JP2023167406A - Three-dimensional lamination apparatus and method therefor - Google Patents

Three-dimensional lamination apparatus and method therefor Download PDF

Info

Publication number
JP2023167406A
JP2023167406A JP2022078573A JP2022078573A JP2023167406A JP 2023167406 A JP2023167406 A JP 2023167406A JP 2022078573 A JP2022078573 A JP 2022078573A JP 2022078573 A JP2022078573 A JP 2022078573A JP 2023167406 A JP2023167406 A JP 2023167406A
Authority
JP
Japan
Prior art keywords
powder
workpiece
modeling
modeling surface
recoater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022078573A
Other languages
Japanese (ja)
Inventor
秀次 谷川
Hidetsugu Tanigawa
竜太 伊藤
Ryuta Ito
敏史 貫野
Toshifumi Kanno
明子 笠見
Akiko KASAMI
孝洋 橘
Takahiro Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2022078573A priority Critical patent/JP2023167406A/en
Priority to PCT/JP2023/006515 priority patent/WO2023218727A1/en
Publication of JP2023167406A publication Critical patent/JP2023167406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a three-dimensional lamination apparatus and a method therefor which are capable of miniaturizing the apparatus and molding a molded article without being limited by the size of a working object.SOLUTION: A three-dimensional lamination apparatus comprises a powder receiving member 12 that comes into contact with the side face of a working object having a molding face 106 so as to receive a powder material, a powder holding member 13 that comes into contact with the outer face of the powder receiving member 12 so as to be freely movably supported along a molding direction crossed with the molding face 106, a movement device 14 which is capable of moving the powder holding member 13 along the molding direction, and an irradiation device 17 that irradiates the powder material on the molding face 106 with a light beam so as to be melted and solidified to form a molded layer.SELECTED DRAWING: Figure 2

Description

本開示は、三次元積層装置および方法に関するものである。 The present disclosure relates to three-dimensional lamination apparatus and methods.

近年、金属粉末などの粉末を原料として三次元積層体を成形する三次元積層装置が実用化されている。三次元積層装置による積層造形法(例えば、AM:Additive Manufacturing)の一つとして、パウダーベッド方式(PBF:Powder Bed Fusion)がある。パウダーベッド方式による積層造形法は、まず、チャンバ内に造形面を有する加工対象物を配置すると共に、加工対象物の周囲および上方に金属粉末を充填する。次に、リコータにより加工対象物の造形面の上方に金属粉末の平滑面を形成する。そして、金属粉末の平滑面に対してレーザビームや電子ビームなどを照射し、金属粉末を溶融、凝固させることで、加工対象物の造形面上に三次元形状をなす複雑な造形物を形成する。このような三次元積層装置としては、例えば、下記特許文献に記載されたものがある。 In recent years, three-dimensional lamination apparatuses that form three-dimensional laminated bodies using powders such as metal powders as raw materials have been put into practical use. As one of the additive manufacturing methods (for example, AM: Additive Manufacturing) using a three-dimensional laminating apparatus, there is a powder bed method (PBF: Powder Bed Fusion). In the powder bed additive manufacturing method, first, a workpiece having a modeling surface is placed in a chamber, and metal powder is filled around and above the workpiece. Next, a smooth surface of metal powder is formed above the modeling surface of the workpiece using a recoater. Then, by irradiating the smooth surface of the metal powder with a laser beam, electron beam, etc., and melting and solidifying the metal powder, a complex three-dimensional object is formed on the surface of the workpiece. . Examples of such three-dimensional lamination devices include those described in the following patent documents.

特開2019-081947号公報JP2019-081947A 特開2020-192800号公報Japanese Patent Application Publication No. 2020-192800

従来の三次元積層装置は、三次元積層を行う加工対象物を収容するためのチャンバが必要になる。チャンバは、加工対象物の全体を収容する必要があることから、巨大な造形物を収容することが困難となり、三次元積層を行う加工対象物の大きさに制約を受けてしまうという課題がある。また、従来の三次元積層装置は、造形面上の金属粉末を溶融、凝固させるたびにチャンバ内で造形物を所定距離だけ下降させる必要がある。加工対象物が大型である場合、下降装置が大型化してしまうという課題がある。 Conventional three-dimensional lamination apparatuses require a chamber for accommodating workpieces to be three-dimensionally laminated. Since the chamber needs to accommodate the entire object to be processed, it becomes difficult to accommodate huge objects, and there is a problem in that the size of the object to be three-dimensionally stacked is limited. . Further, in the conventional three-dimensional lamination apparatus, it is necessary to lower the modeled object by a predetermined distance within the chamber each time the metal powder on the modeled surface is melted and solidified. When the workpiece is large, there is a problem that the lowering device becomes large.

本開示は、上述した課題を解決するものであり、装置の小型化を図ると共に加工対象物の大きさに制約を受けずに造形物を造形することができる三次元積層装置を提供することを目的とする。 The present disclosure solves the above-mentioned problems, and aims to provide a three-dimensional lamination apparatus that can reduce the size of the apparatus and form objects without being constrained by the size of the workpiece. purpose.

上記の目的を達成するための本開示の三次元積層装置は、造形面を有する加工対象物に接触して粉末材料を受ける粉末受け部材と、前記粉末受け部材に接触すると共に前記造形面に交差する造形方向に沿って移動自在に支持される粉末保持部材と、前記粉末保持部材を前記造形方向に沿って移動可能な移動装置と、前記造形面上の前記粉末材料に光ビームを照射して溶融固化させることで成形層を形成する照射装置と、を備える。 A three-dimensional lamination apparatus of the present disclosure for achieving the above object includes a powder receiving member that contacts a workpiece having a modeling surface and receives powder material, and a powder receiving member that contacts the powder receiving member and crosses the modeling surface. a powder holding member supported movably along a modeling direction; a moving device capable of moving the powder holding member along the modeling direction; and a powder material on the modeling surface irradiated with a light beam. An irradiation device that forms a molded layer by melting and solidifying it.

また、本開示の三次元積層方法は、加工対象物に粉末受け部材が接触した状態で前記加工対象物の造形面に粉末材料を供給する工程と、前記造形面上の前記粉末材料に光ビームを照射して溶融固化させることで第1成形層を形成する工程と、前記粉末受け部材に接触する粉末保持部材を前記造形面に交差する造形方向に沿って所定距離だけ移動する工程と、前記第1成形層上に粉末材料を供給する工程と、前記第1成形層上の前記粉末材料に光ビームを照射して溶融固化させることで第2成形層を形成する工程と、を有する。 Further, the three-dimensional lamination method of the present disclosure includes a step of supplying powder material to the modeling surface of the workpiece while a powder receiving member is in contact with the workpiece, and a light beam to the powder material on the modeling surface. a step of forming a first molded layer by irradiating and melting and solidifying the powder; a step of moving a powder holding member in contact with the powder receiving member by a predetermined distance along a modeling direction intersecting the modeling surface; The method includes a step of supplying a powder material onto the first molding layer, and a step of forming a second molding layer by irradiating the powder material on the first molding layer with a light beam to melt and solidify it.

本開示の三次元積層装置によれば、装置の小型化を図ることができると共に、加工対象物の大きさに制約を受けずに造形物を造形することができる。 According to the three-dimensional laminating apparatus of the present disclosure, it is possible to downsize the apparatus, and it is also possible to form a molded object without being restricted by the size of the workpiece.

図1は、本実施形態の三次元積層装置を表す斜視図である。FIG. 1 is a perspective view showing a three-dimensional lamination apparatus of this embodiment. 図2は、三次元積層装置を表す概略構成図である。FIG. 2 is a schematic configuration diagram showing a three-dimensional lamination apparatus. 図3は、三次元積層装置の要部を表す平面図である。FIG. 3 is a plan view showing the main parts of the three-dimensional laminating apparatus. 図4は、図3のIV-IV断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3. 図5は、粉末リコータを表す正面図である。FIG. 5 is a front view of the powder recoater. 図6は、粉末リコータを表す側面図である。FIG. 6 is a side view showing the powder recoater. 図7は、三次元積層方法を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the three-dimensional lamination method. 図8は、加工対象物の造形面に対する粗加工方法を表す概略図である。FIG. 8 is a schematic diagram showing a rough machining method for the modeling surface of the workpiece. 図9は、加工対象物の三次元モデル作成方法を表す概略図である。FIG. 9 is a schematic diagram showing a method for creating a three-dimensional model of a workpiece. 図10は、加工対象物に対する三次元積層装置の装着方法を表す概略図である。FIG. 10 is a schematic diagram illustrating a method of attaching a three-dimensional laminating apparatus to a workpiece. 図11は、加工対象物の造形面に対する微細加工方法を表す概略図である。FIG. 11 is a schematic diagram illustrating a micromachining method for a modeling surface of a workpiece. 図12は、金属粉末の供給方法を表す概略図である。FIG. 12 is a schematic diagram showing a method of supplying metal powder. 図13は、粉末リコータによる金属粉末の平滑面の形成方法を表す概略図である。FIG. 13 is a schematic diagram showing a method of forming a smooth surface of metal powder using a powder recoater. 図14は、光ビームの照射による造形方法を表す概略図である。FIG. 14 is a schematic diagram showing a modeling method using light beam irradiation. 図15は、加工対象物の造形面に対する造形物の造形状態を表す概略図である。FIG. 15 is a schematic diagram showing the state of a molded object relative to the molded surface of the workpiece. 図16は、造形物が造形された加工対象物を表す概略図である。FIG. 16 is a schematic diagram showing a workpiece on which a modeled object has been formed. 図17は、変形例の造形物が造形された加工対象物を表す概略図である。FIG. 17 is a schematic diagram showing a workpiece on which a modified model is formed.

