JP2023163890A - Dispersion compensation method and dispersion compensation device of optical fiber communication signal - Google Patents

Dispersion compensation method and dispersion compensation device of optical fiber communication signal Download PDF

Info

Publication number
JP2023163890A
JP2023163890A JP2022075099A JP2022075099A JP2023163890A JP 2023163890 A JP2023163890 A JP 2023163890A JP 2022075099 A JP2022075099 A JP 2022075099A JP 2022075099 A JP2022075099 A JP 2022075099A JP 2023163890 A JP2023163890 A JP 2023163890A
Authority
JP
Japan
Prior art keywords
optical
dispersion compensation
optical fiber
circuit
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022075099A
Other languages
Japanese (ja)
Inventor
パイクン ジュ
Paikun Zhu
悠来 吉田
Yuki Yoshida
敦史 菅野
Atsushi Kanno
研一 北山
Kenichi Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2022075099A priority Critical patent/JP2023163890A/en
Publication of JP2023163890A publication Critical patent/JP2023163890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

To provide a dispersion compensation method and a dispersion compensation device of an optical fiber communication signal which can contain a short/middle-range high-capacity IM-DD optical fiber transmission system in a realistic circuit scale.SOLUTION: A dispersion compensation method of an optical fiber communication signal by a dispersion compensation device 1 of the optical fiber communication signal comprises: an optical pre-processing step in which an optical pre-processing circuit 3 branches an optical signal transmitted through an optical fiber 5 and causes the branched optical signals to interfere with each other to obtain the optical signals after pre-processing; and a post-processing step in which an electric dispersion compensation circuit 7 performs dispersion compensation processing to the optical signals after pre-processing.SELECTED DRAWING: Figure 1

Description

この発明は光ファイバ通信信号の分散補償方法及び分散補償装置に関する。 The present invention relates to a dispersion compensation method and a dispersion compensation device for optical fiber communication signals.

近年,データセンタ間ネットワークやモバイルアクセス網フロントホール向けの近中距離(20~80km)大容量光ファイバ伝送システムの需要が高まっている。このため,400GBASE-ER/ZR など,光Ethernet(登録商標)規格の延伸化が盛んに議論されている.20kmを超える強度変調―直接検波(IM-DD)方式の光ファイバ伝送においては,ファイバ伝搬損失の小さい波長1550nm帯の使用が望ましい。一方,このような光ファイバ伝送においては,ファイバ色分散に起因する信号歪みが問題となる.色分散の影響は,光信号帯域幅の二乗に比例するため,特に50Gbps/レーンを超えるような広帯域IM-DD伝送においては,伝送距離の主たる制限要因となる.このため,上記延伸化の議論においては,種々の分散補償手法が検討されてきた. In recent years, there has been an increasing demand for short- to medium-distance (20 to 80 km) high-capacity optical fiber transmission systems for inter-data center networks and mobile access network fronthaul. For this reason, extensions of optical Ethernet (registered trademark) standards such as 400GBASE-ER/ZR are being actively discussed. In intensity modulation-direct detection (IM-DD) type optical fiber transmission over 20 km, it is desirable to use the wavelength band of 1550 nm, which has small fiber propagation loss. On the other hand, in such optical fiber transmission, signal distortion caused by fiber chromatic dispersion becomes a problem. Since the influence of chromatic dispersion is proportional to the square of the optical signal bandwidth, it becomes the main limiting factor for transmission distance, especially in wideband IM-DD transmission exceeding 50 Gbps/lane. For this reason, various dispersion compensation methods have been considered in the discussion of stretching mentioned above.

光ファイバ通信信号の分散補償方法として,電気分散補償技術が知られている。例えば,特表2019-514312号公報には,電気分散補償システムや,そのシステムを用いた分散補償方法が記載されている。電気分散補償技術は,デジタル信号処理により通信路の等化を行う.ただし,電気分散補償システムは,400GBASE-ER以上の広帯域IM-DD伝送においては,回路規模が著しく増大する傾向がある.電気分散補償システムは,論文レベルの報告では 100 タップ近い等化器が採用されることが多い. Electric dispersion compensation technology is known as a dispersion compensation method for optical fiber communication signals. For example, Japanese Patent Publication No. 2019-514312 describes an electrical dispersion compensation system and a dispersion compensation method using the system. Electrical dispersion compensation technology equalizes the communication path using digital signal processing. However, the electrical dispersion compensation system tends to significantly increase the circuit size in broadband IM-DD transmission of 400GBASE-ER or higher. In electrical dispersion compensation systems, equalizers with close to 100 taps are often used in papers.

このため,例えば,50Gbps/レーンを超えるような広帯域伝送であり,40km(ER)/80km(ZR)といった,近中距離大容量IM-DD光ファイバ伝送システムを現実的な回路規模で実装できる光ファイバ通信信号の分散補償方法及び分散補償装置が望まれる。 For this reason, it is possible to implement short- to medium-distance, high-capacity IM-DD optical fiber transmission systems on a realistic circuit scale, such as broadband transmission exceeding 50 Gbps/lane and 40 km (ER)/80 km (ZR). A method and apparatus for dispersion compensation of fiber communication signals is desired.

特表2019-514312号公報Special table 2019-514312 publication

この発明は,近中距離大容量IM-DD光ファイバ伝送システムを現実的な回路規模で実装できる光ファイバ通信信号の分散補償方法及び分散補償装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a dispersion compensation method and a dispersion compensation device for optical fiber communication signals that can implement a near-medium-distance large-capacity IM-DD optical fiber transmission system on a practical circuit scale.

上記の課題は,基本的には,簡便な光前処理回路によって,分散による信号歪成分のうち特に電気分散補償回路の規模増大の要因となっている成分のみを事前に除去し,電気分散補償回路の簡単化を図ることにより解決できる。 Basically, the above problem is solved by using a simple optical pre-processing circuit to remove in advance only the signal distortion components due to dispersion, which are particularly the cause of the increase in the scale of the electrical dispersion compensation circuit, and to compensate for the electrical dispersion compensation circuit. This problem can be solved by simplifying the circuit.

