JP2023172695A - Soil improver and method for producing the same, and method for improving soil - Google Patents

Soil improver and method for producing the same, and method for improving soil Download PDF

Info

Publication number
JP2023172695A
JP2023172695A JP2022084671A JP2022084671A JP2023172695A JP 2023172695 A JP2023172695 A JP 2023172695A JP 2022084671 A JP2022084671 A JP 2022084671A JP 2022084671 A JP2022084671 A JP 2022084671A JP 2023172695 A JP2023172695 A JP 2023172695A
Authority
JP
Japan
Prior art keywords
soil
sandy
less
water
sandy soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022084671A
Other languages
Japanese (ja)
Other versions
JP7248257B1 (en
Inventor
一貴 井出
Kazutaka Ide
俊彦 三浦
Toshihiko Miura
尚哉 高田
Naoya Takada
正文 富田
Masafumi Tomita
達彦 足立
Tatsuhiko Adachi
博 久保
Hiroshi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Tachibana Material Co Ltd
Original Assignee
Obayashi Corp
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Tachibana Material Co Ltd filed Critical Obayashi Corp
Priority to JP2022084671A priority Critical patent/JP7248257B1/en
Application granted granted Critical
Publication of JP7248257B1 publication Critical patent/JP7248257B1/en
Publication of JP2023172695A publication Critical patent/JP2023172695A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a soil improver that can reform the soil into a less viscous state, while suppressing dust emission.SOLUTION: A soil improver contains a water-absorbing polymer and sandy soil. The sandy soil has a hydrous ratio of 30% or less. The sandy soil has an EC (electric conductivity) of 90 mS/m or less.SELECTED DRAWING: Figure 1A

Description

本発明は、土質改良材及びその製造方法、並びにそれを用いた土壌の改良方法に関する。 The present invention relates to a soil improving material, a method for producing the same, and a method for improving soil using the same.

土木工事などにより掘削した土壌は、産業廃棄物として処理されたり、建設発生土として利用される。 Soil excavated during civil engineering works is treated as industrial waste or used as construction soil.

土壌を埋め立てる前に、減容化や廃棄物等の除去や土壌に含まれる有機物(草木等)の腐敗による影響を防止することを目的として、篩により分別する作業が行われる。 Before soil is landfilled, it is separated using sieves for the purpose of reducing the volume, removing waste, etc., and preventing the effects of decay of organic matter (plants, etc.) contained in the soil.

土木工事は粘性が低い土壌だけではなく、水田及び畑のような粘性が高い土壌においても行われることがある。このような粘性が高い土壌は、そのままでは篩による分別作業が困難な場合も多い。 Civil engineering works are sometimes carried out not only in soils with low viscosity, but also in soils with high viscosity, such as in paddy fields and fields. Such highly viscous soil is often difficult to separate using a sieve.

このような土壌に対しては、土質改良材を添加し、土壌に含まれる水分を除去してサラサラの状態(篩によって土と有機物などの異物とを分別できる粘性が低い状態)にする。 For such soil, a soil conditioner is added to remove the water contained in the soil and make it smooth (a state with low viscosity that allows the soil to be separated from foreign substances such as organic matter with a sieve).

土質改良材としては、石膏を主成分とするものが存在する。しかし、このような土質改良材は、有機物とともに還元状態となることで硫化水素ガスを発生する可能性があるため、使用できる土質や場所が限定される。 As soil conditioner, there are those whose main component is gypsum. However, such soil conditioners may generate hydrogen sulfide gas when reduced together with organic matter, which limits the soil types and locations where they can be used.

一方、硫化水素ガスが発生することのない土質改良材として、生石灰、セメント、及びマグネシウム系の土質改良材等が存在する。或いは、除去土壌に対し、特許文献1に記載された、吸水性高分子と高膨潤性粘土と水溶性高分子とを含む土質改良材料を適用することで土壌を粘性の低い状態にできる。 On the other hand, there are quicklime, cement, magnesium-based soil improvers, and the like as soil improvers that do not generate hydrogen sulfide gas. Alternatively, the soil can be reduced in viscosity by applying a soil improvement material containing a water-absorbing polymer, highly swellable clay, and a water-soluble polymer, which is described in Patent Document 1, to the removed soil.

特開2002-129160号公報Japanese Patent Application Publication No. 2002-129160

しかし、上述の土質改良材は、反応効率や混合精度を上げるために微粒子状態とすることが多く、土質改良材と撹拌混合する際に粉塵が発生しやすいという問題があった。
このため、土質改良材には、攪拌混合時の土壌の発塵を抑えることも求められるようになってきた。
However, the above-mentioned soil conditioner is often in the form of fine particles in order to improve reaction efficiency and mixing accuracy, and there is a problem in that dust is likely to be generated when stirring and mixing with the soil conditioner.
For this reason, it has become necessary for soil conditioners to suppress the generation of dust in the soil during stirring and mixing.

本発明は、発塵を抑えつつ、土壌を低粘性に改質できる土質改良材を提供することを目的とする。 An object of the present invention is to provide a soil improvement material that can modify soil to have low viscosity while suppressing dust generation.

