JP2023172803A - Specification method of water entry point into building - Google Patents

Specification method of water entry point into building Download PDF

Info

Publication number
JP2023172803A
JP2023172803A JP2022084875A JP2022084875A JP2023172803A JP 2023172803 A JP2023172803 A JP 2023172803A JP 2022084875 A JP2022084875 A JP 2022084875A JP 2022084875 A JP2022084875 A JP 2022084875A JP 2023172803 A JP2023172803 A JP 2023172803A
Authority
JP
Japan
Prior art keywords
water
measurement
location
building
suspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022084875A
Other languages
Japanese (ja)
Other versions
JP7137887B1 (en
Inventor
洋史 日下部
Hiroshi Kusakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Association Of Building Leakage Consultant Inc
Original Assignee
Japan Association Of Building Leakage Consultant Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Association Of Building Leakage Consultant Inc filed Critical Japan Association Of Building Leakage Consultant Inc
Priority to JP2022084875A priority Critical patent/JP7137887B1/en
Application granted granted Critical
Publication of JP7137887B1 publication Critical patent/JP7137887B1/en
Publication of JP2023172803A publication Critical patent/JP2023172803A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

To accurately specify a water entry point into a building in a short time with a simple tool.SOLUTION: A specification method of a water entry point into a building includes: after estimating a water entry route into a building based on water leak damage situation, using a moisture meter to perform first measurement for measuring a first area including the water entry route; narrowing down points where water is suspected to have entered based on the result of the first measurement; injecting water for detection into the suspected water entry points; after the lapse of a prescribed time, performing a second measurement for measuring a second area including water seepage points inside the building using the moisture meter; and specifying the water entry point based on the result of the second measurement.SELECTED DRAWING: Figure 3

Description

本発明は、建物内部への水の浸入箇所の特定方法に関する。 TECHNICAL FIELD The present invention relates to a method for identifying the location of water intrusion into a building.

雨漏りや老朽配管の劣化等により、建物内部への水の浸入が発生することがある(以下、雨漏りや配管等からの建物内部への水の浸入を特に区別しない場合、これらを総称して「漏水」とも言う。)。これらの漏水が発生し、又は、その発生が疑われる場合、目視調査、散水調査、ガス注入調査、赤外線サーモグラフィ調査、電気を使った調査等が行われている。なお、水の浸入について、水が滲み入るような形態を特に「滲入」と記載することもあるが、本明細書では、「水の滲入」を含む、水が建物内部に入り込む状態全般を指す語として、「水の浸入」の語を用いるものとする。 Water infiltration into buildings may occur due to rain leaks or deterioration of old pipes (hereinafter, unless there is a particular distinction between water intrusion into buildings from rain leaks or pipes, these are collectively referred to as " (Also called "water leakage.") When these water leaks occur or are suspected of occurring, visual inspections, water spray inspections, gas injection inspections, infrared thermography inspections, investigations using electricity, etc. are conducted. Regarding water infiltration, a form in which water seeps in is sometimes specifically referred to as "seepage", but in this specification, it refers to all situations in which water enters the inside of a building, including "water seepage". The term ``water intrusion'' shall be used as the term.

特許文献1には、上記目視調査、散水調査や赤外線サーモグラフィ調査に代わる方法として、冷風発生器からの高圧の冷却風を、ビル屋内側のクラックに注入するとともに、赤外線サーモグラフィを用いて屋外(屋上面)の温度分布を調査することにより、雨漏り浸入箇所を特定できるという方法が開示されている。 Patent Document 1 describes an alternative method to the above-mentioned visual inspection, water spray inspection, and infrared thermography inspection, in which high-pressure cooling air from a cold air generator is injected into cracks inside a building, and an infrared thermography is used to investigate outdoor (indoor) inspections. A method has been disclosed in which the location of rain leakage can be identified by investigating the temperature distribution on the top surface.

特許文献2には、家屋の外壁におけるひび割れを目視にて確認した後、ひび割れに注入器をあてて一定量の水を注入することで、雨漏りの原因となる箇所を特定する方法が開示されている。 Patent Document 2 discloses a method of identifying a location causing a rain leak by visually confirming a crack in the outer wall of a house, and then applying a syringe to the crack and injecting a certain amount of water. There is.

特許文献3には、上記ガス注入調査等に代わる方法として、1又は複数個所に、着色調査液を注入し、着色調査液を、漏水個所において、着色された結晶体として析出させるようにした雨水の浸入経路特定方法が開示されている。 Patent Document 3 describes a rainwater survey as an alternative to the above-mentioned gas injection investigation, in which a colored investigation liquid is injected into one or more locations, and the colored investigation solution is precipitated as colored crystals at the leakage location. A method for identifying the infiltration route is disclosed.

特開2006-30101号公報Japanese Patent Application Publication No. 2006-30101 特開2016-217774号公報JP2016-217774A 特開2002-277343号公報JP2002-277343A

上記した特許文献1~3の方法では、事前に目視調査などにて、クラックやひび割れの位置を特定する必要がある。しかしながら、コンクリート構造物の漏水は、表面に表れたクラックやひび割れの箇所から発生するとは限らないという問題点がある。加えて、特許文献1の方法では、高圧の冷却風を送出可能な冷風発生器やその駆動電源が必要となるという問題点がある。 In the methods of Patent Documents 1 to 3 described above, it is necessary to identify the position of cracks or fissures in advance through visual inspection or the like. However, there is a problem in that water leakage from concrete structures does not necessarily occur from cracks or cracks that appear on the surface. In addition, the method of Patent Document 1 has a problem in that it requires a cold air generator capable of sending out high-pressure cooling air and a power source for driving the cold air generator.

また、特許文献3の方法は、耐水管を設置し、調査液を一定量貯留させた後、その減少量を測定し、又は、結晶体の析出を待つ方法を採っているため、浸入経路の特定に時間がかかってしまうという問題点がある。当然ながら、その間、降雨等が起きると調査は中止となってしまう。 In addition, the method of Patent Document 3 installs a water-resistant pipe, stores a certain amount of investigation liquid, and then measures the amount of decrease or waits for the precipitation of crystals. There is a problem in that it takes time to identify. Of course, if it rains during that time, the survey will be canceled.

本発明は、簡易な道具で、短時間で精度よく建物内部への水の浸入箇所を特定できる方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can accurately identify the location of water intrusion into a building in a short time using a simple tool.