最初の発明は,光ファイバ通信信号の分散補償方法に関する。この方法は,光前処理工程と,後処理工程とを含む。
光前処理工程は,光前処理回路3が,光ファイバ5を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための工程である。
後処理工程は,電気分散補償回路7が,前処理後の光信号に対して分散補償処理を行うための工程である。
The first invention relates to a dispersion compensation method for optical fiber communication signals. This method includes a photo-pretreatment step and a post-treatment step.
The optical pre-processing step is a step in which the optical pre-processing circuit 3 branches and interferes the optical signal transmitted through the optical fiber 5 to obtain a pre-processed optical signal.
The post-processing step is a step in which the electrical dispersion compensation circuit 7 performs dispersion compensation processing on the pre-processed optical signal.

次の発明は,光ファイバ通信信号の分散補償装置1に関する。
光ファイバ通信信号の分散補償装置1は,光前処理回路3と,電気分散補償回路7と,光電処理回路最適化部9とを有する。
光前処理回路3は,光ファイバ5を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための要素である。
電気分散補償回路7は,前処理後の光信号に対して分散補償処理を行うための要素である。
光電処理回路最適化部9は,電気分散補償回路7からの出力信号の品質又はその出力信号の品質の解析モデルによる予測に基づいて,光前処理回路3及び電気分散補償回路7の駆動条件を最適化するための要素である。
The next invention relates to a dispersion compensation device 1 for optical fiber communication signals.
The dispersion compensation device 1 for optical fiber communication signals includes an optical pre-processing circuit 3, an electrical dispersion compensation circuit 7, and a photoelectric processing circuit optimization section 9.
The optical preprocessing circuit 3 is an element for branching and interfering the optical signal transmitted through the optical fiber 5 to obtain a preprocessed optical signal.
The electric dispersion compensation circuit 7 is an element for performing dispersion compensation processing on the preprocessed optical signal.
The photoelectric processing circuit optimization unit 9 determines the driving conditions of the optical pre-processing circuit 3 and the electric dispersion compensation circuit 7 based on the quality of the output signal from the electric dispersion compensation circuit 7 or the prediction of the quality of the output signal by an analytical model. This is an element for optimization.

この発明は,近中距離大容量光ファイバ伝送システムを現実的な回路規模で実装できる光ファイバ通信信号の分散補償方法及び分散補償装置を提供できる。 The present invention can provide a dispersion compensation method and dispersion compensation device for optical fiber communication signals that can implement a near-medium-distance large-capacity optical fiber transmission system on a practical circuit scale.

図1は,光ファイバ通信信号の分散補償装置のブロック図である。FIG. 1 is a block diagram of a dispersion compensator for optical fiber communication signals. 図2は,光ファイバ通信信号の分散補償方法を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a dispersion compensation method for optical fiber communication signals. 図3(a)は,光電融合型分散補償のシステム概略図である。図3(b)は光前処理回路の例であるシングルタップ遅延線を示す。 φは光位相シフトであり Dは光遅延を示す。FIG. 3(a) is a schematic diagram of a system for opto-electronic integrated dispersion compensation. FIG. 3(b) shows a single-tap delay line which is an example of an optical pre-processing circuit. φ is the optical phase shift and D is the optical delay. 図4は,実施例における実験系を示す概念図である。実施例では,光前処理回路としてシングルタップ遅延線を,電気分散補償回路としてフィードフォワード型等化器を用いている。図中,PPGはパルスパターン生成器を示し,MZMはマッハツェンダー変調器を示し,SMFはシングルモード光ファイバを示し,VOAは可変光減衰器を示し,EDFAは光増幅器を示し,FSRは自由スペクトル領域を示し,OBPFは光バンドパスフィルタを示し,PDは光検出器を示し,ADCはアナログディジタル変換を示し,FFEはフィードフォワード型等化器を示す。FIG. 4 is a conceptual diagram showing the experimental system in the example. In the embodiment, a single-tap delay line is used as the optical pre-processing circuit, and a feedforward equalizer is used as the electrical dispersion compensation circuit. In the figure, PPG indicates a pulse pattern generator, MZM indicates a Mach-Zehnder modulator, SMF indicates a single mode optical fiber, VOA indicates a variable optical attenuator, EDFA indicates an optical amplifier, and FSR indicates a free spectrum. OBPF indicates an optical bandpass filter, PD indicates a photodetector, ADC indicates analog-to-digital conversion, and FFE indicates a feedforward equalizer. 図5(a)は,シングルタップ遅延線の有無による50kmIM-DD光ファイバ伝送システムの周波数応答を示す図面に代わるグラフである。図5(b)は,シングルタップ遅延線のない50kmIM-DD光ファイバ伝送システムの極―零点プロットを示す図面に代わるグラフである。図5(c)は,シングルタップ遅延線を使用した50kmIM-DD光ファイバ伝送システムの極-零点プロットを示す図面に代わるグラフである。FIG. 5(a) is a graph replacing a drawing showing the frequency response of a 50 km IM-DD optical fiber transmission system with and without a single-tap delay line. FIG. 5(b) is a graph in place of a drawing showing a pole-zero plot of a 50 km IM-DD optical fiber transmission system without a single-tap delay line. FIG. 5(c) is a graph in place of a drawing showing a pole-zero plot of a 50 km IM-DD optical fiber transmission system using a single-tap delay line. 図6は実験結果を示す。図6(a)は光電融合型分散補償回路を使用した112Gb/sPAM4信号の50kmSMF伝送後のビット誤り率(BER)対電気補償回路タップ数を示す。図6(b)は光電気融合型分散補償回路がある場合とない場合の112Gb/sPAM4信号の50kmSMF伝送後のBER対PD入力光電力。図6(c)は光電気融合型分散補償回路を使用した50kmおよび80km60Gb/sPAM2伝送のBER対電気補償回路タップ数を示す。Figure 6 shows the experimental results. FIG. 6(a) shows the bit error rate (BER) versus the number of electrical compensation circuit taps after 50 km SMF transmission of a 112 Gb/s PAM4 signal using an opto-electronic dispersion compensation circuit. FIG. 6(b) shows the BER vs. PD input optical power after 50 km SMF transmission of a 112 Gb/s PAM4 signal with and without an opto-electronic dispersion compensation circuit. FIG. 6(c) shows the BER versus the number of electrical compensation circuit taps for 50 km and 80 km 60 Gb/s PAM2 transmission using the opto-electrical integrated dispersion compensation circuit.