前記目的を達成するため、本発明は、吸水性高分子と、砂質土とを含む土質改良材であって、前記砂質土の含水比が、30%以下であり、前記砂質土のEC(電気伝導度)が、90mS/m以下である土質改良材である。
また、本発明の土質改良材は、前記砂質土の含水比が6%~20%であることが好ましい。
また、本発明の土質改良材は、前記砂質土における粒径0.075mm以下の粒子の割合が、5%以下であることが好ましい。
また、本発明の土壌の改良方法は、本発明の土質改良材を土壌に添加する。
また、本発明の土質改良材の製造方法は、含水比が30%以下であり、かつEC(電気伝導度)が、90mS/m以下である砂質土と、吸水性高分子と、を混合させる。
また、本発明の土質改良材の製造方法は、砂質土を乾燥する乾燥工程を有さないことが好ましい。
In order to achieve the above object, the present invention provides a soil improvement material containing a water-absorbing polymer and sandy soil, wherein the water content ratio of the sandy soil is 30% or less, and the water content of the sandy soil is 30% or less. A soil improvement material with an EC (electrical conductivity) of 90 mS/m or less.
Further, in the soil conditioner of the present invention, it is preferable that the moisture content of the sandy soil is 6% to 20%.
Further, in the soil conditioner of the present invention, it is preferable that the proportion of particles having a particle size of 0.075 mm or less in the sandy soil is 5% or less.
Moreover, in the soil improvement method of the present invention, the soil conditioner of the present invention is added to soil.
In addition, the method for manufacturing the soil conditioner of the present invention involves mixing sandy soil with a water content of 30% or less and an EC (electrical conductivity) of 90mS/m or less, and a water-absorbing polymer. let
Moreover, it is preferable that the method for producing a soil conditioner of the present invention does not include a drying step of drying sandy soil.

本発明によれば、発塵を抑えつつ、土壌を低粘性に改質できる土質改良材を提供できる。 According to the present invention, it is possible to provide a soil improvement material that can modify soil to have low viscosity while suppressing dust generation.

図1Aは、実施例及び比較例において、発塵の評価に用いた装置を正面から見た概略図である。FIG. 1A is a schematic front view of the apparatus used for evaluating dust generation in Examples and Comparative Examples. 図1Bは、実施例及び比較例において、発塵の評価に用いた装置を側面から見た概略図である。FIG. 1B is a schematic side view of the apparatus used for evaluating dust generation in Examples and Comparative Examples. 図2は、実施例20-1の土質改良材を用いた場合のコーン指数の測定結果である。FIG. 2 shows the measurement results of the Cone index when the soil conditioner of Example 20-1 was used.

(土質改良材)
本実施形態に係る土質改良材は、吸水性高分子、及び砂質土を含有し、更に必要に応じてその他の成分を含有する。
(soil condition improvement material)
The soil improvement material according to the present embodiment contains a water-absorbing polymer and sandy soil, and further contains other components as necessary.

<吸水性高分子>
吸水性高分子は、土壌中に含まれる水分を吸収し、保水する物質である。
吸水性高分子は、土壌中に含まれる水分を吸収することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、合成ポリマー系、天然多糖類などが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
合成ポリマー系は、例えば、ポリアクリル酸塩系、ポリスルホン酸系、ポリビニルアルコール及びポリアクリル酸塩の共重合系、無水マレイン酸塩系、ポリアクリルアミド系、ポリビニルアルコール系、ポリエチレンオキシド系などが挙げられる。
天然多糖類は、例えば、デンプン系、セルロース系(グラフト重合系及びカルボキシメチル系)、ポリアスパラギン酸塩系、ポリグルタミン酸塩系、ポリアルギン酸塩系などが挙げられる。
<Water-absorbing polymer>
Water-absorbing polymers are substances that absorb and retain water contained in soil.
The water-absorbing polymer is not particularly limited as long as it can absorb water contained in soil, and can be appropriately selected depending on the purpose. Examples include synthetic polymers, natural polysaccharides, and the like. These may be used alone or in combination of two or more.
Examples of synthetic polymer systems include polyacrylate systems, polysulfonic acid systems, copolymer systems of polyvinyl alcohol and polyacrylates, maleic anhydride systems, polyacrylamide systems, polyvinyl alcohol systems, and polyethylene oxide systems. .
Examples of natural polysaccharides include starch-based, cellulose-based (graft polymerization-based and carboxymethyl-based), polyaspartate-based, polyglutamate-based, polyalginate-based, and the like.

<砂質土>
砂質土は、本実施形態に係る土質改良材における母材となる物質である。
砂質土とは、地盤工学会基準「地盤材料の工学的分類方法」(JGS 0051-2009)に基づき、分類された土である。具体的には、「土の粒度試験方法」(JIS A 1204)などの試験により分類されたものである。
砂質土は、石分が0%である土質材料のうち、粗粒分(粒径が0.075mm~75mm)が50%超であり、礫分(粒径2mm~75mm)より砂分(粒径0.075mm~2mm)の方が多い土のことである(地盤材料試験の方法と解説-二分冊の1-、地盤工学会 室内試験規格・基準委員会 編、丸善出版、平成25年、pp.54~56)。
砂質土は、2mm以上の礫を実用上の障害にならない程度に含む(例えば、粒径数mmの礫が数%~20%程度混在する)ものであってもよい。
<Sandy soil>
Sandy soil is a substance that serves as a base material in the soil improvement material according to this embodiment.
Sandy soil is soil classified based on the Japan Geotechnical Society's standard "Engineering classification method for ground materials" (JGS 0051-2009). Specifically, they are classified by tests such as "Soil Particle Size Test Method" (JIS A 1204).
In sandy soil, of the soil material with 0% stone content, more than 50% is coarse particles (grain size 0.075 mm to 75 mm), and sand content (grain size 2 mm to 75 mm) is higher than gravel content (particle size 2 mm to 75 mm). (Grain size 0.075mm to 2mm) (Geotechnical Materials Testing Methods and Explanations - Volume 1 of 2), edited by the Japan Society of Geotechnical Engineers, Indoor Testing Standards and Standards Committee, Maruzen Publishing, 2013 , pp. 54-56).
The sandy soil may contain gravel of 2 mm or more to the extent that it does not pose a practical problem (for example, a few to 20% of gravel with a grain size of several mm may be present).

