JP2023160925A - Top blowing lance for converter dephosphorization treatment and converter blowing method - Google Patents

Top blowing lance for converter dephosphorization treatment and converter blowing method Download PDF

Info

Publication number
JP2023160925A
JP2023160925A JP2023143335A JP2023143335A JP2023160925A JP 2023160925 A JP2023160925 A JP 2023160925A JP 2023143335 A JP2023143335 A JP 2023143335A JP 2023143335 A JP2023143335 A JP 2023143335A JP 2023160925 A JP2023160925 A JP 2023160925A
Authority
JP
Japan
Prior art keywords
lance
jet
converter
blowing
top blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023143335A
Other languages
Japanese (ja)
Inventor
裕美 村上
Hiromi Murakami
新吾 佐藤
Shingo Sato
悠喬 茶谷
Harutaka Chatani
向平 加藤
Kohei Kato
秀光 根岸
Hidemitsu Negishi
高太郎 田中
Kotaro Tanaka
涼 川畑
Ryo Kawabata
直樹 菊池
Naoki Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2023143335A priority Critical patent/JP2023160925A/en
Publication of JP2023160925A publication Critical patent/JP2023160925A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a top blowing lance capable of suppressing the occurrence of slopping and a converter blowing method using the top blowing lance.SOLUTION: A top blowing lance for converter dephosphorization processing has a plurality of peripheral holes arranged in rotational symmetry with respect to the lance axis, and the jet straightness γ defined by equation (1) below is 0.31 or more and 0.50 or less (excluding 0.37 or less). Provided also is a converter blowing method using the top blowing lance. γ=Xjet/Xlinear...(1) where Xi represents the distance from the lance axis projection position at the bath surface equivalent position under condition i, the subscript "jet" represents the center position of the jet deflected by the interference, and the subscript "linear" represents the position on the extension of the circumferential hole center axis line.SELECTED DRAWING: Figure 3

Description

本発明は、酸素を用いて溶鉄を酸化脱りん吹錬する転炉脱りん処理用の上吹きランスおよびそれを用いた転炉の吹錬方法に関する。 The present invention relates to a top blowing lance for converter dephosphorization treatment in which molten iron is oxidized and dephosphorized using oxygen, and a converter blowing method using the top blowing lance.

近年、銑鋼一貫製鉄所においてはコスト面及び品質面で有利であることから、転炉での脱炭精錬の前に予備処理工程として脱りん処理を実施し、あらかじめ溶鉄中のりんを除去するプロセスが広く行われている。これは、脱りん反応は精錬温度が低いほど進行しやすく、溶鋼段階よりも溶鉄段階のほうが脱りん反応は進行しやすく少ない副原料で脱りん精錬を行うことができるためである。 In recent years, in integrated pig steel works, dephosphorization is carried out as a preliminary treatment process to remove phosphorus from the molten iron before decarburization refining in the converter because it is advantageous in terms of cost and quality. The process is widely practiced. This is because the dephosphorization reaction progresses more easily as the refining temperature is lower, and the dephosphorization reaction progresses more easily in the molten iron stage than in the molten steel stage, and dephosphorization refining can be carried out with fewer auxiliary materials.