以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated using drawing. The present invention is not limited to the embodiments described below, but also includes modifications made from the following embodiments as appropriate within the range obvious to those skilled in the art.

図1は,光ファイバ通信信号の分散補償装置のブロック図である。図1に示されるように,光ファイバ通信信号の分散補償装置1は,光前処理回路3と,電気分散補償回路7と,光電処理回路最適化部9とを有する。 FIG. 1 is a block diagram of a dispersion compensator for optical fiber communication signals. As shown in FIG. 1, the dispersion compensation device 1 for optical fiber communication signals includes an optical preprocessing circuit 3, an electrical dispersion compensation circuit 7, and a photoelectric processing circuit optimization section 9.

光ファイバ通信信号の分散補償装置1
光ファイバ通信信号の分散補償装置1は,ファイバ色分散に起因する信号歪みを補償するための装置である。光ファイバ通信信号の分散補償装置1は,近中距離大容量光ファイバ伝送システム以上の光ファイバ伝送システムに対して好ましく用いることができる。
光ファイバによる伝送距離の例は,20km以上1000km以下であり,40km以上500km以下でもよいし,40km以上100km以下でもよいし,40km以上80km以下でもよい。
光ファイバ通信の帯域幅の例は,10Gbps/レーン以上1000Gbps/レーン以下であり,20Gbps/レーン以上500Gbps/レーン以下でもよく,40Gbps/レーン以上500Gbps/レーン以下でもよいし,50Gbps/レーン以上1000Gbps/レーン以下でもよいし,50Gbps/レーン以上500Gbps/レーン以下でもよいし,100Gbps/レーン以上500Gbps/レーン以下でもよい。
光ファイバ通信に用いられる光の波長の例は,256nm以上3200nm以下であり,500nm以上2500nm以下でもよいし,1000nm以上2000nm以下でもよい。
具体的な光信号の例は,IM-DD方式に基づく50Gbps/レーン以上の広帯域伝送により,20km以上の光ファイバを伝送した光信号である。
Dispersion compensation device for optical fiber communication signals 1
A dispersion compensation device 1 for optical fiber communication signals is a device for compensating for signal distortion caused by fiber chromatic dispersion. The dispersion compensator 1 for optical fiber communication signals can be preferably used for optical fiber transmission systems that are higher than short-range, medium-distance, and large-capacity optical fiber transmission systems.
Examples of the transmission distance by optical fiber are 20 km or more and 1000 km or less, 40 km or more and 500 km or less, 40 km or more and 100 km or less, or 40 km or more and 80 km or less.
Examples of the bandwidth of optical fiber communication are 10 Gbps/lane to 1000 Gbps/lane, 20 Gbps/lane to 500 Gbps/lane, 40 Gbps/lane to 500 Gbps/lane, and 50 Gbps/lane to 1000 Gbps/lane. It may be less than 50 Gbps/lane, it may be more than 50 Gbps/lane and less than 500 Gbps/lane, it may be more than 100 Gbps/lane and less than 500 Gbps/lane.
Examples of the wavelength of light used in optical fiber communication are 256 nm or more and 3200 nm or less, 500 nm or more and 2500 nm or less, or 1000 nm or more and 2000 nm or less.
A specific example of an optical signal is an optical signal transmitted over an optical fiber of 20 km or more by broadband transmission of 50 Gbps/lane or more based on the IM-DD system.

光前処理回路3
光前処理回路3は,光ファイバ5を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための要素である。上記の機能を実現するため,光前処理回路3は,例えば,強度分離部11と,位相調整部13と,遅延調整部15と,合波部17とを有する。このような光前処理回路3の例は,光遅延干渉計やマッハツェンダー型光変調器である。
Photo pre-processing circuit 3
The optical preprocessing circuit 3 is an element for branching and interfering the optical signal transmitted through the optical fiber 5 to obtain a preprocessed optical signal. In order to realize the above functions, the optical preprocessing circuit 3 includes, for example, an intensity separation section 11, a phase adjustment section 13, a delay adjustment section 15, and a multiplexing section 17. Examples of such an optical preprocessing circuit 3 are an optical delay interferometer and a Mach-Zehnder type optical modulator.

強度分離部11は,光ファイバ5を伝送した光信号を所望の強度比で分離するための要素である。例えば,カプラが強度分離部11として機能する。分岐される導波路の数の例は2である。もっとも,分岐される導波路は2以上であってもよい。各導波路に分離される光の強度比を調整する方法は公知である。 The intensity separation section 11 is an element for separating the optical signals transmitted through the optical fiber 5 at a desired intensity ratio. For example, a coupler functions as the intensity separation section 11. An example of the number of branched waveguides is two. However, the number of branched waveguides may be two or more. A method for adjusting the intensity ratio of light separated into each waveguide is known.

位相調整部13は,強度分離部11が分離した光信号の位相を調整するための要素である。通常は,導波路の何れかに設けられた位相変調器が,位相調整部13として機能する。位相調整部13は,分波された光信号の相対的な位相を調整する。位相変調器は,信号源からの駆動信号により,光信号の位相を調整することができ,これにより分波された2つの光信号の相対的な位相を調整できる。 The phase adjustment section 13 is an element for adjusting the phase of the optical signal separated by the intensity separation section 11. Usually, a phase modulator provided in any of the waveguides functions as the phase adjustment section 13. The phase adjustment section 13 adjusts the relative phase of the demultiplexed optical signal. The phase modulator can adjust the phase of an optical signal using a drive signal from a signal source, and thereby can adjust the relative phase of two demultiplexed optical signals.

遅延調整部15は,強度分離部11が分離した光信号の遅延を調整するための要素である。通常は,導波路の経路長差調整回路が遅延調整部15として機能する。遅延調整部15は,強度分離部11が分離した光信号の相対的な時間差を調整する。遅延調整部15は,信号源からの駆動信号により,光信号の遅延を調整することができ,これにより分波された2つの光信号の相対的な遅延差を調整できる。 The delay adjustment unit 15 is an element for adjusting the delay of the optical signal separated by the intensity separation unit 11. Normally, a waveguide path length difference adjustment circuit functions as the delay adjustment section 15. The delay adjustment unit 15 adjusts the relative time difference between the optical signals separated by the intensity separation unit 11. The delay adjustment section 15 can adjust the delay of the optical signal using the drive signal from the signal source, and thereby can adjust the relative delay difference between the two separated optical signals.