砂質土の含水比は、30%以下の場合に使用可能であり、6%~20%が好ましい。砂質土の含水比が、この範囲に含まれると、土壌の改質と発塵の防止とを両立できる。なお、含水比が30%以下とは、含水比が0%~30%であることを意味する。 Sandy soil can be used when its water content is 30% or less, preferably 6% to 20%. When the water content ratio of sandy soil is within this range, both soil improvement and prevention of dust generation can be achieved. Note that the water content ratio of 30% or less means that the water content ratio is 0% to 30%.

砂質土の含水比の測定方法は、「土の粒度試験方法」(JIS A 1204)に基づき測定できる。 The water content ratio of sandy soil can be measured based on "Soil particle size testing method" (JIS A 1204).

砂質土のEC(電気伝導度)は、90mS/m以下であり、60mS/m以下が好ましく、30mS/m以下がより好ましい。砂質土の電気伝導度が、この範囲に含まれると、土壌の改質と発塵の防止とを両立できる。 The EC (electrical conductivity) of sandy soil is 90 mS/m or less, preferably 60 mS/m or less, and more preferably 30 mS/m or less. When the electrical conductivity of sandy soil falls within this range, it is possible to simultaneously improve the soil and prevent dust generation.

砂質土のECの測定方法は、地盤工学会基準「土懸濁液の電気伝導率試験方法」(JGS 0212-2009)に基づく。土の乾燥質量に対して水(土に含まれる水も含む)の質量比が5倍になるように水を加えて懸濁状態にして30分間経過後に電気伝導率計を用いて測定する。 The method for measuring the EC of sandy soil is based on the Japan Geotechnical Society standard "Method for testing electrical conductivity of soil suspensions" (JGS 0212-2009). Water is added so that the mass ratio of water (including the water contained in the soil) to the dry mass of the soil is 5 times, and the suspension is made into a suspension state. After 30 minutes, the conductivity is measured using an electrical conductivity meter.

砂質土における粒径0.075mm以下の粒子の割合は、特に制限はなく、目的に応じて適宜選択できるが、土塊を解砕する手間を減らす点で、30%以下が好ましく、5%以下がより好ましい。
なお、0.075mm以下の粒子の割合が30%を超えると、土塊を多く含むので、この土塊を解砕する手間がかかることがある。
The proportion of particles with a particle size of 0.075 mm or less in sandy soil is not particularly limited and can be selected as appropriate depending on the purpose, but in terms of reducing the effort of breaking up soil clods, it is preferably 30% or less, and 5% or less. is more preferable.
Note that if the proportion of particles with a diameter of 0.075 mm or less exceeds 30%, a large amount of soil clods will be included, and it may take time and effort to break up the soil clods.

砂質土における0.075mm以下の粒子の割合の測定方法は、「土の粒度試験方法」(JIS A 1204)に基づき、測定することができる。 The proportion of particles of 0.075 mm or less in sandy soil can be measured based on the "Soil Particle Size Test Method" (JIS A 1204).

<<質量比(吸水性高分子:砂質土)>>
本実施形態に係る土質改良材における吸水性高分子と砂質土との質量比は、特に制限はなく、目的に応じて適宜選択できるが、吸水性高分子:砂質土=5:95~25:75が好ましく、7.5:92.5~20:80がより好ましい。
<<Mass ratio (water-absorbing polymer: sandy soil)>>
The mass ratio of water-absorbing polymer and sandy soil in the soil improvement material according to the present embodiment is not particularly limited and can be selected as appropriate depending on the purpose, but water-absorbing polymer: sandy soil = 5:95 ~ 25:75 is preferred, and 7.5:92.5 to 20:80 is more preferred.

<その他の成分>
その他の成分は、特に制限はなく、目的に応じて適宜選択できる。その他の成分は、例えば、ゼオライト、炭酸カルシウム粉末、半水石膏、二水石膏、無水石膏、粘土、廃ガラス破砕粉(人造砂)などが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
ゼオライトを添加した場合、除染土壌中の放射性物質や鉛等の重金属を更に吸着できるようになる。炭酸カルシウム粉末、半水石膏、二水石膏、無水石膏、粘土などは、増量材、又は補強材として添加できる。
<Other ingredients>
Other components are not particularly limited and can be appropriately selected depending on the purpose. Examples of other components include zeolite, calcium carbonate powder, gypsum hemihydrate, gypsum dihydrate, anhydrite, clay, and crushed waste glass powder (artificial sand). These may be used alone or in combination of two or more.
When zeolite is added, radioactive substances and heavy metals such as lead in the decontaminated soil can be further adsorbed. Calcium carbonate powder, gypsum hemihydrate, gypsum dihydrate, anhydrite, clay, etc. can be added as fillers or reinforcing agents.

本実施形態に係る土質改良材は、吸水性高分子及び砂質土が土壌中の水分を吸収することにより、土壌をサラサラな状態(低粘性の状態。具体的には、篩によって土壌と有機物とを分別できる粘性が低い状態)とすることができる。従って、粘性が高い土壌であっても、土質改良材を添加することにより低粘性となり、土壌が篩の目を通過できる。結果として、レキや有機物(草木、木片、布、樹脂など)を含む土壌であっても、篩にかけることにより、レキや有機物と分別することが可能となる。
なお、本発明において、篩の目の粗さは、20mm目とする場合が多いが、工事目的に応じて37.5mm目、10mm目、5mm目などとする場合もある。
The soil conditioner according to this embodiment has a water-absorbing polymer and sandy soil that absorb water in the soil, keeping the soil in a smooth state (low viscosity state. Specifically, the soil and organic matter are removed by sieving. (a state of low viscosity that allows separation of Therefore, even if the soil is highly viscous, adding a soil conditioner will reduce the viscosity and allow the soil to pass through the sieve. As a result, even if the soil contains soil and organic matter (plants, wood chips, cloth, resin, etc.), it can be separated from the soil and organic matter by passing it through a sieve.
In the present invention, the mesh size of the sieve is often set to 20 mm, but it may also be set to 37.5 mm, 10 mm, 5 mm, etc. depending on the purpose of construction.

