1 (“NaBH 4 addition amount: 1/32 of the weight of the pulp” in FIG. 1). The light transmittance of the dispersion at a wavelength of 600 nm was 91.5%.
Further, when it was confirmed whether or not birefringence was observed in the same manner as in Example 1, the birefringence was confirmed.
Therefore, also in Example 2, it was shown that it is possible to finely disperse the cellulose fibers after the drying process.
(試験例1:ケトン基量、及びアルデヒド基量)
 前記実施例1、2、及び比較例1の分散液について、遠心分離により未解繊部分を取り除き、上清の分散液をシャーレに注入し、40℃の乾燥機中で5日間乾燥し、シャーレから剥離することでセルロースナノファイバーのキャストフィルムを得た(膜厚み:5μm~10μm)。前記各キャストフィルムの紫外線吸収スペクトル(190nm~400nmの範囲)を測定した。結果を表1及び図4に示す。図4中、「NaBH添加量:パルプの重量の1/64」は実施例1の分散液を用い、「NaBH添加量:パルプの重量の1/32」は実施例2の分散液を用い、「未処理」は比較例1の分散液を用いて得られたキャストフィルムの紫外線吸収スペクトルを示す。
 なお、前記実施例1、2、及び比較例1の各キャストフィルムの紫外線吸収スペクトルを測定した結果、ヘキセンウロン酸基に由来する235nmの吸収が見られたため、キャストフィルムの厚さ1μmあたりの吸光度に補正し、更に前記吸光度に0.7を乗じた値を「キャストフィルムの厚さ1μmあたりの吸光度に補正した値」とした。
(Test Example 1: Ketone group amount and aldehyde group amount)
For the dispersions of Examples 1 and 2 and Comparative Example 1, undefibrated portions were removed by centrifugation, the supernatant dispersion was poured into a petri dish, dried in a dryer at 40 ° C. for 5 days, From the film, a cast film of cellulose nanofibers was obtained (film thickness: 5 μm to 10 μm). The ultraviolet absorption spectrum (range of 190 nm to 400 nm) of each cast film was measured. The results are shown in Table 1 and FIG. In FIG. 4, “NaBH 4 addition amount: 1/64 of the weight of the pulp” uses the dispersion liquid of Example 1, and “NaBH 4 addition amount: 1/32 of the weight of the pulp” uses the dispersion liquid of Example 2. Used, “untreated” indicates the ultraviolet absorption spectrum of the cast film obtained using the dispersion of Comparative Example 1.
In addition, as a result of measuring the ultraviolet absorption spectrum of each cast film of Examples 1 and 2 and Comparative Example 1, absorption at 235 nm derived from hexeneuronic acid groups was observed, so the absorbance per 1 μm thickness of the cast film was The value obtained by correcting and further multiplying the absorbance by 0.7 was defined as a “value corrected to the absorbance per 1 μm thickness of the cast film”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記260nmにおける吸光度はアルデヒド基量に対応し、前記290nmにおける吸光度はケトン基量に対応する。
 表1に示されるように、前記還元工程を行わなかった比較例1では前記260nmにおける吸光度及び前記290nmにおける吸光度が0.050以上であったのに対し、前記還元工程を行った実施例1及び2では、前記260nmにおける吸光度及び前記290nmにおける吸光度がいずれも0.020以下であった。
 したがって、乾燥工程を行った後のセルロース繊維を微細分散させるためには、前記260nmにおける吸光度及び前記290nmにおける吸光度がいずれも0.020以下である必要があることが示された。
The absorbance at 260 nm corresponds to the amount of aldehyde groups, and the absorbance at 290 nm corresponds to the amount of ketone groups.
As shown in Table 1, in Comparative Example 1 in which the reduction process was not performed, the absorbance at 260 nm and the absorbance at 290 nm were 0.050 or more, whereas Example 1 in which the reduction process was performed and 2, the absorbance at 260 nm and the absorbance at 290 nm were both 0.020 or less.
Therefore, it was shown that in order to finely disperse the cellulose fibers after the drying step, the absorbance at 260 nm and the absorbance at 290 nm must both be 0.020 or less.
(実施例3)
 未乾燥のTEMPO酸化セルロース(日本製紙株式会社製、カルボキシル基量;1.45mmol/g、アルデヒド基量;0.05mmol/g、固形分率;15.95%)を絶乾重量2g分測りとり、蒸留水200mLに分散させた。この分散液のpHを0.05Mの水酸化ナトリウム水溶液により10に調整して、水素化ホウ素ナトリウムを0.5g加えて反応を開始した。室温で撹拌しながら反応を24時間行った。反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を4回繰り返し、固形分含量が7.7質量%である還元型酸化セルロース繊維を得た(収率 88%)。
 前記還元型酸化セルロース繊維を、オーブンを用いて105℃で3時間以上乾燥させ、固形分含量が100質量%の還元型酸化セルロース繊維を得た。
Example 3
Undried TEMPO oxidized cellulose (manufactured by Nippon Paper Industries Co., Ltd., carboxyl group amount; 1.45 mmol / g, aldehyde group amount; 0.05 mmol / g, solid content rate: 15.95%) was measured for an absolute dry weight of 2 g. And dispersed in 200 mL of distilled water. The pH of this dispersion was adjusted to 10 with a 0.05 M aqueous sodium hydroxide solution, and 0.5 g of sodium borohydride was added to initiate the reaction. The reaction was carried out for 24 hours with stirring at room temperature. After the reaction product was filtered through a glass filter, washing with a sufficient amount of water and filtration were repeated four times to obtain reduced oxidized cellulose fibers having a solid content of 7.7% by mass (yield 88%). .