第1の視点によれば、漏水被害状況に基づいて建物内部への水の浸入経路を推定し、水分計を用いて、前記水の浸入経路を含む第1のエリアを測定する第1の測定を実施し、前記第1の測定の結果に基づいて、前記水の被疑浸入箇所を絞り込み、前記水の被疑浸入箇所に、検出用の水を注入し、所定時間経過後に、前記水分計を用いて、前記建物内部の水の滲出箇所を含む第2のエリアを測定する第2の測定を実施し、前記第2の測定の結果に基づいて、前記水の浸入箇所を特定する、水の浸入箇所の特定方法が提供される。 According to the first viewpoint, the first measurement involves estimating a water intrusion route into the building based on the water leakage damage situation and measuring a first area including the water intrusion route using a moisture meter. Based on the results of the first measurement, the suspected water intrusion points are narrowed down, water for detection is injected into the suspected water intrusion points, and after a predetermined period of time, the moisture meter is used. and performing a second measurement to measure a second area including the water seepage location inside the building, and identifying the water infiltration location based on the result of the second measurement. A location identification method is provided.

本発明によれば、簡易な道具で、短時間で精度よく建物内部への水の浸入箇所を特定することができる。 According to the present invention, the location of water intrusion into a building can be accurately identified in a short time using a simple tool.

本発明の第1の実施形態の建物内部への水の浸入箇所の特定方法を説明するための図である。FIG. 3 is a diagram for explaining a method for identifying a location where water intrudes into a building according to the first embodiment of the present invention. 雨漏りの被害状況に基づいて推定した建物内部への水の浸入経路の例を説明するための図である。FIG. 3 is a diagram for explaining an example of a water intrusion route into a building estimated based on the damage situation of rain leaks. 建物内部への水の浸入経路に沿って水分計による第1の測定を行う工程を説明するための図である。FIG. 3 is a diagram for explaining a process of performing a first measurement using a moisture meter along a water intrusion route into a building. 水分計による第1の測定に基づいて選定した箇所への注水工程を説明するための図である。It is a figure for demonstrating the process of pouring water into the location selected based on the 1st measurement by a moisture meter. 注水後の水分計による第2の測定を行う工程を説明するための図である。It is a figure for demonstrating the process of performing the 2nd measurement by a moisture meter after water injection. 本発明の第2の実施形態の建物内部への水の浸入箇所の特定方法を説明するための図である。It is a figure for explaining the identification method of the point where water intrudes into the inside of a building of the 2nd embodiment of the present invention. 本発明を用いて配管系の漏水箇所を特定した手順を説明するための図である。FIG. 3 is a diagram for explaining a procedure for identifying a water leakage point in a piping system using the present invention. 漏水の浸入経路に沿って水分計による第1の測定を行う工程を説明するための図である。It is a figure for demonstrating the process of performing the 1st measurement with a moisture meter along the infiltration route of leakage water. 水分計による第1の測定に基づいて選定した箇所への注水工程を説明するための図である。It is a figure for demonstrating the process of pouring water into the location selected based on the 1st measurement by a moisture meter. 本発明を用いて雨漏りと配管系の漏水との双方の漏水箇所を特定した手順を説明するための図である。It is a figure for explaining the procedure which identified the water leak location of both the rain leak and the water leak of the piping system using this invention. 漏水の浸入経路に沿って水分計による第1の測定を行う工程を説明するための図である。It is a figure for demonstrating the process of performing the 1st measurement with a moisture meter along the infiltration route of leakage water.

[第1の実施形態]
続いて、RC(Reinforced Concrete)造やSRC(Steel Reinforced Concrete)造と呼ばれるコンクリート造の建物の雨漏りの調査を行う本発明の第1の実施形態について図面を参照して詳細に説明する。図1は、本実施形態の建物内部への水の浸入箇所の特定方法を説明するための図である。図1を参照すると、コンクリート造の躯体11を有る建物10が示されている。この建物10の屋上には防水層21が形成されている。また、室内の天井側には、躯体11から天井ボード12が吊られ、足下側の躯体11の上には、床13が張られている。
[First embodiment]
Next, a first embodiment of the present invention for investigating rain leaks in concrete buildings called RC (Reinforced Concrete) construction and SRC (Steel Reinforced Concrete) construction will be described in detail with reference to the drawings. FIG. 1 is a diagram for explaining a method of identifying a location where water intrudes into a building according to the present embodiment. Referring to FIG. 1, a building 10 having a concrete frame 11 is shown. A waterproof layer 21 is formed on the roof of this building 10. Further, a ceiling board 12 is suspended from the frame 11 on the ceiling side of the room, and a floor 13 is stretched over the frame 11 on the foot side.

このようなコンクリート造の建物10においても、防水層21や目地の劣化、サッシ部14の傷みのほか、これらと特定方向からの風雨等の条件が重なること等により、ごく稀に雨漏りLが生ずることがある。 Even in such a concrete building 10, rain leaks L occur very rarely due to deterioration of the waterproof layer 21 and joints, damage to the sash portion 14, and combination of these conditions with wind and rain from a specific direction. Sometimes.

本発明の建物内部への水の浸入箇所の特定方法は、以下の工程によって構成される。
(1)建物内部への水の浸入経路の推定
(2)水分計による第1の測定
(3)水の被疑浸入箇所の絞り込み
(4)注水
(5)水分計による第2の測定
(6)水の浸入箇所の特定
The method of identifying the location of water intrusion into a building according to the present invention includes the following steps.
(1) Estimating the route of water ingress into the building (2) First measurement using a moisture meter (3) Narrowing down the suspected water ingress points (4) Water injection (5) Second measurement using a moisture meter (6) Identification of water ingress points

以下、上記工程について順番に説明する。
(1)建物内部への水の浸入経路の推定
まず現地調査や住人への聞き取りを行い、漏水被害状況に基づいて建物内部への水の浸入経路を推定する。図2の符号R1~R4は、建物10の断面方向からみた雨水の浸入経路として推定された経路を示す。実際の雨漏り調査や漏水調査では、図の奥行方向も加わるため、水の浸入経路として推定された経路は、これよりも多く存在しうるが、以下、説明を簡単にするため、図2の経路R1~R4の4つの浸入経路を推定したものとして説明する。なお、漏水被害状況に加えて、目視調査の結果や赤外線サーモグラフィの画像等を用いて、経路R1~R4をより少数に絞り込むこともできる。
The above steps will be explained in order below.
(1) Estimating the route of water ingress into the building First, conduct a field survey and interview residents, and estimate the route of water ingress into the building based on the water leak damage situation. Reference symbols R1 to R4 in FIG. 2 indicate routes estimated as rainwater infiltration routes when viewed from the cross-sectional direction of the building 10. In an actual rain leak investigation or water leak investigation, the depth direction of the diagram is also included, so there may be more routes estimated as water intrusion routes than this. The explanation will be based on the estimation of four infiltration routes R1 to R4. In addition to the water leakage damage situation, the routes R1 to R4 can also be narrowed down to a smaller number by using the results of visual inspection, infrared thermography images, and the like.