また、本実施形態に係る土質改良材は、土壌のpHに影響を与えない成分で構成されている。従って、土質改良材により改質された土壌(原土壌のpHは中性)は中性(pH7前後)の状態を保つことができる。 Moreover, the soil conditioner according to this embodiment is composed of components that do not affect the pH of the soil. Therefore, the soil modified by the soil conditioner (the pH of the original soil is neutral) can be maintained in a neutral state (pH around 7).

また、本実施形態に係る土質改良材により改質された土壌は、所定の土質強度が確保されている。従って、埋立時や再掘削時の取り扱いが簡便になる。なお、本実施形態に係る所定の土質強度は、コーン指数で200kN/m以上が好ましく、400kN/m以上がより好ましい。なお、コーン指数は、土質改良材の添加量が増すほど、また対象土の含水比が低いほど、増大する。 Moreover, the soil modified by the soil improving material according to the present embodiment has a predetermined soil strength. Therefore, handling at the time of reclamation or re-excavation becomes easy. Note that the predetermined soil strength according to the present embodiment is preferably 200 kN/m 2 or more in terms of Cone index, and more preferably 400 kN/m 2 or more. Note that the Cone index increases as the amount of soil conditioner added increases and as the water content ratio of the target soil decreases.

更に、吸水性高分子は一般に高価であるため使用量を抑えることが望まれる。一方で、吸水性高分子の使用量が少ない場合には土壌に均一に混合することが難しく、吸水能力の点で問題が生じる。ここで、本実施形態に係る土質改良材は、吸水性高分子の割合を多くても50質量%に抑制してコストの低減化を図りつつ、安価な砂質土を混合することによって、土壌をサラサラな状態にできるだけの吸水能力を保っている。 Furthermore, since water-absorbing polymers are generally expensive, it is desirable to reduce the amount used. On the other hand, when the amount of water-absorbing polymer used is small, it is difficult to mix it uniformly into the soil, causing problems in terms of water-absorbing ability. Here, the soil conditioner according to the present embodiment suppresses the proportion of water-absorbing polymer to at most 50% by mass to reduce costs, and mixes inexpensive sandy soil to improve soil quality. It maintains as much water absorption capacity as possible to keep it dry.

また、本実施形態に係る土質改良材は、吸水性高分子及び砂質土を混合することにより、吸水性高分子または砂質土単体に比べ、土壌との混合性が良好で、かつ高い吸水力によって土壌を均等に改良する特長を有する。 In addition, the soil improvement material according to this embodiment has better mixability with soil and higher water absorption than the water-absorbing polymer or sandy soil alone by mixing the water-absorbing polymer and sandy soil. It has the feature of improving the soil evenly by applying force.

<土質改良材の製造方法>
本実施形態に係る土質改良材の製造方法は、吸水性高分子と砂質土を混合するものである。
土質改良材の製造方法では、砂質土の含水比が高くて砂質土に含まれる自由水が自然に浮き出てくる、あるいはメッシュ上に載せて水分が分離落下するほどの状態の場合には自由水を除去する処理を行うが、そこまでの高含水比でない場合には乾燥工程を有さないことが好ましい。
乾燥工程は、砂質土の含水比を低下させることであり、例えば、天日乾燥、熱風乾燥などが挙げられる。
本発明の土質改良材の製造方法は、含水比が最大30%の砂質土であっても、乾燥工程を通すことなく、砂質土に吸水性高分子を直接投入混合して土質改良材を製造できる。つまり、吸水性高分子が砂質土に含まれる水分を吸水して適度な水分状態(防塵にも役立つ)となって一体化し、土質改良材を形成する。
<Method for manufacturing soil conditioner>
The method for producing a soil conditioner according to this embodiment involves mixing a water-absorbing polymer and sandy soil.
In the manufacturing method of soil conditioner, if the moisture content of sandy soil is high and the free water contained in the sandy soil naturally floats out, or if it is placed on a mesh and the water separates and falls, A treatment to remove free water is performed, but if the water content is not that high, it is preferable not to include a drying step.
The drying step is to lower the moisture content of sandy soil, and includes, for example, solar drying, hot air drying, and the like.
The method for manufacturing the soil conditioner of the present invention is to directly add and mix a water-absorbing polymer into the sandy soil without going through a drying process, even if the soil is sandy with a maximum water content of 30%. can be manufactured. In other words, the water-absorbing polymer absorbs water contained in sandy soil, becomes a suitable moisture state (also useful for dust prevention), and is integrated to form a soil conditioner.

(土壌の改良方法)
土壌の改良方法は、上述の土質改良材を土壌に添加することによって行われる。具体的には、例えば、土壌に直接添加し、短時間(たとえば1分間~数分間)の攪拌を行うことにより行うことができる。
実際の作業現場では、土壌に土質改良材を添加し、重機によって攪拌することでもよい。本実施形態に係る土質改良材を用いる場合、攪拌後の養生時間が不要となるため、効率的な分別処理が可能となる。
(Soil improvement method)
The soil improvement method is carried out by adding the above-mentioned soil conditioner to the soil. Specifically, it can be carried out, for example, by directly adding it to soil and stirring for a short period of time (for example, from 1 minute to several minutes).
At actual work sites, soil conditioners may be added to the soil and stirred using heavy machinery. When using the soil conditioner according to the present embodiment, there is no need for curing time after stirring, so efficient separation processing becomes possible.