合波部17は,強度分離部11が分離し,位相調整部13及び遅延調整部15により位相及び遅延が調整された光信号を合波するための要素である。最も,位相差及び遅延差を与えない場合の光信号も,位相及び遅延が調整された光信号に含まれる。 The multiplexer 17 is an element for multiplexing the optical signals separated by the intensity separator 11 and whose phases and delays have been adjusted by the phase adjuster 13 and the delay adjuster 15. Most importantly, an optical signal in which no phase difference and delay difference is given is also included in the optical signal whose phase and delay have been adjusted.

光前処理回路3が上記の構成を有するので,光-電気変換後に不安定零点や極点となる成分を事前に除去することができる。また,光前処理回路3の駆動条件と,後述する電気分散補償回路7の駆動条件とを合わせて最適化することで,電気分散補償回路を簡素化でき,中距離大容量光ファイバ伝送システムを現実的な回路規模で実装できることとなる。 Since the optical pre-processing circuit 3 has the above-described configuration, components that become unstable zero points or extreme points after photo-electrical conversion can be removed in advance. In addition, by optimizing the driving conditions of the optical pre-processing circuit 3 and the driving conditions of the electrical dispersion compensation circuit 7, which will be described later, the electrical dispersion compensation circuit can be simplified and a medium-distance, high-capacity optical fiber transmission system can be realized. This means that it can be implemented on a realistic circuit scale.

電気分散補償回路7
電気分散補償回路7は,前処理後の光信号に対して分散補償処理を行うための要素である。電気分散補償回路7の基本構成は,公知である。電気分散補償回路7の例は,特許第5658991号に記載された電気分散補償器(電気信号の群遅延特性を有する反射型のマイクロストリップ線路から構成された電気分散補償器)や,特開2010-278528号公報に記載された電気分散補償回路である。電気分散補償回路7として,フィードバック等化器,フィードフォワード等化器,及び信号判定回路のいずれかを用いてもよい。フィードバック等化器の例は,判定帰還等化器である。フィードフォワード等化器の例は,
FIRフィルタ,周波数領域等化器,及びボルテラフィルタ(Volterra filter)である。信号判定回路の例は,最尤推定回路である。
Electric dispersion compensation circuit 7
The electric dispersion compensation circuit 7 is an element for performing dispersion compensation processing on the preprocessed optical signal. The basic configuration of the electrical dispersion compensation circuit 7 is well known. Examples of the electric dispersion compensation circuit 7 include the electric dispersion compensator (an electric dispersion compensator composed of a reflective microstrip line having group delay characteristics of electric signals) described in Japanese Patent No. 5658991, and the electric dispersion compensator described in Japanese Patent Application Laid-open No. 2010 This is an electrical dispersion compensation circuit described in Publication No. 278528. As the electrical dispersion compensation circuit 7, any one of a feedback equalizer, a feedforward equalizer, and a signal determination circuit may be used. An example of a feedback equalizer is a decision feedback equalizer. An example of a feedforward equalizer is
FIR filter, frequency domain equalizer, and Volterra filter. An example of a signal decision circuit is a maximum likelihood estimation circuit.

光電処理回路最適化部9
光電処理回路最適化部9は,電気分散補償回路7からの出力信号の品質又は出力信号の品質の解析モデルによる予測に基づいて,光前処理回路3及び電気分散補償回路7の駆動条件を最適化するための要素である。最適化は,実際の出力信号に基づいて適応的に行ってもよいし,出力信号の品質についての解析解を用いて事前に行ってもよい。例えば,光電処理回路最適化部9は,電気分散補償回路7からの出力信号のビット誤り率特性やその解析モデルによる予測値に基づいて,位相調整部13と遅延調整部15との駆動信号や,電気分散補償回路7のタップ係数やタップ数を適応的に最適化する。出力信号の品質(例えばビット誤り率特性)を予測するための解析モデルは公知である。このため公知の解析モデルを用いて予測値を得ればよい。光電処理回路最適化部9は,例えば,出力信号のパラメータを測定するセンサから,測定値を受け取る。そして,光電処理回路最適化部9は,記憶部に記憶されたプログラムを読み出し,出力信号の測定値を用いて,演算部に各種演算を行わせ,光前処理回路3と電気分散補償回路7の駆動条件を最適化すればよい。プログラムは,例えば,公知の機械学習アルゴリズムを含んでいてもよい。
Photoelectric processing circuit optimization section 9
The photoelectric processing circuit optimization unit 9 optimizes the driving conditions of the optical pre-processing circuit 3 and the electric dispersion compensation circuit 7 based on the quality of the output signal from the electric dispersion compensation circuit 7 or the prediction by the analytical model of the quality of the output signal. It is an element to make it a reality. Optimization may be performed adaptively based on the actual output signal, or may be performed in advance using an analytical solution regarding the quality of the output signal. For example, the photoelectric processing circuit optimization section 9 determines the drive signal for the phase adjustment section 13 and the delay adjustment section 15 based on the bit error rate characteristics of the output signal from the electric dispersion compensation circuit 7 and the predicted value by the analysis model. , the tap coefficients and number of taps of the electrical dispersion compensation circuit 7 are adaptively optimized. Analytical models for predicting the quality (eg, bit error rate characteristics) of output signals are known. Therefore, a predicted value may be obtained using a known analytical model. The photoelectric processing circuit optimization unit 9 receives measurement values from, for example, a sensor that measures parameters of an output signal. Then, the photoelectric processing circuit optimization section 9 reads out the program stored in the storage section, causes the calculation section to perform various calculations using the measured value of the output signal, and controls the optical pre-processing circuit 3 and the electrical dispersion compensation circuit 7. It is only necessary to optimize the driving conditions. The program may include, for example, a known machine learning algorithm.