以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。 Preferred embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to this embodiment, and if there are multiple embodiments, the present disclosure also includes a configuration in which each embodiment is combined. In addition, the components in the embodiments include those that can be easily imagined by those skilled in the art, those that are substantially the same, and those that are in the so-called equivalent range.

<三次元積層装置>
図1は、本実施形態の三次元積層装置を表す斜視図、図2は、三次元積層装置を表す概略構成図である。
<Three-dimensional lamination device>
FIG. 1 is a perspective view showing a three-dimensional laminating apparatus of this embodiment, and FIG. 2 is a schematic configuration diagram showing the three-dimensional laminating apparatus.

図1および図2に示すように、三次元積層装置10は、加工対象物100の補修作業に適用される。加工対象物100は、例えば、航空エンジンや発電用ガスタービンなどに適用されるタービン翼であり、翼部101と、プラットフォーム102と、翼根部103とを有する。また、翼部101は、上部に突起部104,105を有する。但し、一方の突起部105は、長期の使用により変形したため、事前に除去され、造形面106が形成されている。加工対象物100は、所定の位置に治具111により位置決め固定される。三次元積層装置10は、加工対象物100の造形面106に金属を積層することで、突起部105と同様の形状をなす造形物107を造形する。 As shown in FIGS. 1 and 2, the three-dimensional laminating apparatus 10 is applied to repair work of a workpiece 100. The workpiece 100 is, for example, a turbine blade applied to an aircraft engine, a gas turbine for power generation, or the like, and includes a blade portion 101, a platform 102, and a blade root portion 103. Further, the wing portion 101 has protrusions 104 and 105 on the upper portion. However, one of the protrusions 105 has been deformed due to long-term use, so it has been removed in advance to form the modeling surface 106. The workpiece 100 is positioned and fixed at a predetermined position by a jig 111. The three-dimensional laminating apparatus 10 forms a formed object 107 having the same shape as the protrusion 105 by laminating metal on the forming surface 106 of the workpiece 100 .

なお、三次元積層装置10は、加工対象物100の補修作業に限らず、加工対象物100に新規の造形物107を造形する作業に適用してもよい。また、加工対象物100は、航空エンジンや発電用ガスタービンなどに適用されるタービン翼に限るものではない。 Note that the three-dimensional lamination apparatus 10 may be applied not only to the repair work of the workpiece 100 but also to the work of forming a new object 107 on the workpiece 100. Further, the workpiece 100 is not limited to a turbine blade applied to an aircraft engine, a gas turbine for power generation, or the like.

三次元積層装置10は、装置本体11と、粉末受け部材12と、粉末保持部材13と、移動装置14と、粉末供給装置15と、粉末リコータ16と、照射装置17と、加工装置18と、計測装置19と、不活性ガス供給装置20とを備える。 The three-dimensional laminating apparatus 10 includes an apparatus main body 11, a powder receiving member 12, a powder holding member 13, a moving device 14, a powder supplying device 15, a powder recoater 16, an irradiation device 17, a processing device 18, It includes a measuring device 19 and an inert gas supply device 20.

装置本体11において、取付板21は、図示しない支持板に支持され、上方に複数の支持ロッド22を介して支持板23が支持される。支持板23は、底板23aの両側に一対の側板23bが一体に設けられたU字形状をなす。支持板23は、各側板23bの上部にそれぞれレール部24が固定される。第1移動台25は、各側板23bの掛け渡されるように配置され、各支持部25aが各側板23bのレール部24に移動自在に支持される。すなわち、第1移動台25は、支持板23に対して水平方向である第1方向Xに沿って移動自在に支持される。なお、第1移動台25は、図示しない駆動装置により第1方向Xに移動可能であるが、手動で移動可能としてもよい。 In the device main body 11, the mounting plate 21 is supported by a support plate (not shown), and a support plate 23 is supported above via a plurality of support rods 22. The support plate 23 has a U-shape in which a pair of side plates 23b are integrally provided on both sides of a bottom plate 23a. In the support plate 23, a rail portion 24 is fixed to the upper part of each side plate 23b. The first movable table 25 is arranged so as to span each side plate 23b, and each support portion 25a is movably supported by the rail portion 24 of each side plate 23b. That is, the first movable table 25 is supported movably along the first direction X, which is a horizontal direction with respect to the support plate 23. Note that the first movable table 25 is movable in the first direction X by a drive device (not shown), but may be movable manually.

第1移動台25は、レール部26が固定される。第2移動台27は、レール部26により第1移動第25に対して水平方向である第2方向Yに沿って移動自在に支持される。第1方向Xと第2方向Yは、互いに直交する。なお、第2移動台27は、図示しない駆動装置により第2方向Yに移動可能であるが、手動で移動可能としてもよい。そして、加工装置18は、第2移動台27に支持される。すなわち、加工装置18は、装置本体11に対して第1方向Xおよび第2方向Yに沿って移動自在に支持され、加工対象物100の造形面106を加工することで、造形面106の角度(平行度)を修正可能である。加工装置18は、例えば、レーザ加工装置であるが、検索装置などの加工装置であってもよい。 The first movable table 25 has a rail portion 26 fixed thereto. The second movable table 27 is supported by the rail portion 26 so as to be movable along the second direction Y, which is a horizontal direction with respect to the first movable table 25 . The first direction X and the second direction Y are orthogonal to each other. Although the second movable table 27 is movable in the second direction Y by a drive device (not shown), it may be movable manually. The processing device 18 is supported by the second moving table 27. That is, the processing device 18 is supported movably in the first direction (parallelism) can be corrected. The processing device 18 is, for example, a laser processing device, but may also be a processing device such as a search device.

昇降台28は、複数のガイドロッド28aが支持板23に固定された複数のガイド部材29により昇降自在に支持される。また、取付板21は、複数の昇降装置30が固定され、昇降装置30は、昇降ロッド30aの先端部が昇降台28に連結される。そのため、昇降装置30を駆動することで、昇降台28を鉛直方向である第3方向Zに沿って移動可能である。第3方向Zは、第1方向Xおよび第2方向Yに直交する。 The elevating table 28 is supported by a plurality of guide members 29 having a plurality of guide rods 28a fixed to the support plate 23 so as to be movable up and down. Further, a plurality of elevating devices 30 are fixed to the mounting plate 21 , and the elevating device 30 has a tip end of an elevating rod 30 a connected to the elevating table 28 . Therefore, by driving the elevating device 30, the elevating table 28 can be moved along the third direction Z, which is the vertical direction. The third direction Z is orthogonal to the first direction X and the second direction Y.

昇降台28は、枠形状をなし、中央部の開口部の下方に粉末受け部材12および粉末保持部材13が配置される。粉末受け部材12は、矩形のプレート形状をなし、支持板23の上部に固定される。粉末受け部材12は、造形面106を有する加工対象物100の側面(翼部101の外周面)に接触して金属粉末(粉末材料)Pを受け取る。粉末保持部材13は、四角の枠形状をなし、粉末受け部材12の外方で粉末受け部材12の外周面に沿って配置される。粉末保持部材13は、粉末受け部材12の外面に接触すると共に、造形面106に交差する造形方向である第3方向Zに沿って移動自在に支持される。そして、移動装置14は、昇降台28に配置され、粉末受け部材12に対して粉末保持部材13を造形方向である第3方向Zに沿って移動可能である。 The elevating table 28 has a frame shape, and the powder receiving member 12 and the powder holding member 13 are arranged below an opening in the center. The powder receiving member 12 has a rectangular plate shape and is fixed to the upper part of the support plate 23. The powder receiving member 12 receives the metal powder (powder material) P by contacting the side surface (outer peripheral surface of the wing portion 101) of the workpiece 100 having the modeling surface 106. The powder holding member 13 has a square frame shape and is arranged outside the powder receiving member 12 along the outer peripheral surface of the powder receiving member 12. The powder holding member 13 is in contact with the outer surface of the powder receiving member 12 and is supported movably along the third direction Z, which is the modeling direction that intersects the modeling surface 106 . The moving device 14 is disposed on the lifting table 28 and is capable of moving the powder holding member 13 with respect to the powder receiving member 12 along the third direction Z, which is the modeling direction.

粉末供給装置15は、装置本体11の上方に配置される。粉末供給装置15は、図示しない移動装置により第1方向Xおよび第2方向Y、好ましくは第3方向Zに沿って移動自在に支持される。粉末供給装置15は、粉末材料である金属粉末Pを加工対象物100の少なくとも造形面106に向けて供給可能である。 The powder supply device 15 is arranged above the device main body 11. The powder supply device 15 is supported movably along a first direction X and a second direction Y, preferably a third direction Z, by a moving device (not shown). The powder supply device 15 can supply metal powder P, which is a powder material, toward at least the modeling surface 106 of the workpiece 100 .