The reduced oxidized cellulose fibers were dried at 105 ° C. for 3 hours or more using an oven to obtain reduced oxidized cellulose fibers having a solid content of 100% by mass.
(比較例2)
 未乾燥のTEMPO酸化セルロース(日本製紙株式会社製、カルボキシル基量;1.45mmol/g、アルデヒド基量;0.05mmol/g、固形分率;15.95%)を絶乾重量2g分測りとり、蒸留水150mLに分散させた。この分散液に2N硫酸を加え、pHを7.0に調整した。その後、ガラスフィルターを用いて反応液をろ過した。このろ過により得られたセルロース繊維を、洗浄液である含水溶媒(アセトン:水=50:50〔容積比〕)中に加え、pH7.0を保持したまま撹拌して均一に分散させた。これを再度、ガラスフィルターを用いてろ過した。この操作をさらに4回繰り返し、セルロース繊維を精製した。精製後、この試料を室温で2日間静置して乾燥し、乾燥物を得た。なお、上記乾燥物は、乾燥減量16%であった。
(Comparative Example 2)
Undried TEMPO oxidized cellulose (manufactured by Nippon Paper Industries Co., Ltd., carboxyl group amount; 1.45 mmol / g, aldehyde group amount; 0.05 mmol / g, solid content rate: 15.95%) was measured for an absolute dry weight of 2 g. And dispersed in 150 mL of distilled water. 2N sulfuric acid was added to this dispersion to adjust the pH to 7.0. Thereafter, the reaction solution was filtered using a glass filter. Cellulose fibers obtained by this filtration were added to a water-containing solvent (acetone: water = 50: 50 [volume ratio]) as a washing liquid, and the mixture was stirred and dispersed uniformly while maintaining pH 7.0. This was again filtered using a glass filter. This operation was further repeated 4 times to purify the cellulose fiber. After purification, this sample was allowed to stand at room temperature for 2 days and dried to obtain a dried product. The dried product had a loss on drying of 16%.
(比較例3)
 未乾燥のTEMPO酸化セルロース(日本製紙株式会社製、カルボキシル基量;1.45mmol/g、アルデヒド基量;0.05mmol/g、固形分率;15.95%)を用意した。
(Comparative Example 3)
Undried TEMPO oxidized cellulose (manufactured by Nippon Paper Industries Co., Ltd., carboxyl group amount; 1.45 mmol / g, aldehyde group amount; 0.05 mmol / g, solid content rate; 15.95%) was prepared.
(試験例2-1:光透過及び複屈折)
 前記実施例3、比較例2で得られたセルロースの乾燥物それぞれについて、セルロース濃度が0.1質量%になるように水で希釈した分散液40mLを50mL容器の遠心分離管(ポリプロピレン製;コーニング社製)に入れ、そのまま二重円筒型ホモジナイザー(刃の直径1.5cm、マイクロテック・ニチオン社製 NS-56)を用いて7,500rpmで2分間解繊処理を行った。前記二重円筒型ホモジナイザーによる解繊処理後、そのまま直ちに氷水で容器の周りを冷やしながら超音波ホモジナイザー(日本精機社製 US-300T、プローブチップ7mm、出力300W、19.5kHz)で8分間解繊処理を行った。なお、前記超音波処理では、前記分散液の温度上昇を避けるために、2分間超音波処理して、1分間放置冷却するというサイクルを繰り返し、合計の超音波処理時間が8分間となるように行った。以上の処理で、セルロース濃度が0.1質量%の分散液(未解繊部分を含む)を得た。
(Test Example 2-1: Light transmission and birefringence)
For each of the dried cellulose obtained in Example 3 and Comparative Example 2, 40 mL of a dispersion diluted with water so that the cellulose concentration was 0.1% by mass was centrifuged in a 50 mL container (made of polypropylene; Corning Then, the fiber was defibrated for 2 minutes at 7,500 rpm using a double cylinder type homogenizer (blade diameter 1.5 cm, NS-56 manufactured by Microtech Nichion Co., Ltd.). After the defibrating process with the double cylindrical homogenizer, it is defibrated with an ultrasonic homogenizer (Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz) for 8 minutes while immediately cooling the surroundings with ice water. Processed. In the sonication, in order to avoid the temperature rise of the dispersion, a cycle of sonicating for 2 minutes and allowing to cool for 1 minute is repeated so that the total sonication time becomes 8 minutes. went. With the above treatment, a dispersion liquid (including undefibrated parts) having a cellulose concentration of 0.1% by mass was obtained.