光前処理回路3及び電気分散補償回路7の設計(設計最適化工程)
光電処理回路最適化部9が,後処理工程の出力信号の品質又は出力信号の解析モデルによる予測に基づいて,光前処理回路3における光信号分岐数及び干渉方法,並びに電気分散補償回路7の加減回路数及び乗除回路数を求めてもよい。このようにして,光電処理回路最適化部9は,光前処理回路3及び電気分散補償回路7を設計できる。この態様は,光ファイバ通信信号の分散補償装置1の構築(製造)方法ともいえる。光電処理回路最適化部9は,例えば,出力信号のパラメータを測定するセンサから,測定値を受け取る。そして,光電処理回路最適化部9は,記憶部に記憶されたプログラムを読み出し,出力信号の測定値を用いて,演算部に各種演算を行わせ,光前処理回路3における光信号分岐数及び干渉方法,並びに電気分散補償回路7の加減回路数及び乗除回路数を求めることができる。プログラムは,例えば,公知の機械学習アルゴリズムを含んでいてもよい。干渉方法を求める例は,それぞれの導波路における位相変調器13や遅延調整部15の駆動条件を求めるものである。
Design of optical pre-processing circuit 3 and electrical dispersion compensation circuit 7 (design optimization process)
The photoelectric processing circuit optimization unit 9 determines the number of optical signal branches and the interference method in the optical pre-processing circuit 3 and the electric dispersion compensation circuit 7 based on the quality of the output signal in the post-processing process or the prediction by the analytical model of the output signal. The number of addition/subtraction circuits and the number of multiplication/division circuits may also be determined. In this manner, the photoelectric processing circuit optimization unit 9 can design the optical pre-processing circuit 3 and the electrical dispersion compensation circuit 7. This aspect can also be said to be a method for constructing (manufacturing) the dispersion compensator 1 for optical fiber communication signals. The photoelectric processing circuit optimization unit 9 receives measurement values from, for example, a sensor that measures parameters of an output signal. Then, the photoelectric processing circuit optimization section 9 reads out the program stored in the storage section, uses the measured value of the output signal, causes the calculation section to perform various calculations, and calculates the number of optical signal branches in the optical pre-processing circuit 3. The interference method and the number of adding/subtracting circuits and the number of multiplying/dividing circuits of the electric dispersion compensation circuit 7 can be determined. The program may include, for example, a known machine learning algorithm. An example of determining the interference method is determining the driving conditions of the phase modulator 13 and delay adjustment section 15 in each waveguide.

光ファイバ通信信号の分散補償方法
次に,上記の装置を用いた光ファイバ通信信号の分散補償方法について説明する。図2は,光ファイバ通信信号の分散補償方法を説明するためのフローチャートである。図2に示される通り,この方法は,光前処理工程(S101)と,後処理工程(S102)とを含む。この方法は,駆動条件最適化工程(S103)をさらに含んでもよい。
Dispersion Compensation Method for Optical Fiber Communication Signals Next, a method for dispersion compensation for optical fiber communication signals using the above device will be described. FIG. 2 is a flowchart for explaining a dispersion compensation method for optical fiber communication signals. As shown in FIG. 2, this method includes a photopretreatment step (S101) and a posttreatment step (S102). This method may further include a drive condition optimization step (S103).

光前処理工程(S101)は,光前処理回路3が,光ファイバ5を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための工程である。 The optical pre-processing step (S101) is a step in which the optical pre-processing circuit 3 branches and interferes the optical signal transmitted through the optical fiber 5 to obtain a pre-processed optical signal.

後処理工程(S102)は,電気分散補償回路7が,前処理後の光信号に対して分散補償処理を行うための工程である。 The post-processing step (S102) is a step in which the electric dispersion compensation circuit 7 performs dispersion compensation processing on the pre-processed optical signal.

駆動条件最適化工程(S103)は,光電処理回路最適化部9が,後処理工程の出力信号の品質に基づいて,光前処理回路3及び電気分散補償回路7の駆動条件を最適化するための工程である。この工程が,光前処理回路3及び電気分散補償回路7の駆動条件を同時に最適化するので,近中距離大容量光ファイバ伝送システムを現実的な回路規模で実装できる光ファイバ通信信号の分散補償方法を提供できることとなる。駆動条件を最適化した後は,最適化した条件を用いて,光前処理工程(S101)及び後処理工程(S102)を行ってもよい。 In the drive condition optimization step (S103), the photoelectric processing circuit optimization unit 9 optimizes the drive conditions of the optical pre-processing circuit 3 and the electric dispersion compensation circuit 7 based on the quality of the output signal of the post-processing step. This is the process. This process simultaneously optimizes the driving conditions of the optical pre-processing circuit 3 and the electrical dispersion compensation circuit 7, so dispersion compensation for optical fiber communication signals can be implemented in a short-medium distance high-capacity optical fiber transmission system on a realistic circuit scale. This means that we can provide a method. After optimizing the driving conditions, the optical pre-treatment step (S101) and post-treatment step (S102) may be performed using the optimized conditions.

実装系のコンセプト
図3(a)は,近中距離IM-DD光ファイバ伝送のための光電融合型分散補償回路の概念を示す図である。光電融合型分散補償回路の光前処理回路の目的は,ファイバ分散による信号歪成分のうち,電気分散補償回路の規模増大につながる成分を光領域で事前に除去することである。光回路は,シンプルかつ低コストで,可能であればパッシブな光学素子のみで構成されることが望ましい。光電融合型分散補償回路出力における信号品質やその解析モデルによる予測に基づき,光学前処理回路及び電気分散補償回路のパラメータを適応的に,あるいは事前に最適化することで補償回路全体としての複雑さと消費電力を大幅に削減することが可能である。電気分散補償回路の。
図3(b)は,光前処理回路の最も簡便な実現の1つであるシングルタップ遅延線を示す。この光学部品は1x2光分波器,位相変調器,光遅延および2x1光合波器で構成され,必要に応じて導波路型光回路として集積化することもできある。
Implementation system concept FIG. 3(a) is a diagram showing the concept of an opto-electronic dispersion compensation circuit for near-medium distance IM-DD optical fiber transmission. The purpose of the optical pre-processing circuit in the opto-electronic dispersion compensation circuit is to remove in the optical domain, among the signal distortion components due to fiber dispersion, components that would lead to an increase in the scale of the electrical dispersion compensation circuit. It is desirable that the optical circuit be simple and low-cost, and if possible, be composed only of passive optical elements. The complexity of the compensation circuit as a whole can be reduced by optimizing the parameters of the optical pre-processing circuit and the electrical dispersion compensation circuit adaptively or in advance based on the signal quality at the output of the optoelectronic dispersion compensation circuit and its prediction by an analytical model. It is possible to significantly reduce power consumption. of electrical dispersion compensation circuit.
FIG. 3(b) shows a single-tap delay line, which is one of the simplest implementations of an optical preprocessing circuit. This optical component is composed of a 1x2 optical demultiplexer, a phase modulator, an optical delay, and a 2x1 optical multiplexer, and can be integrated as a waveguide type optical circuit if necessary.