また、土壌に対する土質改良材の添加量は特に限定されるものではないが、従来の土質改良材よりも少量で効果を得ることができる。例えば、生石灰は、土壌に対して80kg/tonの添加量で養生時間が12時間必要であった。一方、本実施形態に係る土質改良材は、土壌に対して30kg/tonの添加量で養生時間が不要である。 Further, although the amount of the soil conditioner added to the soil is not particularly limited, the effect can be obtained with a smaller amount than conventional soil conditioners. For example, quicklime was added to the soil in an amount of 80 kg/ton and required 12 hours of curing time. On the other hand, the soil conditioner according to the present embodiment does not require curing time when added to the soil in an amount of 30 kg/ton.

本実施形態に係る土質改良材を用いる対象は、災害廃棄物(土混じり)の分別、河川や湖沼の底泥(泥土)、又はシールド工事や打ち杭工事等の際に発生する建設泥土の改良等を挙げることができる。 The soil improvement material according to this embodiment can be used for sorting disaster waste (mixed soil), improving bottom mud (mud) of rivers and lakes, or construction mud generated during shield construction, pile driving work, etc. etc. can be mentioned.

以下、開示の技術の実施例を説明するが、開示の技術は、これらの実施例に何ら限定されるものではない。 Examples of the disclosed technology will be described below, but the disclosed technology is not limited to these examples in any way.

模擬土壌として、荒木田土(株式会社刀川平和農園製)、黒土(株式会社刀川平和農園製)、及び珪砂7号(瑞浪)を4:4:2の割合(乾燥質量比)にて混合し、含水比を55%に調整したものを用いた。 As a simulated soil, Arakita soil (manufactured by Togawa Heiwa Farm Co., Ltd.), black soil (manufactured by Togawa Heiwa Farm Co., Ltd.), and silica sand No. 7 (Mizunami) were mixed at a ratio of 4:4:2 (dry mass ratio). The water content was adjusted to 55%.

(実施例1-1~28-3、比較例1-1~13-3)
下記の表に記載の砂質土を用いた。砂質土の0.075mm以下の粒子の割合は、「土の粒度試験方法」(JIS A 1204)に基づき測定し、ECは、地盤工学会基準の「土懸濁液の電気伝導率試験方法」(JGS 0201)に基づき測定した。
(Examples 1-1 to 28-3, Comparative Examples 1-1 to 13-3)
The sandy soil listed in the table below was used. The proportion of particles of 0.075 mm or less in sandy soil is measured based on the "Soil Particle Size Test Method" (JIS A 1204), and the EC is measured based on the "Electrical Conductivity Test Method for Soil Suspension" of the Geotechnical Society Standards. ” (JGS 0201).

Figure 2023172695000002
Figure 2023172695000002

表1に記載の各砂質土の含水比を0%、3%、6%、14%、20%、25%、30%、35%に調節した。そして、吸水性高分子(ST-500D、三洋化成工業株式会社製)と各砂質土との質量比が、7.5:92.5、15:85、20:80となるように容器に入れ、撹拌し、土質改良材を得た。
含水比は、「土の含水比試験方法」(JIS A 1203)に基づいて測定した。
The water content ratio of each sandy soil listed in Table 1 was adjusted to 0%, 3%, 6%, 14%, 20%, 25%, 30%, and 35%. Then, the water absorbent polymer (ST-500D, manufactured by Sanyo Chemical Industries, Ltd.) was placed in a container so that the mass ratio of each sandy soil was 7.5:92.5, 15:85, and 20:80. and stirred to obtain a soil conditioner.
The water content ratio was measured based on the "Soil water content testing method" (JIS A 1203).

2,000gの模擬土壌に60gの各土質改良材を添加し、ホバートミキサーで30秒攪拌、数秒間の手混ぜ補助後、更にホバートミキサーで30秒攪拌した。撹拌した後の土壌を評価に用いた。
撹拌した後の土壌のそれぞれについて、改質及び発塵の有無について下記のようにして評価した。評価結果を表2~4に示す。
60 g of each soil conditioner was added to 2,000 g of simulated soil, stirred for 30 seconds using a Hobart mixer, assisted by hand mixing for several seconds, and further stirred for 30 seconds using a Hobart mixer. The soil after stirring was used for evaluation.
Each of the soils after stirring was evaluated for modification and dust generation as follows. The evaluation results are shown in Tables 2 to 4.

<改質の判定>
撹拌した後の土壌を20mm目篩により篩分けし、篩下に通過した質量を測定し、下記のようにして残存率を計算した。
残存率=(篩にのせた土壌の質量―篩下に通過した土壌の質量)/篩にのせた土壌の質量×100
上記の残存率から、下記の判定基準に基づき改質を評価した。なお、評価が◎、〇であれば土質改良材により土壌を低粘性に改質できたと言える。
-判定基準―
◎:残存率が、5%以下
〇:残存率が、5%超10%以下
×:残存率が、10%超
<Determination of modification>
The soil after stirring was sieved through a 20 mm sieve, the mass passing under the sieve was measured, and the residual rate was calculated as follows.
Survival rate = (mass of soil placed on the sieve - mass of soil passed under the sieve) / mass of soil placed on the sieve x 100
From the above residual rate, the modification was evaluated based on the following criteria. In addition, if the evaluation is ◎ or ○, it can be said that the soil was modified to have low viscosity by the soil conditioner.
-Judgment criteria-
◎: Residual rate is 5% or less ○: Residual rate is more than 5% and 10% or less ×: Residual rate is more than 10%

