JP2023169683A - Method for producing aqueous ferrous chloride solution - Google Patents

Method for producing aqueous ferrous chloride solution Download PDF

Info

Publication number
JP2023169683A
JP2023169683A JP2022080956A JP2022080956A JP2023169683A JP 2023169683 A JP2023169683 A JP 2023169683A JP 2022080956 A JP2022080956 A JP 2022080956A JP 2022080956 A JP2022080956 A JP 2022080956A JP 2023169683 A JP2023169683 A JP 2023169683A
Authority
JP
Japan
Prior art keywords
ferrous chloride
producing
aqueous solution
electrolyzed water
chloride solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022080956A
Other languages
Japanese (ja)
Inventor
恵理子 山本
Eriko Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proton System Co Ltd
Original Assignee
Proton System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proton System Co Ltd filed Critical Proton System Co Ltd
Priority to JP2022080956A priority Critical patent/JP2023169683A/en
Publication of JP2023169683A publication Critical patent/JP2023169683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a method for producing an aqueous ferrous chloride solution without generating hydrogen chloride or chlorine.SOLUTION: A method for producing an aqueous ferrous chloride solution, which comprises bringing a carbon-containing iron material into contact with strongly acidic electrolyzed water produced by electrolysis of an aqueous sodium chloride solution.SELECTED DRAWING: Figure 1

Description

本発明は、塩化第一鉄水溶液の製造方法に関する。 The present invention relates to a method for producing an aqueous ferrous chloride solution.

従来、塩化第一鉄水溶液の製造方法としては板片状又は粒状の金属鉄と塩酸を反応させる方法が知られている。(例えば特許文献1参照) Conventionally, as a method for producing an aqueous ferrous chloride solution, a method is known in which plate-like or granular metallic iron is reacted with hydrochloric acid. (For example, see Patent Document 1)

特開昭64-79018号公報Japanese Unexamined Patent Publication No. 64-79018

しかしながら、特許文献1に記載の金属鉄と塩酸とを反応させる方法では、塩酸から発生した塩化水素又は塩素により作業の際に健康被害を受けたり、設備が腐食したりする不都合がある。 However, the method of reacting metallic iron with hydrochloric acid described in Patent Document 1 has the disadvantage that hydrogen chloride or chlorine generated from the hydrochloric acid may cause health damage during work and corrode equipment.

本発明は、かかる不都合を解消して、塩化水素又は塩素を発生させること無く塩化第一鉄水溶液を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing an aqueous ferrous chloride solution without generating hydrogen chloride or chlorine by eliminating such inconveniences.

かかる目的を達成するために、本発明の塩化第一鉄水溶液の製造方法は、炭素を含有する鉄材を塩化ナトリウム水溶液の電気分解により生じた強酸性電解水に接触させることを特徴とする。 In order to achieve this object, the method for producing a ferrous chloride aqueous solution of the present invention is characterized by bringing a carbon-containing iron material into contact with strongly acidic electrolyzed water produced by electrolysis of a sodium chloride aqueous solution.

本発明の塩化第一鉄水溶液の製造方法では、まず、原水に塩化ナトリウム等の塩化物を添加することにより調製された塩化物水溶液を対向配置された1対の電極間にイオン透過性の隔膜を備える電気分解装置で電気分解することにより、強酸性の電解水を得る。 In the method for producing an aqueous ferrous chloride solution of the present invention, first, an aqueous chloride solution prepared by adding a chloride such as sodium chloride to raw water is passed through an ion-permeable diaphragm between a pair of electrodes placed opposite each other. Strongly acidic electrolyzed water is obtained by electrolysis using an electrolyzer equipped with:

次いで、前記強酸性の電解水に炭素を含有する鉄材を接触させることで該強酸性の電解水中の次亜塩素酸と鉄が反応し、塩化第一鉄となることで塩化第一鉄水溶液が生成する。 Next, by bringing a carbon-containing iron material into contact with the strongly acidic electrolyzed water, the hypochlorous acid in the strongly acidic electrolyzed water reacts with iron to form ferrous chloride, resulting in a ferrous chloride aqueous solution. generate.

この結果、塩化水素又は塩素を発生させること無く、塩化第一鉄水溶液を製造することができる。 As a result, a ferrous chloride aqueous solution can be produced without generating hydrogen chloride or chlorine.