<光透過>
 前記各分散液の光透過度を、前記実施例1と同様にして測定した結果を図5に示す。前記各分散液の波長600nmにおける光透過度は、前記実施例3の分散液が91.1%であったのに対し、前記比較例2の分散液は、68.7%だった。
<Light transmission>
FIG. 5 shows the results of measuring the light transmittance of each dispersion in the same manner as in Example 1. The light transmittance at a wavelength of 600 nm of each of the dispersions was 91.1% for the dispersion of Example 3, whereas it was 68.7% for the dispersion of Comparative Example 2.
<複屈折>
 前記各分散液について、前記実施例1と同様にして、複屈折が見られるか否かを確認したところ、前記実施例3の分散液では複屈折が確認された。一方、前記比較例2の分散液では、上澄みについては複屈折が確認されたものの、遠心分離で除去した未解繊部分の重量割合が31%であり、水中ナノ分散できないものであった。
<Birefringence>
Each of the dispersion liquids was checked for birefringence in the same manner as in Example 1. As a result, birefringence was confirmed in the dispersion liquid of Example 3. On the other hand, in the dispersion liquid of Comparative Example 2, although birefringence was confirmed in the supernatant, the weight ratio of the undefibrated portion removed by centrifugation was 31%, and nanodispersion in water was not possible.
(試験例2-2:ケトン基量、及びアルデヒド基量)
 (1)前記比較例3で用意した未乾燥のTEMPO酸化セルロース、(2)前記比較例2において、精製後、乾燥前の未乾燥のTEMPO酸化セルロース(固形分率:18.58%)、及び(3)前記実施例3における乾燥前の還元型酸化セルロース繊維のそれぞれについて、水を加えて、セルロース濃度が0.1質量%になるように水で希釈した分散液40mLを50mL容器の遠心分離管(ポリプロピレン製;コーニング社製)に入れ、そのまま二重円筒型ホモジナイザー(刃の直径1.5cm、マイクロテック・ニチオン社製 NS-56)を用いて7,500rpmで2分間解繊処理を行った。前記二重円筒型ホモジナイザーによる解繊処理後、そのまま直ちに氷水で容器の周りを冷やしながら超音波ホモジナイザー(日本精機社製 US-300T、プローブチップ7mm、出力300W、19.5kHz)で8分間解繊処理を行った。なお、前記超音波処理では、前記分散液の温度上昇を避けるために、2分間超音波処理して、1分間放置冷却するというサイクルを繰り返し、合計の超音波処理時間が8分間となるように行った。以上の処理で、セルロース濃度が0.1質量%の分散液(未解繊部分を含む)を得た。
(Test Example 2-2: Ketone group amount and aldehyde group amount)
(1) Undried TEMPO oxidized cellulose prepared in Comparative Example 3, (2) In Comparative Example 2, undried TEMPO oxidized cellulose (solid content: 18.58%) after purification and before drying, and (3) For each of the reduced oxidized cellulose fibers before drying in Example 3, water was added, and 40 mL of a dispersion diluted with water so that the cellulose concentration was 0.1% by mass was centrifuged in a 50 mL container. Put in a tube (made of polypropylene; made by Corning) and use a double cylindrical homogenizer (blade diameter 1.5 cm, NS-56 made by Microtech Nichion Co., Ltd.) for 2 minutes at 7,500 rpm. It was. After the defibrating process with the double cylindrical homogenizer, it is defibrated with an ultrasonic homogenizer (Nippon Seiki US-300T, probe tip 7 mm, output 300 W, 19.5 kHz) for 8 minutes while immediately cooling the surroundings with ice water. Processed. In the sonication, in order to avoid the temperature rise of the dispersion, a cycle of sonicating for 2 minutes and allowing to cool for 1 minute is repeated so that the total sonication time becomes 8 minutes. went. With the above treatment, a dispersion liquid (including undefibrated parts) having a cellulose concentration of 0.1% by mass was obtained.
 前記各分散液について、遠心分離により未解繊部分を取り除き、上清の分散液をシャーレに注入し、40℃の乾燥機中で5日間乾燥し、シャーレから剥離することでセルロースナノファイバーフィルムを得た(膜厚み:5μm~10μm)。得られたフィルムを105℃の乾燥機で3時間加熱処理した。その後、前記加熱処理したフィルムの紫外線吸収スペクトル(190nm~400nmの範囲)を測定した。結果を表2及び図6に示す。 About each said dispersion liquid, an undisentangled part is removed by centrifugation, the dispersion liquid of supernatant is poured into a petri dish, dried for 5 days in a dryer at 40 ° C., and peeled from the petri dish to thereby remove the cellulose nanofiber film. Obtained (film thickness: 5 to 10 μm). The obtained film was heat-treated with a dryer at 105 ° C. for 3 hours. Thereafter, an ultraviolet absorption spectrum (range of 190 nm to 400 nm) of the heat-treated film was measured. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験例2-1及び2-2の結果から、前記還元工程を行わなかった比較例2及び3では、前記260nmにおける吸光度及び前記290nmにおける吸光度が0.044以上であったのに対し、前記還元工程を行った実施例3では、前記260nmにおける吸光度及び前記290nmにおける吸光度がいずれも0.020以下であった。
 したがって、前記波長600nmにおける光透過度が80%以上となる程度に乾燥工程を行った後のセルロース繊維を微細分散させるためには、前記還元工程を行わなければならず、前記比較例2の方法では、セルロース繊維を十分に微細分散させることができないことが示された。
From the results of Test Examples 2-1 and 2-2, in Comparative Examples 2 and 3 in which the reduction step was not performed, the absorbance at 260 nm and the absorbance at 290 nm were 0.044 or more, whereas In Example 3 where the process was performed, the absorbance at 260 nm and the absorbance at 290 nm were both 0.020 or less.