<発塵の測定>
発塵の有無については、図1A及び図1Bに示した専用の装置1を用いて、一定量の土壌を降下させ、巻き上がった粉塵量を粉塵計で測定することにより評価した。
装置1は、正面が解放されている一方、両側面及び背面が囲いシート15で囲われている。また、装置1は、正面の下部手前からブロワー14(送排風機 F300-KN、静岡製機株式会社製)によって送風できるようになっている。風向は、図1B中の矢印方向である。風速は、スライダック(電圧可変器、図示せず)により、投入用ロート12の下が1.4m/sとなるように調節した。装置内の試料落下中心線と風向中心線との交点から上方向に200mm、手前水平方向に500mmの位置にデジタル粉塵計13(LD-3K2、柴田科学株式会社製)を置いた。粉塵量は、試料投入時間の累積粉塵個数(粉塵1個について1count)として表示される。
<Measurement of dust generation>
The presence or absence of dust generation was evaluated by lowering a certain amount of soil using the dedicated device 1 shown in FIGS. 1A and 1B, and measuring the amount of dust stirred up using a dust meter.
The device 1 is open at the front, while both sides and the back are surrounded by enclosure sheets 15. Further, the device 1 is configured so that air can be blown from the lower front side by a blower 14 (air blower/exhaust fan F300-KN, manufactured by Shizuoka Seiki Co., Ltd.). The wind direction is the direction of the arrow in FIG. 1B. The wind speed was adjusted to 1.4 m/s below the feeding funnel 12 using a slider (voltage variable device, not shown). A digital dust meter 13 (LD-3K2, manufactured by Shibata Kagaku Co., Ltd.) was placed at a position 200 mm upward and 500 mm horizontally in front of the intersection of the sample falling center line and the wind direction center line within the apparatus. The amount of dust is displayed as the cumulative number of dust particles (1 count for 1 piece of dust) during the sample input time.

各配合の改良材(50g)を投入用ロートの中に少量ずつ落下させるようにして50秒間かけて装置に投入した。発塵量は、各配合の改良材を投入する前50秒間に測定した粉塵量をブランク値として、測定した値からブランク値を引いた値を発塵量とした。
発塵量の値から、下記の判定基準に基づき発塵を評価した。なお、評価が◎、〇であれば土質改良材により発塵を防止できると言える。土質改良材を必要とする土壌は、含水比が高い土壌であり、この土壌に土質改良材を混合させる時が、最も発塵しやすくなる。このため、土質改良材そのものが発塵しにくいと、改良した土壌の発塵を防止できることになる。
-判定基準―
◎:発塵量が、200count/50秒 以下
〇:発塵量が、200count/50秒 超~1000count/50秒 以下
×:発塵量が、1000count/50秒 超
The improving material (50 g) of each formulation was dropped into the feeding funnel little by little and fed into the device over 50 seconds. The amount of dust generated was determined by subtracting the blank value from the measured value, using the amount of dust measured for 50 seconds before adding the improving material of each blend as the blank value.
Based on the value of the amount of dust generated, dust generation was evaluated based on the following criteria. In addition, if the evaluation is ◎ or ○, it can be said that dust generation can be prevented by the soil conditioner. Soil that requires a soil conditioner is soil with a high water content, and dust is most likely to be generated when the soil conditioner is mixed with this soil. Therefore, if the soil conditioner itself does not easily generate dust, the improved soil can be prevented from generating dust.
-Judgment criteria-
◎: The amount of dust generated is less than 200 counts/50 seconds ○: The amount of dust generated is more than 200 counts/50 seconds to less than 1000 counts/50 seconds ×: The amount of dust generated is more than 1000 counts/50 seconds

Figure 2023172695000003
Figure 2023172695000003

Figure 2023172695000004
Figure 2023172695000004

Figure 2023172695000005
Figure 2023172695000005

実施例1-1~28-1の結果から、本発明の土質改良材により発塵抑制及び改質ができたことが明らかになった。更に、実施例1-1~28-1、1-2~28-2、1-3~28-3から、吸水性高分子と砂質土との割合を変化させた土質改良材であっても、すべて同程度に改質できることが明らかになった。 The results of Examples 1-1 to 28-1 revealed that the soil conditioner of the present invention was able to suppress dust generation and improve soil quality. Furthermore, from Examples 1-1 to 28-1, 1-2 to 28-2, and 1-3 to 28-3, soil improvement materials with varying ratios of water-absorbing polymer and sandy soil It has become clear that all can be modified to the same extent.

実施例26-2~28-2及び実施例26-3~28-3に示すように、砂質土の含水比20%、25%、30%の場合でも砂質土の種類によっては使用可能である。しかし、砂質土の含水比が35%である比較例1-1、1-2では、改質ができなかったことが明らかになった。このことから、砂質土の含水比が30%以下であることが好ましい。
更に、砂質土の電気伝導度(EC)が、90mS/mを超えるNo.8~10の砂質土を用いた比較例2-1~比較例13-3は、吸水性高分子と砂質土との割合を変化させたとしても改質することができなかった。このことから、砂質土の電気伝導度が90mS/m以下であることが、改質において重要であることを示している。
As shown in Examples 26-2 to 28-2 and Examples 26-3 to 28-3, it can be used depending on the type of sandy soil even if the moisture content of the sandy soil is 20%, 25%, or 30%. It is. However, in Comparative Examples 1-1 and 1-2, in which the moisture content of the sandy soil was 35%, it became clear that the improvement could not be achieved. From this, it is preferable that the moisture content of the sandy soil is 30% or less.
Furthermore, the electrical conductivity (EC) of sandy soil exceeds 90 mS/m. In Comparative Examples 2-1 to 13-3 using sandy soil of No. 8 to 10, the property could not be improved even if the ratio of water-absorbing polymer to sandy soil was changed. This shows that it is important for sandy soil to have an electrical conductivity of 90 mS/m or less in soil modification.