(2)水分計による第1の測定
次に、水分計(「含水率計」とも言う。)による第1の測定を実施する。この第1の測定は、水分計30を用いて、(1)の工程で推定した水の浸入経路を含む第1のエリアの測定を行うことで実施される。この第1のエリアには、(1)の工程で推定した水の浸入経路のほか、その周囲を含めても良い。また、この第1のエリアは、図3に示したように、屋上と室内というように複数の箇所に跨がる場合がある。また、この第1の測定に用いる水分計としては、例えば、プローブ針を持たず測定対象に接触又は近づけた状態で、測定対象の深部の水分率(含水率)を測定できる高周波水分計(「電気容量式水分計」とも言う)を用いることができる。また、水分計には、測定対象の素材を選択できるものがある。この場合、適切な素材(コンクリート、モルタル等)を選択して測定を行うことで、より精度を高めることができる。
(2) First measurement using a moisture meter Next, a first measurement using a moisture meter (also referred to as a "moisture content meter") is carried out. This first measurement is carried out by using the moisture meter 30 to measure a first area including the water intrusion route estimated in step (1). This first area may include the water intrusion route estimated in step (1) as well as its surroundings. Further, as shown in FIG. 3, this first area may span multiple locations such as the rooftop and the indoor area. In addition, the moisture meter used for this first measurement is, for example, a high-frequency moisture meter (" A capacitive moisture meter (also called a capacitance moisture meter) can be used. Additionally, some moisture meters allow you to select the material to be measured. In this case, accuracy can be further improved by selecting an appropriate material (concrete, mortar, etc.) and performing the measurement.

(3)水の被疑浸入箇所の絞り込み
図3は、第1の測定における水分計30による測定箇所の例と、その結果を示した図である。図3において、「X」印が付されている箇所は、水分計30による測定の結果、水分率が所定値(判定しきい値)より低かった箇所を示す。一方、「!」印が付されている箇所は、水分計30による測定の結果、水分率が所定値以上であった箇所を示す。例えば、経路R1、R4は、全域に亘って水分率が所定値より低かったため、水の浸入経路から除外される。一方、経路R2、R3は、少なくともその一部において水分率が所定値以上であったため、雨漏りLを引き起こした水の浸入経路の候補として選択される。この浸入経路の起点が、雨漏りLによる水の被疑浸入箇所の候補となる。なお、水分計による判定を行うための所定値は、建物10の躯体11や防水層21の材質や築年数によって変動するが、典型的なコンクリート造の建物で通常雨にかからない場所の場合、前記所定値を「3%」を目安に設定することができる。もちろん、屋内と屋外で前記所定値を変えてもよい(例えば、屋内の所定値(判定しきい値)を3%とし、屋外の所定値(判定しきい値)を5%とする。)。
(3) Narrowing down the locations where water is suspected to have entered FIG. 3 is a diagram showing examples of locations measured by the moisture meter 30 in the first measurement and the results thereof. In FIG. 3, locations marked with "X" indicate locations where the moisture content was lower than a predetermined value (judgment threshold) as a result of measurement by the moisture meter 30. On the other hand, locations marked with "!" indicate locations where the moisture content was greater than or equal to a predetermined value as a result of measurement by the moisture meter 30. For example, routes R1 and R4 are excluded from the water infiltration routes because the moisture content was lower than a predetermined value over the entire area. On the other hand, the routes R2 and R3 are selected as candidates for the infiltration route of the water that caused the rain leak L because the moisture content in at least a part thereof was higher than the predetermined value. The starting point of this infiltration route is a candidate for the suspected intrusion location of water due to rain leak L. Note that the predetermined value for making a judgment using a moisture meter varies depending on the material and age of the building frame 11 and waterproof layer 21 of the building 10, but in the case of a typical concrete building in a place that is not normally exposed to rain, The predetermined value can be set to "3%" as a guide. Of course, the predetermined value may be different between indoors and outdoors (for example, the indoor predetermined value (determination threshold) is 3%, and the outdoor predetermined value (determination threshold) is 5%).

(4)注水
次に、第1の測定で絞り込んだ水の被疑浸入箇所に対して、1か所ずつ注水を行う。例えば、水の浸入経路R2、R3が選択された場合、図4に示すように、被疑浸入箇所P2、P3のいずれか1つを選択して、注水用容器40を用いて、検出用の水を用いた注水を行う。注水用容器40としては、図示したような丸形洗浄瓶と呼ばれる容器や、ノズルを取り付けたPETボトルなどを好適に用いることができる。また、その際の注水量は、水分計30の測定結果に反応が表れる程度の少量に抑えることができる。典型的な雨漏り箇所の特定の場合、1か所/1回あたり、500ml以下の所定量で十分な結果が得られる。また、より注水量を減らしたい場合、1か所/1回あたりの注水量を、250ml以下に抑え、十分に時間を置いてから第2の測定を行うようにしてもよい。
(4) Water injection Next, water is poured into the suspected water intrusion points narrowed down in the first measurement one by one. For example, when water infiltration routes R2 and R3 are selected, as shown in FIG. Inject water using As the water injection container 40, a container called a round cleaning bottle as shown in the figure, a PET bottle with a nozzle attached, etc. can be suitably used. Moreover, the amount of water injected at that time can be suppressed to a small amount that causes a reaction to appear in the measurement results of the moisture meter 30. In the case of identifying a typical rain leak location, sufficient results can be obtained with a predetermined amount of 500 ml or less per location/per time. Furthermore, if it is desired to further reduce the amount of water injected, the amount of water injected per location/time may be kept to 250 ml or less, and the second measurement may be performed after a sufficient period of time has elapsed.

なお、この検出用の水としては、通常の水道水を用いてもよいが、目視での判断をより容易にする観点で、絵の具や顔料などで注水箇所毎に異なる色を付けた水を用いてもよい。 Note that normal tap water may be used as the water for this detection, but from the perspective of making visual judgment easier, it is recommended to use water that has been colored differently for each water injection point using paint or pigment. It's okay.

(5)水分計による第2の測定
前記工程(4)の注水から所定時間経過後、水分計30による第2の測定を実施する。この第2の測定は、水分計30を用いて、前記建物10内部の水の滲出箇所を含む第2のエリアの測定を行うことで実施される。この第2のエリアには、建物10内部の水の滲出箇所(図5の楕円のハッチング領域)、滲出箇所と注水箇所との中間経路のほか、その周囲を含めても良い。また、この第2のエリアは、図5に示したように、屋上と室内というように複数の箇所に跨がる場合がある。また、前記所定時間は、浸水箇所の状況や建物10の躯体11の材質や築年数等によって決定される。典型的な雨漏り調査では、例えば、注水から30分程度で十分に第2の測定を実施することができる。前述のとおり、注水用容器40による注水量が少量であっても、被疑浸入箇所が正しければ、水分計30は躯体11内部の水分量を測定するため、確実に反応する。
(5) Second measurement using a moisture meter After a predetermined period of time has passed since the water injection in step (4), a second measurement using the moisture meter 30 is performed. This second measurement is carried out by using the moisture meter 30 to measure a second area including the water leakage location inside the building 10. This second area may include the water seepage location inside the building 10 (the oval hatched area in FIG. 5), the intermediate route between the seepage location and the water injection location, and the surrounding area thereof. Furthermore, as shown in FIG. 5, this second area may span multiple locations, such as the rooftop and the indoor area. Further, the predetermined time is determined depending on the condition of the flooded area, the material of the frame 11 of the building 10, the age of the building, etc. In a typical rain leak investigation, for example, it is sufficient to carry out the second measurement within about 30 minutes from water injection. As described above, even if the amount of water injected by the water injecting container 40 is small, if the suspected infiltration location is correct, the moisture meter 30 measures the amount of moisture inside the frame 11, so a reaction is ensured.