複数のガイド部材29は、一対のレール部31が固定される。一対のレール部31は、一対のレール部24と平行をなすように第1方向Xに沿って配置される。一対の第3移動台32は、それぞれ一対のレール部31に沿って第1方向Xに沿って移動自在に支持される。一対の第3移動台32は、連結ロッド33により連結される。また、粉末リコータ16は、一対の第3移動台32の間で、一対の第3移動台32に一対の吊り下げ部材34を介して吊り下げ支持される。粉末リコータ16は、加工対象物100の造形面106上の金属粉末Pの上面を平滑面P1とする。粉末リコータ16は、作業者が連結ロッド33を持って移動するものであるが、駆動装置により駆動可能としてもよい。 A pair of rail portions 31 are fixed to the plurality of guide members 29 . The pair of rail parts 31 are arranged along the first direction X so as to be parallel to the pair of rail parts 24. The pair of third movable tables 32 are supported movably along the first direction X along the pair of rail parts 31, respectively. The pair of third movable platforms 32 are connected by a connecting rod 33. Furthermore, the powder recoater 16 is suspended between the pair of third movable bases 32 and supported by the pair of third movable bases 32 via a pair of hanging members 34 . The powder recoater 16 makes the upper surface of the metal powder P on the modeling surface 106 of the workpiece 100 a smooth surface P1. Although the powder recoater 16 is moved by an operator holding the connecting rod 33, it may be driven by a drive device.

計測装置19は、粉末リコータ16に装着される。計測装置19は、粉末リコータ16における第2方向Yにおける一端部と他端部に装着される。計測装置19は、装置本体11に対して、粉末リコータ16と共に第1方向Xに沿って移動自在に支持される。計測装置19は、造形面106の角度を計測可能である。計測装置19は、例えば、造形面106までの距離を計測するレーザ計測装置であるが、他の計測装置であってもよい。 The measuring device 19 is attached to the powder recoater 16 . The measuring device 19 is attached to one end and the other end of the powder recoater 16 in the second direction Y. The measuring device 19 is supported movably along the first direction X along with the powder recoater 16 with respect to the device main body 11. The measuring device 19 can measure the angle of the modeling surface 106. The measuring device 19 is, for example, a laser measuring device that measures the distance to the modeling surface 106, but may be another measuring device.

照射装置17は、装置本体11の上方に配置される。照射装置17は、図示しない移動装置により第1方向Xおよび第2方向Y、好ましくは第3方向Zに沿って移動自在に支持される。照射装置17は、加工対象物100の造形面106上の金属粉末Pに対して光ビームRを照射し、金属粉末Pを溶融固化させることで成形層を形成する。ここで、照射装置17が照射する光ビームRは、例えば、レーザビームや電子ビームなどである。 The irradiation device 17 is arranged above the device main body 11. The irradiation device 17 is supported movably along the first direction X and the second direction Y, preferably the third direction Z, by a moving device (not shown). The irradiation device 17 irradiates the metal powder P on the modeling surface 106 of the workpiece 100 with a light beam R to melt and solidify the metal powder P to form a molded layer. Here, the light beam R irradiated by the irradiation device 17 is, for example, a laser beam or an electron beam.

不活性ガス供給装置20は、装置本体11に配置される。不活性ガス供給装置20は、加工対象物100の造形面106上の金属粉末Pの平滑面P1に沿って不活性ガスを供給する。不活性ガス供給装置20は、噴出ノズル36と、供給ライン37と、開閉弁(好ましくは、流量調整弁)38と、ガスタンク39とを有する。噴出ノズル36は、好ましくは、粉末保持部材13に配置される。噴出ノズル36は、供給ライン37を介してガスタンク39に連結される。開閉弁38は、供給ライン37に設けられる。ここで、不活性ガス供給装置が供給する不活性ガスは、アルゴンや窒素などである。 The inert gas supply device 20 is arranged in the device main body 11. The inert gas supply device 20 supplies inert gas along the smooth surface P1 of the metal powder P on the modeling surface 106 of the workpiece 100. The inert gas supply device 20 includes a jet nozzle 36 , a supply line 37 , an on-off valve (preferably a flow rate adjustment valve) 38 , and a gas tank 39 . The ejection nozzle 36 is preferably arranged on the powder holding member 13 . The jet nozzle 36 is connected to a gas tank 39 via a supply line 37 . An on-off valve 38 is provided in the supply line 37. Here, the inert gas supplied by the inert gas supply device is argon, nitrogen, or the like.

移動装置14と粉末供給装置15と照射装置17と加工装置18と計測装置19と不活性ガス供給装置20(開閉弁38)は、制御部70に接続される。制御部70は、移動装置14、粉末供給装置15、照射装置17、加工装置18、計測装置19、不活性ガス供給装置20の開閉弁38を駆動制御可能である。ここで、制御部70は、制御装置であり、制御装置は、コントローラであり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などにより、記憶部に記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。 The moving device 14, the powder supply device 15, the irradiation device 17, the processing device 18, the measuring device 19, and the inert gas supply device 20 (on-off valve 38) are connected to the control unit 70. The control unit 70 can drive and control the opening/closing valves 38 of the moving device 14 , the powder supply device 15 , the irradiation device 17 , the processing device 18 , the measurement device 19 , and the inert gas supply device 20 . Here, the control unit 70 is a control device, and the control device is a controller. For example, various programs stored in a storage unit are transferred to a RAM by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), etc. This is achieved by executing this as a work area.

<粉末受け部材および粉末保持部材>
図3は、三次元積層装置の要部を表す平面図、図4は、図3のIV-IV断面図である。
<Powder receiving member and powder holding member>
FIG. 3 is a plan view showing essential parts of the three-dimensional lamination apparatus, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3.

図3および図4に示すように、粉末受け部材12は、底部12aと、縦壁部13bとを有する。粉末受け部材12は、底部12aの外周部に4個の縦壁部13bが一体に設けられて構成される。粉末受け部材12は、底部12aに加工対象物100の側面を含む外周面に嵌合する開口部41を有する。開口部41は、加工対象物100の翼部101の形状であり、翼部101より一回り大きい寸法である。そのため、粉末受け部材12は、開口部41が翼部101に嵌合する。このとき、粉末受け部材12の開口部41内周面と翼部101の外周面との間の隙間を埋める部材を設けることが好ましい。 As shown in FIGS. 3 and 4, the powder receiving member 12 has a bottom portion 12a and a vertical wall portion 13b. The powder receiving member 12 is constructed by integrally providing four vertical wall portions 13b on the outer periphery of the bottom portion 12a. The powder receiving member 12 has an opening 41 in the bottom 12a that fits into the outer peripheral surface of the workpiece 100, including the side surface. The opening 41 has the shape of the wing section 101 of the workpiece 100 and has a size that is one size larger than the wing section 101 . Therefore, the opening portion 41 of the powder receiving member 12 fits into the wing portion 101 . At this time, it is preferable to provide a member that fills the gap between the inner peripheral surface of the opening 41 of the powder receiving member 12 and the outer peripheral surface of the wing section 101.

粉末保持部材13と粉末受け部材12は、少なくともいずれか一方にシール部材42が設けられる。本実施形態にて、シール部材42は、粉末保持部材13に設けられる。すなわち、粉末保持部材13は、各縦壁部12bの外側に周方向に沿って溝部12cが形成される。シール部材42は、四角形状をなし、粉末保持部材13における各縦壁部12bの溝部12cに固定される。粉末受け部材12は、粉末保持部材13の外方に位置し、内周面がシール部材42の外周面に密着する。そのため、粉末保持部材13に対して粉末受け部材12が第3方向Zに沿って移動しても、粉末保持部材13と粉末受け部材12は、シール部材42を介して密着状態が維持される。なお、シール部材42は、粉末受け部材12に設けてもよい。 A sealing member 42 is provided on at least one of the powder holding member 13 and the powder receiving member 12. In this embodiment, the sealing member 42 is provided on the powder holding member 13. That is, in the powder holding member 13, a groove portion 12c is formed along the circumferential direction on the outside of each vertical wall portion 12b. The seal member 42 has a rectangular shape and is fixed to the groove portion 12c of each vertical wall portion 12b of the powder holding member 13. The powder receiving member 12 is located outside the powder holding member 13, and its inner circumferential surface is in close contact with the outer circumferential surface of the sealing member 42. Therefore, even if the powder receiving member 12 moves in the third direction Z with respect to the powder holding member 13, the powder holding member 13 and the powder receiving member 12 are maintained in close contact with each other via the sealing member 42. Note that the sealing member 42 may be provided on the powder receiving member 12.

<粉末リコータ>
図5は、粉末リコータを表す正面図、図6は、粉末リコータを表す側面図である。
<Powder recoater>
FIG. 5 is a front view of the powder recoater, and FIG. 6 is a side view of the powder recoater.

図5および図6に示すように、粉末リコータ16は、支持板51と、リコータ本体52と、複数の把持部材53と、複数のブレード54と、高さ調整装置55とを有する。 As shown in FIGS. 5 and 6, the powder recoater 16 includes a support plate 51, a recoater body 52, a plurality of gripping members 53, a plurality of blades 54, and a height adjustment device 55.

