JP2023168652A - Electrolytic gold plating solution, production method thereof, and plating method using the plating solution - Google Patents
Electrolytic gold plating solution, production method thereof, and plating method using the plating solution Download PDFInfo
- Publication number
- JP2023168652A JP2023168652A JP2022079874A JP2022079874A JP2023168652A JP 2023168652 A JP2023168652 A JP 2023168652A JP 2022079874 A JP2022079874 A JP 2022079874A JP 2022079874 A JP2022079874 A JP 2022079874A JP 2023168652 A JP2023168652 A JP 2023168652A
- Authority
- JP
- Japan
- Prior art keywords
- gold
- plating solution
- plating
- electrolytic
- complexing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 178
- 239000010931 gold Substances 0.000 title claims abstract description 139
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 139
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 16
- 239000008139 complexing agent Substances 0.000 claims abstract description 56
- -1 gold ions Chemical class 0.000 claims abstract description 46
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 claims abstract description 41
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000243 solution Substances 0.000 claims description 123
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 150000002825 nitriles Chemical class 0.000 claims description 6
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004464 hydroxyphenyl group Chemical group 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 230000000536 complexating effect Effects 0.000 abstract 1
- 230000001988 toxicity Effects 0.000 abstract 1
- 231100000419 toxicity Toxicity 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000002343 gold Chemical class 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XOHZHMUQBFJTNH-UHFFFAOYSA-N 1-methyl-2h-tetrazole-5-thione Chemical compound CN1N=NN=C1S XOHZHMUQBFJTNH-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000002798 spectrophotometry method Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- MXZVHYUSLJAVOE-UHFFFAOYSA-N gold(3+);tricyanide Chemical group [Au+3].N#[C-].N#[C-].N#[C-] MXZVHYUSLJAVOE-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- BZFGKBQHQJVAHS-UHFFFAOYSA-N 2-(trifluoromethyl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C(F)(F)F)=C1 BZFGKBQHQJVAHS-UHFFFAOYSA-N 0.000 description 1
- WOFVPNPAVMKHCX-UHFFFAOYSA-N N#C[Au](C#N)C#N Chemical class N#C[Au](C#N)C#N WOFVPNPAVMKHCX-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- TWBYWOBDOCUKOW-UHFFFAOYSA-N isonicotinic acid Natural products OC(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical compound O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- KMZJQQHWMFWLEK-UHFFFAOYSA-N pyrazol-3-one;pyridine Chemical compound C1=CC=NC=C1.O=C1C=CN=N1 KMZJQQHWMFWLEK-UHFFFAOYSA-N 0.000 description 1
- AEZLFMQGYJFBAU-UHFFFAOYSA-N pyrazol-3-one;pyridine-4-carboxylic acid Chemical compound O=C1C=CN=N1.OC(=O)C1=CC=NC=C1 AEZLFMQGYJFBAU-UHFFFAOYSA-N 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003536 tetrazoles Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
本発明は、ウエハ又は基板等への金めっきに用いられる電解金めっき液及びその製造方法並びに該めっき液を用いためっき方法に関する。更に詳しくは、金めっきバンプを形成するのに好適に用いられる電解金めっき液及びその製造方法並びに該めっき液を用いためっき方法に関する。 The present invention relates to an electrolytic gold plating solution used for gold plating on wafers, substrates, etc., a method for manufacturing the same, and a plating method using the plating solution. More specifically, the present invention relates to an electrolytic gold plating solution suitable for forming gold-plated bumps, a method for producing the same, and a plating method using the plating solution.
従来、シアンは錯形成力が強いため、金塩がシアン化金塩である金めっき液が開示されている(例えば、特許文献1(請求項1、請求項2、請求項3、段落[0012]、段落[0025])参照。)。特許文献1には、この金めっき液は、シアン化金塩と、可溶性コバルト塩及び/又はニッケル塩と、有機酸伝導塩と、キレート化剤と、電解硬質金めっき液用置換防止剤とを含有することが記載されている。また、特許文献1には、この金めっき液によれば、金めっき液に所定の有機置換防止剤を配合するため、金めっき液に電流を流していない状態においてニッケル下地上に保護膜を形成することができ、且つこの保護膜は金めっき液に電流を流すことにより容易に除去できること、ニッケル下地上に形成される保護膜の存在により、電流を流していない状態で金めっき液が接触してもニッケル下地との置換反応が生じず、選択的なめっきが可能になること、及びニッケル下地との置換反応が生じないため、金パーティクルの発生に起因するめっき槽内壁への金の析出も抑制できる等の特長を有することが記載されている。 Conventionally, since cyanide has a strong complex-forming power, a gold plating solution in which the gold salt is a cyanide gold salt has been disclosed (for example, Patent Document 1 (Claim 1, Claim 2, Claim 3, Paragraph [0012 ], see paragraph [0025]). Patent Document 1 describes that this gold plating solution contains a cyanide gold salt, a soluble cobalt salt and/or a nickel salt, an organic acid conductive salt, a chelating agent, and a displacement inhibitor for electrolytic hard gold plating solution. It is stated that it contains. Furthermore, Patent Document 1 states that, according to this gold plating solution, since a predetermined organic substitution inhibitor is blended into the gold plating solution, a protective film is formed on the nickel base when no current is applied to the gold plating solution. In addition, this protective film can be easily removed by passing an electric current through the gold plating solution, and the presence of the protective film formed on the nickel base prevents the gold plating solution from coming into contact with it when no current is being applied. However, since no substitution reaction occurs with the nickel base, selective plating is possible, and since no substitution reaction occurs with the nickel base, gold precipitation on the inner wall of the plating tank due to the generation of gold particles is avoided. It is described that it has features such as being able to suppress
特許文献1の発明のように、シアン化金塩を含むめっき液は毒性が強い。このため、ノーシアン電解金めっき液が開示されている(例えば、特許文献2(請求項1、段落[0012]、段落[0037]、段落[0040]、段落[0051]、段落[0054]、段落[0061])参照。)。特許文献2には、この金めっき液は、所定の1価金錯体と、電解質と、金属から選ばれる結晶調整剤とを含有すること、金めっき液のpHは、例えば3~14、好ましくは5~8であり、この金めっき液を用いた電解金めっきの条件は、例えば液温20~80℃で、電流密度0.1~6A/dm2であること、及びこの金めっき液は、安定性に極めて優れ、調製後1年間も変化がなく、金めっき作業中に析出金の物性の変化が金めっき液の分解を起こしにくいことが記載されている。 As in the invention of Patent Document 1, a plating solution containing gold cyanide salt is highly toxic. For this reason, cyan-free electrolytic gold plating solutions are disclosed (for example, Patent Document 2 (Claim 1, paragraph [0012], paragraph [0037], paragraph [0040], paragraph [0051], paragraph [0054], paragraph See [0061]). Patent Document 2 states that this gold plating solution contains a predetermined monovalent gold complex, an electrolyte, and a crystal modifier selected from metals, and that the pH of the gold plating solution is, for example, 3 to 14, preferably 5 to 8, and the conditions for electrolytic gold plating using this gold plating solution are, for example, a solution temperature of 20 to 80°C, a current density of 0.1 to 6 A/ dm2 , and this gold plating solution: It is described that it has extremely excellent stability, remains unchanged for one year after preparation, and that changes in the physical properties of the deposited gold during gold plating operations are unlikely to cause decomposition of the gold plating solution.
一般に、金めっき法で金めっきバンプを形成する場合、基板上に有機レジストで形成したパターン内に金めっきを行っている。しかしながら、特許文献2に記載された金めっき液は、毒性がないものの、pH3~14の範囲の中で、めっき液がpH7を超えたアルカリ性領域で金めっきを行うと、レジストパターンが溶解し、パターンめっきが困難となり、かつめっき液の電気伝導性が低くなり、結果としてめっき皮膜が均一に電着しない課題があった。一方、めっき液がpH3~7の酸性領域から中性領域で、めっき時の液温を20℃~80℃の範囲の中で、液温を40℃以上にしてめっきを行うと、レジストパターンがダメージを受け易く、やはりめっき皮膜が均一に電着しないという課題が依然としてある。 Generally, when forming gold-plated bumps using a gold plating method, gold plating is performed within a pattern formed using an organic resist on a substrate. However, although the gold plating solution described in Patent Document 2 is non-toxic, if gold plating is performed in an alkaline region where the plating solution exceeds pH 7 within the pH range of 3 to 14, the resist pattern will dissolve. Pattern plating became difficult, and the electrical conductivity of the plating solution became low, resulting in problems in that the plating film was not uniformly electrodeposited. On the other hand, if the plating solution is in the acidic to neutral range with a pH of 3 to 7, and the solution temperature during plating is 40°C or higher within the range of 20°C to 80°C, the resist pattern will change. There is still the problem that it is easily damaged and the plating film is not uniformly electrodeposited.
本発明の目的は、35℃以下の液温でのめっきが可能であって、めっき皮膜が均一に電着するめっき性に優れ、めっき液の寿命が長く、毒性のない電解金めっき液及びその製造方法を提供することにある。本発明の別の目的は、このめっき液を用いためっき方法を提供することにある。 The object of the present invention is to provide an electrolytic gold plating solution that enables plating at a solution temperature of 35°C or lower, has excellent plating properties such that a plating film is uniformly electrodeposited, has a long service life, and is non-toxic. The purpose is to provide a manufacturing method. Another object of the present invention is to provide a plating method using this plating solution.
本発明者らは、特許文献2記載の金めっき液が金イオンを錯体化し易くする目的でpHを中性領域にし、これに起因して、めっき皮膜が均一に電着しないことから、金めっき液のpHを3未満の強酸性領域にして、めっき液の電気伝導性を高める一方、特定の錯体化剤を選定し、かつこの錯体化剤と金塩とのモル比率を所定の割合にすることで、金イオンの錯体化を図って、これによりめっき皮膜が均一に電着するめっき性を良好に、かつめっき液の寿命を長くできることに着目し、本発明に到達した。 The present inventors set the pH of the gold plating solution described in Patent Document 2 to a neutral range in order to facilitate complexation of gold ions, and as a result, the plating film was not uniformly electrodeposited, so the gold plating solution was While increasing the electrical conductivity of the plating solution by setting the pH of the solution to a strongly acidic region of less than 3, selecting a specific complexing agent and adjusting the molar ratio of this complexing agent and the gold salt to a predetermined ratio. Therefore, the present invention was achieved by focusing on the ability to complex gold ions, thereby improving the plating properties of uniformly electrodepositing a plating film, and extending the life of the plating solution.
本発明の第1の観点は、非シアンの可溶性金塩(A)と、前記金塩の金イオンを錯体化する錯体化剤(B)とを含む電解金めっき液であって、前記錯体化剤(B)が下記の一般式(1)に示されるメルカプトテトラゾール化合物であり、前記可溶性金塩(A)に対する前記錯体化剤(B)のモル比率(B/A)が10以上260以下であり、前記金めっき液のpHが3未満であることを特徴とする。 A first aspect of the present invention is an electrolytic gold plating solution comprising a non-cyanide soluble gold salt (A) and a complexing agent (B) that complexes gold ions of the gold salt, The agent (B) is a mercaptotetrazole compound represented by the following general formula (1), and the molar ratio (B/A) of the complexing agent (B) to the soluble gold salt (A) is 10 or more and 260 or less. The gold plating solution has a pH of less than 3.
但し、式(1)中、『*』はメチル基、エチル基、プロピル基、カルボキシル基、アセチル基、フェニル基、ヒドロキシフェニル基、メトキシフェニル基、アルボキシル基、ジメチルアミノエチル基又はアセトアミドフェニル基である。 However, in formula (1), "*" is a methyl group, ethyl group, propyl group, carboxyl group, acetyl group, phenyl group, hydroxyphenyl group, methoxyphenyl group, alkoxyl group, dimethylaminoethyl group or acetamidophenyl group. be.
本発明の第2の観点は、第1の観点に基づく発明であって、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸を更に含有する電解金めっき液である。 A second aspect of the present invention is an invention based on the first aspect, and is an electrolytic gold plating solution that further contains sulfuric acid or an alkylsulfonic acid having 1 or more and 5 or less carbon chains.
本発明の第3の観点は、第1又は第2の観点に基づく発明であって、シアン化合物又はシアンイオンを含まない電解金めっき液である。 A third aspect of the present invention is an invention based on the first or second aspect, and is an electrolytic gold plating solution that does not contain cyan compounds or cyan ions.
本発明の第4の観点のめっき方法は、第1、第2又は第3の観点の電解金めっき液を用いて、レジストパターン内に金めっき皮膜を形成するめっき方法である。 A plating method according to a fourth aspect of the present invention is a plating method in which a gold plating film is formed within a resist pattern using the electrolytic gold plating solution according to the first, second, or third aspect.
本発明の第5の観点の製造方法は、金メタルを、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸中で第1の観点の錯体化剤(B)が存在する状態で、電解を行って、非シアンの可溶性金塩(A)を含む電解液を得た後、第1の観点の電解金めっき液を製造する方法である。 The manufacturing method according to the fifth aspect of the present invention includes electrolyzing gold metal in the presence of the complexing agent (B) according to the first aspect in sulfuric acid or an alkylsulfonic acid having 1 to 5 carbon chains. After obtaining an electrolytic solution containing a non-cyanide soluble gold salt (A), the electrolytic gold plating solution of the first aspect is produced.
本発明の第1の観点の電解金めっき液では、上記式(1)に示される特定のメルカプトテトラゾール化合物を錯体化剤として用い、かつ錯体化剤(B)と金塩(A)とのモル比率(B/A)を10以上260以下の所定の割合することにより、pHが3未満であっても金イオンを錯体化することができる。また、pHが3未満であることにより、めっき液の電気抵抗が低くなりめっき液の電気伝導性が高く、これによりめっき時にめっき皮膜が均一に電着し、めっき性に優れる。またこの電解めっき液は、特定のメルカプトテトラゾール化合物を含有するため、めっき液の温度を比較的低温(例えば、35℃以下)の条件下で、金めっきを行うことができるとともに、pHが3未満の酸性であることにより、めっき時にレジストパターンのダメージを小さくする利点がある。また特定のメルカプトテトラゾール化合物により金イオンを錯体化しているため、高い酸化安定性を示し、めっき液を製造した後のめっき液の寿命が長い効果を有する。 In the electrolytic gold plating solution according to the first aspect of the present invention, a specific mercaptotetrazole compound represented by the above formula (1) is used as a complexing agent, and the molar ratio of the complexing agent (B) and the gold salt (A) is By adjusting the ratio (B/A) to a predetermined ratio of 10 or more and 260 or less, gold ions can be complexed even if the pH is less than 3. In addition, when the pH is less than 3, the electrical resistance of the plating solution is low and the electrical conductivity of the plating solution is high, so that a plating film is uniformly electrodeposited during plating and has excellent plating properties. In addition, since this electrolytic plating solution contains a specific mercaptotetrazole compound, gold plating can be performed at a relatively low temperature (e.g., 35°C or less), and the pH of the plating solution is less than 3. Its acidity has the advantage of reducing damage to the resist pattern during plating. Furthermore, since gold ions are complexed with a specific mercaptotetrazole compound, it exhibits high oxidation stability and has the effect of extending the life of the plating solution after it is manufactured.
本発明の第2の観点の電解金めっき液では、金めっき液が硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸を更に含有するため、電解によって金を水溶液中に溶解させる効果がある。 In the electrolytic gold plating solution according to the second aspect of the present invention, since the gold plating solution further contains sulfuric acid or an alkylsulfonic acid having a carbon chain of 1 or more and 5 or less, it has the effect of dissolving gold in the aqueous solution by electrolysis.
本発明の第3の観点の電解金めっき液では、金めっき液がシアン化合物又はシアンイオンを含まないため、毒性が低い。 The electrolytic gold plating solution according to the third aspect of the present invention has low toxicity because the gold plating solution does not contain cyanide compounds or cyanide ions.
本発明の第4の観点のめっき方法では、pHが3未満である金めっき液を使用するため、金めっき時にレジストパターンを溶解させずに、レジストパターン内に均一な金めっき皮膜を形成することができる。 In the plating method according to the fourth aspect of the present invention, since a gold plating solution having a pH of less than 3 is used, a uniform gold plating film can be formed within the resist pattern without dissolving the resist pattern during gold plating. I can do it.
本発明の第5の観点の製造方法では、金メタルを、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸中で第1の観点の錯体化剤(B)が存在する状態で、電解を行って、pHが1未満の非シアンの可溶性金塩(A)の水溶液を調製し、この水溶液のpHをpH調整剤を用いて3未満に調整することにより、第1の観点の電解金めっき液を製造する。このため、この方法は、金イオンに対して錯体化剤(B)のみを配位させる効果を有する。 In the production method according to the fifth aspect of the present invention, gold metal is electrolyzed in sulfuric acid or an alkylsulfonic acid having 1 to 5 carbon chains in the presence of the complexing agent (B) according to the first aspect. Electrolytic gold plating according to the first aspect is carried out by preparing an aqueous solution of a non-cyanide soluble gold salt (A) with a pH of less than 1, and adjusting the pH of this aqueous solution to less than 3 using a pH adjuster. Manufacture liquid. Therefore, this method has the effect of coordinating only the complexing agent (B) with respect to gold ions.
次に本発明を実施するための形態を図面を参照して説明する。 Next, a mode for carrying out the present invention will be described with reference to the drawings.
〔電解金めっき液〕
本実施形態の電解金めっき液は、非シアンの可溶性金塩(A)と、この金塩の金イオンを錯体化する錯体化剤(B)とを含み、錯体化剤(B)が上述した一般式(1)に示されるメルカプトテトラゾール化合物であり、可溶性金塩(A)に対する錯体化剤(B)のモル比率(B/A)が10以上260以下であり、金めっき液のpHが3未満であることを特徴とする。
[Electrolytic gold plating solution]
The electrolytic gold plating solution of this embodiment includes a non-cyanide soluble gold salt (A) and a complexing agent (B) that complexes the gold ions of this gold salt, and the complexing agent (B) is as described above. A mercaptotetrazole compound represented by the general formula (1), in which the molar ratio (B/A) of the complexing agent (B) to the soluble gold salt (A) is 10 to 260, and the pH of the gold plating solution is 3. It is characterized by being less than or equal to
電解金めっき液の錯体化剤(B)としては、上述した一般式(1)に示されるメルカプトテトラゾール化合物が用いられる。こうした錯体化剤(B)は、テトラゾール環内の電子密度が高く、メルカプト基の非共有電子対の配位力が強い理由で、金イオンを的確に錯体化し、かつ金成分の析出や沈殿が生じない安定性の高いめっき液にする。メルカプトテトラゾール化合物としては、5-メルカプト-1-メチルテトラゾール及びI-(2-ジメチルアミノエチル)-5-メルカプトテトラゾールが水溶液への溶解性が高いという理由で好ましい。 As the complexing agent (B) of the electrolytic gold plating solution, a mercaptotetrazole compound represented by the above-mentioned general formula (1) is used. Such a complexing agent (B) has a high electron density in the tetrazole ring and a strong coordination force of the lone pair of electrons in the mercapto group, so it can accurately complex gold ions and prevent precipitation and precipitation of the gold component. To create a highly stable plating solution that does not cause oxidation. As the mercaptotetrazole compound, 5-mercapto-1-methyltetrazole and I-(2-dimethylaminoethyl)-5-mercaptotetrazole are preferred because of their high solubility in aqueous solutions.
電解金めっき液における可溶性金塩(A)に対する錯体化剤(B)のモル比率(B/A)は10以上260以下である。モル比率(B/A)が10未満では錯体化剤が不足し可溶性金塩から溶出する金イオンの錯体化が不十分になり、めっき液の金成分が析出や沈殿が生じ、めっき液の安定性が劣るようになる。また260を超えると錯体化剤が過剰となり金イオンの電析が過度に抑制され、緻密なめっき皮膜が得られない不具合を生じる。好ましいモル比率(B/A)は10以上100以下である。 The molar ratio (B/A) of the complexing agent (B) to the soluble gold salt (A) in the electrolytic gold plating solution is 10 or more and 260 or less. If the molar ratio (B/A) is less than 10, there will be a shortage of complexing agent, and the gold ions eluted from the soluble gold salt will not be complexed sufficiently, and the gold component of the plating solution will precipitate or precipitate, resulting in poor stability of the plating solution. Become less sexually active. Moreover, if it exceeds 260, the complexing agent becomes excessive, and the electrodeposition of gold ions is excessively suppressed, resulting in a problem that a dense plating film cannot be obtained. The preferred molar ratio (B/A) is 10 or more and 100 or less.
電解金めっき液中の非シアンの可溶性金塩(A)の濃度は0.001モル/L~0.1モル/Lであることが好ましい。0.001モル/L未満であると、めっき速度が遅くなり易く、0.1モル/Lを超えると、めっき浴が高価になり過ぎるおそれがある。また、電解金めっき液中の錯体化剤(B)の濃度は0.01モル/L~3モル/Lであることが好ましい。0.01モル/L未満であると、金イオンの錯体化が不十分になり易く、めっき液の金成分が沈殿し易くなる。3モル/Lを超えると、錯体化剤を水溶液中へ溶解させることが困難になり易い。 The concentration of the non-cyanide soluble gold salt (A) in the electrolytic gold plating solution is preferably 0.001 mol/L to 0.1 mol/L. If it is less than 0.001 mol/L, the plating rate tends to be slow, and if it exceeds 0.1 mol/L, the plating bath may become too expensive. Further, the concentration of the complexing agent (B) in the electrolytic gold plating solution is preferably 0.01 mol/L to 3 mol/L. If it is less than 0.01 mol/L, complexation of gold ions tends to be insufficient, and the gold component of the plating solution tends to precipitate. If it exceeds 3 mol/L, it tends to be difficult to dissolve the complexing agent in the aqueous solution.
電解金めっき液のpHは、めっき液の電気伝導性を高くするために、3未満である。このpHが3以上になると、めっき液の電気伝導性が低くなり、めっき性に劣るようになる。好ましいpHは0~2である。 The pH of the electrolytic gold plating solution is less than 3 in order to increase the electrical conductivity of the plating solution. When this pH becomes 3 or higher, the electrical conductivity of the plating solution decreases, resulting in poor plating properties. The preferred pH is 0-2.
電解金めっき液では、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸を含有していることが好ましい。硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸の濃度は0.01モル/L~5モル/Lの範囲であることが好ましい。0.01モル/L以下の場合、めっき液の導電度が低くなり易く、めっき皮膜が均一に電着しにくくなる。また、5モル/Lを超えると、めっき液の粘度が高過ぎて、緻密なめっき皮膜が得にくくなる。 The electrolytic gold plating solution preferably contains sulfuric acid or an alkylsulfonic acid having 1 or more and 5 or less carbon chains. The concentration of sulfuric acid or alkylsulfonic acid having 1 to 5 carbon chains is preferably in the range of 0.01 mol/L to 5 mol/L. If it is less than 0.01 mol/L, the conductivity of the plating solution tends to be low, making it difficult to uniformly electrodeposit a plating film. Moreover, when it exceeds 5 mol/L, the viscosity of the plating solution becomes too high, making it difficult to obtain a dense plating film.
電解金めっき液では、シアン化合物又はシアンイオンを含まないことが好ましい。シアン化合物又はシアンイオンを含まないので毒性が低い。「シアン化合物又はシアンイオンを含まない」とは、JIS-K0102に規定される試験方法(ピリジン-ピラゾロン吸光光度法,4-ピリジンカルボン酸-ピラゾロン吸光光度法,イオン電極法又は4-ピリジンカルボン酸-ピラゾロン発色による流れ分析法が挙げられる)によって電解金めっき液を測定したときに、シアン化合物又はシアンイオンの濃度が1ppm以下であることをいう。 The electrolytic gold plating solution preferably does not contain cyanide compounds or cyanide ions. Low toxicity as it does not contain cyanide compounds or cyanide ions. "Contains no cyanide compounds or cyan ions" means the test method specified in JIS-K0102 (pyridine-pyrazolone spectrophotometry, 4-pyridinecarboxylic acid-pyrazolone spectrophotometry, ion electrode method, or 4-pyridinecarboxylic acid spectrophotometry) - The concentration of cyanide compounds or cyanide ions is 1 ppm or less when an electrolytic gold plating solution is measured by a flow analysis method using pyrazolone coloring.
〔電解金めっき液の製造方法〕
本実施形態における電解金めっき液の製造方法を次に詳述する。
本実施形態の電解金めっき液の製造方法では、イオン交換膜による金メタルの電解を利用することが好ましい。この方法を用いることにより得られる電解金めっき液においては、メルカプトテトラゾール化合物が確実に金イオンに配位されるので、金めっきを確実に行うことができる。
[Method for producing electrolytic gold plating solution]
The method for producing the electrolytic gold plating solution in this embodiment will be described in detail below.
In the method for producing an electrolytic gold plating solution of this embodiment, it is preferable to utilize electrolysis of gold metal using an ion exchange membrane. In the electrolytic gold plating solution obtained by using this method, the mercaptotetrazole compound is reliably coordinated with gold ions, so that gold plating can be performed reliably.
図1に示すように、非シアンの可溶性金塩は、アノード槽1とカソード槽2とが水素イオン交換膜3を挟んで連結された電解装置10により調製される。
先ず、アノード槽1に硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸と上述した一般式(1)に示される錯体化剤(B)と純水を入れる。ここで、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸の濃度は0.1~5モル/Lとすることが好ましい。錯体化剤(B)の濃度は0.01~3モル/Lとすることが好ましい。純水はイオン交換水などを用いることができる。
As shown in FIG. 1, a non-cyanide soluble gold salt is prepared by an electrolytic device 10 in which an anode tank 1 and a cathode tank 2 are connected with a hydrogen ion exchange membrane 3 in between.
First, sulfuric acid or an alkylsulfonic acid having a carbon chain of 1 or more and 5 or less, a complexing agent (B) represented by the above-mentioned general formula (1), and pure water are placed in the anode tank 1. Here, the concentration of sulfuric acid or alkylsulfonic acid having 1 to 5 carbon chains is preferably 0.1 to 5 mol/L. The concentration of the complexing agent (B) is preferably 0.01 to 3 mol/L. Ion-exchanged water or the like can be used as the pure water.
次いで、カソード槽2に硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸と純水を入れる。ここで、硫酸又は炭素鎖が1以上5以下のアルキルスルホン酸の濃度は0.01~5モル/Lとすることが好ましい。次に、アノードには可溶性の板状又は棒状の金メタル4を用い、カソードにはチタン(Ti)を基体として白金(Pt)をめっきしてなる不溶性のPt/Ti板5を用いる。金メタル4としては、純度99%以上の金を板状又は棒状に加工して用いることが好ましい。 Next, sulfuric acid or an alkylsulfonic acid having a carbon chain of 1 or more and 5 or less and pure water are placed in the cathode tank 2. Here, the concentration of sulfuric acid or alkylsulfonic acid having 1 to 5 carbon chains is preferably 0.01 to 5 mol/L. Next, a soluble plate-shaped or rod-shaped gold metal 4 is used for the anode, and an insoluble Pt/Ti plate 5 made of a titanium (Ti) base plated with platinum (Pt) is used for the cathode. As the gold metal 4, it is preferable to use gold having a purity of 99% or more and processing it into a plate or rod shape.
このような構成の電解装置10により、金メタル4の電解を行い、金イオンを溶出するとともに、錯体化剤(B)により錯体化する。得られた電解液6をアノード槽1より取り出し、この電解液6を図示しない固液分離装置により固液分離し、非シアンの可溶性金塩(A)を含む液を得る。ここでの電解は、液温10℃~50℃、電流密度0.01ASD~10ASDで行うことができ、金濃度(非シアンの可溶性金塩(A)の濃度)が0.001モル/L~1モル/Lとなるようにすることが好ましい。 The electrolytic device 10 having such a configuration electrolyzes the gold metal 4 to elute gold ions and complex them with the complexing agent (B). The obtained electrolytic solution 6 is taken out from the anode tank 1, and this electrolytic solution 6 is subjected to solid-liquid separation using a solid-liquid separator (not shown) to obtain a solution containing a non-cyanide soluble gold salt (A). The electrolysis here can be performed at a liquid temperature of 10°C to 50°C, a current density of 0.01 ASD to 10 ASD, and a gold concentration (concentration of non-cyanide soluble gold salt (A)) of 0.001 mol/L to It is preferable to adjust the amount to 1 mol/L.
次いで、この非シアンの可溶性金塩(A)を含む液を希釈して本実施形態の電解金めっき液を製造する。希釈はイオン交換水や蒸留水などの純水で行い、非シアンの可溶性金塩(A)が0.001モル/L~0.1モル/Lの範囲となるように希釈することが好ましい。この際、錯体化剤(B)の濃度が低下している場合、0.01モル/L~3モル/Lの範囲となるように追加添加することが好ましい。また、強酸に対して不安定な対象物にめっきをする場合などは、必要に応じて、pHが3を超えない範囲で中和により、めっき液のpHを調整することもできる。中和は、水酸化ナトリウムなどの水酸化物、アンモニアなどの塩基により行うとよい。これにより、本実施形態の電解金めっき液が製造される。 Next, the solution containing this non-cyanide soluble gold salt (A) is diluted to produce the electrolytic gold plating solution of this embodiment. Dilution is preferably performed with pure water such as ion-exchanged water or distilled water so that the non-cyanide soluble gold salt (A) is in the range of 0.001 mol/L to 0.1 mol/L. At this time, if the concentration of the complexing agent (B) is decreasing, it is preferable to add the complexing agent (B) additionally in a range of 0.01 mol/L to 3 mol/L. Furthermore, when plating an object that is unstable to strong acids, the pH of the plating solution can be adjusted by neutralization within a range that does not exceed 3, if necessary. Neutralization is preferably carried out using a hydroxide such as sodium hydroxide or a base such as ammonia. In this way, the electrolytic gold plating solution of this embodiment is manufactured.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
最初に、実施例1~12と比較例1~6において使用する6種類の錯体化剤(種類:A~F)とそれぞれの分子量を以下の表1に示す。 First, the six types of complexing agents (types: A to F) used in Examples 1 to 12 and Comparative Examples 1 to 6 and their respective molecular weights are shown in Table 1 below.
<実施例1>
先ず、下記の非シアンの可溶性金塩(A)を含む液を調製し、次いでこの液を用いて電解金めっき液を調製した。
(非シアンの可溶性金塩(A)を含む液の調製)
非シアンの可溶性金塩(A)を含む液は、上記表1に示される種類Aの錯体化剤(B)を用いて、下記組成で調製した。調製した液を図1に示されるアノード槽1に投入した。
メタンスルホン酸:100g/L
5-メルカプト-1-メチルテトラゾール(種類Aの錯体化剤(B)):100g/L
残部:純水
<Example 1>
First, a solution containing the following non-cyanide soluble gold salt (A) was prepared, and then this solution was used to prepare an electrolytic gold plating solution.
(Preparation of liquid containing non-cyanide soluble gold salt (A))
A liquid containing a non-cyanide soluble gold salt (A) was prepared with the following composition using a type A complexing agent (B) shown in Table 1 above. The prepared solution was put into an anode tank 1 shown in FIG.
Methanesulfonic acid: 100g/L
5-mercapto-1-methyltetrazole (type A complexing agent (B)): 100 g/L
Remainder: pure water
次に、下記組成の液を調製し、この液を図1に示されるカソード槽2に投入した。
メタンスルホン酸:100g/L
残部:純水
上記構成の可溶性金塩の調製装置10において、液温を25℃に、アノードの電流密度を0.1ASDにそれぞれ設定して、50時間、金メタル4の電解を行った。電解液6のpHは1未満であった。この電解液6を定性分析用3種のろ紙を用いてろ過し、ろ液として黄色の透明な非シアンの可溶性金塩(A)を含む液を得た。ここで、この液に含まれる金イオン濃度をICP発光分光分析装置(ICP-OES)を用いて測定したところ、10g/Lであった。
Next, a solution having the following composition was prepared, and this solution was put into the cathode tank 2 shown in FIG.
Methanesulfonic acid: 100g/L
Remainder: Pure Water In the soluble gold salt preparation apparatus 10 having the above configuration, gold metal 4 was electrolyzed for 50 hours with the liquid temperature set at 25° C. and the anode current density set at 0.1 ASD. The pH of electrolytic solution 6 was less than 1. This electrolytic solution 6 was filtered using three types of filter paper for qualitative analysis to obtain a yellow transparent solution containing a non-cyan soluble gold salt (A) as a filtrate. Here, the gold ion concentration contained in this liquid was measured using an ICP optical emission spectrometer (ICP-OES) and was found to be 10 g/L.
(電解金めっき液の調製)
電解金めっき液を以下の手順で調製した。上記金イオン濃度が10g/LであるpHが1未満の非シアンの可溶性金塩(A)を含む液を純水で希釈し、金イオン濃度を0.5g/L(0.002538モル/L)に調整した。次いで、種類Aの錯体化剤(B)である5-メルカプト-1-メチルテトラゾールを上記希釈された液に添加し混合することにより、電解金めっき液を調製した。電解金めっき液における錯体化剤(B)の濃度は10g/L(0.086103モル/L)であり、電解金めっき液のpHは1未満であった。上記金イオン濃度と錯体化剤の濃度から算出されるモル比(B/A)は34であった。
(Preparation of electrolytic gold plating solution)
An electrolytic gold plating solution was prepared according to the following procedure. The above solution containing a non-cyanide soluble gold salt (A) with a pH of less than 1 and a gold ion concentration of 10 g/L is diluted with pure water, and the gold ion concentration is adjusted to 0.5 g/L (0.002538 mol/L). ) was adjusted. Next, 5-mercapto-1-methyltetrazole, which is a type A complexing agent (B), was added to the diluted solution and mixed to prepare an electrolytic gold plating solution. The concentration of the complexing agent (B) in the electrolytic gold plating solution was 10 g/L (0.086103 mol/L), and the pH of the electrolytic gold plating solution was less than 1. The molar ratio (B/A) calculated from the gold ion concentration and the complexing agent concentration was 34.
上述した実施例1の内容を、以下の表2に示す。表2には、次に述べる実施例2~12及び比較例1~6の内容(モル比(B/A)及びpH値)も一緒に示す。 The contents of Example 1 described above are shown in Table 2 below. Table 2 also shows the contents (molar ratio (B/A) and pH value) of Examples 2 to 12 and Comparative Examples 1 to 6, which will be described below.
<実施例2~12及び比較例1~6>
上記表2に示すように、実施例2~12及び比較例1~6では、実施例1における非シアンの可溶性金塩(A)を含む液を純水で希釈する際の希釈度合いを変更することにより、非シアンの可溶性金塩(A)の金イオン濃度を実施例1と異なる値に変更した。また、錯体化剤(B)を表2に記載された量となるように調製した。
また、実施例2~9及び比較例1~3、6における錯体化剤(B)は実施例1と同一の錯体化剤を用いた。実施例10~12及び比較例4、5は実施例1と異なる錯体化剤を用いた。比較例4、5では、メルカプトテトラゾール化合物の代わりにメルカプトトリアゾール化合物を用いた。
また、実施例2~12及び比較例1~6では、非シアンの可溶性金塩(A)を含む液を調製するときの錯体化剤(B)の添加量を実施例1と同一又は変更して電解金めっき液中の錯体化剤の濃度を調整した。
更に、実施例2~12及び比較例1~6では、実施例1において希釈した液に錯体化剤を添加混合した後で、この混合液に0.1モル/Lの水酸化ナトリウム水溶液を滴下して、混合液のpHを表2に示すように変更した。
<Examples 2 to 12 and Comparative Examples 1 to 6>
As shown in Table 2 above, in Examples 2 to 12 and Comparative Examples 1 to 6, the degree of dilution when diluting the solution containing the non-cyanoid soluble gold salt (A) in Example 1 with pure water was changed. As a result, the gold ion concentration of the non-cyanide soluble gold salt (A) was changed to a value different from that in Example 1. Further, the complexing agent (B) was prepared in the amount shown in Table 2.
Further, as the complexing agent (B) in Examples 2 to 9 and Comparative Examples 1 to 3, and 6, the same complexing agent as in Example 1 was used. Examples 10 to 12 and Comparative Examples 4 and 5 used a different complexing agent from Example 1. In Comparative Examples 4 and 5, a mercaptotriazole compound was used instead of a mercaptotetrazole compound.