(6)水の浸入箇所の特定
図5は、第2の測定における水分計30による測定箇所と、その結果を示した図である。図5の例では、最初に被疑浸入箇所P2に注水して第2の測定を行ったが、水分率の上昇は観測されなかった。その後、被疑浸入箇所P3に注水して第2の測定を行ったところ、水分率の上昇が観測された。この場合、被疑浸入箇所P3が、雨漏りLの原因箇所として特定される。なお、図5に示したように、第2の測定時に、前記建物10内部の水の滲出箇所のほか、その上流に位置する水の浸入経路上の位置も第2の測定の対象とすることが望ましい。このようにすることで、追加の注水や時間経過を待つか否かをより的確に判断することが可能になる。
(6) Identification of locations where water has entered FIG. 5 is a diagram showing locations measured by the moisture meter 30 in the second measurement and the results thereof. In the example of FIG. 5, a second measurement was performed by first injecting water into the suspected infiltration location P2, but no increase in the moisture content was observed. Thereafter, when a second measurement was performed by injecting water into the suspected infiltration location P3, an increase in the moisture content was observed. In this case, the suspected infiltration location P3 is identified as the location causing the rain leak L. Note that, as shown in FIG. 5, during the second measurement, in addition to the water leakage location inside the building 10, the location on the water infiltration route located upstream thereof is also subject to the second measurement. is desirable. By doing so, it becomes possible to more accurately determine whether to add additional water or wait for time to pass.

なお、推定した水の浸入経路が正しかった場合、一般的には、水の浸入経路の全域に亘って、第2の測定における水分率が、第1の測定時における水分率より高くなる。しかしながら、被疑浸入箇所P3の注水後の水分率の上昇が一様ではない場合もある。この場合、水の浸入箇所が複数存在する可能性がある。その場合、被疑浸入箇所を追加で探し出し、追加の注水と第2の測定を行って、水の浸入箇所をより詳細に特定してもよい。 Note that if the estimated water infiltration route is correct, the moisture content in the second measurement will generally be higher than the moisture content in the first measurement over the entire water infiltration route. However, the increase in moisture content after water injection at the suspected infiltration location P3 may not be uniform. In this case, there may be multiple locations where water can enter. In that case, the suspected water intrusion location may be additionally searched for, and additional water injection and second measurement may be performed to identify the water intrusion location in more detail.

また、躯体11のクラックやひび割れが小さい場合や、注水用容器40による注水では、雨漏り発生時の風雨の状況を再現できていない場合、1回目の第2の測定では水分率が有意に上がらない場合もある。必要に応じて、さらに所定時間経過後に、必要回数の第2の測定を実施しても良い。もちろん水分計30による測定結果に加えて、赤外線サーモグラフィによる測定結果や、エフロレッセンス現象を利用した電気を用いた検査結果を用いて総合的な判断を行ってもよい。 In addition, if the cracks or crevices in the frame 11 are small, or if water injection using the water injection container 40 cannot reproduce the wind and rain conditions at the time of the leak, the moisture content will not increase significantly in the first and second measurements. In some cases. If necessary, a required number of second measurements may be performed further after a predetermined period of time has elapsed. Of course, in addition to the measurement results by the moisture meter 30, a comprehensive judgment may be made using the measurement results by infrared thermography or the results of an electrical test using the efflorescence phenomenon.

図5の例では、被疑浸入箇所P3が雨漏りの原因箇所として特定される。これにより応急措置としてブルーシートの設置や恒久措置として、防水層21の補修や再施工等が行われることになる。 In the example of FIG. 5, the suspected infiltration location P3 is identified as the location causing the rain leak. As a result, a blue sheet will be installed as an emergency measure, and the waterproof layer 21 will be repaired or re-installed as a permanent measure.

以上、説明したとおり、本実施形態によれば、目に見えるクラックやひび割れに頼らずに、水分計30という携行が容易な機器を用いて、比較的短時間で、雨漏りの原因箇所を特定することが可能となる。その理由は、水の被疑浸入箇所の絞り込みを行うための第1の測定と、水の浸入経路の特定、検証を行うための第2の測定とを段階的に行う構成を採用したことにある。 As explained above, according to this embodiment, the cause of a rain leak can be identified in a relatively short time using an easily portable device called the moisture meter 30, without relying on visible cracks. becomes possible. The reason for this is that we have adopted a configuration in which the first measurement is performed to narrow down the suspected water intrusion points, and the second measurement is carried out in stages to identify and verify the water intrusion route. .

また、工程(4)で説明したとおり、本発明における注水用容器40による注水量は、水分計30の測定結果に反応が表れる程度で足り、雨漏りの原因箇所を特定できれば、以降の注水を中止することもできる。このため、大量の水を持ち込み散水し、また、その排水の処理をする必要もない。したがって、本発明にかかる方法は、浸水被害のさらなる悪化を惹起すること等がないという利点もある。 Furthermore, as explained in step (4), the amount of water injected by the water injection container 40 in the present invention is sufficient to the extent that a reaction appears in the measurement results of the moisture meter 30, and if the cause of the leak can be identified, subsequent water injection will be stopped. You can also. Therefore, there is no need to bring in a large amount of water for sprinkling or to treat the wastewater. Therefore, the method according to the present invention has the advantage that it does not cause further deterioration of flood damage.

[第2の実施形態]
続いて、上記した第1の実施形態との比較において調査時間をより短縮することができるように変更した第2の実施形態について図面を参照して詳細に説明する。図6は、本発明の第2の実施形態の建物内部への水の浸入箇所の特定方法を説明するための図である。
[Second embodiment]
Next, a second embodiment, which is modified so that the investigation time can be further shortened in comparison with the first embodiment described above, will be described in detail with reference to the drawings. FIG. 6 is a diagram for explaining a method for identifying a location where water intrudes into a building according to a second embodiment of the present invention.