支持板51は、第2方向Yに沿って配置される。支持板51は、一対の吊り下げ部材34を介して各第3移動台32に吊り下げ支持される。リコータ本体52は、支持板51の下方で第2方向Yに沿って配置される。リコータ本体52は、下方および側方に開口する開口溝52aが第2方向Yに沿って形成される。複数の把持部材53は、リコータ本体52の下方に配置される。各把持部材53は、上部に吊下支持部53aが設けられる。把持部材53は、吊下支持部53aがリコータ本体52の開口溝52aに第2方向Yに沿って移動自在に嵌合し、所定の位置に位置決め可能である。 The support plate 51 is arranged along the second direction Y. The support plate 51 is suspended and supported by each third movable table 32 via a pair of hanging members 34 . The recoater main body 52 is arranged below the support plate 51 along the second direction Y. In the recoater main body 52, an opening groove 52a opening downward and laterally is formed along the second direction Y. The plurality of gripping members 53 are arranged below the recoater main body 52. Each gripping member 53 is provided with a hanging support portion 53a at its upper portion. The gripping member 53 can be positioned at a predetermined position by fitting the hanging support portion 53a into the opening groove 52a of the recoater main body 52 so as to be movable along the second direction Y.

また、各把持部材53は、それぞれ複数のブレード54の上部を把持可能である。複数の把持部材53と複数のブレード54と、同じ形状をなす。高さ調整装置55は、支持板51の上部の両側に配置される。すなわち、1個の高さ調整装置55は、支持板51における第2方向Yの一方側に配置され、もう1個の高さ調整装置55は、支持板51における第2方向Yの他方側に配置される。各高さ調整装置55は、駆動ロッド55aの先端部が支持板51を貫通し、リコータ本体52に連結される。 Furthermore, each gripping member 53 is capable of gripping the upper portions of the plurality of blades 54, respectively. The plurality of gripping members 53 and the plurality of blades 54 have the same shape. The height adjustment device 55 is arranged on both sides of the upper part of the support plate 51. That is, one height adjustment device 55 is arranged on one side of the support plate 51 in the second direction Y, and the other height adjustment device 55 is arranged on the other side of the support plate 51 in the second direction Y. Placed. In each height adjustment device 55, the tip of a drive rod 55a passes through the support plate 51 and is connected to the recoater main body 52.

そのため、粉末リコータ16は、リコータ本体52に対して造形面106と平行をなす第2方向Yに並んで複数のブレード54が着脱自在に装着される。このとき、粉末リコータ16は、複数の把持部材53およびブレード54のうち、不要である把持部材53およびブレード54を取り外すことができる。そして、粉末リコータ16は、造形面106と平行をなす第1方向Xに沿って移動可能である。また、高さ調整装置55は、装置本体11に対するリコータ本体52の角度、つまり、加工対象物100の造形面106に対する複数のブレード54の平行度を調整可能である。 Therefore, in the powder recoater 16, a plurality of blades 54 are detachably attached to the recoater main body 52 in a line in the second direction Y parallel to the modeling surface 106. At this time, the powder recoater 16 can remove unnecessary gripping members 53 and blades 54 from among the plurality of gripping members 53 and blades 54. The powder recoater 16 is movable along a first direction X that is parallel to the modeling surface 106. Further, the height adjustment device 55 can adjust the angle of the recoater body 52 with respect to the device body 11, that is, the parallelism of the plurality of blades 54 with respect to the modeling surface 106 of the workpiece 100.

<三次元積層方法>
図7は、三次元積層方法を説明するためのフローチャートである。
<Three-dimensional lamination method>
FIG. 7 is a flowchart for explaining the three-dimensional lamination method.

本実施形態の三次元積層方法は、加工対象物100に粉末受け部材12が接触した状態で加工対象物100の造形面106に金属粉末Pを供給する工程と、造形面106上の金属粉末Pに光ビームRを照射して溶融固化させることで第1成形層を形成する工程と、粉末受け部材12に接触する粉末保持部材13を造形面106に交差する造形方向に沿って所定距離だけ移動する工程と、第1成形層上に金属粉末Pを供給する工程と、第1成形層上の金属粉末Pに光ビームRを照射して溶融固化させることで第2成形層を形成する工程とを有する。 The three-dimensional lamination method of this embodiment includes a step of supplying metal powder P to the modeling surface 106 of the workpiece 100 with the powder receiving member 12 in contact with the workpiece 100, and a step of supplying the metal powder P on the modeling surface 106. forming a first molding layer by irradiating the light beam R to melt and solidify the powder, and moving the powder holding member 13 in contact with the powder receiving member 12 by a predetermined distance along the molding direction intersecting the molding surface 106. a step of supplying metal powder P onto the first molding layer; and a step of irradiating the metal powder P on the first molding layer with a light beam R to melt and solidify it to form a second molding layer. has.

具体的に説明すると、ステップS11にて、加工対象物100を位置決めし、ステップS12にて、造形面106に対して粗加工を実施する。 Specifically, in step S11, the workpiece 100 is positioned, and in step S12, rough machining is performed on the modeling surface 106.

図8は、加工対象物の造形面に対する粗加工方法を表す概略図である。図8に示すように、加工対象物100は、所定の位置に載置され、治具111により翼根部103が所定の位置に固定されることで、位置決めされる。このとき、加工対象物100は、造形面106がほぼ水平をなすように配置される。そして、加工対象物100の造形面106に対して、粗加工を実施する。この場合、造形面106に対する粗加工は、例えば、グラインダなどにより実施される。 FIG. 8 is a schematic diagram showing a rough machining method for the modeling surface of the workpiece. As shown in FIG. 8, the workpiece 100 is placed at a predetermined position, and the blade root portion 103 is fixed at the predetermined position by a jig 111, thereby positioning the workpiece 100. At this time, the workpiece 100 is arranged so that the modeling surface 106 is substantially horizontal. Then, rough machining is performed on the modeling surface 106 of the workpiece 100. In this case, rough machining of the modeling surface 106 is performed using, for example, a grinder.

ステップS13にて、加工対象物100の三次元モデルを作成する。加工対象物100の基準三次元モデルは、CAD(Computer Aided Design)により設計データとして保存される。制御部70は、加工対象物100の基準三次元モデルに対して、現在の加工対象物100の三次元モデルを作成する。 In step S13, a three-dimensional model of the workpiece 100 is created. The reference three-dimensional model of the workpiece 100 is saved as design data using CAD (Computer Aided Design). The control unit 70 creates a three-dimensional model of the current workpiece 100 with respect to the reference three-dimensional model of the workpiece 100.

図9は、加工対象物の三次元モデル作成方法を表す概略図である。図9に示すように、加工対象物100は、鋳造により製作されることから、製造誤差が発生する。また、加工対象物100は、長期間にわたって使用されてものであることから、翼部101、プラットフォーム102、翼根部103などが変形している。さらに、加工対象物100は、治具111により位置決め固定されるものであるが、位置決め誤差が発生する。そのため、制御部70は、基準三次元モデルに基づいて現在の三次元モデルを作成し、造形物107を造形する造形面106を修正する。 FIG. 9 is a schematic diagram showing a method for creating a three-dimensional model of a workpiece. As shown in FIG. 9, since the workpiece 100 is manufactured by casting, manufacturing errors occur. Further, since the workpiece 100 is used for a long period of time, the wing portion 101, platform 102, blade root portion 103, etc. are deformed. Furthermore, although the workpiece 100 is positioned and fixed by the jig 111, a positioning error occurs. Therefore, the control unit 70 creates a current three-dimensional model based on the reference three-dimensional model and corrects the modeling surface 106 on which the object 107 is formed.

ステップS14にて、位置決め固定された加工対象物100に対して、三次元積層装置10を配置する。 In step S14, the three-dimensional laminating apparatus 10 is placed on the positionally fixed workpiece 100.

図10は、加工対象物に対する三次元積層装置の装着方法を表す概略図である。図10に示すように、三次元積層装置10に装着された粉末受け部材12は、加工対象物100の翼部101に対応した開口部41(図5参照)が形成されている。そのため、位置決めされた加工対象物100に対して装置本体11を移動し、加工対象物100の翼部101に粉末受け部材12の開口部41が嵌合した状態に配置する。 FIG. 10 is a schematic diagram illustrating a method of attaching a three-dimensional laminating apparatus to a workpiece. As shown in FIG. 10, the powder receiving member 12 mounted on the three-dimensional laminating apparatus 10 is formed with an opening 41 (see FIG. 5) corresponding to the wing section 101 of the workpiece 100. Therefore, the apparatus main body 11 is moved relative to the positioned workpiece 100 and placed in a state where the opening 41 of the powder receiving member 12 is fitted into the wing section 101 of the workpiece 100.

ステップS15にて、加工対象物100における造形面106に対して微細加工を実施する。すなわち、加工対象物100は、造形面106が水平となるように位置決め固定されているものの、平行度がずれている可能性がある。そのため、加工対象物100の造形面106が水平となるように微細加工が実施される。このとき、作業者は、粉末リコータ16を第1方向Xに沿って移動することで、計測装置19により造形面106の角度(平行度)を計測する。 In step S15, micromachining is performed on the modeling surface 106 of the workpiece 100. That is, although the workpiece 100 is positioned and fixed so that the modeling surface 106 is horizontal, there is a possibility that the parallelism is shifted. Therefore, micromachining is performed so that the modeling surface 106 of the workpiece 100 is horizontal. At this time, the operator moves the powder recoater 16 along the first direction X to measure the angle (parallelism) of the modeling surface 106 using the measuring device 19.