Therefore, in order to finely disperse the cellulose fiber after performing the drying process to such an extent that the light transmittance at the wavelength of 600 nm is 80% or more, the reduction process must be performed, and the method of Comparative Example 2 Then, it was shown that cellulose fibers cannot be sufficiently finely dispersed.
 前記還元工程で用いた還元剤である水素化ホウ素ナトリウムは、アルデヒド及びケトンを対応するアルコールに還元することが知られている。これまで、酸化工程後の酸化セルロース繊維や、前記酸化セルロース繊維を解繊した微細セルロース繊維の分散体を乾燥した後に、微細分散させることができなくなるのは、セルロース繊維の表面に残存している水酸基の間で形成される水素結合によるものと考えられてきた。しかし、本発明により、前記乾燥後の微細分散を阻害していたのは、前記水素結合ではなく、前記酸化工程により副生成したC2位、C3位のケトン基及び/又はC6位のアルデヒド基が、ヒドロキシル基とヘミアセタール結合を形成することによるものであることが定量的に示された。 It is known that sodium borohydride, which is a reducing agent used in the reduction step, reduces aldehydes and ketones to the corresponding alcohols. Until now, after drying the oxidized cellulose fiber after the oxidation step and the dispersion of fine cellulose fiber obtained by defibrating the oxidized cellulose fiber, it is impossible to finely disperse it on the surface of the cellulose fiber. It has been thought to be due to hydrogen bonds formed between hydroxyl groups. However, according to the present invention, the fine dispersion after drying was inhibited not by the hydrogen bond but by the C2 position, C3 position ketone group and / or C6 position aldehyde group by-produced by the oxidation step. It was quantitatively shown to be due to the formation of a hemiacetal bond with the hydroxyl group.
 本発明の態様としては、例えば、以下のものなどが挙げられる。
 <1> N-オキシル化合物、及び共酸化剤を含む反応液中でセルロース系原料を酸化して酸化セルロース繊維を得る酸化工程と、
 前記酸化セルロース繊維を、還元剤を含む反応液中で還元させ、還元型酸化セルロース繊維を得る還元工程と、
 前記還元型酸化セルロース繊維を乾燥する乾燥工程とを含み、
 前記還元型酸化セルロース繊維を乾燥して得られたセルロース繊維が、溶媒に微細分散可能であることを特徴とするセルロース繊維の製造方法である。
 <2> 酸化工程と還元工程との間に、酸化工程で得られた酸化セルロース繊維を亜塩素酸ナトリウムにより更に酸化する追酸化工程を含む前記<1>に記載のセルロース繊維の製造方法である。
 <3> 還元工程における反応液のpHが9~10である前記<1>から<2>のいずれかに記載のセルロース繊維の製造方法である。
 <4> 前記<1>から<3>のいずれかに記載の製造方法により製造され、溶媒に微細分散可能であることを特徴とするセルロース繊維である。
 <5> 乾燥後、溶媒に微細分散可能なセルロース繊維であって、
 前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とするセルロース繊維である。
 <6> セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理した後、前記分散液における未解繊セルロース繊維を除去して得られた分散液を用いてキャストフィルムを作製し、前記キャストフィルムを105℃で3時間乾燥して乾燥キャストフィルムとし、前記乾燥キャストフィルムの紫外線吸収スペクトルを測定したときの波長290nm及び260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値(ただし、前記紫外線吸収スペクトルの測定において、ヘキセンウロン酸基に由来する235nmの吸収が見られた場合には、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値は、該補正した値に0.7を乗じた値とする)が、いずれも0.020以下である前記<4>から<5>のいずれかに記載のセルロース繊維である。
 <7> 前記<1>から<3>のいずれかに記載のセルロース繊維の製造方法で製造されたセルロース繊維、及び前記<4>から<6>のいずれかに記載のセルロース繊維の少なくともいずれかを溶媒に分散させる分散工程を含むことを特徴とする微細セルロース繊維分散体の製造方法である。
 <8> 前記<7>に記載の製造方法により製造されたことを特徴とする微細セルロース繊維分散体である。
 <9> セルロース繊維が溶媒に微細分散された微細セルロース繊維分散体であって、
 前記セルロース繊維が、乾燥後、溶媒に微細分散可能なセルロース繊維であり、
 前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とする微細セルロース繊維分散体である。
 <10> セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理した後、前記分散液における未解繊セルロース繊維を除去して得られた分散液を用いてキャストフィルムを作製し、前記キャストフィルムを105℃で3時間乾燥して乾燥キャストフィルムとし、前記乾燥キャストフィルムの紫外線吸収スペクトルを測定したときの波長290nm及び260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値(ただし、前記紫外線吸収スペクトルの測定において、ヘキセンウロン酸基に由来する235nmの吸収が見られた場合には、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値は、該補正した値に0.7を乗じた値とする)が、いずれも0.020以下である前記<9>に記載の微細セルロース繊維分散体である。
 <11> 前記<7>に記載の製造方法により製造された微細セルロース繊維分散体、及び前記<8>から<10>のいずれかに記載の微細セルロース繊維分散体の少なくともいずれかを乾燥する乾燥工程を含むことを特徴とする微細セルロース繊維の製造方法である。
 <12> 前記<11>に記載の製造方法により製造されたことを特徴とする微細セルロース繊維である。
 <13> 前記<7>に記載の製造方法により製造された微細セルロース繊維分散体、及び前記<8>から<10>のいずれかに記載の微細セルロース繊維分散体の少なくともいずれかを所定形状に保持しつつ液体成分を除去することを特徴とする微細セルロース繊維成形体の製造方法である。
 <14> 前記<13>に記載の製造方法により製造されたことを特徴とする微細セルロース繊維成形体である。
 <15> 前記<7>に記載の製造方法により製造された微細セルロース繊維分散体、及び前記<8>から<10>のいずれかに記載の微細セルロース繊維分散体の少なくともいずれかと、複合体の材料を含む液体材料とを混合してなる分散液を用いることを特徴とする微細セルロース繊維複合体の製造方法である。
 <16> 前記<15>に記載の製造方法により製造されたことを特徴とする微細セルロース繊維複合体である。
Examples of the aspect of the present invention include the following.
<1> An oxidation step in which an oxidized cellulose fiber is obtained by oxidizing a cellulosic raw material in a reaction solution containing an N-oxyl compound and a co-oxidant;