次に、含水比6%、14%である実施例19-1、20-1、21-1などは、発塵、及び改質の評価がどちらも「◎」であるのに対し、含水比0%、3%である実施例17-1、18-1などは、発塵の評価結果が「〇」であった。評価結果が「〇」であっても用途目的、適用現場条件によっては土質改良材として使用可能であるが、含水比を6%~20%とすることで、発塵及び改質の効果を更に良好にすることができるため、好ましい。 Next, in Examples 19-1, 20-1, 21-1, etc. with water content ratios of 6% and 14%, the dust generation and reformation evaluations were both "◎", but the water content ratio In Examples 17-1, 18-1, etc. where the concentration was 0% and 3%, the evaluation result of dust generation was "○". Even if the evaluation result is ``○'', it can be used as a soil improvement material depending on the purpose of use and field conditions, but by setting the moisture content to 6% to 20%, the dust generation and reforming effects can be further This is preferable because it can improve the quality.

粒径0.075mm以下の粒子の割合については、表2~4に示すように、砂質土No.7の29.2%であっても、発塵防止と改質とを両立させることができることが明らかになった。
また、粒径0.075mm以下の粒子の割合が5%以下である砂質土No.1を用い、かつ砂質土の含水比が6%~14%である実施例3-1、4-1は、発塵、及び改質の評価がどちらも「◎」であるのに対し、粒径0.075mm以下の粒子の割合が6.4%である砂質土No.6を用い、かつ砂質土の含水比が6%~20%である実施例22-1、23-1は、発塵の評価結果が「〇」であった。評価結果が、「〇」であっても用途目的、適用現場条件によっては使用可能な場合がある。好ましくは、砂質土における0.075mm以下の粒子の割合が5%以下である砂質土を用いることで、発塵及び改質の効果を更に良好にすることができることが明らかになった。
Regarding the proportion of particles with a particle size of 0.075 mm or less, as shown in Tables 2 to 4, sandy soil No. It has become clear that even if it is 29.2% of 7, it is possible to achieve both prevention of dust generation and reforming.
In addition, sandy soil No. 1 in which the proportion of particles with a particle size of 0.075 mm or less is 5% or less. In Examples 3-1 and 4-1, in which 1 was used and the water content ratio of the sandy soil was 6% to 14%, the evaluation of dust generation and modification was both "◎", Sandy soil No. 1 in which the proportion of particles with a particle size of 0.075 mm or less is 6.4%. In Examples 22-1 and 23-1, in which the sample No. 6 was used and the water content ratio of the sandy soil was 6% to 20%, the dust generation evaluation result was "Good". Even if the evaluation result is "〇", it may still be usable depending on the purpose of use and field conditions. It has been found that by preferably using sandy soil in which the ratio of particles of 0.075 mm or less is 5% or less, the effects of dust generation and modification can be further improved.

実施例20-1(砂質土No.5)の土質改良材を用いた場合のコーン指数の測定結果を図2に示した。w=55%(含水比55%)のグラフが、上述の模擬土壌を用いて測定した結果である。コーン指数の測定試験は、「締固めた土のコーン指数試験方法」(地盤工学会基準 JGS0716-2009)に基づいて行った。図2から、土質改良材を入れない場合の模擬土壌のコーン指数が約150kN/mであるのに対し、土質改良材を10kg/t混合した模擬土壌のコーン指数は、約550kN/mであった。これらのことから、土質改良材を添加することで、コーン指数が飛躍的に向上することが明らかになった。したがって、本発明の土質改良材を添加することで、発塵を防止し、改質できるだけではなく、所定の土質強度をも担保できるようになる。 FIG. 2 shows the measurement results of the Cone index when the soil conditioner of Example 20-1 (sandy soil No. 5) was used. The graph for w=55% (water content 55%) is the result of measurement using the above-mentioned simulated soil. The Cone Index measurement test was conducted based on the ``Cone Index Test Method for Compacted Soil'' (Japan Geotechnical Society Standard JGS0716-2009). From Figure 2, the Cone index of the simulated soil without soil conditioner is approximately 150 kN/ m2 , while the Cone index of the simulated soil with 10 kg/t of soil conditioner mixed is approximately 550 kN/ m2. Met. From these results, it has become clear that the cone index can be dramatically improved by adding soil conditioners. Therefore, by adding the soil conditioner of the present invention, it is possible not only to prevent dust generation and improve the soil quality, but also to ensure a predetermined soil strength.

Claims (6)

吸水性高分子と、砂質土とを含む土質改良材であって、
前記砂質土の含水比が、30%以下であり、前記砂質土のEC(電気伝導度)が、90mS/m以下であることを特徴とする土質改良材。
A soil improvement material containing a water-absorbing polymer and sandy soil,
A soil improvement material characterized in that the moisture content of the sandy soil is 30% or less, and the EC (electrical conductivity) of the sandy soil is 90mS/m or less.
前記砂質土の含水比が、6%~20%である請求項1に記載の土質改良材。 The soil improvement material according to claim 1, wherein the sandy soil has a water content ratio of 6% to 20%. 前記砂質土における粒径0.075mm以下の粒子の割合が、30%以下である請求項1又は2に記載の土質改良材。 The soil improvement material according to claim 1 or 2, wherein the proportion of particles with a particle size of 0.075 mm or less in the sandy soil is 30% or less. 請求項1又は2のいずれか一つに記載の土質改良材を土壌に添加することを特徴とする土壌の改良方法。 A method for improving soil, comprising adding the soil improving material according to claim 1 or 2 to soil. 含水比が30%以下であり、かつEC(電気伝導度)が、90mS/m以下である砂質土と、吸水性高分子と、を混合させることを特徴とする土質改良材の製造方法。 A method for producing a soil improving material, which comprises mixing sandy soil with a water content of 30% or less and an EC (electrical conductivity) of 90 mS/m or less, and a water-absorbing polymer. 前記砂質土を乾燥する乾燥工程を有さない請求項5に記載の土質改良材の製造方法。 The method for producing a soil conditioner according to claim 5, which does not include a drying step of drying the sandy soil.
JP2022084671A 2022-05-24 2022-05-24 SOIL IMPROVEMENT MATERIAL, MANUFACTURING METHOD THEREOF, AND SOIL IMPROVEMENT METHOD Active JP7248257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022084671A JP7248257B1 (en) 2022-05-24 2022-05-24 SOIL IMPROVEMENT MATERIAL, MANUFACTURING METHOD THEREOF, AND SOIL IMPROVEMENT METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022084671A JP7248257B1 (en) 2022-05-24 2022-05-24 SOIL IMPROVEMENT MATERIAL, MANUFACTURING METHOD THEREOF, AND SOIL IMPROVEMENT METHOD

Publications (2)

Publication Number Publication Date
JP7248257B1 JP7248257B1 (en) 2023-03-29
JP2023172695A true JP2023172695A (en) 2023-12-06

Family

ID=85726017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022084671A Active JP7248257B1 (en) 2022-05-24 2022-05-24 SOIL IMPROVEMENT MATERIAL, MANUFACTURING METHOD THEREOF, AND SOIL IMPROVEMENT METHOD

Country Status (1)

Country Link
JP (1) JP7248257B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688074A (en) * 1992-09-08 1994-03-29 Hitachi Chem Co Ltd Soil conditioner
JPH07102551A (en) * 1993-10-01 1995-04-18 Sano Takeshi Effect confirming method after execution of ground improvement work by chemical injecting method and device using the method
JPH11188392A (en) * 1997-12-26 1999-07-13 Kurita Water Ind Ltd Modification/solidification method of mud earth, mud water, or sludge of high water content
JP2015121031A (en) * 2013-12-24 2015-07-02 株式会社フジタ Mouth pipe for high pressure jet mixing method, and high pressure jet mixing method
JP2016159260A (en) * 2015-03-04 2016-09-05 株式会社島津製作所 Soil purifying apparatus using electric warming means
JP2020200417A (en) * 2019-06-12 2020-12-17 清水建設株式会社 Soil modifying composition and soil modification method
JP2021041311A (en) * 2019-09-06 2021-03-18 メタウォーター株式会社 Solidifying material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688074A (en) * 1992-09-08 1994-03-29 Hitachi Chem Co Ltd Soil conditioner
JPH07102551A (en) * 1993-10-01 1995-04-18 Sano Takeshi Effect confirming method after execution of ground improvement work by chemical injecting method and device using the method
JPH11188392A (en) * 1997-12-26 1999-07-13 Kurita Water Ind Ltd Modification/solidification method of mud earth, mud water, or sludge of high water content
JP2015121031A (en) * 2013-12-24 2015-07-02 株式会社フジタ Mouth pipe for high pressure jet mixing method, and high pressure jet mixing method
JP2016159260A (en) * 2015-03-04 2016-09-05 株式会社島津製作所 Soil purifying apparatus using electric warming means
JP2020200417A (en) * 2019-06-12 2020-12-17 清水建設株式会社 Soil modifying composition and soil modification method
JP2021041311A (en) * 2019-09-06 2021-03-18 メタウォーター株式会社 Solidifying material

Also Published As

Publication number Publication date
JP7248257B1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
CN107789787B (en) Stabilizing agent for repairing arsenic-containing waste residue and using method
Al-Malack et al. Stabilization of indigenous Saudi Arabian soils using fuel oil flyash
WO2009003340A1 (en) Bio-fertilizer adsorbent material synthesized from fly ash and coal gangue and preparation method thereof
Çelik et al. Utilization of gold tailings as an additive in Portland cement
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
Govindasamy et al. Influence of nanolime and curing period on unconfined compressive strength of soil
Chaabane et al. Factors affecting the leaching of heavy metals (Ni+ 2, Pb+ 2, Cr+ 3) contained in sludge waste stabilization/solidification by hydraulic benders, Part I: water/cement and waste/cement ratio in S/S mortars
JP2023172695A (en) Soil improver and method for producing the same, and method for improving soil
Silitonga Impact of pozzolanic binder addition on stabilization of polluted dredged sediments on its potential reuse as a new material resource for road construction in Basse Normandie, France
Etim et al. Influence of sawdust disposal on the geotechnical properties of soil
Rivard-Lentz et al. Incinerator bottom ash as a soil substitute: physical and chemical behavior
Abdullah et al. Geotechnical characteristics of soil stabilised with Waste Steel Dust for Soil Improvement works
Oyeleke et al. Physico-chemical properties of palm oil fuel ash as composite sorbent in kaolin landfill liner system
JP6009632B1 (en) Construction filler
JP2020200417A (en) Soil modifying composition and soil modification method
JP6079489B2 (en) Soil classification treatment agent and classification treatment method
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
Ibrahim Influence of Stone Powder on the Mechanical Properties of Clayey Soil
JP2022000488A (en) Soil modification agent, and soil modification method
JP6765661B1 (en) Soil conditioner
JP6872072B1 (en) How to purify contaminated soil
JP6305737B2 (en) Powdered composition using coal ash
Ibrahim et al. A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement
Zainal et al. The effect of coal bottom ash in mechanical and environmental performances for polymer composite
Ma et al. Leaching of Metal Ions and Suspended Solids from Slag Corroded by Acid-base Solutions: An Experimental Study.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7248257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150