第1の実施形態の調査対象となる建物10との相違点は、建物10の雨漏り被害箇所の部屋がサッシ部14や壁によって仕切られている点と、その部屋内に換気扇50が設置されている点である。なお、換気扇50は、厨房等に設置されている換気扇でもよいが、各部屋に設置されている24時間換気システムの換気扇でもよい。また、部屋内にこれらの換気扇等がない場合、後付けの送風装置やサーキュレーター等を用いて、部屋内の空気を排出するようにしてもよい。 The difference from the building 10 to be investigated in the first embodiment is that the room in the leak-damaged area of the building 10 is separated by a sash part 14 or a wall, and a ventilation fan 50 is installed in the room. This is the point. Note that the ventilation fan 50 may be a ventilation fan installed in a kitchen or the like, but may also be a ventilation fan of a 24-hour ventilation system installed in each room. Furthermore, if there is no ventilation fan or the like in the room, a post-installed blower, circulator, or the like may be used to exhaust the air in the room.

第1の実施形態の水の浸入箇所の特定方法との相違点は、工程(4)の注水後、換気扇50を作動させ、部屋内の気圧を下げ、所定期間、負圧を維持する点である。なお、部屋内の気圧は、市販の気圧計等により測定することができる。 The difference from the method of identifying the water intrusion point of the first embodiment is that after water injection in step (4), the ventilation fan 50 is activated to lower the atmospheric pressure in the room and maintain negative pressure for a predetermined period of time. be. Note that the atmospheric pressure in the room can be measured using a commercially available barometer or the like.

前記部屋内の気圧を下げ、負圧を維持することで、注水した水の浸透が促進される。換言すると、水の被疑浸入箇所の下流側となる区画から強制的に排気を行うことで、前記検出用の水の浸入を促すことができる。また、これにより、注水後の待機時間をより短縮することができる。なお、前記部屋内の気圧をより効率よく下げるため、部屋内に、給気扇、空気調和装置や通風孔等がある場合、これらを目張り(閉塞)することも望ましい。 By lowering the atmospheric pressure in the room and maintaining a negative pressure, penetration of the injected water is promoted. In other words, by forcibly exhausting air from the section downstream of the suspected water intrusion location, the infiltration of the detection water can be encouraged. Moreover, this makes it possible to further shorten the waiting time after water injection. Note that in order to more efficiently lower the atmospheric pressure in the room, if there is an air supply fan, air conditioner, ventilation hole, etc. in the room, it is also desirable to cover (close) these.

[第3の実施形態]
上記した第1、第2の実施形態では、雨漏りの原因箇所を特定するために、本発明を用いた例を挙げて説明したが、本発明によれば、リフォーム後の配管トラブル等による漏水や経年劣化による漏水の原因箇所も精度よく特定することができる。
[Third embodiment]
In the first and second embodiments described above, an example was given in which the present invention was used to identify the cause of rain leaks, but according to the present invention, water leaks due to piping troubles after renovation, etc. It is also possible to accurately pinpoint the cause of water leakage due to aging.

図7は、本発明を用いて配管系の漏水箇所を特定した手順を説明するための図である。図7の例では、マンション等の建物10aの下階の部屋の洗面台60付近の壁に、雨漏り状の漏水が発生している(楕円のハッチング領域)。また、図7の例では、上階の部屋は、床の上張り工事により、新築時の床16-1の上に、改修時の床16-2が張られている。このような状況では、サッシ部14を介して雨水が部屋内に浸入し、改修前の床16-1を伝って、下階に流れている経路R11と、洗面台60の内部の配管61の異常により排水が下階に落ちている経路R12との2つの経路が考えられる。 FIG. 7 is a diagram for explaining a procedure for identifying a water leak location in a piping system using the present invention. In the example of FIG. 7, a rain-like water leak has occurred on the wall near the wash basin 60 in a room on the lower floor of a building 10a such as an apartment building (elliptical hatched area). Further, in the example of FIG. 7, in the room on the upper floor, the renovated floor 16-2 is laid over the newly constructed floor 16-1 due to floor covering work. In such a situation, rainwater enters the room through the sash section 14, travels along the pre-renovation floor 16-1, and flows to the lower floor through the path R11 and the pipe 61 inside the washbasin 60. There are two possible routes, route R12 and route R12 where drainage water falls to the lower floor due to an abnormality.

この場合も上記工程(2)~工程(5)を実施することで、漏水の原因箇所を特定することが可能となる。例えば、図8に示すように、(2)第1の測定を実施することで、経路R11と経路R12のいずれが下階の漏水をもたらしているかを簡易的に判定することができる。 In this case as well, by performing the above steps (2) to (5), it becomes possible to identify the source of water leakage. For example, as shown in FIG. 8, (2) by performing the first measurement, it is possible to easily determine which of the route R11 and the route R12 is causing water leakage on the lower floor.

さらに、経路R11~R12のいずれが下階の漏水をもたらしているかを検証するための注水と、第2の測定を実施する。具体的には、図9に示すように、前記(4)の注水を行った後、前記(5)の第2の測定を行うことで、漏水箇所を正確に特定することが可能となる。例えば、前記第2の測定で、サッシ部14を起点とする経路R11への注水後に水分率の上昇が観測された場合、サッシ部14を介して雨水が入り込み、床16-1、16-2を伝った水が、躯体11のクラックを介して、下階の漏水をもたらしていると判定することができる。同様に、洗面台60内部の配管61を起点とする経路R12への注水後に、水分率の上昇が観測された場合、洗面台60内部の配管61を介して、排水が床16-1、16-2を伝った水に落ち、躯体11のクラックを介して、下階の漏水をもたらしていると判定することができる。 Furthermore, water injection and a second measurement are performed to verify which of the routes R11 to R12 is causing water leakage on the lower floor. Specifically, as shown in FIG. 9, by performing the second measurement in (5) after performing the water injection in (4) above, it becomes possible to accurately identify the water leakage location. For example, in the second measurement, if an increase in the moisture content is observed after water is poured into the route R11 starting from the sash section 14, rainwater enters through the sash section 14 and the floors 16-1, 16-2 It can be determined that the water that has flowed through the building is causing water leakage to the lower floor through the cracks in the frame 11. Similarly, if an increase in the moisture content is observed after water is poured into the path R12 starting from the pipe 61 inside the washbasin 60, the water will flow through the pipe 61 inside the washbasin 60 to the floors 16-1 and 16-1. It can be determined that the water that flowed through the roof 11 fell into the water and caused the water leakage to the lower floor through the cracks in the frame 11.

以上、説明したとおり、本発明によれば、リフォーム後の配管トラブル等による漏水や経年劣化による漏水の原因箇所も精度よく特定することができる。また、図7~図9に示した第3の実施形態においても、第2の実施形態と同様に、下階の部屋に換気扇等を利用した調査をすることもできる。具体的には、注水後、下階の部屋内の気圧を下げ、負圧を維持することで、注水した水の浸透を促進させ、調査時間をより短縮することができる。 As described above, according to the present invention, it is possible to accurately identify the cause of water leakage due to piping troubles after renovation or due to aging deterioration. Furthermore, in the third embodiment shown in FIGS. 7 to 9, as in the second embodiment, it is also possible to conduct an investigation using a ventilation fan or the like in a room on the lower floor. Specifically, after water is injected, by lowering the air pressure in the room on the lower floor and maintaining a negative pressure, it is possible to promote the penetration of the injected water and further shorten the investigation time.

[第4の実施形態]
続いて、漏水被害箇所から雨漏りが疑われたが、本発明を用いた調査の結果、雨漏りと配管系の漏水との双方が原因であることを特定できた第4の実施形態について説明する。
[Fourth embodiment]
Next, a fourth embodiment will be described in which rain leakage was suspected from the water leak damage location, but as a result of an investigation using the present invention, both rain leakage and water leakage from the piping system were identified as the cause.

図10は、本発明を用いて雨漏りと配管系の漏水との漏水箇所を特定した手順を説明するための図である。図10の例では、マンション等の建物10bのルーフバルコニーの下階の部屋の天井ボード15に、雨漏り状の漏水が発生している(楕円のハッチング領域)。また、図10の建物10bのルーフバルコニーには臭気筒70が設置され、その配管が躯体11を貫通した後、下階の部屋の天井ボード15の裏側の配管に接続されている。このような状況では、ルーフバルコニーの防水層21、躯体11のクラック・ひび割れ、臭気筒70とルーフバルコニーとの接合部等を介した複数の経路R21~R24が考えられる。 FIG. 10 is a diagram illustrating a procedure for identifying a water leak location of a rain leak and a water leak in a piping system using the present invention. In the example of FIG. 10, water leakage occurs in the ceiling board 15 of a room on the lower floor of the roof balcony of a building 10b such as an apartment building (elliptical hatched area). Further, a smell cylinder 70 is installed on the roof balcony of the building 10b in FIG. 10, and after its piping passes through the frame 11, it is connected to the piping on the back side of the ceiling board 15 in the room on the lower floor. In such a situation, a plurality of routes R21 to R24 can be considered, such as through the waterproof layer 21 of the roof balcony, cracks in the frame 11, the joint between the odor cylinder 70 and the roof balcony, and the like.

この場合も上記工程(2)~工程(5)を実施することで、漏水の原因箇所を特定することが可能となる。例えば、図11に示すように、(2)第1の測定を実施することで、経路R21~R24のいずれが下階の漏水をもたらしているかを簡易的に判定することができる。 In this case as well, by performing the above steps (2) to (5), it becomes possible to identify the source of water leakage. For example, as shown in FIG. 11, by performing (2) the first measurement, it is possible to easily determine which of the routes R21 to R24 is causing water leakage on the lower floor.

さらに、経路R21~R24のいずれが下階の漏水をもたらしているかを検証するための注水と、第2の測定を実施する。具体的には、第3の実施形態と同様に(4)注水を行った後、(5)第2の測定を行うことで、漏水箇所を正確に特定することが可能となる。例えば、ルーフバルコニーの防水層21の部屋側端部や手すり側端部への注水後、経路R21、R24の水分率の上昇が観測された場合、防水層21と躯体11の継ぎ目の目地の劣化箇所から雨水が入り込み、躯体11のクラックを介して、下階の漏水をもたらしていると判定することができる。同様に、ルーフバルコニーの防水層21の中央部への注水後、経路R22の水分率の上昇が観測された場合、防水層21の中央の劣化箇所から雨水が入り込み、躯体11のクラックを介して、下階の漏水をもたらしていると判定することができる。同様に、ルーフバルコニーの臭気筒70と防水層との接続部の注水後に、経路R23の水分率の上昇が観測された場合、防水層21と臭気筒70の接続箇所から配管内に雨水が入り、配管内に水が貯留し、配管の接続箇所を介して、下階の漏水をもたらしていると判定することができる。 Furthermore, water is poured and a second measurement is performed to verify which of the routes R21 to R24 is causing water leakage on the lower floor. Specifically, similarly to the third embodiment, by performing (4) water injection and then (5) performing the second measurement, it becomes possible to accurately identify the water leakage location. For example, if an increase in the moisture content of routes R21 and R24 is observed after water is poured into the room-side end or handrail-side end of the waterproof layer 21 of a roof balcony, the joint between the waterproof layer 21 and the frame 11 may deteriorate. It can be determined that rainwater is entering from the location and causing water leakage to the lower floor through cracks in the frame 11. Similarly, if an increase in the moisture content in route R22 is observed after water is poured into the center of the waterproof layer 21 of the roof balcony, rainwater will enter from the deteriorated area in the center of the waterproof layer 21 and will flow through the cracks in the frame 11. , it can be determined that this is causing water leakage on the lower floor. Similarly, if an increase in the moisture content in route R23 is observed after water is poured into the connection between the odor cylinder 70 and the waterproof layer on the roof balcony, rainwater will enter the pipe from the connection between the waterproof layer 21 and the odor cylinder 70. It can be determined that water has accumulated in the pipes, causing water leakage to the lower floor via the pipe connections.

以上、説明したとおり、本発明によれば、雨漏りと配管系の漏水との双方が原因であるケースにおいてもその原因箇所を精度よく特定することができる。また、図10~図11の例においても、第2の実施形態と同様に、下階の部屋に換気扇等を利用した調査をすることもできる。具体的には、注水後、下階の部屋内の気圧を下げ、負圧を維持することで、注水した水の浸透を促進させ、調査時間をより短縮することができる。 As described above, according to the present invention, even in cases where the cause is both a rain leak and a water leak in the piping system, the cause can be identified with high accuracy. Furthermore, in the examples shown in FIGS. 10 and 11, it is also possible to conduct an investigation using a ventilation fan or the like in a room on the lower floor, similar to the second embodiment. Specifically, after water is injected, by lowering the air pressure in the room on the lower floor and maintaining a negative pressure, it is possible to promote the penetration of the injected water and further shorten the investigation time.

以上、本発明の各実施形態を説明したが、本発明は、上記した各実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、上記した各実施形態では、主として水分計の測定値を用いて、水の被疑浸入箇所を絞り込み、又は、水の浸入箇所を特定するものとして説明したが、赤外線サーモグラフィ調査、電気を用いる調査その他を併用してもよい。 Although each embodiment of the present invention has been described above, the present invention is not limited to each of the above-described embodiments, and further modifications, substitutions, and changes may be made without departing from the basic technical idea of the present invention. Adjustments can be made. For example, in each of the above-described embodiments, the measurement value of a moisture meter is mainly used to narrow down the suspected water intrusion points or to identify the water intrusion points, but infrared thermography investigation, investigation using electricity, etc. Others may be used in combination.

また上記した各実施形態では、コンクリート造の躯体11を持つ建物10、10a、10bの漏水箇所の調査を行う例を挙げて説明したが、本発明は、コンクリート造の躯体11を持つ建物以外の建物や構造物にも適用することができる。 Furthermore, in each of the above-described embodiments, an example has been described in which water leakage locations are investigated in the buildings 10, 10a, and 10b having the concrete frame 11. It can also be applied to buildings and structures.

また、本発明の工程中の(1)建物内部への水の浸入経路の推定、(3)水の被疑浸入箇所の絞り込み、(6)水の浸入箇所の特定に当たり、以下の道具を用いることもできる。
・水準器/水平器・・・水の浸入箇所や建物内部で水の流れる方向の確認に用いる。
・温度計・・・注水前後の建物表面の温度の変化により漏水箇所の絞り込みを行う。赤外線などを用いた非接触式の温度計のほか、スティックタイプのプローブが付いた接触式の温度計を場所により使い分ける。
・方位磁石、気象データ・・・特定の風向や気象条件下でのみ発生する雨漏り等の浸入経路の割り出しに用いる。
・超音波測定器・・・コンクリート表面に現れたクラックやひび割れの深さを推定するために用いる。
・聴診器・・・調査対象のコンクリート面に聴診器を当てて、反響音に基づいて、クラックやひび割れの有無や程度を確かめる。
Additionally, during the process of the present invention, the following tools should be used to (1) estimate the route of water intrusion into the building, (3) narrow down the suspected water intrusion points, and (6) identify the water intrusion points. You can also do it.
・Level/Level: Used to check where water has entered or the direction of water flow inside a building.
・Thermometer: Narrow down the location of water leaks based on changes in the temperature of the building surface before and after water injection. In addition to non-contact thermometers that use infrared light, use contact thermometers with stick-type probes depending on the location.
・Compass, weather data: Used to determine the route of rain leaks that occur only under specific wind directions or weather conditions.
・Ultrasonic measuring device: Used to estimate the depth of cracks and fissures that appear on the concrete surface.
・Stethoscope: Place a stethoscope on the concrete surface to be investigated and check the presence and extent of cracks based on the echoes.

また、本発明を適用して漏水箇所を特定した事例を収集し、データとして利活用してもよい。例えば、建物の高さや形態や類似する建物をグループ化し、漏水が発生しやすい箇所や、水の浸入経路を記録することで、建物の形態別の漏水発生箇所や浸水経路を示したヒートマップや散布図を作成することができる。これらのヒートマップや散布図を用いて、調査経験の少ない調査担当者に対し、水の浸入経路や第1の測定を行うべき箇所の示唆を与える情報システムを構築してもよい。また、前記記録したデータを教師データとして機械学習を行うことで、建物のデータが入力されると、漏水が発生しやすい箇所や、水の浸入経路を提示するAIシステムを構築することもできる。 Furthermore, cases in which water leakage points were identified by applying the present invention may be collected and utilized as data. For example, by grouping buildings with similar heights and shapes and recording the locations where water leaks are likely to occur and the routes of water ingress, a heat map showing the locations of water leaks and routes of water ingress by building type can be created. Scatter plots can be created. Using these heat maps and scatter diagrams, an information system may be constructed that gives a surveyor with little survey experience a suggestion of the water intrusion route and the location where the first measurement should be performed. Furthermore, by performing machine learning using the recorded data as training data, it is also possible to construct an AI system that, when building data is input, indicates locations where water leaks are likely to occur and water ingress routes.

さらに、上記した実施形態では、主として人間が水分計を用いて第1、第2の測定を行うものとして説明したが、高所や狭い場所では、水分計を搭載したロボットやドローン(UAV、Unmanned Aerial Vehicle)に、第1、第2の測定を行わせ、その結果を無線等により送信させてもよい。 Furthermore, in the embodiment described above, the first and second measurements were mainly performed by humans using the moisture meter, but in high places or narrow places, a robot or drone (UAV, Aerial Vehicle) may be made to perform the first and second measurements, and the results may be transmitted wirelessly or the like.

なお、上記の特許文献の各開示は、本書に引用をもって繰り込み記載されているものとし、必要に応じて本発明の基礎ないし一部として用いることが出来るものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択(部分的削除を含む)が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値や数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。さらに、上記引用した文献の各開示事項は、必要に応じ、本発明の趣旨に則り、本発明の開示の一部として、その一部又は全部を、本書の記載事項と組み合わせて用いることも、本願の開示事項に含まれるものと、みなされる。 It should be noted that the disclosures of the above-mentioned patent documents are incorporated into this book by reference, and can be used as the basis or part of the present invention as necessary. Within the scope of the entire disclosure of the present invention (including the claims), changes and adjustments to the embodiments and examples are possible based on the basic technical idea thereof. In addition, various combinations or selections (parts) of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the framework of the disclosure of the present invention are also available. (including deletion) is possible. That is, it goes without saying that the present invention includes the entire disclosure including the claims and various modifications and modifications that a person skilled in the art would be able to make in accordance with the technical idea. In particular, numerical values and numerical ranges stated in this document should be construed as specifically stating any numerical value or subrange within the range, even if not otherwise stated. Furthermore, each of the disclosures in the documents cited above may be used, in part or in whole, in combination with the statements in this book as part of the disclosure of the present invention, if necessary, in accordance with the spirit of the present invention. It is deemed to be included in the disclosure of this application.

10、10a、10b 建物
11 躯体
12、15 天井ボード
13、16-1、16-2 床
14 サッシ部
21 防水層
30 水分計
40 注水用容器
50 換気扇
60 洗面台
61 配管
70 臭気筒
L 雨漏り
R1~R4、R11~R12、F24~R24 建物内部への水の浸入経路
P2、P3 被疑浸入箇所
10, 10a, 10b Building 11 Frame 12, 15 Ceiling board 13, 16-1, 16-2 Floor 14 Sash section 21 Waterproof layer 30 Moisture meter 40 Water injection container 50 Ventilation fan 60 Wash basin 61 Piping 70 Odor cylinder L Rain leak R1~ R4, R11~R12, F24~R24 Route of water intrusion into the building P2, P3 Suspected infiltration points

Claims (4)