A reduction step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers;
A drying step of drying the reduced oxidized cellulose fiber,
The cellulose fiber obtained by drying the reduced oxidized cellulose fiber can be finely dispersed in a solvent.
<2> The method for producing a cellulose fiber according to <1>, further including a further oxidation step of further oxidizing the oxidized cellulose fiber obtained in the oxidation step with sodium chlorite between the oxidation step and the reduction step. .
<3> The method for producing a cellulose fiber according to any one of <1> to <2>, wherein the pH of the reaction solution in the reduction step is 9 to 10.
<4> A cellulose fiber produced by the production method according to any one of <1> to <3> and finely dispersible in a solvent.
<5> Cellulose fibers that can be finely dispersed in a solvent after drying,
After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is It is a cellulose fiber characterized by having a birefringence of 80% or more.
<6> After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a double cylindrical homogenizer, defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, and then undefibrated cellulose fibers in the dispersion A cast film is prepared using the dispersion obtained by removing, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film. When the ultraviolet absorption spectrum of the dry cast film is measured, a wavelength of 290 nm and A value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film (however, the ultraviolet absorption In the measurement of the spectrum, when absorption at 235 nm derived from a hexeneuronic acid group was observed, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film was 0 to the corrected value. Is a cellulose fiber according to any one of <4> to <5>, wherein all are 0.020 or less.
<7> At least one of the cellulose fiber produced by the method for producing a cellulose fiber according to any one of <1> to <3> and the cellulose fiber according to any one of <4> to <6>. It is a manufacturing method of the fine cellulose fiber dispersion characterized by including the dispersion | distribution process which disperse | distributes to a solvent.
<8> A fine cellulose fiber dispersion produced by the production method according to <7>.
<9> A fine cellulose fiber dispersion in which cellulose fibers are finely dispersed in a solvent,
The cellulose fiber is a cellulose fiber that can be finely dispersed in a solvent after drying,
After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is It is a fine cellulose fiber dispersion characterized by having a birefringence of 80% or more.
<10> After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to form a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a double cylindrical homogenizer, defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, and then undefibrated cellulose fibers in the dispersion A cast film is prepared using the dispersion obtained by removing, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film. When the ultraviolet absorption spectrum of the dry cast film is measured, a wavelength of 290 nm and A value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film (however, the ultraviolet absorption In the measurement of the spectrum, when absorption at 235 nm derived from hexeneuronic acid groups was observed, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film was 0 to the corrected value. Is a fine cellulose fiber dispersion according to <9>, in which all are 0.020 or less.
<11> Dry to dry at least one of the fine cellulose fiber dispersion produced by the production method according to <7> and the fine cellulose fiber dispersion according to any one of <8> to <10>. It is a manufacturing method of the fine cellulose fiber characterized by including a process.
<12> A fine cellulose fiber produced by the production method according to <11>.