図11は、加工対象物の造形面に対する微細加工方法を表す概略図である。図11に示すように、加工対象物100における造形面106の上方に加工装置18を位置させる。制御部70は、加工装置18を第1方向Xおよび第2方向Yに移動することで、造形面106を微細加工する。この場合、造形面106に対する加工装置18による微細加工は、例えば、レーザ加工や研磨加工などにより実施される。なお、加工装置18による造形面106を微細加工後、計測装置19により造形面106の角度(平行度)を計測して確認する。 FIG. 11 is a schematic diagram illustrating a micromachining method for a modeling surface of a workpiece. As shown in FIG. 11, the processing device 18 is positioned above the modeling surface 106 of the workpiece 100. The control unit 70 finely processes the modeling surface 106 by moving the processing device 18 in the first direction X and the second direction Y. In this case, the fine processing performed by the processing device 18 on the modeling surface 106 is performed by, for example, laser processing, polishing, or the like. Note that after the processing device 18 microfabricates the modeling surface 106, the measuring device 19 measures and confirms the angle (parallelism) of the modeling surface 106.

ステップS16にて、照射装置17から照射する光ビームの照射位置を調整する。すなわち、制御部70は、加工対象物100の三次元モデルに基づいて造形面106に位置を把握し、造形面106に対する照射装置17からの光ビームRの照射位置を規定する。 In step S16, the irradiation position of the light beam irradiated from the irradiation device 17 is adjusted. That is, the control unit 70 grasps the position on the modeling surface 106 based on the three-dimensional model of the workpiece 100, and defines the irradiation position of the light beam R from the irradiation device 17 on the modeling surface 106.

ステップS17にて、粉末リコータ16の調整作業を行う。加工対象物100は。翼部101に突起部104があることから、粉末リコータ16におけるブレード54の形状を調整する必要がある。すなわち、粉末リコータ16が第1方向Xに移動するとき、突起部104に当接するブレード54を取り外す。 In step S17, the powder recoater 16 is adjusted. The workpiece 100 is. Since the wing portion 101 has the projection 104, it is necessary to adjust the shape of the blade 54 in the powder recoater 16. That is, when the powder recoater 16 moves in the first direction X, the blade 54 that comes into contact with the protrusion 104 is removed.

ステップS18にて、制御部70は、移動装置14により粉末保持部材13を所定距離だけ上昇する。すなわち、制御部70は、粉末保持部材13を上昇させ、加工対象物100の造形面106に対して金属粉末Pの所定の積層量だけ、粉末保持部材13の上面が上方に位置するように位置させる。ここで、粉末保持部材13の上昇距離は、金属粉末Pの積層高さであり、成形層の厚さとなる。 In step S18, the control unit 70 moves the powder holding member 13 up by a predetermined distance using the moving device 14. That is, the control unit 70 raises the powder holding member 13 and positions it so that the upper surface of the powder holding member 13 is located above the modeling surface 106 of the workpiece 100 by a predetermined stacked amount of metal powder P. let Here, the rising distance of the powder holding member 13 is the stacking height of the metal powder P, and is the thickness of the molded layer.

ステップS19にて、制御部70は、粉末供給装置15を作動して粉末受け部材12に対して金属粉末Pを供給する。すなわち、粉末供給装置15は、加工対象物100の造形面106が被覆されるように、粉末受け部材12に対して金属粉末Pを供給する。 In step S19, the control unit 70 operates the powder supply device 15 to supply the metal powder P to the powder receiving member 12. That is, the powder supply device 15 supplies the metal powder P to the powder receiving member 12 so that the modeling surface 106 of the workpiece 100 is covered.

図12は、金属粉末の供給方法を表す概略図である。図12に示すように、加工対象物100は、翼部101の周囲に粉末受け部材12が配置され、粉末受け部材12は、周囲に粉末保持部材13が配置される。そのため、翼部101と粉末受け部材12と粉末保持部材13との間に粉末充填空間部が形成される。粉末供給装置15は、粉末充填空間部および造形面106が埋まるように金属粉末Pを供給する。 FIG. 12 is a schematic diagram showing a method of supplying metal powder. As shown in FIG. 12, in the workpiece 100, a powder receiving member 12 is arranged around the wing portion 101, and a powder holding member 13 is arranged around the powder receiving member 12. Therefore, a powder filling space is formed between the wing portion 101, the powder receiving member 12, and the powder holding member 13. The powder supply device 15 supplies the metal powder P so that the powder filling space and the modeling surface 106 are filled.

ステップS0にて、制御部70は、粉末リコータ16を作動し、翼部101と粉末受け部材12と粉末保持部材13との間に粉末充填空間部に充填された金属粉末Pの上面に平滑面P1を形成する。この場合、金属粉末Pの平滑面P1は、少なくとも造形面106に上面だけに形成されていればよい。 In step S0, the control unit 70 operates the powder recoater 16 so that the upper surface of the metal powder P filled in the powder filling space between the wing portion 101, the powder receiving member 12, and the powder holding member 13 has a smooth surface. Form P1. In this case, the smooth surface P1 of the metal powder P only needs to be formed at least on the upper surface of the modeling surface 106.

図13は、粉末リコータによる金属粉末Pの平滑面P1の形成方法を表す概略図である。図13に示すように、粉末リコータ16は、突起部104に当接するブレード54が取り外されている。作業者は、粉末リコータ16を第1方向Xに沿って移動すると、ブレード54により造形面106上の余分な金属粉末Pが掻き取られ、金属粉末Pの平滑面P1が形成される。すなわち、造形面106上に所定厚さの金属粉末Pの層が形成される。 FIG. 13 is a schematic diagram showing a method of forming a smooth surface P1 of metal powder P using a powder recoater. As shown in FIG. 13, the powder recoater 16 has the blade 54 that contacts the protrusion 104 removed. When the operator moves the powder recoater 16 along the first direction X, the blade 54 scrapes off excess metal powder P on the modeling surface 106, forming a smooth surface P1 of the metal powder P. That is, a layer of metal powder P having a predetermined thickness is formed on the modeling surface 106.

ステップS21にて、制御部70は、不活性ガス供給装置20を作動し、開閉弁38を開放することで、噴出ノズル36から金属粉末Pの平滑面P1に沿って不活性ガスを噴出する。そして、ステップS22にて、この状態で、制御部70は、照射装置17から造形面106上の金属粉末Pの平滑面P1に対して光ビームRを照射する。 In step S21, the control unit 70 operates the inert gas supply device 20 and opens the on-off valve 38 to eject inert gas from the ejection nozzle 36 along the smooth surface P1 of the metal powder P. Then, in step S22, in this state, the control unit 70 irradiates the smooth surface P1 of the metal powder P on the modeling surface 106 with the light beam R from the irradiation device 17.

図14は、光ビームの照射による造形方法を表す概略図である。図14に示すように、不活性ガス供給装置20は、金属粉末Pの平滑面P1に沿って不活性ガスを噴出することで、金属粉末Pの平滑面P1の上方空間を不活性ガス雰囲気に維持する。この状態で、照射装置17は、造形面106上の金属粉末Pの平滑面P1に向けて光ビームRを照射する。このとき、照射装置17を第1方向Xおよび第2方向Yに沿って移動することで、造形面106の上面に全ての領域に対して光ビームRを照射する。すると、造形面106上の領域にある金属粉末P溶融した後に固化することで、造形面106上に第1成形層が形成される。 FIG. 14 is a schematic diagram showing a modeling method using light beam irradiation. As shown in FIG. 14, the inert gas supply device 20 creates an inert gas atmosphere in the space above the smooth surface P1 of the metal powder P by spouting inert gas along the smooth surface P1 of the metal powder P. maintain. In this state, the irradiation device 17 irradiates the light beam R toward the smooth surface P1 of the metal powder P on the modeling surface 106. At this time, by moving the irradiation device 17 along the first direction X and the second direction Y, the entire upper surface of the modeling surface 106 is irradiated with the light beam R. Then, the first molded layer is formed on the modeling surface 106 by melting and then solidifying the metal powder P in the area on the modeling surface 106.

ステップS23にて、制御部70は、三次元造形が終了したか否かを判定する。すなわち、制御部70は、加工対象物100の造形面106に所定高さの造形物107が造形されたか否かを判定する。ここで、制御部70は、加工対象物100の造形面106に所定高さの造形物107が造形されていないと判定(No)すると、ステップS18に移行し、ステップS18~S22の処理を再度実施する。 In step S23, the control unit 70 determines whether three-dimensional modeling has been completed. That is, the control unit 70 determines whether the object 107 of a predetermined height has been formed on the object 106 to be processed. Here, if the control unit 70 determines that the object 107 of the predetermined height is not formed on the forming surface 106 of the workpiece 100 (No), the control section 70 moves to step S18 and repeats the processing of steps S18 to S22. implement.