また、本発明の塩化第一鉄水溶液の製造方法において、前記強酸性の電解水の水素イオン濃度はpH=1~2であることが好ましい。 Furthermore, in the method for producing an aqueous ferrous chloride solution of the present invention, the hydrogen ion concentration of the strongly acidic electrolyzed water is preferably pH=1 to 2.

このような構成とすることにより、効率良く塩化第一鉄水溶液を製造することができる。 With such a configuration, a ferrous chloride aqueous solution can be efficiently produced.

尚、前記強酸性の電解水の水素イオン濃度がpH=2超である場合、該強酸性の電解水と前記鉄材の反応が起こらず、塩化第一鉄水溶液が生成されないことがある。 Note that if the hydrogen ion concentration of the strongly acidic electrolyzed water exceeds pH=2, the reaction between the strongly acidic electrolyzed water and the iron material may not occur, and a ferrous chloride aqueous solution may not be generated.

さらに、前記鉄材に含有される炭素の含有率は1~10質量%であることが好ましい。 Further, the content of carbon contained in the iron material is preferably 1 to 10% by mass.

このような構成とすることにより、さらに効率良く塩化第一鉄水溶液を製造することができる。 With such a configuration, the ferrous chloride aqueous solution can be produced more efficiently.

尚、前記鉄材に含有される炭素の含有率が1質量%未満の場合、該鉄材と前記強酸性の電解水との反応が起こらず、塩化第一鉄水溶液が生成されないことがある。 In addition, when the carbon content contained in the iron material is less than 1% by mass, the reaction between the iron material and the strongly acidic electrolyzed water does not occur, and the ferrous chloride aqueous solution may not be generated.

また、前記鉄材に含有された炭素の含有率を10質量%超とすることは技術的に難しい。 Further, it is technically difficult to make the content of carbon contained in the iron material more than 10% by mass.

本発明の塩化第一鉄溶液の製造方法を示すフローチャート。1 is a flowchart showing a method for producing a ferrous chloride solution of the present invention. 本発明の電気分解に用いる装置構成の一例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used for electrolysis of the present invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の塩化第一鉄溶液の製造方法は、炭素を含有する鉄材を塩化ナトリウム水溶液の電気分解により生じた強酸性の電解水に接触させる方法である。 The method for producing a ferrous chloride solution of this embodiment is a method in which a carbon-containing iron material is brought into contact with strongly acidic electrolyzed water produced by electrolysis of an aqueous sodium chloride solution.

本実施形態の塩化第一鉄溶液の製造方法では、図1に示すように、STEP1で塩化ナトリウム水溶液を電気分解することでSTEP2の強酸性の電解水を得る。次いで、前記強酸性の電解水とSTEP3の炭素を含有する鉄材とを、STEP4で接触させて、該鉄材の少なくとも一部を前記強酸性の電解水に溶解させることで塩化第一鉄水溶液を得ることができる。 In the method for producing a ferrous chloride solution of the present embodiment, as shown in FIG. 1, a sodium chloride aqueous solution is electrolyzed in STEP 1 to obtain strongly acidic electrolyzed water in STEP 2. Next, the strongly acidic electrolyzed water and the carbon-containing iron material of STEP 3 are brought into contact in STEP 4, and at least a portion of the iron material is dissolved in the strongly acidic electrolyzed water to obtain a ferrous chloride aqueous solution. be able to.

前記強酸性電解水を得るための電気分解は、図2に示す電気分解装置1により実施することができる。 Electrolysis for obtaining the strongly acidic electrolyzed water can be carried out using an electrolyzer 1 shown in FIG. 2.

本実施形態の電気分解装置1は、陽極側電極53、陰極側電極73が対向配置された電解槽30を備え、電解槽30は陽極側電極53、陰極側電極73の間に配置されたイオン透過性の隔膜31により、陽極側電極53を備える陽極電解室51と、陰極側電極73を備える陰極電解室71とに分離されている。陽極電解室51には酸性水取出管55が備えられている。隔膜31としては例えばイオン交換膜を用いることができる。 The electrolyzer 1 of the present embodiment includes an electrolytic cell 30 in which an anode side electrode 53 and a cathode side electrode 73 are arranged facing each other, and the electrolytic cell 30 has an ion ion disposed between the anode side electrode 53 and the cathode side electrode 73. A permeable diaphragm 31 separates the chamber 51 into an anode electrolysis chamber 51 including an anode electrode 53 and a cathode electrolysis chamber 71 including a cathode electrode 73 . The anodic electrolysis chamber 51 is equipped with an acidic water outlet pipe 55 . As the diaphragm 31, for example, an ion exchange membrane can be used.

また、電気分解装置1は塩化物水溶液貯留槽10を備え、塩化物水溶液貯留槽10は、途中にポンプ35を備える塩化物水溶液供給管33を介して陽極電解室51と、陰極電解室71とに接続されている。 Further, the electrolyzer 1 includes a chloride aqueous solution storage tank 10, and the chloride aqueous solution storage tank 10 is connected to an anode electrolysis chamber 51 and a cathode electrolysis chamber 71 via a chloride aqueous solution supply pipe 33 having a pump 35 in the middle. It is connected to the.

次に電気分解装置1による本実施形態の電気分解方法について説明する。 Next, the electrolysis method of this embodiment using the electrolyzer 1 will be explained.

電気分解装置1では、塩化物水溶液貯留槽10に貯留されている塩化物水溶液を塩化物水溶液供給管33から陽極電解室51と、陰極電解室71とに導入し、陽極側電極53と、陰極側電極73とに、電流を印加することにより、電気分解を行う。前記塩化物水溶液は、例えば、純水に塩化ナトリウム等の塩化物を2~5質量%添加することにより調製される。 In the electrolyzer 1, the chloride aqueous solution stored in the chloride aqueous solution storage tank 10 is introduced from the chloride aqueous solution supply pipe 33 into the anode electrolysis chamber 51 and the cathode electrolysis chamber 71. Electrolysis is performed by applying a current to the side electrodes 73. The chloride aqueous solution is prepared, for example, by adding 2 to 5% by mass of a chloride such as sodium chloride to pure water.

このようにすると、陰極電解室71では塩化ナトリウムが塩化物イオン、ナトリウムイオンとなり、水酸化ナトリウムが生成し、塩化物イオンは隔膜31を透過して陽極電解室51に移動する。陽極電解室51では生成した塩素が塩酸、次亜塩素酸となり、STEP2の強酸性の電解水が生成する。 In this way, in the cathode electrolysis chamber 71, sodium chloride becomes chloride ions and sodium ions, sodium hydroxide is generated, and the chloride ions pass through the diaphragm 31 and move to the anode electrolysis chamber 51. In the anode electrolysis chamber 51, the generated chlorine becomes hydrochloric acid and hypochlorous acid, and strongly acidic electrolyzed water of STEP 2 is generated.

次に本実施形態の反応方法について説明する。本実施形態では、図1に示すように、STEP2の強酸性の電解水と、STEP3の前記炭素を含有する鉄材とを、電解水:鉄材=1001:1900の割合(質量比)で接触させて、5~40℃の温度で、30秒~9時間反応させる。すると、強酸性の電解水と炭素を含有する鉄材とが接触する面では、次式のような反応が起こり、塩化第一鉄水溶液を得ることができる。
前記炭素を含有する鉄材としては炭素鋼や鋳鉄を挙げることができる。前記鉄材は具体的には鉄を90~99質量%、炭素を1~10質量%有する鉄材であり、例えば、鉄を93.8%、炭素を3.75%含む鉄材が好適である。
Next, the reaction method of this embodiment will be explained. In this embodiment, as shown in FIG. 1, the strongly acidic electrolyzed water in STEP 2 is brought into contact with the carbon-containing iron material in STEP 3 at a ratio (mass ratio) of electrolyzed water: iron material = 1001:1900. , and react at a temperature of 5 to 40°C for 30 seconds to 9 hours. Then, on the surface where the strongly acidic electrolyzed water and the carbon-containing iron material come into contact, a reaction as shown in the following equation occurs, and an aqueous ferrous chloride solution can be obtained.
Examples of the carbon-containing iron material include carbon steel and cast iron. Specifically, the iron material is an iron material containing 90 to 99% by mass of iron and 1 to 10% by mass of carbon. For example, an iron material containing 93.8% of iron and 3.75% of carbon is suitable.

10…塩化物水溶液保管槽、30…電解槽、31…隔膜、33…塩化物水溶液供給管、35…ポンプ、51…陽極電解室、53…陽極側電極、55…酸性水取出管、71…陰極電解室、73…陰極側電極 DESCRIPTION OF SYMBOLS 10... Chloride aqueous solution storage tank, 30... Electrolytic cell, 31... Diaphragm, 33... Chloride aqueous solution supply pipe, 35... Pump, 51... Anode electrolysis chamber, 53... Anode side electrode, 55... Acidic water extraction pipe, 71... Cathode electrolysis chamber, 73...cathode side electrode

Claims (3)

炭素を含有する鉄材を塩化ナトリウム水溶液の電気分解により生じた強酸性の電解水に接触させることを特徴とする塩化第一鉄水溶液の製造方法。 A method for producing a ferrous chloride aqueous solution, which comprises bringing a carbon-containing iron material into contact with strongly acidic electrolyzed water produced by electrolysis of a sodium chloride aqueous solution. 請求項1に記載の塩化第一鉄水溶液の製造方法において、
前記強酸性の電解水の水素イオン濃度はpH=1~2であることを特徴とする塩化第一鉄水溶液の製造方法。
In the method for producing an aqueous ferrous chloride solution according to claim 1,
A method for producing a ferrous chloride aqueous solution, characterized in that the strongly acidic electrolyzed water has a hydrogen ion concentration of pH=1 to 2.
請求項1又は2に記載の塩化第一鉄水溶液の製造方法において、
前記鉄材に含有された炭素の含有率は1~10質量%であることを特徴とする塩化第一鉄水溶液の製造方法。
The method for producing an aqueous ferrous chloride solution according to claim 1 or 2,
A method for producing a ferrous chloride aqueous solution, characterized in that the content of carbon contained in the iron material is 1 to 10% by mass.
JP2022080956A 2022-05-17 2022-05-17 Method for producing aqueous ferrous chloride solution Pending JP2023169683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022080956A JP2023169683A (en) 2022-05-17 2022-05-17 Method for producing aqueous ferrous chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022080956A JP2023169683A (en) 2022-05-17 2022-05-17 Method for producing aqueous ferrous chloride solution

Publications (1)

Publication Number Publication Date
JP2023169683A true JP2023169683A (en) 2023-11-30

Family

ID=88924163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022080956A Pending JP2023169683A (en) 2022-05-17 2022-05-17 Method for producing aqueous ferrous chloride solution

Country Status (1)

Country Link
JP (1) JP2023169683A (en)

Similar Documents

Publication Publication Date Title
KR0142607B1 (en) Wet treatment device, electrolytic active water producing method, and wet treating method
JPS58224189A (en) Chlorine gas generator and method
US20130101499A1 (en) METHODS FOR ELECTROCHEMICAL DECHLORINATION OF ANOLYTE BRINE FROM NaCl ELECTROLYSIS
CN105154910A (en) Process for producing alkali
JPH04501885A (en) Purification method of quaternary ammonium hydroxide
KR910001138B1 (en) Combined process for production of clorine dioxine and sodium hydroxide
JP2001271193A (en) Synthesis of tetramethylammonium hydroxide
KR101436139B1 (en) A electrolysis apparatus
US5074975A (en) Electrochemical cogeneration of alkali metal halate and alkaline peroxide solutions
JPH0237432B2 (en)
GB959846A (en) An electrolytic process for producing halogen gases and the apparatus therefor
US4510026A (en) Process for electrolysis of sea water
RU2715836C1 (en) Reagent-electrolysis method for regeneration of hydrochloric copper-chloride solutions of copper etching
JP2023169683A (en) Method for producing aqueous ferrous chloride solution
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH0978276A (en) Refining method of alkali solution
FI63260B (en) FOERFARANDE FOER ELEKTROLYSERING AV ALKALIHALOGENIDVATTENLOESNINGAR
TWI529998B (en) Membrane restoration process
RU1836493C (en) Method of production of chlorine dioxide
CA1257560A (en) Electrochemical removal of hypochlorites from chlorate cell liquors
JP3722537B2 (en) Organic sludge oxidation treatment method and equipment
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
JP2003293178A (en) Method for preparing chemical for water treatment
CN111996541A (en) Indirect hydrogen sulfide electrolysis method and device for improving hydrogen yield
RU196524U1 (en) DEVICE FOR PRODUCING ALKALINE SOLUTION FERRAT (VI) SODIUM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240805