<13> At least one of the fine cellulose fiber dispersion produced by the production method according to <7> and the fine cellulose fiber dispersion according to any one of <8> to <10> is formed into a predetermined shape. It is a manufacturing method of the fine cellulose fiber molded object characterized by removing a liquid component, hold | maintaining.
<14> A fine cellulose fiber molded article produced by the production method according to <13>.
<15> A fine cellulose fiber dispersion produced by the production method according to <7>, and at least one of the fine cellulose fiber dispersion according to any one of <8> to <10>, and a composite A method for producing a fine cellulose fiber composite comprising using a dispersion obtained by mixing a liquid material containing a material.
<16> A fine cellulose fiber composite produced by the production method according to <15>.

Claims (10)

  1.  N-オキシル化合物、及び共酸化剤を含む反応液中でセルロース系原料を酸化して酸化セルロース繊維を得る酸化工程と、
     前記酸化セルロース繊維を、還元剤を含む反応液中で還元させ、還元型酸化セルロース繊維を得る還元工程と、
     前記還元型酸化セルロース繊維を乾燥する乾燥工程とを含み、
     前記還元型酸化セルロース繊維を乾燥して得られたセルロース繊維が、溶媒に微細分散可能であることを特徴とするセルロース繊維の製造方法。
    An oxidation step of oxidizing cellulose raw material in a reaction solution containing an N-oxyl compound and a co-oxidant to obtain oxidized cellulose fibers;
    A reduction step of reducing the oxidized cellulose fibers in a reaction solution containing a reducing agent to obtain reduced oxidized cellulose fibers;
    A drying step of drying the reduced oxidized cellulose fiber,
    A method for producing a cellulose fiber, wherein the cellulose fiber obtained by drying the reduced oxidized cellulose fiber can be finely dispersed in a solvent.
  2.  酸化工程と還元工程との間に、酸化工程で得られた酸化セルロース繊維を亜塩素酸ナトリウムにより更に酸化する追酸化工程を含む請求項1に記載のセルロース繊維の製造方法。 The manufacturing method of the cellulose fiber of Claim 1 including the additional oxidation process which further oxidizes the oxidized cellulose fiber obtained at the oxidation process with sodium chlorite between an oxidation process and a reduction | restoration process.
  3.  還元工程における反応液のpHが9~10である請求項1から2のいずれかに記載のセルロース繊維の製造方法。 3. The method for producing cellulose fiber according to claim 1, wherein the pH of the reaction solution in the reduction step is 9 to 10.
  4.  請求項1から3のいずれかに記載の製造方法により製造され、溶媒に微細分散可能であることを特徴とするセルロース繊維。 A cellulose fiber produced by the production method according to claim 1 and finely dispersible in a solvent.
  5.  乾燥後、溶媒に微細分散可能なセルロース繊維であって、
     前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とするセルロース繊維。
    Cellulose fibers that can be finely dispersed in a solvent after drying,
    After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is Cellulose fiber characterized by having a birefringence of 80% or more.
  6.  セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理した後、前記分散液における未解繊セルロース繊維を除去して得られた分散液を用いてキャストフィルムを作製し、前記キャストフィルムを105℃で3時間乾燥して乾燥キャストフィルムとし、前記乾燥キャストフィルムの紫外線吸収スペクトルを測定したときの波長290nm及び260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値(ただし、前記紫外線吸収スペクトルの測定において、ヘキセンウロン酸基に由来する235nmの吸収が見られた場合には、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値は、該補正した値に0.7を乗じた値とする)が、いずれも0.020以下である請求項4から5のいずれかに記載のセルロース繊維。 After the cellulose fibers are dried at 105 ° C. for 3 hours, the cellulose fibers are diluted with water to a concentration of 0.1% by mass to form a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a mold homogenizer, defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the container with ice water, and then removing undefibrated cellulose fibers in the dispersion. A cast film is prepared using the obtained dispersion, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film. Absorbance at wavelengths of 290 nm and 260 nm when the ultraviolet absorption spectrum of the dry cast film is measured. Is a value obtained by correcting the absorbance per 1 μm thickness of the dry cast film (however, the ultraviolet absorption spectrum is In the measurement of Torr, when absorption at 235 nm derived from hexeneuronic acid groups was observed, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film was 0 to the corrected value. 6. The cellulose fiber according to any one of claims 4 to 5, wherein all are 0.020 or less.
  7.  請求項1から3のいずれかに記載のセルロース繊維の製造方法で製造されたセルロース繊維、及び請求項4から6のいずれかに記載のセルロース繊維の少なくともいずれかを溶媒に分散させる分散工程を含むことを特徴とする微細セルロース繊維分散体の製造方法。 A dispersion step of dispersing at least one of the cellulose fiber produced by the method for producing a cellulose fiber according to any one of claims 1 to 3 and the cellulose fiber according to any one of claims 4 to 6 in a solvent is included. The manufacturing method of the fine cellulose fiber dispersion characterized by the above-mentioned.