実験系
図4は,1550nm帯高速光PAM伝送の実験装置を示す図である。送信機側では,パルスパターン生成器(PPG,アンリツ)から56GBdの電気PAM4信号を生成し,マッハツェンダー変調器(MZM,3dB帯域幅約25GHz)を用いて,1547nmの光キャリア(NKT Coheras Basik)をPAM方式で変調した。変調信号は50kmのシングルモードファイバ(SMF)上を伝送され,,光増幅器(EDFA)により増幅された後,遅延(D)が約8psのシングルタップ遅延線によって前処理された。光前処理回路出力光信号は,50GHz光検出器(PD)によって検出され,160GSa/sアナログ-デジタルコンバータ(ADC,Agilentリアルタイムオシロスコープ)によって測定された。電気分散補償及びPAM復調はオフライン処理にて行った。電気分散補償には,特に簡素なフィードフォワード型等化器(FFE)を用いた。特性評価は,復調後ビット誤り率(BER)によって行った。
Experimental System Figure 4 is a diagram showing an experimental setup for high-speed optical PAM transmission in the 1550 nm band. On the transmitter side, a 56 GBd electrical PAM4 signal is generated from a pulse pattern generator (PPG, Anritsu), and a 1547 nm optical carrier (NKT Coheras Basik) is generated using a Mach-Zehnder modulator (MZM, 3 dB bandwidth approximately 25 GHz). was modulated using the PAM method. The modulated signal was transmitted over a 50 km single-mode fiber (SMF), amplified by an optical amplifier (EDFA), and then preprocessed by a single-tap delay line with a delay (D) of approximately 8 ps. The optical pre-processing circuit output optical signal was detected by a 50 GHz photodetector (PD) and measured by a 160 GSa/s analog-to-digital converter (ADC, Agilent real-time oscilloscope). Electrical dispersion compensation and PAM demodulation were performed in offline processing. A particularly simple feedforward equalizer (FFE) was used for electrical dispersion compensation. The characteristics were evaluated based on the bit error rate (BER) after demodulation.

結果
図5(a)は,強度変調―直接検波(IM-DD)方式の50km光ファイバ伝送において,シングルタップ遅延線を用いる場合と用いない場合のシステム全体の周波数応答を示す図面に代わるグラフである。図5(b)は,シングルタップ遅延線を用いない場合の50kmIM-DD光ファイバ伝送システムの極―零点プロットを示す図面に代わるグラフである。図5(c)は,シングルタップ遅延線を使用した50kmIM-DD光ファイバ伝送システムの極-零点プロットを示す図面に代わるグラフである。
Results Figure 5(a) is a graph replacing a drawing showing the frequency response of the entire system with and without a single-tap delay line in intensity modulation-direct detection (IM-DD) 50 km optical fiber transmission. be. FIG. 5(b) is a graph replacing a drawing showing a pole-zero plot of a 50 km IM-DD optical fiber transmission system without using a single-tap delay line. FIG. 5(c) is a graph in place of a drawing showing a pole-zero plot of a 50 km IM-DD optical fiber transmission system using a single-tap delay line.

図5(a)ではシステム全体の周波数応答にファイバ色分散に起因する5つの周波数ノッチが存在する。また図5(b)では,この5つのノッチに対応する,5つの不安定極―零点が上半面単位円周上に存在する。このことは,ファイバ分散の影響によりIM-DDシステムが不安定零―極を持つ非最小位相系システムとなっていることを示している。非最小位相系のシステムでは,FFEなど通常の電気分散補償回路では雑音増強が発生し,効率的に分散補償ができない。一方,図5(c)のように,シングルタップ遅延線を用いた場合,不安定零―極点(の一部)が除去されるため,FFEなどを用いて分散に起因する信号歪を効率的に補償することが可能となる。 In FIG. 5(a), there are five frequency notches caused by fiber chromatic dispersion in the frequency response of the entire system. Furthermore, in FIG. 5(b), five unstable pole-zero points corresponding to these five notches exist on the upper half-plane unit circumference. This indicates that the IM-DD system is a non-minimum phase system with unstable zero-poles due to the influence of fiber dispersion. In a non-minimum phase system, normal electrical dispersion compensation circuits such as FFE cause noise enhancement and cannot perform dispersion compensation efficiently. On the other hand, as shown in Figure 5(c), when a single-tap delay line is used, unstable zero-pole points (part of them) are removed, so signal distortion caused by dispersion can be efficiently reduced using FFE, etc. It becomes possible to compensate for

図6(a)は,PD入力光パワーが3dBmの場合の,56Gbaud(112Gb/s) PAM4伝送のBER特性とFFEタップの数の関係を示す。光前処理回路を用いることで31タップのFFEにより,6.7%冗長度の硬判定誤り訂正符号(HD-FEC)を用いたエラーフリー伝送に必要な閾値BERを達成している。 FIG. 6(a) shows the relationship between the BER characteristics of 56 Gbaud (112 Gb/s) PAM4 transmission and the number of FFE taps when the PD input optical power is 3 dBm. By using an optical pre-processing circuit, a 31-tap FFE achieves the threshold BER required for error-free transmission using a hard-decision error correction code (HD-FEC) with 6.7% redundancy.

図6(b)は,光電融合型分散補償回路(シングルタップ遅延線及び31タップFFE)を採用した50kmPAM4伝送のBER対受信光電力を示す。図6(b)では,比較のためシングルタップ遅延線を用いない,電気分散補償のみの場合のBER特性も示されている。光電融合型分散補償を用いる場合,入力電力は3dBm以上で6.7% HD-FECの閾値BERを達成できている。一方,光前処理を用いない場合,3倍の回路規模をもつDFEを用いても,閾値BERを達成できていない。 FIG. 6(b) shows the BER versus received optical power of 50 km PAM4 transmission employing an optoelectronic integrated dispersion compensation circuit (single-tap delay line and 31-tap FFE). For comparison, FIG. 6(b) also shows the BER characteristics in the case of only electrical dispersion compensation without using a single-tap delay line. When optoelectronic integrated dispersion compensation is used, the threshold BER of 6.7% HD-FEC can be achieved with an input power of 3 dBm or more. On the other hand, when optical preprocessing is not used, the threshold BER cannot be achieved even if a DFE with three times the circuit size is used.