漏水被害状況に基づいて建物内部への水の浸入経路を推定し、
水分計を用いて、前記水の浸入経路を含む第1のエリアを測定する第1の測定を実施し、
前記第1の測定の結果に基づいて、前記水の被疑浸入箇所を絞り込み、
前記水の被疑浸入箇所に、検出用の水を注入し、
所定時間経過後に、前記水分計を用いて、前記建物内部の水の滲出箇所を含む第2のエリアを測定する第2の測定を実施し、
前記第2の測定の結果に基づいて、前記水の浸入箇所を特定する、
水の浸入箇所の特定方法。
Estimate the route of water intrusion into the building based on the water leak damage situation,
carrying out a first measurement of measuring a first area including the water infiltration route using a moisture meter;
Based on the results of the first measurement, narrowing down the suspected infiltration location of the water;
Injecting water for detection into the suspected water intrusion location,
After a predetermined period of time has elapsed, a second measurement is performed using the moisture meter to measure a second area including a water seepage location inside the building;
identifying the water intrusion location based on the result of the second measurement;
How to identify where water has entered.
前記検出用の水の注入後、前記水の被疑浸入箇所の下流側となる区画から強制的に排気を行うことで、前記検出用の水の浸入を促す、
請求項1の漏水の浸入箇所の特定方法。
After the detection water is injected, the water is forcibly evacuated from a compartment downstream of the suspected water intrusion point, thereby promoting the detection water intrusion.
A method for identifying a location of water leakage according to claim 1.
前記強制的に排気を行う手段として、前記建物内部に備えられた換気扇を用いる、
請求項2の漏水の浸入箇所の特定方法。
A ventilation fan provided inside the building is used as the means for forcibly exhausting the air.
The method for identifying a location of water leakage according to claim 2.
前記水の被疑浸入箇所1か所あたりに注入する水の量を、1回あたり500ml以下の所定量に制限して前記第2の測定を実施する、
請求項1の漏水の浸入箇所の特定方法。
Carrying out the second measurement by limiting the amount of water injected into each suspected water intrusion location to a predetermined amount of 500 ml or less per time;
A method for identifying a location of water leakage according to claim 1.
JP2022084875A 2022-05-24 2022-05-24 Method for identifying water intrusion points inside a building Active JP7137887B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022084875A JP7137887B1 (en) 2022-05-24 2022-05-24 Method for identifying water intrusion points inside a building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022084875A JP7137887B1 (en) 2022-05-24 2022-05-24 Method for identifying water intrusion points inside a building

Publications (2)

Publication Number Publication Date
JP7137887B1 JP7137887B1 (en) 2022-09-15
JP2023172803A true JP2023172803A (en) 2023-12-06

Family

ID=83282290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022084875A Active JP7137887B1 (en) 2022-05-24 2022-05-24 Method for identifying water intrusion points inside a building

Country Status (1)

Country Link
JP (1) JP7137887B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091397A (en) * 1999-09-24 2001-04-06 Misawa Homes Co Ltd Airtightness measurement method of building
US20020130781A1 (en) * 2001-02-05 2002-09-19 Kroll Richard E. Method and apparatus for moisture detection in exterior sheathing of residential and commercial buildings
JP2010133708A (en) * 2008-08-14 2010-06-17 Tadashi Obuchi Method and device for inspecting rain leaking in building
JP2016090501A (en) * 2014-11-10 2016-05-23 株式会社ダイニチ Water leakage path specification method
CN111219605A (en) * 2020-01-17 2020-06-02 宿州学院 Indoor water leakage detection method and application thereof
CN111536430A (en) * 2020-05-09 2020-08-14 深圳市行健自动化股份有限公司 Method for three-dimensionally positioning pipeline leakage monitoring based on temperature and humidity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091397A (en) * 1999-09-24 2001-04-06 Misawa Homes Co Ltd Airtightness measurement method of building
US20020130781A1 (en) * 2001-02-05 2002-09-19 Kroll Richard E. Method and apparatus for moisture detection in exterior sheathing of residential and commercial buildings
JP2010133708A (en) * 2008-08-14 2010-06-17 Tadashi Obuchi Method and device for inspecting rain leaking in building
JP2016090501A (en) * 2014-11-10 2016-05-23 株式会社ダイニチ Water leakage path specification method
CN111219605A (en) * 2020-01-17 2020-06-02 宿州学院 Indoor water leakage detection method and application thereof
CN111536430A (en) * 2020-05-09 2020-08-14 深圳市行健自动化股份有限公司 Method for three-dimensionally positioning pipeline leakage monitoring based on temperature and humidity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
""散水調査時に水分計は有効に使えるのか?松戸市胡録台"", 雨漏り診断士・建築士・塗装技能士・施工管理技士の高松洋平ブログ, JPN6022030626, 10 April 2019 (2019-04-10), ISSN: 0004835575 *
""雨漏り調査に水分計は有効に使えるのか?松戸市胡録台"", 雨漏り診断士・建築士・塗装技能士・施工管理技士の高松洋平ブログ, JPN6022030627, 7 April 2019 (2019-04-07), ISSN: 0004835574 *

Also Published As

Publication number Publication date
JP7137887B1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
Taylor et al. Energy efficiency is more than skin deep: Improving construction quality control in new-build housing using thermography
Ljungberg Infrared techniques in buildings and structures: Operation and maintenance
CN109443428A (en) A kind of external wall waterproof engineering construction quality Testing and appraisal method
Campbell et al. Monitoring the hygrothermal and ventilation performance of retrofitted clay brick solid wall houses with internal insulation: Two UK case studies
Galadanci et al. Energy investigation framework: Understanding buildings from an energy perspective view
JP2002054203A (en) Drain pipe laying structure of building
JP2023172803A (en) Specification method of water entry point into building
Khalid et al. Building Condition Assessment and Defect Analysis on Heritage Shophouses in Penang, Malaysia: Case Studies
Snell et al. Nondestructive testing of building envelope systems using infrared thermography
CN209446229U (en) A kind of portable assembled architecture outer wall board checking device using dry ice
Gómez et al. A protocol for using unmanned aerial vehicles to inspect agro-industrial buildings
Santos et al. Inspection and evaluation of roofing systems: a case study
Taylor et al. Checking “fabric first” really works: in-construction tests using thermography
Hassan et al. Study of rising dampness problem in housing area in Klang Valley, Malaysia
Sonntag et al. Methodology for praxis-oriented development of a building refurbishment concept including consideration of potentially existing moisture related problems and façade restoration measures
Van De Vijver et al. On the use of infrared thermography to assess air infiltration in building envelopes
Snell et al. Testing building envelope systems using infrared thermography
Trechsel et al. Investigating moisture damage caused by building envelope problems
Subramaniam et al. Effectiveness of Quality Assessment in Construction Project
Kaymaz Monitoring thermal bridges by infrared thermography
Hassana et al. STUDY OF RISING DAMPNESS PROBLEM IN HOUSING AREA IN KLANG VALLEY, MALAYSIA
Krogstad Masonry Wall Drainage Test--A Proposed Method for Field Evaluation of Masonry Cavity Walls for Resistance to Water Leakage
Bremer et al. ANÁLISE DAS MANIFESTAÇÕES PATOLÓGICAS NA IGREJA DE NOSSA SENHORA DA PIEDADE DO PARAOPEBA USANDO TERMOGRAFIA
Wright Assessment of Water Damage in a Mass Masonry Wall Building
Gonzalez et al. INSPECTING FOR SUSPECT MOLD GROWTH in Government, Industrial & Commercial Properties.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7137887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150