  8.  セルロース繊維が溶媒に微細分散された微細セルロース繊維分散体であって、
     前記セルロース繊維が、乾燥後、溶媒に微細分散可能なセルロース繊維であり、
     前記セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理したときに、前記分散液の波長600nmにおける光透過度が80%以上であり、複屈折を示すことを特徴とする微細セルロース繊維分散体。
    A fine cellulose fiber dispersion in which cellulose fibers are finely dispersed in a solvent,
    The cellulose fiber is a cellulose fiber that can be finely dispersed in a solvent after drying,
    After drying the cellulose fiber at 105 ° C. for 3 hours, the cellulose fiber is diluted with water to a concentration of 0.1% by mass to obtain a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a cylindrical homogenizer, when the fiber is defibrated for 8 minutes with an ultrasonic homogenizer while cooling around the vessel with ice water, the light transmittance at a wavelength of 600 nm of the dispersion is A fine cellulose fiber dispersion which is 80% or more and exhibits birefringence.
  9.  セルロース繊維を105℃で3時間乾燥した後、前記セルロース繊維を濃度が0.1質量%になるように水で希釈して40mLの分散液とし、前記分散液を50mL容器に入れ、二重円筒型ホモジナイザーを用いて7,500rpmで2分間解繊処理後、氷水で前記容器の周りを冷やしながら超音波ホモジナイザーで8分間解繊処理した後、前記分散液における未解繊セルロース繊維を除去して得られた分散液を用いてキャストフィルムを作製し、前記キャストフィルムを105℃で3時間乾燥して乾燥キャストフィルムとし、前記乾燥キャストフィルムの紫外線吸収スペクトルを測定したときの波長290nm及び260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値(ただし、前記紫外線吸収スペクトルの測定において、ヘキセンウロン酸基に由来する235nmの吸収が見られた場合には、前記260nmの吸光度を前記乾燥キャストフィルムの厚さ1μmあたりの吸光度に補正した値は、該補正した値に0.7を乗じた値とする)が、いずれも0.020以下である請求項8に記載の微細セルロース繊維分散体。 After the cellulose fibers are dried at 105 ° C. for 3 hours, the cellulose fibers are diluted with water to a concentration of 0.1% by mass to form a 40 mL dispersion, and the dispersion is placed in a 50 mL container. After defibrating for 2 minutes at 7,500 rpm using a mold homogenizer, defibrating for 8 minutes with an ultrasonic homogenizer while cooling around the container with ice water, and then removing undefibrated cellulose fibers in the dispersion. A cast film is prepared using the obtained dispersion, and the cast film is dried at 105 ° C. for 3 hours to obtain a dry cast film. Absorbance at wavelengths of 290 nm and 260 nm when the ultraviolet absorption spectrum of the dry cast film is measured. Is a value obtained by correcting the absorbance per 1 μm thickness of the dry cast film (however, the ultraviolet absorption spectrum is In the measurement of Torr, when absorption at 235 nm derived from hexeneuronic acid groups was observed, the value obtained by correcting the absorbance at 260 nm to the absorbance per 1 μm thickness of the dry cast film was 0 to the corrected value. The fine cellulose fiber dispersion according to claim 8, wherein all are 0.020 or less.
  10.  請求項7に記載の製造方法により製造された微細セルロース繊維分散体、及び請求項8から9のいずれかに記載の微細セルロース繊維分散体の少なくともいずれかを乾燥する乾燥工程を含むことを特徴とする微細セルロース繊維の製造方法。 It includes a drying step of drying at least one of the fine cellulose fiber dispersion produced by the production method according to claim 7 and the fine cellulose fiber dispersion according to any one of claims 8 to 9. A method for producing fine cellulose fibers.