つまり、ステップS18~S22にて、制御部70は、粉末保持部材13を所定距離だけ上昇し、粉末供給装置15により粉末受け部材12に対して金属粉末Pを供給した後、粉末リコータ16を作動し、金属粉末Pの上面に平滑面P1を形成する。そして、制御部70は、不活性ガス供給装置20を作動し、金属粉末Pの平滑面P1の上方空間を不活性ガス雰囲気に維持した状態で、照射装置17により金属粉末Pの平滑面P1に向けて光ビームRを照射する。すると、造形面106上の領域にある金属粉末P溶融した後に固化することで、第1成形層上に第2成形層が形成される。 That is, in steps S18 to S22, the control unit 70 raises the powder holding member 13 by a predetermined distance, supplies the metal powder P to the powder receiving member 12 with the powder supply device 15, and then operates the powder recoater 16. Then, a smooth surface P1 is formed on the upper surface of the metal powder P. Then, the control unit 70 operates the inert gas supply device 20 to maintain the space above the smooth surface P1 of the metal powder P in an inert gas atmosphere, and the irradiation device 17 causes the smooth surface P1 of the metal powder P to be exposed to the smooth surface P1 of the metal powder P. A light beam R is irradiated toward the target. Then, the metal powder P in the region on the modeling surface 106 is melted and then solidified, thereby forming a second molding layer on the first molding layer.

ステップS18~S22の処理を繰り返し実施することで、加工対象物100の造形面106上に所定高さの造形物107が造形される。 By repeatedly performing the processes of steps S18 to S22, a shaped object 107 of a predetermined height is modeled on the modeling surface 106 of the workpiece 100.

図15は、加工対象物の造形面に対する造形物の造形状態を表す概略図である。図15に示すように、造形面106上に金属粉末Pの溶融、固化を繰り返すことで、造形面106上に複数の成形層を積層し、造形物107を造形する。 FIG. 15 is a schematic diagram showing the state of a molded object relative to the molded surface of the workpiece. As shown in FIG. 15, by repeating melting and solidification of the metal powder P on the modeling surface 106, a plurality of molding layers are stacked on the modeling surface 106, and a molded article 107 is created.

すると、ステップS23にて、制御部70は、加工対象物100の造形面106に所定高さの造形物107が造形されたと判定(Yes)し、ステップS24に移行する。ステップS24にて、作業者は、加工対象物100から三次元積層装置10を取り外して作業終了となる。 Then, in step S23, the control unit 70 determines that the object 107 of a predetermined height has been formed on the forming surface 106 of the workpiece 100 (Yes), and proceeds to step S24. In step S24, the operator removes the three-dimensional laminating device 10 from the workpiece 100 to complete the work.

図16は、造形物が造形された加工対象物を表す概略図である。図16に示すように、加工対象物100は、翼部101の一方側に突起部104が設けられると共に、翼部101の他方側の造形面106に突起部105としての造形物107が形成される。 FIG. 16 is a schematic diagram showing a workpiece on which a modeled object has been formed. As shown in FIG. 16, the workpiece 100 is provided with a protrusion 104 on one side of a wing 101, and a shaped object 107 as a protrusion 105 on a shaped surface 106 on the other side of the wing 101. Ru.

なお、本実施形態の三次元積層方法は、上述した方法に限定されるものではない。図17は、変形例の造形物が造形された加工対象物を表す概略図である。 Note that the three-dimensional lamination method of this embodiment is not limited to the method described above. FIG. 17 is a schematic diagram showing a workpiece on which a modified model is formed.

図17に示すように、加工対象物100は、翼部101の一方側に突起部104が設けられると共に、翼部101の他方側の造形面106に突起部105としての造形物107Aが形成される。造形物107Aは、積層部121と、溶接部122とから構成される。 As shown in FIG. 17, the workpiece 100 includes a protrusion 104 on one side of the wing 101, and a shaped object 107A as a protrusion 105 on the shaping surface 106 on the other side of the wing 101. Ru. The shaped object 107A includes a laminated portion 121 and a welded portion 122.

すなわち、図15にて、加工対象物100は、造形面106上に金属粉末Pの溶融、固化を繰り返すことで、造形面106上に複数の成形層を積層し、造形物107を造形する。一方、図16にて、加工対象物100は、造形面106上に金属粉末Pの溶融、固化を繰り返すことで、造形面106上に複数の積層部121を積層した後、積層部121上に溶接部122を溶接することで造形物107Aを造形する。 That is, in FIG. 15, the workpiece 100 repeatedly melts and solidifies the metal powder P on the modeling surface 106, thereby stacking a plurality of molding layers on the modeling surface 106, and forms a molded object 107. On the other hand, in FIG. 16, the workpiece 100 is produced by repeatedly melting and solidifying the metal powder P on the modeling surface 106, and then stacking a plurality of laminated parts 121 on the molding surface 106. The modeled object 107A is modeled by welding the welded portion 122.

[本実施形態の作用効果]
第1の態様に係る三次元積層装置は、造形面106を有する加工対象物100に接触して金属粉末(粉末材料)Pを受ける粉末受け部材12と、粉末受け部材12に接触すると共に造形面106に交差する造形方向に沿って移動自在に支持される粉末保持部材13と、粉末保持部材13を造形方向に沿って移動可能な移動装置14と、造形面106上の金属粉末Pに光ビームRを照射して溶融固化させることで成形層を形成する照射装置17とを備える。
[Actions and effects of this embodiment]
The three-dimensional lamination apparatus according to the first aspect includes a powder receiving member 12 that contacts the workpiece 100 and receives the metal powder (powder material) P, which has a modeling surface 106, and a powder receiving member 12 that contacts the powder receiving member 12 and receives the modeling surface. A powder holding member 13 is supported movably along the building direction intersecting with the building direction 106, a moving device 14 capable of moving the powder holding member 13 along the building direction, and a light beam is applied to the metal powder P on the building surface 106. It includes an irradiation device 17 that forms a molded layer by irradiating R and melting and solidifying it.

第1の態様に係る三次元積層装置によれば、加工対象物100に接触する粉末受け部材12を設けると共に、粉末受け部材12に接触すると共に造形方向に沿って移動自在な粉末保持部材13を設けることで、粉末受け部材12が余分な金属粉末Pを受け止めることができ、粉末保持部材13を造形方向に沿って移動することで、造形面106上に所定厚さの金属粉末Pを積層することができる。そのため、加工対象物100を収容するためのチャンバが不要となり、三次元積層を行う加工対象物100の大きさに制約を受けることがない。また、粉末受け部材12に対して粉末保持部材13を移動するだけでよく、加工対象物100を昇降させることが不要となり、造形物を高精度に造形することができる。 According to the three-dimensional lamination apparatus according to the first aspect, the powder receiving member 12 that contacts the workpiece 100 is provided, and the powder holding member 13 that contacts the powder receiving member 12 and is movable along the modeling direction is provided. By providing this, the powder receiving member 12 can receive excess metal powder P, and by moving the powder holding member 13 along the modeling direction, metal powder P of a predetermined thickness is laminated on the modeling surface 106. be able to. Therefore, a chamber for accommodating the workpieces 100 is not required, and there is no restriction on the size of the workpieces 100 on which three-dimensional stacking is performed. Further, it is sufficient to simply move the powder holding member 13 with respect to the powder receiving member 12, and it is not necessary to raise and lower the workpiece 100, so that the molded object can be molded with high precision.

第2の態様に係る三次元積層装置は、第1の態様に係る三次元積層装置であって、さらに、粉末受け部材12が加工対象物100の外周面に沿う開口部41を有する。これにより、粉末受け部材12が加工対象物100の周囲に位置することとなり、粉末受け部材12が余分な金属粉末Pを適切に受け止めることができる。 The three-dimensional laminating apparatus according to the second aspect is the three-dimensional laminating apparatus according to the first aspect, in which the powder receiving member 12 further has an opening 41 along the outer peripheral surface of the workpiece 100. Thereby, the powder receiving member 12 will be located around the workpiece 100, and the powder receiving member 12 can appropriately receive the excess metal powder P.

第3の態様に係る三次元積層装置は、第2の態様に係る三次元積層装置であって、さらに、粉末保持部材13が粉末受け部材12の外周面に沿って設けられる枠形状をなす。これにより、粉末保持部材13が粉末受け部材12の周囲に位置することとなり、造形面106上に所定厚さの金属粉末Pの層を適切に形成することができる。 The three-dimensional laminating apparatus according to the third aspect is the three-dimensional laminating apparatus according to the second aspect, and further has a frame shape in which the powder holding member 13 is provided along the outer peripheral surface of the powder receiving member 12. Thereby, the powder holding member 13 is positioned around the powder receiving member 12, and a layer of metal powder P having a predetermined thickness can be appropriately formed on the modeling surface 106.

第4の態様に係る三次元積層装置は、第3の態様に係る三次元積層装置であって、さらに、粉末保持部材13と粉末受け部材12とのいずれか一方にシール部材42が設けられる。これにより、粉末保持部材13と粉末受け部材12との隙間からの金属粉末Pの漏れを防止することができる。 The three-dimensional laminating apparatus according to the fourth aspect is the three-dimensional laminating apparatus according to the third aspect, in which a sealing member 42 is further provided on either one of the powder holding member 13 and the powder receiving member 12. Thereby, leakage of the metal powder P from the gap between the powder holding member 13 and the powder receiving member 12 can be prevented.

第5の態様に係る三次元積層装置は、第1の態様から第4の態様に係る三次元積層装置であって、さらに、造形面106上の金属粉末Pの上面を平滑面P1とする粉末リコータ16を有する。これにより、造形面106上に所定厚さの金属粉末Pの層を高精度(例えば、0.05mm以下)に形成することができる。 A three-dimensional laminating apparatus according to a fifth aspect is a three-dimensional laminating apparatus according to any of the first to fourth aspects, further comprising a powder in which the upper surface of the metal powder P on the modeling surface 106 is a smooth surface P1. It has a recoater 16. Thereby, a layer of metal powder P having a predetermined thickness can be formed on the modeling surface 106 with high precision (for example, 0.05 mm or less).