また,図6(c)は,光電融合型分散補償を用いた80km(ZR)60Gb/sPAM2伝送のBER対FFEタップ長である。シングルタップ遅延線と電気分散補償を組み合わせることで,23タップのFFEのみでKP4 FECの閾値BERを達成している。また図6(c)では,80kmと同じ光前処理回路を用いた50km伝送60Gb/sPAM2伝送のBER特性についても示している。特に光学系の変更なく,13タップFFEのみで閾値BERを達成している。
Further, FIG. 6(c) shows the BER versus FFE tap length of 80 km (ZR) 60 Gb/s PAM2 transmission using optoelectronic integrated dispersion compensation. By combining a single-tap delay line and electrical dispersion compensation, the threshold BER of KP4 FEC is achieved with only a 23-tap FFE. Furthermore, FIG. 6(c) also shows the BER characteristics of 50 km transmission and 60 Gb/s PAM2 transmission using the same optical pre-processing circuit as that for 80 km. The threshold BER was achieved only with a 13-tap FFE without any particular changes to the optical system.

考察
実験より,電気分散補償回路の複雑化の要因となるファイバ分散に起因する不安定零―極点の発生が,簡便なシングルタップ遅延線により効率的に回避できること,またそれにより,31タップ程度の軽量なFFEにより所望のBER特性が達成可能となることが実証さ,本発明の光電融合型分散補償技術の有効性が示された。光電融合型分散補償にもちいる光遅延線やFFEの出力信号特性の解析解は比較的容易に導出可能であることから,光電融合型分散補償回路の最適設計は解析解に基づいて事前に行うことも可能である.
Discussion and experiments have shown that the occurrence of unstable zero-pole points due to fiber dispersion, which is a factor in complicating electrical dispersion compensation circuits, can be efficiently avoided by using a simple single-tap delay line, and that it is possible to efficiently avoid the occurrence of unstable zero-pole points caused by fiber dispersion, which is a factor that complicates electrical dispersion compensation circuits. It was demonstrated that the desired BER characteristics can be achieved with a lightweight FFE, and the effectiveness of the optoelectronic integrated dispersion compensation technology of the present invention was demonstrated. Since it is relatively easy to derive analytical solutions for the output signal characteristics of optical delay lines and FFEs used in optoelectronic dispersion compensation, the optimal design of optoelectronic dispersion compensation circuits should be done in advance based on the analytical solutions. It is also possible.

この発明は,情報通信産業において利用されうる。
この発明の分散補償装置における電気分散補償回路は,既存の Ethernet(登録商標)向けPAM4送受信機の信号処理回路と共通部分が多い。また,分散補償装置における光前処理回路3は数mm程度のパッシブな光導波路で実装できる。このため,この発明の分散補償装置は,既存送受信機のファイバコネクタ部分に遅延干渉計モジュールを装着するだけで,既存送受信機の大幅な改修なしに,延伸化を実現するような用途が期待される。
This invention can be used in the information and communication industry.
The electrical dispersion compensation circuit in the dispersion compensator of the present invention has many parts in common with the signal processing circuit of an existing PAM4 transceiver for Ethernet (registered trademark). Further, the optical pre-processing circuit 3 in the dispersion compensator can be implemented with a passive optical waveguide of about several mm. Therefore, the dispersion compensator of the present invention is expected to be used to realize extension without major modification of existing transceivers by simply attaching a delay interferometer module to the fiber connector part of an existing transceiver. Ru.

1 光ファイバ通信信号の分散補償装置
3 光前処理回路
5 光ファイバ
7 電気分散補償回路
9 光電処理回路最適化部
11 強度分離部
13 位相調整部
15 遅延調整部
17 合波部
1 Dispersion compensation device for optical fiber communication signals 3 Optical preprocessing circuit 5 Optical fiber 7 Electrical dispersion compensation circuit 9 Photoelectric processing circuit optimization section 11 Intensity separation section 13 Phase adjustment section 15 Delay adjustment section 17 Multiplexing section

Claims (6)