PCT/JP2014/082533 2013-12-10 2014-12-09 Cellulose fibers and method for producing same, ultrafine cellulose fiber dispersion and method for producing same, and method for producing ultrafine cellulose fibers WO2015087868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-255041 2013-12-10
JP2013255041A JP2015113376A (en) 2013-12-10 2013-12-10 Cellulose fibers and method for producing the same, ultrafine cellulose fiber dispersion and method for producing the same, and method for producing ultrafine cellulose fibers

Publications (1)

Publication Number Publication Date
WO2015087868A1 true WO2015087868A1 (en) 2015-06-18

Family

ID=53371170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082533 WO2015087868A1 (en) 2013-12-10 2014-12-09 Cellulose fibers and method for producing same, ultrafine cellulose fiber dispersion and method for producing same, and method for producing ultrafine cellulose fibers

Country Status (2)

Country Link
JP (1) JP2015113376A (en)
WO (1) WO2015087868A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131084A1 (en) * 2016-01-26 2017-08-03 日本製紙株式会社 Anionically-modified cellulose nanofiber dispersion liquid and production method therefor
WO2019061817A1 (en) * 2017-09-26 2019-04-04 南通强生石墨烯科技有限公司 Modified graphene oxide regenerated cellulose composite fiber and preparation method therefor
CN113198427A (en) * 2021-04-30 2021-08-03 深圳信息职业技术学院 Preparation method and application of corn pith three-dimensional aerogel adsorption material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073402A (en) * 2001-06-06 2003-03-12 Weyerhaeuser Co Method for producing stabilized carboxylated cellulose
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
WO2009107795A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Method for modification of cellulose, modified cellulose, cellouronic acid, and cellulose microcrystal
JP2009209218A (en) * 2008-02-29 2009-09-17 Univ Of Tokyo Method for producing functional cellulose bead, and the functional cellulose bead
JP2011046793A (en) * 2009-08-25 2011-03-10 Univ Of Tokyo Method for producing cellulose nanofiber
WO2011074301A1 (en) * 2009-12-14 2011-06-23 日本製紙株式会社 Method for oxidation of cellulose and process for production of cellulose nanofibers
JP2011195660A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Cellulose film and laminated material using the same
WO2012032931A1 (en) * 2010-09-06 2012-03-15 凸版印刷株式会社 Transparent base and method for producing same
JP2013104133A (en) * 2011-11-10 2013-05-30 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing cellulose fiber for thickening and cellulose fiber for thickening obtained by the same
JP2013213213A (en) * 2011-09-12 2013-10-17 Gunze Ltd Hydrophilized cellulose fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method
JP2003073402A (en) * 2001-06-06 2003-03-12 Weyerhaeuser Co Method for producing stabilized carboxylated cellulose
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
WO2009107795A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Method for modification of cellulose, modified cellulose, cellouronic acid, and cellulose microcrystal
JP2009209218A (en) * 2008-02-29 2009-09-17 Univ Of Tokyo Method for producing functional cellulose bead, and the functional cellulose bead
JP2011046793A (en) * 2009-08-25 2011-03-10 Univ Of Tokyo Method for producing cellulose nanofiber
WO2011074301A1 (en) * 2009-12-14 2011-06-23 日本製紙株式会社 Method for oxidation of cellulose and process for production of cellulose nanofibers
JP2011195660A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Cellulose film and laminated material using the same
WO2012032931A1 (en) * 2010-09-06 2012-03-15 凸版印刷株式会社 Transparent base and method for producing same
JP2013213213A (en) * 2011-09-12 2013-10-17 Gunze Ltd Hydrophilized cellulose fiber
JP2013104133A (en) * 2011-11-10 2013-05-30 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing cellulose fiber for thickening and cellulose fiber for thickening obtained by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chemical Modification of Cotton Fabric by TEMPO Oxidation", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 65, no. 5, 2009, pages 146 - 149 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131084A1 (en) * 2016-01-26 2017-08-03 日本製紙株式会社 Anionically-modified cellulose nanofiber dispersion liquid and production method therefor
CN108602895A (en) * 2016-01-26 2018-09-28 日本制纸株式会社 Anion-modified cellulose nano-fibrous dispersion liquid and its manufacturing method
JPWO2017131084A1 (en) * 2016-01-26 2018-11-15 日本製紙株式会社 Anion-modified cellulose nanofiber dispersion and method for producing the same
WO2019061817A1 (en) * 2017-09-26 2019-04-04 南通强生石墨烯科技有限公司 Modified graphene oxide regenerated cellulose composite fiber and preparation method therefor
CN113198427A (en) * 2021-04-30 2021-08-03 深圳信息职业技术学院 Preparation method and application of corn pith three-dimensional aerogel adsorption material

Also Published As

Publication number Publication date
JP2015113376A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
Martelli-Tosi et al. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films
Kassab et al. Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials
Martelli-Tosi et al. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films
Rambabu et al. Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films
Kargarzadeh et al. Advances in cellulose nanomaterials
Khalil et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review
Miao et al. Cellulose reinforced polymer composites and nanocomposites: a critical review
Chen et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments
Ashori et al. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion
JP4998981B2 (en) Fine cellulose fiber
US9328211B2 (en) Porous cellulose body and method for producing same
US9469696B2 (en) Method for processing nanofibrillar cellulose and product obtained by the method
He et al. Isolation and characterization of cellulose nanofibers from Bambusa rigida
Chang et al. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite
Heinze et al. Cellulose derivatives
Zhu et al. An approach for reinforcement of paper with high strength and barrier properties via coating regenerated cellulose
Sinclair et al. Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites
CN101874043A (en) Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2017160396A (en) Cellulose oxide fiber, fine cellulose fiber dispersion and manufacturing method of fine cellulose fiber
Saurabh et al. Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineesis) fronds: Morphology, chemical, crystallinity, and thermal characteristics
Zergane et al. Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates
JP6213961B2 (en) Method for producing fine cellulose fiber dispersion, method for producing fine cellulose fiber, and method for finely dispersing dried oxidized cellulose fiber
WO2015087868A1 (en) Cellulose fibers and method for producing same, ultrafine cellulose fiber dispersion and method for producing same, and method for producing ultrafine cellulose fibers
Pan et al. Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation
JP6534172B2 (en) Dry solid of cellulose nanofiber, method for producing the same, and redispersion of dry solid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869886

Country of ref document: EP

Kind code of ref document: A1