第6の態様に係る三次元積層装置は、第5の態様に係る三次元積層装置であって、さらに、粉末リコータ16は、造形面106と平行をなす第1方向Xに移動自在に支持されるリコータ本体52と、リコータ本体52に対して造形面106と平行をなすと共に第1方向Xに直交する第2方向Yに並んで着脱自在に装着される複数のブレード54とを有する。これにより、リコータ本体52から不要なブレード54を取り外すことで、加工対象物100の上部と粉末リコータ16との接触を避けることができ、加工対象物100の上部形状に拘わらず、ブレード54により造形面106上に所定厚さの金属粉末Pの層を形成することができ、造形物を高精度に造形することができる。 The three-dimensional laminating apparatus according to the sixth aspect is the three-dimensional laminating apparatus according to the fifth aspect, in which the powder recoater 16 is supported movably in a first direction X parallel to the modeling surface 106. The recoater body 52 includes a recoater body 52, and a plurality of blades 54 that are removably attached to the recoater body 52 in parallel with the modeling surface 106 and in line in a second direction Y that is orthogonal to the first direction X. As a result, by removing the unnecessary blade 54 from the recoater main body 52, it is possible to avoid contact between the upper part of the workpiece 100 and the powder recoater 16, and regardless of the shape of the upper part of the workpiece 100, the blade 54 can shape the workpiece 100. A layer of metal powder P having a predetermined thickness can be formed on the surface 106, and a molded object can be molded with high precision.

第7の態様に係る三次元積層装置は、第6の態様に係る三次元積層装置であって、さらに、粉末リコータ16が造形面106に対するリコータ本体52の平行度を調整する高さ調整装置55を有する。これにより、造形面106上に所定厚さの金属粉末Pの層を高精度に形成することができる。 The three-dimensional laminating apparatus according to the seventh aspect is the three-dimensional laminating apparatus according to the sixth aspect, and further includes a height adjusting device 55 in which the powder recoater 16 adjusts the parallelism of the recoater body 52 with respect to the modeling surface 106. has. Thereby, a layer of metal powder P having a predetermined thickness can be formed on the modeling surface 106 with high precision.

第8の態様に係る三次元積層装置は、第6の態様または第7の態様に係る三次元積層装置であって、さらに、リコータ本体52と共に第1方向Xに沿って移動自在に支持されて造形面106の角度を計測する計測装置19を有する。これにより、計測装置19の計測結果に基づいて造形面106を高精度に加工することができると共に、リコータ本体52の角度調整を高精度に行うことができる。 The three-dimensional laminating apparatus according to the eighth aspect is the three-dimensional laminating apparatus according to the sixth aspect or the seventh aspect, and is further supported movably along the first direction X together with the recoater main body 52. It has a measuring device 19 that measures the angle of the modeling surface 106. Thereby, the modeling surface 106 can be processed with high precision based on the measurement results of the measuring device 19, and the angle of the recoater main body 52 can be adjusted with high precision.

第9の態様に係る三次元積層装置は、第6の態様から第8の態様に係る三次元積層装置であって、さらに、装置本体11に対して第1方向Xおよび第2方向Yに沿って移動自在に支持されて造形面106を加工することで造形面106の角度を補正する加工装置18を有する。これにより、加工装置18により造形面106の角度を高精度に補正することができる。 The three-dimensional laminating apparatus according to the ninth aspect is the three-dimensional laminating apparatus according to the sixth to eighth aspects, and further includes a three-dimensional laminating apparatus according to the sixth aspect to the eighth aspect. It has a processing device 18 that is movably supported and corrects the angle of the modeling surface 106 by processing the modeling surface 106. Thereby, the angle of the modeling surface 106 can be corrected with high precision by the processing device 18.

第10の態様に係る三次元積層装置は、第1の態様から第9の態様に係る三次元積層装置であって、さらに、造形面106上の金属粉末Pの平滑面P1に沿って不活性ガスGを供給する不活性ガス供給装置20を有する。これにより、金属粉末Pの平滑面P1の上方領域を不活性ガス雰囲気とすることで、金属粉末Pの酸化を抑制することができる。 The three-dimensional laminating apparatus according to the tenth aspect is the three-dimensional laminating apparatus according to the first to ninth aspects, further comprising an inert material along the smooth surface P1 of the metal powder P on the modeling surface 106. It has an inert gas supply device 20 that supplies gas G. Thereby, by creating an inert gas atmosphere in the area above the smooth surface P1 of the metal powder P, oxidation of the metal powder P can be suppressed.

第11の態様に係る三次元積層方法は、加工対象物100に粉末受け部材12が接触した状態で加工対象物100の造形面106に金属粉末Pを供給する工程と、造形面106上の金属粉末Pに光ビームRを照射して溶融固化させることで第1成形層を形成する工程と、粉末受け部材12に接触する粉末保持部材13を造形面106に交差する造形方向に沿って所定距離だけ移動する工程と、第1成形層上に金属粉末Pを供給する工程と、第1成形層上の金属粉末Pに光ビームRを照射して溶融固化させることで第2成形層を形成する工程とを有する。そのため、加工対象物100を収容するためのチャンバが不要となり、三次元積層を行う加工対象物100の大きさに制約を受けることがない。また、粉末受け部材12に対して粉末保持部材13を移動するだけでよく、加工対象物100を昇降させることが不要となり、造形物を高精度に造形することができる。 The three-dimensional lamination method according to the eleventh aspect includes a step of supplying metal powder P to the modeling surface 106 of the workpiece 100 while the powder receiving member 12 is in contact with the workpiece 100, and a step of supplying the metal powder P to the modeling surface 106 of the workpiece 100. A step of forming a first molding layer by irradiating the powder P with a light beam R to melt and solidify it, and a step of moving the powder holding member 13 in contact with the powder receiving member 12 a predetermined distance along the modeling direction intersecting the modeling surface 106. , a step of supplying the metal powder P onto the first molding layer, and a step of irradiating the metal powder P on the first molding layer with a light beam R to melt and solidify it to form a second molding layer. It has a process. Therefore, a chamber for accommodating the workpieces 100 is not required, and there is no restriction on the size of the workpieces 100 on which three-dimensional stacking is performed. Further, it is sufficient to simply move the powder holding member 13 with respect to the powder receiving member 12, and it is not necessary to raise and lower the workpiece 100, so that the molded object can be molded with high precision.

第12の態様に係る三次元積層方法は、第11の態様に係る三次元積層方法であって、さらに、加工対象物100の造形面106上の金属粉末Pの平滑面P1に沿って不活性ガスGを噴出することで不活性ガス雰囲気を形成した後、金属粉末Pに光ビームRを照射する。これにより、金属粉末Pの平滑面P1の上方領域を不活性ガス雰囲気とすることで、金属粉末Pの酸化を抑制することができる。 The three-dimensional lamination method according to the twelfth aspect is the three-dimensional lamination method according to the eleventh aspect, further comprising inactivating the metal powder P along the smooth surface P1 on the modeling surface 106 of the workpiece 100. After forming an inert gas atmosphere by blowing out gas G, the metal powder P is irradiated with a light beam R. Thereby, by creating an inert gas atmosphere in the area above the smooth surface P1 of the metal powder P, oxidation of the metal powder P can be suppressed.

10 三次元積層装置
11 装置本体
12 粉末受け部材
13 粉末保持部材
14 移動装置
15 粉末供給装置
16 粉末リコータ
17 照射装置
18 加工装置
19 計測装置
20 不活性ガス供給装置
21 取付板
22 支持ロッド
23 支持板
24 レール部
25 第1移動台
26 レール部
27 第2移動台
28 昇降台
29 ガイド部材
30 昇降装置
31 レール部
32 第3移動台
33 連結ロッド
34 吊り下げ部材
36 噴出ノズル
37 供給ライン
38 開閉弁
39 ガスタンク
41 開口部
42 シール部材
51 支持板
52 リコータ本体
53 把持部材
54 ブレード
55 高さ調整装置
70 制御部
100 加工対象物
101 翼部
102 プラットフォーム
103 翼根部
104,105 突起部
106 造形面
107,107A 造形物
111 治具
G 不活性ガス
P 金属粉末(粉末材料)
R 光ビーム
10 Three-dimensional lamination device 11 Device body 12 Powder receiving member 13 Powder holding member 14 Moving device 15 Powder supply device 16 Powder recoater 17 Irradiation device 18 Processing device 19 Measuring device 20 Inert gas supply device 21 Mounting plate 22 Support rod 23 Support plate 24 Rail part 25 First moving table 26 Rail part 27 Second moving table 28 Lifting table 29 Guide member 30 Lifting device 31 Rail part 32 Third moving table 33 Connecting rod 34 Hanging member 36 Spout nozzle 37 Supply line 38 Opening/closing valve 39 Gas tank 41 Opening 42 Seal member 51 Support plate 52 Recoater body 53 Gripping member 54 Blade 55 Height adjustment device 70 Control section 100 Workpiece 101 Wing section 102 Platform 103 Wing root section 104, 105 Projection section 106 Modeling surface 107, 107A Modeling Item 111 Jig G Inert gas P Metal powder (powder material)
R light beam