光ファイバ通信信号の分散補償方法であって,
光前処理回路(3)が,光ファイバ(5)を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための光前処理工程と,
電気分散補償回路(7)が,前記前処理後の光信号に対して分散補償処理を行う後処理工程と,
を含む,方法。
A dispersion compensation method for optical fiber communication signals, the method comprising:
an optical pre-processing step in which the optical pre-processing circuit (3) branches and interferes the optical signal transmitted through the optical fiber (5) to obtain a pre-processed optical signal;
a post-processing step in which the electrical dispersion compensation circuit (7) performs dispersion compensation processing on the optical signal after the pre-processing;
Including, method.
請求項1に記載の方法であって,
光電処理回路最適化部(9)が,前記後処理工程の出力信号の品質に基づいて,前記光前処理回路(3)及び前記電気分散補償回路(7)の駆動条件を最適化する駆動条件最適化工程をさらに含む,
方法。
The method according to claim 1,
Driving conditions under which the photoelectric processing circuit optimization unit (9) optimizes the driving conditions of the optical pre-processing circuit (3) and the electric dispersion compensation circuit (7) based on the quality of the output signal of the post-processing step. Further includes an optimization process,
Method.
請求項2に記載の方法であって,
前記光電処理回路最適化部(9)が,前記後処理工程の出力信号の品質又は当該品質の解析モデルによる予測に基づいて,前記光前処理回路(3)における光信号分岐数及び干渉方法,並びに前記電気分散補償回路(7)の加減回路数及び乗除回路数を求める設計最適化工程をさらに含む方法。
The method according to claim 2,
The photoelectric processing circuit optimization unit (9) determines the number of optical signal branches and the interference method in the optical pre-processing circuit (3) based on the quality of the output signal of the post-processing step or the prediction of the quality by an analytical model; and a method further comprising a design optimization step of determining the number of addition/subtraction circuits and the number of multiplication/division circuits of the electric dispersion compensation circuit (7).
請求項1に記載の方法であって,前記光ファイバ(5)を伝送した光信号は,光強度変調方式に基づく50Gbps/レーン以上の広帯域伝送により,20km以上の光ファイバ(5)を伝送した光信号である,方法。 2. The method according to claim 1, wherein the optical signal transmitted through the optical fiber (5) is transmitted over the optical fiber (5) over a distance of 20 km or more by broadband transmission of 50 Gbps/lane or more based on an optical intensity modulation method. A method that is an optical signal. 光ファイバ通信信号の分散補償装置(1)であって,
光ファイバ(5)を伝送した光信号を分岐及び干渉させ,前処理後の光信号を得るための光前処理回路(3)と,
前記前処理後の光信号に対して分散補償処理を行うための電気分散補償回路(7)と,
前記電気分散補償回路(7)からの出力信号の品質又は当該品質の解析モデルによる予測に基づいて,前記光前処理回路(3)及び前記電気分散補償回路(7)の駆動条件を最適化する光電処理回路最適化部(9)と,を有する,
分散補償装置(1)。
A dispersion compensation device (1) for optical fiber communication signals,
an optical preprocessing circuit (3) for branching and interfering the optical signal transmitted through the optical fiber (5) to obtain a preprocessed optical signal;
an electric dispersion compensation circuit (7) for performing dispersion compensation processing on the preprocessed optical signal;
Optimizing the driving conditions of the optical pre-processing circuit (3) and the electrical dispersion compensation circuit (7) based on the quality of the output signal from the electrical dispersion compensation circuit (7) or the prediction of the quality by an analytical model. a photoelectric processing circuit optimization section (9);
Dispersion compensator (1).
請求項5に記載の分散補償装置(1)であって,
前記光前処理回路(3)は,
前記光ファイバ(5)を伝送した光信号を所望の強度比で分離する強度分離部(11)と,
前記強度分離部(11)が分離した光信号の位相を調整する位相調整部(13)と,
前記強度分離部(11)が分離した光信号の遅延を調整する遅延調整部(15)と,
前記強度分離部(11)が分離し,前記位相調整部(13)及び遅延調整部(15)により位相及び遅延が調整された光信号を合波する合波部(17)とを有する,
分散補償装置(1)。

The dispersion compensator (1) according to claim 5,
The optical pre-processing circuit (3) includes:
an intensity separation unit (11) that separates the optical signal transmitted through the optical fiber (5) at a desired intensity ratio;
a phase adjustment section (13) that adjusts the phase of the optical signal separated by the intensity separation section (11);
a delay adjustment section (15) that adjusts the delay of the optical signal separated by the intensity separation section (11);
The intensity separation unit (11) is separated and has a combining unit (17) that combines optical signals whose phases and delays have been adjusted by the phase adjustment unit (13) and the delay adjustment unit (15).
Dispersion compensator (1).

JP2022075099A 2022-04-28 2022-04-28 Dispersion compensation method and dispersion compensation device of optical fiber communication signal Pending JP2023163890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022075099A JP2023163890A (en) 2022-04-28 2022-04-28 Dispersion compensation method and dispersion compensation device of optical fiber communication signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022075099A JP2023163890A (en) 2022-04-28 2022-04-28 Dispersion compensation method and dispersion compensation device of optical fiber communication signal

Publications (1)

Publication Number Publication Date
JP2023163890A true JP2023163890A (en) 2023-11-10

Family

ID=88652155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022075099A Pending JP2023163890A (en) 2022-04-28 2022-04-28 Dispersion compensation method and dispersion compensation device of optical fiber communication signal

Country Status (1)

Country Link
JP (1) JP2023163890A (en)

Similar Documents

Publication Publication Date Title
CN104170283B (en) Optical sender, photoreceiver, optical transmission system and the method increasing system signal noise ratio
US11418259B2 (en) Apparatus and method for analog electronic fiber dispersion and bandwidth pre-compensation (EDPC) for use in 50 Gbps and greater pamn optical transceivers
JP6458733B2 (en) Optical receiver, optical transmission system and optical receiving method
US20140086594A1 (en) Optical receiver having a signal-equalization capability
Sasai et al. Digital backpropagation for optical path monitoring: Loss profile and passband narrowing estimation
JP6467362B2 (en) Optical transmission system
Asif et al. Logarithmic step-size based digital backward propagation in N-channel 112Gbit/s/ch DP-QPSK transmission
WO2012067878A9 (en) Multi-stage polarization mode dispersion compensation
JP6242907B2 (en) Apparatus and method for acquiring data from WDM signal, transmitter and method for transmitting WDM signal, and WDM system
JP2000031904A (en) Compensation of optical dispersion
JP2023163890A (en) Dispersion compensation method and dispersion compensation device of optical fiber communication signal
Woodward et al. Demonstration of an electronic dispersion compensator in a 100-km 10-Gb/s ring network
Figueiredo et al. Investigation of 56-GBd PAM4 bandwidth and chromatic dispersion limitations for data center applications
Mori et al. Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission
CN115412175A (en) Optical equalization equipment, receiving equipment and communication system
Jorge et al. Transmission of PAM4 signals in ICXT-impaired intra-datacenter connections with PAM2 signal interference
Xue et al. 4× 25-Gb/s NRZ-OOK signals transmission over a 160-km single-mode fiber using 10G-class DML and photodiode
Xiang et al. Performance comparison of DA-TDE and CMA for MIMO equalization in multimode multiplexing systems
JP4758172B2 (en) Adaptive optical equalization and coupled optoelectronic equalizer structure for color and / or polarization mode dispersion compensation
Seiler et al. Power efficiency improvements in coherent O-band data center interconnects
Randel et al. Spectrally efficient polymer optical fiber transmission
Staffoli et al. Recovery of 40 Gbps PAM4 in a 50 km optical link through a delayed complex perceptron
Yan et al. PSO-Algorithm-Controlled Optimized Optical Equalizer for Bandwidth-Limited Transmitter and Receiver in Short-Reach PAM-4 Data Center Interconnects
Zhu et al. C-band single-lane 100G ER and 50G ZR PAM transmissions based on joint optical-electrical feedforward equalization (OE-FFE) with record-low complexity
Chang Recent progress of EDC commercialization in addressing datacom and telecom challenges to enable high-speed optical enterprise, metro and long-haul networks