Furthermore, in Examples 2 to 12 and Comparative Examples 1 to 6, the amount of complexing agent (B) added when preparing the liquid containing the non-cyanide soluble gold salt (A) was the same as or changed from Example 1. The concentration of the complexing agent in the electrolytic gold plating solution was adjusted.
Furthermore, in Examples 2 to 12 and Comparative Examples 1 to 6, after adding and mixing the complexing agent to the diluted solution in Example 1, a 0.1 mol/L aqueous sodium hydroxide solution was added dropwise to this mixed solution. The pH of the mixed solution was changed as shown in Table 2.
<比較試験及び評価>
実施例1~12及び比較例1~6の18種類の電解金めっき液について、調製してからめっき液の安定性と、めっき性を次の方法により調べた。それらの結果を上記表2に示す。
<Comparative test and evaluation>
Eighteen types of electrolytic gold plating solutions of Examples 1 to 12 and Comparative Examples 1 to 6 were prepared and then their stability and plating properties were investigated by the following method. The results are shown in Table 2 above.
(1)めっき液の安定性について
電解金めっき液の安定性は、調製した電解金めっき液を50mL採取して、透明なガラス製の瓶に密封した。この瓶を40℃の温度に維持されたクリーンオーブン内に6ヶ月間保管した。保管後の液の外観を目視によって確認した。目視による確認において、ガラス製の瓶の底部に沈殿を生じなかった場合をめっき液の安定性が「良好」であると判定し、沈殿を生じた場合をめっき液の安定性が「不良」であると判定した。
(1) Stability of the plating solution The stability of the electrolytic gold plating solution was determined by taking 50 mL of the prepared electrolytic gold plating solution and sealing it in a transparent glass bottle. This bottle was stored for 6 months in a clean oven maintained at a temperature of 40°C. The appearance of the liquid after storage was visually confirmed. During visual inspection, if no precipitate was formed at the bottom of the glass bottle, the stability of the plating solution was judged to be "good", and if precipitate was formed, the stability of the plating solution was judged to be "poor". It was determined that there was.
(2)めっき性について
電解めっき装置のアノードとして、直径1mmの棒状の金メタルを用いた。またカソードとして、ウエハ表面に直径100μmのビア径を2000個有するレジストパターンが形成されたシリコンウエハを用いた。
実施例1~12及び比較例1~6で得られた18種類の電解金めっき液100mLをそれぞれガラス製ビーカーに入れ、スターラーで撹拌した。この撹拌した液を上記電解めっき装置のめっき槽に入れ、液温を30℃に、カソードの電流密度を0.1ASDにそれぞれ設定して、1時間、レジストパターンのビア開口部をめっきした。
シリコンウエハをめっき装置から取出して、洗浄、乾燥した後、レジストパターンを有機溶媒を用いて剥離した。レジストパターンの形状に沿って金めっきバンプが形成された場合をめっき性が「良好」であると判定し、レジストパターン通りに金めっきバンプが形成されなかった場合をめっき性が「不良」であると判定した。この結果を上記表2に示す。
(2) Regarding plating properties A rod-shaped gold metal with a diameter of 1 mm was used as an anode of an electrolytic plating apparatus. Further, as a cathode, a silicon wafer was used on which a resist pattern having 2000 vias each having a diameter of 100 μm was formed on the wafer surface.
100 mL of the 18 types of electrolytic gold plating solutions obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were each placed in a glass beaker and stirred with a stirrer. The stirred solution was placed in the plating tank of the electrolytic plating apparatus, and the via openings of the resist pattern were plated for 1 hour with the solution temperature set at 30° C. and the cathode current density set at 0.1 ASD.
The silicon wafer was taken out from the plating apparatus, washed and dried, and then the resist pattern was peeled off using an organic solvent. The plating quality is determined to be "good" when the gold plating bumps are formed along the shape of the resist pattern, and the plating quality is determined to be "poor" when the gold plating bumps are not formed according to the resist pattern. It was determined that The results are shown in Table 2 above.
表2から明らかなように、比較例1では、錯体化剤(B)としてメルカプトテトラゾール化合物が用いられ、電解金めっき液のpHが1であって、金めっきバンプがレジストパターン通りに形成され、めっき性は「良好」であったが、可溶性金塩(A)と錯体化剤(B)のモル比(B/A)が8と小さ過ぎたため、錯体化剤が不足し金イオンの錯体化が不十分になり、沈殿が生じ、めっき液の安定性が「不良」であった。 As is clear from Table 2, in Comparative Example 1, a mercaptotetrazole compound was used as the complexing agent (B), the pH of the electrolytic gold plating solution was 1, and the gold plating bumps were formed according to the resist pattern. Although the plating properties were "good," the molar ratio (B/A) of soluble gold salt (A) and complexing agent (B) was too small at 8, so the complexing agent was insufficient and gold ions were not complexed. The stability of the plating solution was "poor" as the plating solution became insufficient and a precipitate formed.
比較例2では、錯体化剤(B)としてメルカプトテトラゾール化合物が用いられ、可溶性金塩(A)と錯体化剤(B)のモル比(B/A)が170であって、めっき液の安定性は「良好」であったが、電解金めっき液のpHが3と高過ぎたため、水素が発生し、レジストパターンが剥離して、金めっきバンプがレジストパターン通りに形成されず、めっき性は「不良」であった。 In Comparative Example 2, a mercaptotetrazole compound is used as the complexing agent (B), and the molar ratio (B/A) of the soluble gold salt (A) and the complexing agent (B) is 170, which improves the stability of the plating solution. However, because the pH of the electrolytic gold plating solution was too high (3), hydrogen was generated, the resist pattern peeled off, and the gold plating bumps were not formed according to the resist pattern, resulting in poor plating performance. It was "defective".
比較例3では、錯体化剤(B)としてメルカプトテトラゾール化合物が用いられたが、可溶性金塩(A)と錯体化剤(B)のモル比(B/A)が8と小さ過ぎたため、沈殿が生じ、めっき液の安定性が「不良」であった。また、電解金めっき液のpHが4と高過ぎたため、水素が発生し、レジストパターンが剥離して、金めっきバンプがレジストパターン通りに形成されず、めっき性も「不良」であった。 In Comparative Example 3, a mercaptotetrazole compound was used as the complexing agent (B), but since the molar ratio (B/A) of the soluble gold salt (A) to the complexing agent (B) was too small at 8, precipitation occurred. occurred, and the stability of the plating solution was "poor." Furthermore, since the pH of the electrolytic gold plating solution was too high as 4, hydrogen was generated, the resist pattern was peeled off, gold plating bumps were not formed in accordance with the resist pattern, and the plating performance was also "poor".
比較例4及び5では、電解金めっき液のpHがそれぞれ1及び2であって、金めっきバンプがレジストパターン通りに形成され、めっき性はともに「良好」であった。また、可溶性金塩(A)と錯体化剤(B)のモル比(B/A)がそれぞれ97及び171で適正であったが、錯体化剤として、メルカプトトリアゾール化合物を用いたため、上述しためっき条件では、金イオンが確実に錯体化せず、沈殿が生じ、めっき液の安定性がともに「不良」であった。 In Comparative Examples 4 and 5, the pH of the electrolytic gold plating solution was 1 and 2, respectively, the gold plating bumps were formed according to the resist pattern, and the plating properties were both "good". In addition, the molar ratio (B/A) of the soluble gold salt (A) and the complexing agent (B) was 97 and 171, respectively, which were appropriate, but since a mercaptotriazole compound was used as the complexing agent, the above-mentioned plating Under these conditions, gold ions were not reliably complexed, precipitation occurred, and the stability of the plating solution was both "poor."
比較例6では、錯体化剤(B)としてメルカプトテトラゾール化合物が用いられたが、可溶性金塩(A)と錯体化剤(B)のモル比(B/A)が305と大き過ぎたため、錯体化剤による金イオンの電析が過度に抑制され、レジストパターン内に形成されためっき皮膜は緻密では無く、めっき性は「不良」であった。 In Comparative Example 6, a mercaptotetrazole compound was used as the complexing agent (B), but since the molar ratio (B/A) of the soluble gold salt (A) to the complexing agent (B) was too high at 305, the complexing agent (B) was too large. Electrodeposition of gold ions by the curing agent was excessively suppressed, the plating film formed within the resist pattern was not dense, and the plating performance was "poor."
これらの比較例に対して、実施例1~12では、本発明の第1の観点の要件を備えた電解金めっき液であったため、6ヶ月保管後には沈金現象は生じず、またレジストパターン通りに金めっきバンプが形成され、めっき液の安定性及びめっき性はすべて「良好」であった。 In contrast to these comparative examples, in Examples 1 to 12, since the electrolytic gold plating solution had the requirements of the first aspect of the present invention, no plating phenomenon occurred after storage for 6 months, and the resist pattern was correct. Gold-plated bumps were formed on the surface, and the stability and plating properties of the plating solution were all "good."
本発明の電解金めっき液は、ウエハ又は基板等への金めっきに、特に金めっきバンプに好適に利用することができる。 The electrolytic gold plating solution of the present invention can be suitably used for gold plating on wafers, substrates, etc., particularly for gold plating bumps.
Claims (5)
前記錯体化剤(B)が下記の一般式(1)に示されるメルカプトテトラゾール化合物であり、前記可溶性金塩(A)に対する前記錯体化剤(B)のモル比率(B/A)が10以上260以下であり、前記金めっき液のpHが3未満であることを特徴とする電解金めっき液。
The complexing agent (B) is a mercaptotetrazole compound represented by the following general formula (1), and the molar ratio (B/A) of the complexing agent (B) to the soluble gold salt (A) is 10 or more. 260 or less, and the pH of the gold plating solution is less than 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022079874A JP2023168652A (en) | 2022-05-16 | 2022-05-16 | Electrolytic gold plating solution, production method thereof, and plating method using the plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022079874A JP2023168652A (en) | 2022-05-16 | 2022-05-16 | Electrolytic gold plating solution, production method thereof, and plating method using the plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023168652A true JP2023168652A (en) | 2023-11-29 |
Family
ID=88923313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022079874A Pending JP2023168652A (en) | 2022-05-16 | 2022-05-16 | Electrolytic gold plating solution, production method thereof, and plating method using the plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023168652A (en) |
-
2022
- 2022-05-16 JP JP2022079874A patent/JP2023168652A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6350366B1 (en) | Electro deposition chemistry | |
KR101502804B1 (en) | Pd and Pd-Ni electrolyte baths | |
TWI444327B (en) | Highly pure coper sulfonate aqueous solution and method for producing same | |
KR20100044131A (en) | Method for replenishing tin and its alloying metals in electrolyte solutions | |
CN102021613B (en) | Electrolyte composition | |
US12071702B2 (en) | Acidic aqueous composition for electrolytic copper plating | |
TWI588291B (en) | Method for removing impurities from plating solutions | |
JP4219224B2 (en) | Electroplating method for tin-based alloys | |
NL8001999A (en) | BATH FOR SILVER PLATING WITH AN ALLOY OF GOLD AND SILVER AND A METHOD FOR PLATING THEREOF. | |
JP2023168652A (en) | Electrolytic gold plating solution, production method thereof, and plating method using the plating solution | |
JP2001172790A (en) | Electroplating bath for nickel plating | |
JP2008285732A (en) | Nickel plating solution, electroplating method using the same, and chip component with nickel-plated film formed by the electroplating method | |
WO2018142776A1 (en) | Tin alloy plating solution | |
KR101421503B1 (en) | High purity methane sulfonic acid copper salt and Method for manufacturing PCB plating solution having the same | |
JP2020117803A (en) | Indium electroplating composition and method for electroplating indium on nickel | |
JP2006213956A (en) | Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM | |
JP2002371397A (en) | Method for electrodepositing metal by using molten salt of ordinary temperature | |
KR20200010340A (en) | Precious metal salt materials, preparation method thereof and uses for electroplating | |
Roy | Electrochemical gold deposition from non-toxic electrolytes | |
TWI766824B (en) | Gold plating solution containing sulfite gold salt and supplementary solution for gold plating solution containing gold salt sulfite | |
JPH0853799A (en) | Reducing method of concentration of metal in electroplating solution | |
JP2019137896A (en) | SnAg ALLOY PLATING LIQUID | |
SU1712469A1 (en) | Electrolyte for depositing tin-bismuth alloy | |
KR20230160400A (en) | platinum electrolyte | |
EP4370732A1 (en) | Electroplating compositions and methods for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20240312 |