Claims (12)

造形面を有する加工対象物に接触して粉末材料を受ける粉末受け部材と、
前記粉末受け部材に接触すると共に前記造形面に交差する造形方向に沿って移動自在に支持される粉末保持部材と、
前記粉末保持部材を前記造形方向に沿って移動可能な移動装置と、
前記造形面上の前記粉末材料に光ビームを照射して溶融固化させることで成形層を形成する照射装置と、
を備える三次元積層装置。
a powder receiving member that contacts a workpiece having a modeling surface and receives powder material;
a powder holding member that is in contact with the powder receiving member and is supported movably along a modeling direction intersecting the modeling surface;
a moving device capable of moving the powder holding member along the modeling direction;
an irradiation device that forms a molded layer by irradiating the powder material on the modeling surface with a light beam to melt and solidify it;
A three-dimensional lamination device equipped with.
前記粉末受け部材は、前記加工対象物の外周面に沿う開口部を有する、
請求項1に記載の三次元積層装置。
The powder receiving member has an opening along the outer peripheral surface of the workpiece,
The three-dimensional lamination apparatus according to claim 1.
前記粉末保持部材は、前記粉末受け部材の外周面に沿って設けられる枠形状をなす、
請求項2に記載の三次元積層装置。
The powder holding member has a frame shape provided along the outer peripheral surface of the powder receiving member.
The three-dimensional lamination apparatus according to claim 2.
前記粉末保持部材と前記粉末受け部材は、いずれか一方にシール部材が設けられる、
請求項3に記載の三次元積層装置。
A sealing member is provided on either one of the powder holding member and the powder receiving member,
The three-dimensional lamination apparatus according to claim 3.
前記造形面上の前記粉末材料の上面を平滑面とするリコータを有する、
請求項1から請求項4のいずれか一項に記載の三次元積層装置。
comprising a recoater that makes the upper surface of the powder material on the modeling surface a smooth surface;
The three-dimensional lamination apparatus according to any one of claims 1 to 4.
前記リコータは、前記造形面と平行をなす第1方向に移動自在に支持されるリコータ本体と、前記リコータ本体に対して前記造形面と平行をなすと共に前記第1方向に直交する第2方向に並んで着脱自在に装着される複数のブレードとを有する、
請求項5に記載の三次元積層装置。
The recoater includes a recoater body supported movably in a first direction parallel to the modeling surface, and a second direction parallel to the modeling surface and orthogonal to the first direction relative to the recoater body. It has a plurality of blades that are detachably attached in a line.
The three-dimensional lamination apparatus according to claim 5.
前記リコータは、前記造形面に対する前記リコータ本体の平行度を調整する高さ調整装置を有する、
請求項6に記載の三次元積層装置。
The recoater has a height adjustment device that adjusts the parallelism of the recoater body with respect to the modeling surface.
The three-dimensional lamination apparatus according to claim 6.
前記リコータ本体と共に前記第1方向に沿って移動自在に支持されて前記造形面の角度を計測する計測装置を有する、
請求項6に記載の三次元積層装置。
a measuring device that is movably supported along the first direction together with the recoater body and measures the angle of the modeling surface;
The three-dimensional lamination apparatus according to claim 6.
装置本体に対して前記第1方向および前記第2方向に沿って移動自在に支持されて前記造形面を加工することで前記造形面の角度を補正する加工装置を有する、
請求項6に記載の三次元積層装置。
a processing device that is movably supported along the first direction and the second direction with respect to the device body and corrects the angle of the modeling surface by processing the modeling surface;
The three-dimensional lamination apparatus according to claim 6.
前記造形面上の前記粉末材料の平滑面に沿って不活性ガスを供給する不活性ガス供給装置を有する、
請求項1に記載の三次元積層装置。
an inert gas supply device that supplies inert gas along the smooth surface of the powder material on the modeling surface;
The three-dimensional lamination apparatus according to claim 1.
加工対象物に粉末受け部材が接触した状態で前記加工対象物の造形面に粉末材料を供給する工程と、
前記造形面上の前記粉末材料に光ビームを照射して溶融固化させることで第1成形層を形成する工程と、
前記粉末受け部材に接触する粉末保持部材を前記造形面に交差する造形方向に沿って所定距離だけ移動する工程と、
前記第1成形層上に粉末材料を供給する工程と、
前記第1成形層上の前記粉末材料に光ビームを照射して溶融固化させることで第2成形層を形成する工程と、
を有する三次元積層方法。
supplying powder material to the modeling surface of the workpiece while the powder receiving member is in contact with the workpiece;
forming a first molding layer by irradiating the powder material on the modeling surface with a light beam to melt and solidify it;
moving a powder holding member in contact with the powder receiving member by a predetermined distance along a modeling direction intersecting the modeling surface;
supplying a powder material onto the first molded layer;
forming a second molding layer by irradiating the powder material on the first molding layer with a light beam to melt and solidify it;
A three-dimensional lamination method with
前記加工対象物の造形面に供給された前記粉末材料の上面に沿って不活性ガスを噴出することで不活性ガス雰囲気を形成した後、前記粉末材料に光ビームを照射する、
請求項11に記載の三次元積層方法。
After forming an inert gas atmosphere by spouting an inert gas along the upper surface of the powder material supplied to the modeling surface of the workpiece, irradiating the powder material with a light beam;
The three-dimensional lamination method according to claim 11.
JP2022078573A 2022-05-12 2022-05-12 Three-dimensional lamination apparatus and method therefor Pending JP2023167406A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022078573A JP2023167406A (en) 2022-05-12 2022-05-12 Three-dimensional lamination apparatus and method therefor
PCT/JP2023/006515 WO2023218727A1 (en) 2022-05-12 2023-02-22 Apparatus and method for three-dimensional lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022078573A JP2023167406A (en) 2022-05-12 2022-05-12 Three-dimensional lamination apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2023167406A true JP2023167406A (en) 2023-11-24

Family

ID=88729905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022078573A Pending JP2023167406A (en) 2022-05-12 2022-05-12 Three-dimensional lamination apparatus and method therefor

Country Status (2)

Country Link
JP (1) JP2023167406A (en)
WO (1) WO2023218727A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207371A (en) * 1991-07-29 1993-05-04 Prinz Fritz B Method and apparatus for fabrication of three-dimensional metal articles by weld deposition
WO2013036768A1 (en) * 2011-09-09 2013-03-14 The Coca-Cola Company Improved sweetener blend compositions
US20150314403A1 (en) * 2014-05-01 2015-11-05 Siemens Energy, Inc. Arrangement for laser processing of turbine component
DE102017104351A1 (en) * 2017-03-02 2018-09-06 Cl Schutzrechtsverwaltungs Gmbh Device for the additive production of three-dimensional objects
JP2020029597A (en) * 2018-08-23 2020-02-27 株式会社ジェイテクト Lamination molding apparatus for lamination molded article
US11144034B2 (en) * 2019-01-30 2021-10-12 General Electric Company Additive manufacturing systems and methods of generating CAD models for additively printing on workpieces
JP7254600B2 (en) * 2019-04-16 2023-04-10 株式会社日立製作所 Additive Manufacturing Apparatus and Additive Manufacturing Method
EP3747571B1 (en) * 2019-06-07 2023-11-29 RTX Corporation Powder bed fusion monitoring
KR102353234B1 (en) * 2020-12-15 2022-01-19 한밭대학교 산학협력단 Pbf 3d printing recoater blade self-aligning system

Also Published As

Publication number Publication date
WO2023218727A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5777187B1 (en) Additive manufacturing equipment
US20220266371A1 (en) Method and apparatus for fabrication of articles by molten and semi-molten deposition
JP6848069B2 (en) Additional manufacturing using mobile scanning area
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
JP4661551B2 (en) Three-dimensional shaped object manufacturing equipment
EP3568283A1 (en) Additive manufacturing using a mobile scan area
JP6676688B2 (en) Manufacturing method of three-dimensional objects
JP2007275945A (en) Molding method for manufacturing molded article of three dimensional free shape, and apparatus therefor
JP2014125643A (en) Apparatus for three-dimensional shaping and method for three-dimensional shaping
US10919114B2 (en) Methods and support structures leveraging grown build envelope
JP2007146216A5 (en)
CN105252145A (en) Method and device for manufacturing complex-shaped parts by stacking sheet metal
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
RU2674588C2 (en) Method for additive welding and melting manufacture of three-dimensional products and installation for its implementation
EP3427870B1 (en) Three-dimensional molded object production method
EP3706985A2 (en) Dmlm build platform and surface flattening
WO2019094217A1 (en) Apparatus and methods for build surface mapping
US11370030B2 (en) Manufacturing method for three-dimensional molded object, lamination molding apparatus, and three-dimensional molded object
JP2021188070A (en) Lamination modeling method and lamination modeling apparatus
JP2016121402A (en) Three-dimensional molding device and method
WO2018132217A1 (en) Additive manufacturing using a selective recoater
JP2015030883A (en) Method and apparatus for production of three-dimensional laminate formed object
WO2023218727A1 (en) Apparatus and method for three-dimensional lamination
US20180243987A1 (en) System and method for additively manufacturing an article incorporating materials with a low tear strength
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus