JP6765661B1 - Soil conditioner - Google Patents

Soil conditioner Download PDF

Info

Publication number
JP6765661B1
JP6765661B1 JP2020051577A JP2020051577A JP6765661B1 JP 6765661 B1 JP6765661 B1 JP 6765661B1 JP 2020051577 A JP2020051577 A JP 2020051577A JP 2020051577 A JP2020051577 A JP 2020051577A JP 6765661 B1 JP6765661 B1 JP 6765661B1
Authority
JP
Japan
Prior art keywords
soil
particle size
soil conditioner
conditioner
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020051577A
Other languages
Japanese (ja)
Other versions
JP2021147576A (en
Inventor
俊介 近藤
俊介 近藤
陽 高畑
陽 高畑
昌範 根岸
昌範 根岸
秀樹 高矢
秀樹 高矢
歩 梅原
歩 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2020051577A priority Critical patent/JP6765661B1/en
Application granted granted Critical
Publication of JP6765661B1 publication Critical patent/JP6765661B1/en
Publication of JP2021147576A publication Critical patent/JP2021147576A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】土壌改良剤を混合することで土壌が短時間で付着性を失い、粘性の高い土壌の団粒状態を解消させて、機材への付着を防止しながら、短時間かつ連続的な分別処理を可能にする土壌改良剤を提供すること。【解決手段】土壌改良剤を混合した土壌が短時間で付着性を低減させ、土壌の団粒状態を解消して、篩分けによる連続的な分別処理が可能になるような粒径まで改良できる土壌改良剤であって、粒径150μm以下の粉末状のアクリル酸塩系高吸水性樹脂を含有する。【選択図】なしPROBLEM TO BE SOLVED: To eliminate adhesion of soil in a short time by mixing a soil conditioner, eliminate agglomerate state of highly viscous soil, prevent adhesion to equipment, and perform continuous sorting in a short time. To provide a soil conditioner that enables treatment. SOLUTION: The soil mixed with a soil conditioner can reduce the adhesiveness in a short time, eliminate the aggregated state of the soil, and improve the particle size so that continuous sorting treatment by sieving is possible. It is a soil conditioner and contains a powdery acrylate-based highly water-absorbent resin having a particle size of 150 μm or less. [Selection diagram] None

Description

本発明は、土壌改良剤に関し、特に、付着性の高い土壌を改良し、機材への付着性の低減や改良後の土壌における篩での分別や分級作業を容易にし、かつ短時間で連続処理を可能とする土壌改良剤に関するものである。 The present invention relates to a soil conditioner, in particular, improves highly adherent soil, reduces adhesion to equipment, facilitates sorting and classification work with a sieve in the improved soil, and continuously treats the soil in a short time. It is about a soil conditioner that makes it possible.

建築や建設工事から発生する混合廃棄物や災害により発生した災害廃棄物や土壌には、植物や木材などの可燃物と土砂やコンクリートガラなどの不燃物が混在しているため、これらを処理する際には一般的に分別作業を実施して、処分するものと再生利用されるものとに分別することが必要とされている。例えば、災害廃棄物は、中間処理施設に運ばれ、分別、破砕、焼却炉などの処理を経て最終処分又は再生利用される。 Since mixed waste generated from construction and construction work and disaster waste and soil generated by disasters contain combustible materials such as plants and wood and incombustible materials such as earth and sand and concrete waste, they are treated. In some cases, it is generally necessary to carry out sorting work to separate the waste into those to be disposed of and those to be recycled. For example, disaster waste is transported to an intermediate treatment facility, where it is sorted, crushed, processed in an incinerator, etc., and then finally disposed of or recycled.

しかし、一度発生した災害廃棄物は、災害の程度次第では膨大な量であるため、可燃物や不燃物等を迅速に分別できなければ、焼却設備の短命化や廃棄物量の増大によるコストの問題や、含まれる有機物の腐敗などによる土砂の軟弱化が発生し、保管や転用に問題がある場合があった。 However, once a disaster waste is generated, it is a huge amount depending on the degree of disaster, so if combustibles and incombustibles cannot be separated quickly, there will be a cost problem due to shortening the life of incineration facilities and increasing the amount of waste. In addition, there was a case where there was a problem in storage or diversion due to the softening of earth and sand due to the decay of the contained organic matter.

また、放射性物質を含む汚染土壌(以下、「除去土壌」という。)の処理において、中間貯蔵施設では、除去土壌の再生利用化を目標として、土壌貯蔵施設に埋め立て保管するために、除去土壌中の植物根等の有機物や金属等の不燃物の分別作業や除去土壌の減容処理などが行われている。分別された植物根やフレコン片などの可燃物は焼却処理され、所定の粒径による篩分け、具体的には20mmアンダーに分級された土壌(以下、「処理土」という。)は土壌貯蔵施設へ埋め立てられる。特に、この分級分別処理を効率よく実施するために、一般的に除去土壌に土壌改質材を混合させて改質処理を施すことが必要となる。ここで改質材は、土壌の間隙水に作用する高吸水性樹脂や高分子凝集剤等の高分子系材料と、その他各種無機鉱物とを組み合わせたものが一般的である。高分子系材料は、間隙水と迅速に反応し、土粒子の凝集又は吸水作用を持つことで土壌の付着性を低減させることを特徴とする。特に、高吸水性樹脂は、吸水倍率が数百倍になるものがあり、理論的には少量の添加率で土壌中の水分をすべて吸水するが、土壌量が膨大になると効率的に土壌全体に撹拌させることが困難であり、また、分散しにくく継粉を生じやすいため、吸水性能が低下する。そこで、無機鉱物を併用することで、無機鉱物が分散材となり、高分子系資材を土壌全体に分散させる役割を担っている。 In addition, in the treatment of contaminated soil containing radioactive substances (hereinafter referred to as "removed soil"), in the intermediate storage facility, in order to reclaim the removed soil and store it in the soil storage facility, in the removed soil. Organic substances such as plant roots and incombustible substances such as metals are being separated and the volume of removed soil is reduced. Combustibles such as separated plant roots and flexible container pieces are incinerated and screened according to a predetermined particle size. Specifically, soil classified under 20 mm (hereinafter referred to as "treated soil") is a soil storage facility. Will be buried in. In particular, in order to efficiently carry out this classification and classification treatment, it is generally necessary to mix a soil modifier with the removed soil and perform the reforming treatment. Here, the modifier is generally a combination of a polymer-based material such as a superabsorbent polymer or a polymer flocculant that acts on the pore water of the soil, and various other inorganic minerals. The polymer-based material is characterized in that it reacts rapidly with pore water and has an action of agglomerating or absorbing soil particles to reduce the adhesiveness of soil. In particular, some superabsorbent polymers have a water absorption ratio of several hundred times, and theoretically absorb all the water in the soil with a small addition rate, but when the amount of soil becomes enormous, the entire soil is efficiently absorbed. In addition, it is difficult to stir the soil, and it is difficult to disperse and splinters are likely to be generated, so that the water absorption performance is lowered. Therefore, by using inorganic minerals together, the inorganic minerals become a dispersant and play a role of dispersing the polymer-based materials throughout the soil.

また、無機鉱物において、改良土の強度付与を目的としたセメントや脱水効果を目的とした生石灰を用いる場合には、その改良土のpHを12以上の強アルカリ土壌に変えてしまい、埋め立て後の改良土の再生利用を考慮した場合に植物生育に適した土壌にはなり得ない。また、石膏等も使用されるが、種類によっては電気伝導度を上昇させたり、有害なガスを発生させたりするため、転用に適した土壌とはいえなくなる場合があった。ここで改良土とは、土壌改良剤と土壌を混合させ、改良処理された土壌のことを指す。 In addition, when cement for the purpose of imparting strength to the improved soil or quicklime for the purpose of dehydration effect is used for the inorganic mineral, the pH of the improved soil is changed to 12 or more strong alkaline soil, and after landfill. Considering the recycling of improved soil, the soil cannot be suitable for plant growth. In addition, gypsum and the like are also used, but depending on the type, the soil may not be suitable for diversion because it increases the electrical conductivity and generates harmful gas. Here, the improved soil refers to soil that has been improved by mixing a soil conditioner and soil.

例えば、特許文献1においては、ブレーン比表面積が1,500cm2/g以上の炭酸カルシウム、ゼオライトやベントナイト等の無機粉末、増粘用材料及びアクリルアミド系高分子凝集剤やアクリル酸塩系の高吸水性樹脂を含む土壌造粒用添加材が提案されている。ここでは、改良処理後の土の強度を得るための材料として、セメントやスラグを併用することが記載されているが、これらはカルシウムイオンやマグネシウムイオン等の二価以上の金属イオンを放出する材料であるためアクリル酸塩系高吸水性樹脂と相性が悪く、吸水した水を吐き出させる等の吸水性を阻害する要因になる問題があった。 For example, in Patent Document 1, calcium carbonate having a specific surface area of 1,500 cm 2 / g or more, inorganic powders such as zeolite and bentonite, thickening materials, acrylamide-based polymer flocculants, and acrylate-based high water absorption. Additives for soil granulation containing sex resins have been proposed. Here, it is described that cement and slag are used in combination as a material for obtaining the strength of the soil after the improvement treatment, but these are materials that release divalent or higher metal ions such as calcium ion and magnesium ion. Therefore, it is incompatible with the acrylate-based superabsorbent polymer, and there is a problem that it becomes a factor that hinders water absorption such as discharging the absorbed water.

一方、特許文献2においては、粉末状の高分子凝集剤と焼石膏を併用した土壌改質用組成物及び土壌改質方法が提案されている。この方法は、粉末状の高分子凝集剤を用いる利点があり、併用することが記載されている石膏との相性は良いと考えられる。一方で、特許文献2では記載されていないアクリル酸塩系高吸水性樹脂と石膏を併用した改質材を考慮した場合に、半水石膏やIII型無水石膏等の二価のカルシウムイオンを放出する石膏では前段と同様にアクリル酸塩系高吸水性樹脂との相性が悪いという問題があった。また、石膏を用いることによる硫化水素の発生の懸念もある。 On the other hand, Patent Document 2 proposes a soil modification composition and a soil modification method in which a powdered polymer flocculant and gypsum are used in combination. This method has an advantage of using a powdery polymer flocculant, and is considered to be compatible with gypsum described as being used in combination. On the other hand, when considering a modifier in which an acrylate-based superabsorbent polymer and gypsum are used in combination, which is not described in Patent Document 2, divalent calcium ions such as hemihydrate gypsum and type III anhydrous gypsum are released. Similar to the previous stage, there is a problem that the gypsum is not compatible with the acrylic acid superabsorbent polymer. There is also a concern that hydrogen sulfide will be generated by using gypsum.

近年では大規模災害が頻繁に発生し、その度に大量の災害廃棄物や有機物混じりの土砂が発生しているため、それら廃棄物等を迅速かつ効率よく分別処理できる方法や手段が求められている。 In recent years, large-scale disasters have occurred frequently, and a large amount of disaster waste and earth and sand mixed with organic matter have been generated each time. Therefore, there is a need for a method and means for separating and treating such waste quickly and efficiently. There is.

特開2019−137763号公報JP-A-2019-137763 特開2009−263583号公報Japanese Unexamined Patent Publication No. 2009-263583

ところで、分別作業を実施する工事分野において、具体的には建築工事や大規模災害で発生した可燃物混じりの土壌や廃棄物等の分別処理では、土壌が水分を含んで付着性及び粘性が高くなり、処理施設の機材などに付着しやすく、また、塊状に団粒化しているため分別作業に時間がかかり、連続的な処理が困難となる場合がある。したがって、可燃物と不燃物を効率よく分別できなければ、施工の進捗に影響が出ることとなる。 By the way, in the field of construction where separation work is carried out, specifically, in the separation treatment of soil and waste mixed with combustibles generated by construction work and large-scale disasters, the soil contains water and has high adhesiveness and viscosity. As a result, it easily adheres to the equipment of the processing facility, and since it is agglomerated into agglomerates, the sorting work takes time, which may make continuous processing difficult. Therefore, if combustibles and incombustibles cannot be separated efficiently, the progress of construction will be affected.

本発明は、土壌が短時間で付着性を失い、粘性の高い土壌の団粒状態を解消させて、機材への付着を防止しながら、短時間かつ連続的な分別処理を可能にする土壌改良剤を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention is a soil improvement that enables a short-time and continuous separation treatment while preventing the soil from adhering to equipment by eliminating the agglomerated state of highly viscous soil in which the soil loses its adhesiveness in a short time. The purpose is to provide the agent.

ところで、これまで土壌の改良剤に関する無機鉱物における微粉末化や高分子凝集剤の微粉末化について検討はなされてきたが、アクリル酸塩系高吸水性樹脂における粒径に言及した技術は存在していない。 By the way, although studies have been made on the pulverization of inorganic minerals and polymer flocculants related to soil improvers, there is a technique that mentions the particle size of acrylate-based superabsorbent polymers. Not.

上記目的を達成するため、本発明では高吸水性樹脂の粒径に着目し、その吸水性能を評価した上で、土壌改良に適した粒径の範囲を選定した。
本発明の土壌改良剤は、土壌に混合することで土壌が短時間で付着性を失い、団粒状態を解消させて篩分けによって規定される粒径以下の改良土にできる土壌改良剤であって、粒径150μm以下の粉末状のアクリル酸塩系高吸水性樹脂を含有することを特徴とする。
ここで、高吸水性樹脂の例としては、モノマーとして、(メタ)アクリル酸系の単独重合物又はデンプン、酢酸ビニル、マレイン酸、ポリビニルアルコール系、CMC系等の共重合物が挙げられ、例えば、安価で汎用性が高い、アクリル酸塩系架橋重合物、その中でも好ましくは、アクリル酸ナトリウムが挙げられるが、本件発明の効果を逸脱しない限り、一般的に用いられるアクリル酸塩系高吸水性樹脂を用いることができる。
なお、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味する。
ところで、高吸水性樹脂は一般的に紙おむつの吸水性材料などで用いられるため、その求められる性能は、吸水速度ではなく吸水能力などに重点が置かれるが、本発明の土壌改良剤は、土壌と混合した後に、より短時間での反応が求められるため、短時間で水を吸水する性能を追求している。したがって、本発明でいう「短時間」とは、対象土壌の機械的な連続処理が可能であって、土壌の付着性がなくなり、団粒状態を解消できるまでの時間として具体的には、90秒〜180秒程度とした。
In order to achieve the above object, the present invention focused on the particle size of the superabsorbent polymer, evaluated the water absorption performance, and then selected the range of the particle size suitable for soil improvement.
The soil conditioner of the present invention is a soil conditioner that can be mixed with soil to lose its adhesiveness in a short time, eliminate the aggregated state, and produce improved soil having a particle size smaller than the specified particle size by sieving. It is characterized by containing a powdery acrylate-based highly water-absorbent resin having a particle size of 150 μm or less.
Here, examples of the highly water-absorbent resin include (meth) acrylic acid-based homopolymers or copolymers such as starch, vinyl acetate, maleic acid, polyvinyl alcohol-based, and CMC-based copolymers as monomers. Acrylate-based crosslinked polymers, which are inexpensive and highly versatile, preferably sodium acrylate, but are generally used acrylate-based high water absorption as long as the effects of the present invention are not deviated. A resin can be used.
In addition, "(meth) acrylic acid" means acrylic acid or methacrylic acid.
By the way, since a superabsorbent polymer is generally used as a water-absorbent material for disposable diapers, the required performance is focused not on the water-absorbing rate but on the water-absorbing capacity, but the soil conditioner of the present invention is a soil conditioner. Since a reaction in a shorter time is required after mixing with, we are pursuing the ability to absorb water in a short time. Therefore, the "short time" in the present invention is specifically 90 as the time until the target soil can be mechanically continuously treated, the soil is no longer adherent, and the aggregated state can be eliminated. It was set to about seconds to 180 seconds.

この場合において、前記アクリル酸塩系高吸水性樹脂は、吸水倍率150〜400倍、吸水速度40〜80g/g/sのアクリル酸塩系高吸水性樹脂を用いることができる。 In this case, as the acrylate-based superabsorbent polymer, an acrylate-based superabsorbent polymer having a water absorption ratio of 150 to 400 times and a water absorption rate of 40 to 80 g / g / s can be used.

また、前記土壌改良剤は、粒径10〜50μmの多孔質物質及び粒径10〜80μmのpH調整剤を含有したものを用いることができる。 Further, as the soil conditioner, one containing a porous substance having a particle size of 10 to 50 μm and a pH adjusting agent having a particle size of 10 to 80 μm can be used.

また、本発明の土壌改良剤に用いられる粉末状のアクリル酸塩系高吸水性樹脂は、高吸水性樹脂のみを土砂、具体的には粘性土が多く含まれる土壌に接触すると粉末状のものが固まって継粉となり、吸水阻害を起こしたり、吸水速度が遅くなったりするような障害が生じる場合もあるため、無機鉱物と混合して、粉末状の樹脂同士がなるべく接触しないように分散させることが望ましい。このことから、膨潤性がなく、吸水性に影響を与えない粉末状の無機鉱物が望ましく、更に土壌中の水分にミネラルが多く含まれる場合を考慮して、高吸水性樹脂の吸水性能を阻害しないように多孔質物質がミネラルを吸着できることが望ましく、塩基置換容量(陽イオン交換容量ともいい、以下、「CEC」という。)が高いものがより望ましい。
ここで、多孔質物質の例としては、粒径が10〜80μmの範囲にあって、CECが高い、具体的には、CECが100〜300meq/100g、より望ましくは150〜200meq/100gの範囲にある、ゼオライト、スメクタイト、バーミキュライト、活性炭等が挙げられる。
Further, the powdered superabsorbent polymer used in the soil conditioner of the present invention is a powdery superabsorbent polymer when only the superabsorbent polymer comes into contact with soil, specifically soil containing a large amount of cohesive soil. May cause problems such as water absorption inhibition or slowing of water absorption rate, so it is mixed with inorganic minerals and dispersed so that the powdered resins do not come into contact with each other as much as possible. Is desirable. For this reason, powdered inorganic minerals that do not swell and do not affect water absorption are desirable, and in consideration of the case where the water in the soil contains a large amount of minerals, the water absorption performance of the highly water-absorbent resin is impaired. It is desirable that the porous substance can adsorb minerals so as not to prevent it, and a substance having a high base substitution capacity (also referred to as a cation exchange capacity, hereinafter referred to as "CEC") is more desirable.
Here, as an example of the porous substance, the particle size is in the range of 10 to 80 μm and the CEC is high, specifically, the CEC is in the range of 100 to 300 meq / 100 g, more preferably 150 to 200 meq / 100 g. Examples thereof include zeolite, smectite, vermiculite, and activated carbon.

また、粉末状のアクリル酸塩系高吸水性樹脂は、土壌が5.9以下の酸性土壌では吸水性が低下するため、弱アルカリ側(中性又は弱アルカリ、具体的には、pHが6.0〜9.0程度)へpH調整が可能な無機鉱物が混合されることが望ましい。
ここで、pH調整が可能な無機鉱物の例としては、炭酸塩、粘土、ベントナイト、PS灰等のpH調整剤が挙げられる。
Further, since the powdery acrylate-based superabsorbent polymer has a reduced water absorption in acidic soil with a soil of 5.9 or less, the weak alkaline side (neutral or weak alkaline, specifically, the pH is 6). It is desirable that an inorganic mineral whose pH can be adjusted is mixed with (about .0 to 9.0).
Here, examples of the inorganic mineral whose pH can be adjusted include pH adjusters such as carbonate, clay, bentonite, and PS ash.

また、前記土壌改良剤が、アクリル酸塩系高吸水性樹脂を5〜30質量%、多孔質物質を30〜60質量%、pH調整剤を30質量%〜60質量%含有したものを用いることができる。 Further, the soil conditioner used contains 5 to 30% by mass of an acrylate-based superabsorbent polymer, 30 to 60% by mass of a porous substance, and 30% to 60% by mass of a pH adjuster. Can be done.

本発明の土壌改良剤は、土壌改良剤を土壌に混合することで、土壌の付着性を低減させ、団粒状態を解消し、機械装置への付着を低減できる改良土、例えば、粒径9.5mm以下の付着性の低い改良土となることで、分級機等の目詰まりや改良土同士の団粒化等を防ぐ効果があり、短時間における機械的な連続改良を可能とする。ここで、通過させる篩目についてはここに限定されるものではなく、対象土壌の定められている処理方法に応じて施工者が決定できるものである。 The soil conditioner of the present invention is an improved soil that can reduce the adhesion of soil, eliminate the aggregated state, and reduce the adhesion to mechanical devices by mixing the soil conditioner with the soil, for example, particle size 9. By making the improved soil with low adhesion of .5 mm or less, it has the effect of preventing clogging of the classifier and the agglomeration of the improved soil, and enables continuous mechanical improvement in a short time. Here, the mesh to be passed is not limited to this, and can be determined by the builder according to the treatment method specified for the target soil.

以下、本発明の土壌改良剤の実施の形態を、具体的な実施例に基づいて説明する。 Hereinafter, embodiments of the soil conditioner of the present invention will be described based on specific examples.

表1に、顆粒状のアクリル酸塩系高吸水性樹脂、具体的には、アクリル酸塩系架橋重合物であるアクリル酸ナトリウムを粉砕、分級したものの吸水速度及び吸水倍率の試験結果を示す。
ここで、本発明の土壌改良剤は、吸水速度を重視しているが、一定以下の吸水倍率では高吸水性樹脂の使用量が多くなりコストが増えることから、短時間での吸水倍率として、3分浸漬、及び、改良土に含まれた高吸水性樹脂が長時間において吸水する量を確認するため、180分浸漬の吸水量について確認を行った。
Table 1 shows the test results of the water absorption rate and the water absorption ratio of the granular acrylate-based superabsorbent polymer, specifically, sodium acrylate, which is an acrylate-based crosslinked polymer, crushed and classified.
Here, the soil conditioner of the present invention attaches great importance to the water absorption rate, but since the amount of the superabsorbent polymer used increases and the cost increases when the water absorption rate is below a certain level, the water absorption rate can be set in a short time. In order to confirm the amount of water absorbed by the superabsorbent polymer contained in the improved soil for 3 minutes and for a long period of time, the amount of water absorbed by 180 minutes was confirmed.

Figure 0006765661
Figure 0006765661

表1から、粒径が75μm以下の高吸水性樹脂は、吸水速度は非常に速く、吸水倍率においては、180分浸漬した場合には吸水倍率の低下はわずかであったが、実際の処理時間と考えられる浸漬3分で行った場合には吸水倍率が顕著に低下することが分かった。また、粒径が150μm以上の吸水性樹脂は、吸水倍率が350倍以上のものが多いが、吸水速度が150μm以下のものより大きく低下することが明らかとなった。 From Table 1, the superabsorbent polymer having a particle size of 75 μm or less had a very high water absorption rate, and the water absorption rate was slightly reduced when immersed for 180 minutes, but the actual treatment time. It was found that the water absorption ratio was remarkably reduced when the immersion was carried out for 3 minutes. Further, it was clarified that most of the water-absorbent resins having a particle size of 150 μm or more have a water absorption ratio of 350 times or more, but the water absorption rate is significantly lower than that of 150 μm or less.

表2に、表1に示したアクリル酸塩系高吸水性樹脂の各粒径範囲における改良性能の評価、具体的には模擬土壌を対象とした分級試験結果を示す。模擬土壌に対して所定量の高吸水性樹脂を添加・撹拌し、得られた改良土の篩通過率を確認した。ここでは、孔径19mm篩及び9.5mm篩通過率の高い粒径範囲が、改良土の付着性を低減させ、分級効果が高く、土壌改良剤として好ましい性状を成していることを示す。 Table 2 shows the evaluation of the improved performance of the acrylate-based superabsorbent polymer shown in Table 1 in each particle size range, specifically, the classification test results for simulated soil. A predetermined amount of superabsorbent polymer was added to the simulated soil and stirred, and the sieve passing rate of the obtained improved soil was confirmed. Here, it is shown that the particle size range of the sieve having a pore size of 19 mm and the sieve passing rate of 9.5 mm reduces the adhesion of the improved soil, has a high classification effect, and has preferable properties as a soil conditioner.

[試験条件]
・模擬土壌:赤土と黒土の混合土900g(含水率49%程度)
・添加量:土壌量900gに対して0.1%(0.9g)のアクリル酸塩系高吸水性樹脂
・撹拌時間:ホバートミキサで30秒
・φ20mmの孔径19mm及び9.5mm篩を重ねて上から約300gの改良土を投入し、自動振とう機で20秒間振動後の篩上残留土から各篩通過率を算出(N=3の平均値)
[Test conditions]
-Simulated soil: 900 g of mixed soil of red soil and black soil (moisture content of about 49%)
・ Addition amount: 0.1% (0.9 g) of acrylate-based superabsorbent polymer with respect to 900 g of soil ・ Stirring time: 30 seconds with Hobart mixer ・ φ20 mm pore size 19 mm and 9.5 mm sieves are stacked. Approximately 300 g of improved soil is added from the top, and each sieve passage rate is calculated from the residual soil on the sieve after shaking for 20 seconds with an automatic shaker (mean value of N = 3).

Figure 0006765661
Figure 0006765661

表2から、粒径が75〜150μmの高吸水性樹脂が最も篩通過率が高く、粒径が150μmから大きくなるにつれて、篩通過率は低下傾向であった。一方で、75μm以下の高吸水性樹脂は吸水速度が速いため、土壌添加直後に即時に水と反応し、撹拌操作による分散が生じる前に継粉を形成するものが多かったことから、分散性が低くなり、篩通過率は最も低いことが確認された。 From Table 2, the superabsorbent polymer having a particle size of 75 to 150 μm had the highest sieve passing rate, and the sieve passing rate tended to decrease as the particle size increased from 150 μm. On the other hand, since the superabsorbent polymer of 75 μm or less has a high water absorption rate, it reacts with water immediately after the addition of soil and often forms a sieving powder before dispersion by agitation operation. Was low, and it was confirmed that the sieve passage rate was the lowest.

表3に、表1及び表2から判定されるアクリル酸塩系高吸水性樹脂の各粒径における改良性能の評価(◎、○、△の順に性能が高いことを示す。)を示す。 Table 3 shows the evaluation of the improved performance of the acrylate-based superabsorbent polymer determined from Tables 1 and 2 at each particle size (in the order of ⊚, ◯, and Δ, the performance is higher).

Figure 0006765661
Figure 0006765661

表3に示す改良性能の評価から、150μm以下、好ましくは、75〜150μm、すなわち、150μm以下のものから75μm以下のものを除去したものが改良剤として最もバランスの良い粒径範囲であるといえる。すなわち、本発明の土壌改良剤には、高い吸水量と高い吸水速度が求められるが、それがアクリル酸塩系高吸水性樹脂の粒径によって影響することが判明した。粒径が小さくなると吸水速度が上がることから、150μm以下が適していること、さらに、粒径が小さくなると単位重量当たりの吸水量が下がることから、好ましくは、75〜150μmが適しているといえる。 From the evaluation of the improved performance shown in Table 3, it can be said that the particle size range of 150 μm or less, preferably 75 to 150 μm, that is, the one obtained by removing 75 μm or less from the one of 150 μm or less is the most balanced particle size range as the improving agent. .. That is, it has been found that the soil conditioner of the present invention is required to have a high water absorption amount and a high water absorption rate, which are affected by the particle size of the acrylate-based superabsorbent polymer. Since the water absorption rate increases as the particle size decreases, 150 μm or less is suitable, and further, as the particle size decreases, the amount of water absorption per unit weight decreases, so it can be said that 75 to 150 μm is preferably suitable. ..

表4に、本発明の土壌改良剤の配合決定を行うために実施した配合試験結果を示す。表4に示す構成材料を組み合わせた各改良剤1〜6について、対象土壌に所定量添加して撹拌し、改良土の性状を目視にて確認した。
ここで構成材料において、粉末状の高吸水性樹脂には、粒径75〜150μmのアクリル酸塩系高吸水性樹脂、具体的には、アクリル酸塩系架橋重合物であるアクリル酸ナトリウムを、多孔質物質には、粒径20μmのゼオライトを、pH調整剤として、粒径75μm以下の炭酸カルシウムをそれぞれ用いた。また、本発明の土壌改良剤に含まれる粉末状の高吸水性樹脂の対比として、粉末状のアニオン系高分子凝集剤、具体的には、粒径150μm以下の直鎖状のアクリル酸塩・アクリルアミド共重合体を用いた。
なお、改良剤1及び2の配合においては、強度発現等の性能を考慮して、pH調整を行った中性の酸化マグネシウムを併用した。
[試験条件]
・対象土壌:川砂70%、田園土30%の混合土(含水率24.5%程度)
・添加量:30kg/m3
・撹拌時間:60秒
・評価は目視にて改良土の粒径が小さいもの及び付着性の低いものを良好とし、粒径が大きいもの及び付着性が高いものは不良とした。
Table 4 shows the results of the compounding test carried out to determine the compounding of the soil conditioner of the present invention. A predetermined amount of each of the improving agents 1 to 6 in which the constituent materials shown in Table 4 were combined was added to the target soil and stirred, and the properties of the improved soil were visually confirmed.
Here, in the constituent material, the powdery superabsorbent polymer is an acrylate-based superabsorbent polymer having a particle size of 75 to 150 μm, specifically, sodium acrylate, which is an acrylate-based crosslinked polymer. As the porous material, zeolite having a particle size of 20 μm was used, and as a pH adjuster, calcium carbonate having a particle size of 75 μm or less was used. In contrast to the powdered superabsorbent polymer contained in the soil improving agent of the present invention, a powdered anionic polymer flocculant, specifically, a linear acrylate having a particle size of 150 μm or less. An acrylamide copolymer was used.
In addition, in the formulation of the improvers 1 and 2, neutral magnesium oxide whose pH was adjusted was used in combination in consideration of performance such as strength development.
[Test conditions]
-Target soil: Mixed soil of 70% river sand and 30% rural soil (moisture content of about 24.5%)
・ Addition amount: 30 kg / m 3
-Stirring time: 60 seconds-As for the evaluation, those with a small particle size and low adhesiveness of the improved soil were regarded as good, and those with a large particle size and high adhesiveness were regarded as defective.

Figure 0006765661
Figure 0006765661

表5に、表4の試験結果より良好な評価が得られた改良剤1及び6について、対象土壌と混合撹拌後に、得られた改良土を孔径9.5mm篩による通過率を測定して、分級効果を確認した試験結果を示す。ここで、9.5mm篩通過率の高いものが、分級効果が高いことを示す。
[試験条件]
・対象土壌1:川砂70%+田園土30%(含水率20%程度)
・対象土壌2:田園土100%(含水率20%程度)
・添加量:30kg/m3
・撹拌時間:ホバートミキサで90秒
In Table 5, the improving agents 1 and 6 for which better evaluation was obtained from the test results in Table 4 were mixed and stirred with the target soil, and the obtained improved soil was measured through a sieve having a pore size of 9.5 mm. The test results confirming the classification effect are shown. Here, the one having a high 9.5 mm sieve passing rate indicates that the classification effect is high.
[Test conditions]
・ Target soil 1: River sand 70% + rural soil 30% (moisture content about 20%)
・ Target soil 2: 100% rural soil (water content about 20%)
・ Addition amount: 30 kg / m 3
・ Stirring time: 90 seconds with Hobert Mixer

Figure 0006765661
Figure 0006765661

表5に示す試験結果から、粒径75〜150μmのアクリル酸塩系高吸水性樹脂を含有する改良剤6は、粉末状のアニオン系高分子凝集剤を含有する改良剤1よりも、いずれの対象土壌において分別における篩通過率が高く、土質に影響されない高い改良効果を示すことを確認した。
また、表4に示す試験結果より、経済性、作業性、効率性を鑑み、土壌改良剤として、アクリル酸塩系高吸水性樹脂を5〜30質量%、多孔質物質を30〜60質量%、pH調整剤を30質量%〜60質量%含有するものが好ましいことが分かった。
From the test results shown in Table 5, the improving agent 6 containing an acrylate-based superabsorbent polymer having a particle size of 75 to 150 μm was more effective than the improving agent 1 containing a powdered anionic polymer flocculant. It was confirmed that the target soil had a high sieving rate in sorting and showed a high improvement effect that was not affected by the soil quality.
Further, from the test results shown in Table 4, in consideration of economy, workability, and efficiency, 5 to 30% by mass of acrylic acid salt-based highly water-absorbent resin and 30 to 60% by mass of porous substances were used as soil conditioners. , It was found that those containing 30% by mass to 60% by mass of the pH adjuster are preferable.

以上、本発明の土壌改良剤について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 The soil conditioner of the present invention has been described above based on the examples thereof, but the present invention is not limited to the configuration described in the above examples, and the configuration is appropriately modified without departing from the spirit thereof. Is something that can be done.

本発明の土壌改良剤は、土壌が短時間で付着性を失い、機材への付着を防止しながら、土壌の団粒状態を迅速に解消するため、連続改良にて短時間による分別処理が可能であることから、災害時などに発生する木片やゴミなどが混じる土壌から木片やゴミを取り除く篩分けを行う際に、土壌を改質して篩分け効率を高める材料として好適に用いることができる。 The soil conditioner of the present invention causes the soil to lose its adhesiveness in a short time and quickly eliminates the aggregated state of the soil while preventing the soil from adhering to the equipment, so that the soil can be separated in a short time by continuous improvement. Therefore, it can be suitably used as a material for modifying the soil to improve the sieving efficiency when sieving to remove wood chips and dust from soil mixed with wood chips and dust generated in the event of a disaster. ..

Claims (3)

土壌改良剤を混合した土壌が90秒〜180秒の短時間の撹拌で付着性を失い、塊状になりやすい粘性の高い土壌の団粒状態を解消して、土壌の篩分けを行う際に短時間での有機物と不燃物及び土壌との篩分けが可能で、篩分けによる連続的な分級処理が可能になるような粒径まで改良できる土壌改良剤であって、粒径75〜150μm粉末状のアクリル酸ナトリウムを10〜20質量部及び粒径10〜50μmの多孔質物質を40〜50質量部含有することを特徴とする土壌改良剤。 The soil mixed with the soil conditioner loses its adhesiveness with a short stirring of 90 to 180 seconds, eliminates the aggregated state of highly viscous soil that tends to become agglomerates, and is short when sieving the soil. A soil conditioner that can filter organic substances from non-combustible substances and soil over time and can improve the particle size to enable continuous classification by sieving, and is a powder with a particle size of 75 to 150 μm . A soil conditioner comprising 10 to 20 parts by mass of a form of sodium acrylate and 40 to 50 parts by mass of a porous substance having a particle size of 10 to 50 μm. 前記アクリル酸ナトリウムが、吸水倍率150〜400倍、吸水速度40〜80g/g/sのアクリル酸ナトリウムであることを特徴とする請求項1に記載の土壌改良剤。 Soil conditioner according to claim 1, wherein the sodium acrylate, water absorption capacity 150 to 400 times, sodium acrylate absorption rate 40~80g / g / s. 前記土壌改良剤が、径10〜80μmのpH調整剤を含有することを特徴とする請求項1又は2に記載の土壌改良剤。 The soil improving agent, soil improvement agent according to claim 1 or 2, characterized in that it contains a pH adjusting agent particle size 10 to 80 [mu] m.
JP2020051577A 2020-03-23 2020-03-23 Soil conditioner Active JP6765661B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020051577A JP6765661B1 (en) 2020-03-23 2020-03-23 Soil conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020051577A JP6765661B1 (en) 2020-03-23 2020-03-23 Soil conditioner

Publications (2)

Publication Number Publication Date
JP6765661B1 true JP6765661B1 (en) 2020-10-07
JP2021147576A JP2021147576A (en) 2021-09-27

Family

ID=72665873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020051577A Active JP6765661B1 (en) 2020-03-23 2020-03-23 Soil conditioner

Country Status (1)

Country Link
JP (1) JP6765661B1 (en)

Also Published As

Publication number Publication date
JP2021147576A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US5670435A (en) Method and composition for clarifying waste water
JP7067943B2 (en) Additives for soil granulation
JP2006181535A (en) Processing method of incineration ash
JP2008106088A (en) Powder solidifying material for soft mud soil and method for producing the same
JP5774373B2 (en) Waste separation method
JP6765661B1 (en) Soil conditioner
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP2019044054A (en) One component type neutral solidification agent
JP3422554B2 (en) Solidifying agent for treating hydrous slurry excavated soil and method for treating hydrous slurry excavated soil
JPH10137716A (en) Waste treating material and treatment of waste
JP2006290713A (en) Method of reforming slag particle group as artificial sand, and artificial sand
Szarek Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes
Agamuthu et al. Solidification/stabilization disposal of medical waste incinerator flyash using cement
CN109665774B (en) Sludge solidification stabilization composite material and preparation method thereof, sludge solidification stabilization treatment method and solidified sludge
CA2923274A1 (en) Superabsorbent compositions for solidifying industrial fluid wastes
JP7263812B2 (en) Method for classifying modified soil
JP4092373B2 (en) Sludge treatment method
JP2001038321A (en) Method for solidifying heavy metal-containing waste and solid material
JP3402373B2 (en) How to improve hydrated soil
JPH0824900A (en) Waste water and sludge treatment agent, and treatment of waste water and sludge using the agent
JP7248257B1 (en) SOIL IMPROVEMENT MATERIAL, MANUFACTURING METHOD THEREOF, AND SOIL IMPROVEMENT METHOD
JP7388982B2 (en) soil improvement material
Tibet et al. Immobilisation and leaching performance of lead-acid batteries smelting slag using natural and waste materials
JP2010089069A (en) Method for reducing amount of water of accumulated mud in water treatment plant and sewage sludge
JP2005288211A (en) Powder flocculant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6765661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250