この溶鉄の脱りん処理は、生石灰などのCaOを主成分とする脱りん用媒溶材を添加し、かつ酸素ガスや酸化鉄などの酸素源を脱りん剤として添加する。溶鉄の脱りん現象を以下の反応式(3)に示す。
2[P]+2(FeO)+3(CaO・FeO)(l)
→ (3CaO・P)(s)+5[Fe] ・・・(3)
ここで、[M]は溶鉄中の元素Mを表し、(S)はスラグ中の化学物質Sを表す。
(3)式よりわかる通り、脱りん反応は酸化反応であり、酸化鉄(FeO)の存在が不可欠である。また生成したりん酸化物(P)は不安定であるので、石灰(CaO)と反応させて(3CaO・P)として、スラグ中に安定化させる必要がある。そのため、脱りんには、石灰が同様に不可欠である。スラグ中の(FeO)は上吹きランスから噴出される酸素含有ガスが鉄浴面に吹き付けられる面である火点に吸収され、鉄を酸化することで生成する。また、りん酸化物と反応する石灰は、投入された時点では融点が2500℃以上であり、炉内温度1300~1500℃に比べ圧倒的に融点が高く反応効率が著しく低位である。しかしながら、酸化鉄と反応して低融点のカルシウムフェライト(CaO・FeO)を形成することで滓化し、脱りん反応に寄与することになる。上記のことから酸化鉄は、直接Pを酸化するだけでなく、石灰の滓化を通じて脱りん反応効率の向上にも寄与することがわかる。
In this dephosphorization treatment of molten iron, a dephosphorizing solvent mainly composed of CaO, such as quicklime, is added, and an oxygen source such as oxygen gas or iron oxide is added as a dephosphorizing agent. The dephosphorization phenomenon of molten iron is shown in the following reaction formula (3).
2[P]+2(FeO)+3(CaO・FeO)(l)
→ (3CaO・P 2 O 5 ) (s) + 5 [Fe] ... (3)
Here, [M] represents the element M in the molten iron, and (S) represents the chemical substance S in the slag.
As can be seen from equation (3), the dephosphorization reaction is an oxidation reaction, and the presence of iron oxide (FeO) is essential. Furthermore, since the generated phosphorus oxide (P 2 O 5 ) is unstable, it must be stabilized in the slag by reacting with lime (CaO) to form (3CaO·P 2 O 5 ). Lime is therefore equally essential for dephosphorization. (FeO) in the slag is generated when the oxygen-containing gas ejected from the top blowing lance is absorbed by the fire point, which is the surface on which the iron bath surface is blown, and oxidizes the iron. Furthermore, lime that reacts with phosphorous oxide has a melting point of 2,500°C or higher at the time it is added, which is overwhelmingly higher than the furnace temperature of 1,300 to 1,500°C, and the reaction efficiency is extremely low. However, it reacts with iron oxide to form low-melting-point calcium ferrite (CaO.FeO), which turns into slag and contributes to the dephosphorization reaction. From the above, it can be seen that iron oxide not only directly oxidizes P, but also contributes to improving the dephosphorization reaction efficiency by turning lime into slag.

上述の通り、溶鉄の脱りん処理においてCaOの滓化が重要な役割を担っているため、CaOの滓化を促すため、溶鉄に酸素噴流が直接接触し、絶えずFeOが供給されている火点へ石灰を供給することでCaOの滓化を促進する手法が採用されることが多い。 As mentioned above, the formation of CaO into slag plays an important role in the dephosphorization process of molten iron, so in order to promote the formation of CaO into slag, an oxygen jet is brought into direct contact with the molten iron, and FeO is continuously supplied at a hot point. A method of promoting slag formation of CaO by supplying lime is often adopted.

例えば、特許文献1では、転炉内の溶鉄に対してCaO源を主体とする脱りん用媒溶材を添加し、上吹きランスから溶鉄浴面に酸素ガスの吹き付けを行う脱りん処理方法において、上吹きランスからの酸素ガスの供給速度を1.5-5.0Nm/min/溶鉄-tonとしスラグ中FeO濃度を高く維持し、前記脱りん用媒溶材のうち少なくとも一部が酸素ガスの吹き付けによって溶鉄浴面に生ずる火点に吹き付けられるようにすることでカルシウムフェライトの形成を促進し効率よく脱りんする方法が提案されている。 For example, Patent Document 1 discloses a dephosphorization treatment method in which a dephosphorizing medium mainly containing a CaO source is added to molten iron in a converter, and oxygen gas is blown onto the molten iron bath surface from a top blowing lance. The supply rate of oxygen gas from the top blowing lance is set at 1.5-5.0 Nm 3 /min/ton of molten iron to maintain a high FeO concentration in the slag, and at least a portion of the dephosphorizing medium is made of oxygen gas. A method has been proposed in which the formation of calcium ferrite is promoted and dephosphorization is carried out efficiently by spraying onto the hot spot that occurs on the surface of the molten iron bath.

また、特許文献2では、上吹きランスの主孔の平均傾角が13°以上とされており、また隣り合う主孔からの噴流間干渉率は30~60%の範囲内とし噴流を合体させることで減衰の少ない超音速ジェットが得られるものでありながら、媒溶材の吹き付けを行ってもノズルの損耗が少なくなるような設計がなされている。特許文献2では、粉体状媒溶材は合体した噴流と同様の軌跡をとり、火点へ効果的に投射できるとされている。 Furthermore, in Patent Document 2, the average inclination angle of the main holes of the top blowing lance is set to be 13° or more, and the interference rate between jets from adjacent main holes is set to be within the range of 30 to 60%, and the jets are combined. Although it is possible to obtain a supersonic jet with little attenuation, the nozzle is designed so that there is less wear and tear on the nozzle even when spraying a solvent material. Patent Document 2 states that the powdered solvent takes a trajectory similar to that of the combined jet and can be effectively projected to the fire point.

特開2008‐266666号公報Japanese Patent Application Publication No. 2008-266666 特開2006‐336033号公報Japanese Patent Application Publication No. 2006-336033

しかしながら、上記従来技術には以下の問題がある。
特許文献1に開示の技術では、送酸量に適正範囲を指定しているものの、上記適正範囲は生成したFeOが脱りん・脱炭反応のために消費され続けることを前提としており、上記前提を満たすための言及はなされていない。
However, the above conventional technology has the following problems.
Although the technology disclosed in Patent Document 1 specifies an appropriate range for the amount of oxygen supplied, the above-mentioned appropriate range is based on the premise that the generated FeO will continue to be consumed for dephosphorization and decarburization reactions, and the above-mentioned premise is There is no mention of satisfying the requirements.

生成したFeOが脱りん・脱炭反応に寄与し消費されるづけるためには反応物である溶鉄中のPやCがFeOの存在するスラグメタル界面、あるいは火点領域へ供給される必要がある。ところが、上吹きランス噴流の浴面動圧が不足し、溶鉄の攪拌が不足するとその供給が滞り、脱りん・脱炭反応が低位となる。そのため、FeOの消費が少なくなり、スラグ中に過剰にたまる。この問題を回避するため、ランスを設計する際は操業ごとに目標とする浴面動圧が決まっており、上記を達成しうるようにランス形状を設定することが一般的である。 In order for the generated FeO to contribute to the dephosphorization and decarburization reactions and be consumed, the reactants P and C in the molten iron must be supplied to the slag-metal interface where FeO exists or to the hot spot region. . However, if the bath surface dynamic pressure of the top-blown lance jet is insufficient and the molten iron is not sufficiently stirred, its supply will be delayed, and the dephosphorization and decarburization reactions will be at a low level. Therefore, FeO is consumed less and excessively accumulates in the slag. To avoid this problem, when designing a lance, the target bath surface dynamic pressure is determined for each operation, and the lance shape is generally set so as to achieve the above target.

しかし、実操業において設計通りの浴面動圧を恒常的に得ることは困難である。ランスから吐出された噴流は雰囲気ガスを巻き込み流速の減衰を続けながら浴面へ達するため、浴面動圧を検討する際にはランスから浴面までの距離(ランス高さ)が重要な因子として寄与する。一方で実転炉では冷鉄源として投入したスクラップの溶け残りや炉内付着地金等に起因して、炉内の形状・容積が時々刻々変化する。結果、浴面位置が設計位置に対し100~300mm程度増減することが頻繁に発生する。特に浴面位置が低下するような場合では浴面の低下分だけランスから浴面までの距離が大きくなって噴流が余分に減衰し、浴面動圧不足となる。このときスラグ中には反応に寄与しない余剰のFeOが大量に存在することになる。 However, in actual operation, it is difficult to constantly obtain the designed bath surface dynamic pressure. The jet discharged from the lance entrains atmospheric gas and reaches the bath surface while the flow rate continues to decrease, so when considering the bath surface dynamic pressure, the distance from the lance to the bath surface (lance height) is an important factor. Contribute. On the other hand, in an actual converter, the shape and volume inside the furnace change from time to time due to unmelted scrap input as a source of cold iron and metal deposits inside the furnace. As a result, the bath surface position frequently increases or decreases by about 100 to 300 mm from the designed position. In particular, when the bath surface position is lowered, the distance from the lance to the bath surface increases by the amount of the lowering of the bath surface, causing extra attenuation of the jet flow and insufficient dynamic pressure on the bath surface. At this time, there will be a large amount of surplus FeO that does not contribute to the reaction in the slag.

上記のような環境では、スラグ中に懸濁する粒鉄中のCと脱りんや脱炭に寄与しない過大なFeOとの間で反応が進行し大量のCOガスがスラグ中に生じる。その結果、スラグが過剰に泡立ち、炉口からあふれだすスロッピングと呼ばれる現象が発生する。スロッピングによりあふれたスラグは炉下に飛散し出湯・排滓用の鍋台車用線路をふさぐため、頻繁に炉下を掃除する必要が発生し操業を阻害する。ゆえに、上吹きランスからの酸素含有ガスの噴射においては、適量のFeOを供給すると同時に適切に溶鉄中PやCとの反応を進行させ続けなければならない。 In the above environment, a reaction proceeds between C in the iron particles suspended in the slag and an excessive amount of FeO that does not contribute to dephosphorization or decarburization, and a large amount of CO gas is generated in the slag. As a result, the slag foams excessively and overflows from the furnace mouth, a phenomenon called slopping. The overflowing slag from slopping scatters under the furnace and blocks the tracks for the pot trucks used for tapping and draining slag, making it necessary to frequently clean the area under the furnace and hindering operations. Therefore, when injecting oxygen-containing gas from the top-blowing lance, it is necessary to supply an appropriate amount of FeO and at the same time continue to appropriately continue the reaction with P and C in the molten iron.

特許文献1では、脱りんに必要となるFeOの供給量を富化するために必要な酸素供給量に関し言及しているが、上述の通り操業の中で湯面位置が低下し、ランス高さが高くなり攪拌動力が不足した際、溶鉄中のPやCとの反応が滞る問題に対する対策がなされていない。この問題は操業阻害因子となるスロッピングを引き起こし、生産性を著しく悪化させるため重要な課題である。 Patent Document 1 refers to the amount of oxygen supplied to enrich the amount of FeO required for dephosphorization, but as mentioned above, the level of the hot water decreases during operation, and the lance height increases. No countermeasures have been taken to deal with the problem of stagnation of reaction with P and C in molten iron when the stirring power becomes insufficient due to high molten iron. This problem is an important issue because it causes slopping, which is a factor that inhibits operation, and significantly deteriorates productivity.

上記課題の解決法として、ランス高さに対する噴流の減衰が小さな上吹きランスが開発されている。たとえば、特許文献2に開示の技術では、多孔ノズルから吐出される噴流同士をあえて干渉・偏向するよう設計し合体噴流とし減衰の少ないジェットとすることで、前記ランス高さの影響を受けず狙いの動圧を安定的に得ている。しかし、特許文献2に開示の方法では、ランスノズルから供給される粉体が噴流と同様の軌跡を得られる根拠が示されていない。そのため、酸化性ガス噴流が溶鉄に吸収されてFeOが生成される領域と、脱りんに必要な副原料である脱りん剤が到達する領域が異なるおそれがある。したがって、FeO、PおよびCaOの3者の共存を必要とする上掲式(3)の反応式の進行が悪くなることが課題となる。特許文献2に示すようなランスでは、密度が大きく慣性力の大きな粉体状脱りん剤は噴流よりも直進性が高く、噴流が干渉・偏向したとしても、噴流への追従性が悪くなり、反応に寄与しない脱りん剤が多く発生する。そのため、脱りん反応効率も悪化する。 As a solution to the above-mentioned problems, a top-blown lance has been developed in which the jet stream is attenuated less with respect to the lance height. For example, in the technology disclosed in Patent Document 2, the jets discharged from the multi-hole nozzle are intentionally designed to interfere and deflect each other, and the jets are combined into a jet with less attenuation. Dynamic pressure is stably obtained. However, in the method disclosed in Patent Document 2, there is no evidence that the powder supplied from the lance nozzle can obtain a trajectory similar to that of a jet stream. Therefore, the region where the oxidizing gas jet is absorbed by the molten iron and FeO is generated may be different from the region where the dephosphorizing agent, which is an auxiliary raw material necessary for dephosphorization, reaches. Therefore, the problem is that the reaction formula (3) above, which requires the coexistence of the three elements FeO, P, and CaO, progresses poorly. In the lance shown in Patent Document 2, the powder dephosphorizing agent has a high density and a large inertia force, and has a higher straightness than the jet flow, so even if the jet flow interferes or is deflected, the followability to the jet flow is poor, A large amount of dephosphorization agent is generated that does not contribute to the reaction. Therefore, the dephosphorization reaction efficiency also deteriorates.

本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、連続操業の中で変動し、かつ制御困難なパラメーターであるランス高さの影響を最小化しスロッピングの発生を抑制しうることを達成したうえで、さらに脱りん剤の反応効率の高い上吹きランスを提供するとともに、その上吹きランスを使用した転炉の吹錬方法を提案することにある。 The present invention was made in view of the above circumstances, and its purpose is to minimize the influence of lance height, which is a parameter that fluctuates during continuous operation and is difficult to control, and to improve slopping. The object of the present invention is to provide a top-blowing lance that can suppress the generation of dephosphorizing agents, and also to provide a top-blowing lance with high dephosphorizing agent reaction efficiency, as well as to propose a converter blowing method using the top-blowing lance.

上記課題を有利に解決する本発明の転炉脱りん処理用上吹きランスは、ランス軸に対し回転対称に配置された複数の周孔を有し、下記の(1)式(式中、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、添字jetは、干渉によって偏向させられた噴流の中心位置を示し、添字linearは、周孔中心軸線の延長上の位置を表す。)で定義される噴流直進度γが0.31以上0.50以下(0.37以下を除く)であることを特徴とする。
γ=Xjet/Xlinear ・・・(1)
The top blowing lance for converter dephosphorization treatment of the present invention, which advantageously solves the above problems, has a plurality of circumferential holes arranged rotationally symmetrically with respect to the lance axis, and has the following formula (1) (where Xi In condition i, represents the distance from the lance axis projection position on the surface equivalent to the bath surface, the subscript jet represents the center position of the jet deflected by interference, and the subscript linear represents the distance on the extension of the central axis of the peripheral hole. It is characterized in that the jet flow straightness γ defined by (representing the position of ) is 0.31 or more and 0.50 or less (excluding 0.37 or less).
γ=X jet /X linear ...(1)

なお、本発明にかかる転炉脱りん処理用上吹きランスは、転炉内の溶鉄に上吹きランスから酸素ガスとともにCaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に吹き付けて、溶鉄からりんを酸化除去するための上吹きランスであって、下記の(2)式で定義される媒溶材のラップ率λが、0.19以上となるよう設計されていること、がより好ましい解決手段になり得るものと考えられる。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
The top blowing lance for converter dephosphorization treatment according to the present invention sprays a dephosphorization medium mainly composed of CaO along with oxygen gas from the top blowing lance onto the molten iron in the converter. , a top blowing lance for oxidizing and removing phosphorus from molten iron, which is designed so that the wrap ratio λ of the solvent material defined by the following equation (2) is 0.19 or more. It is considered that this can be a preferable solution.
λ = (Total weight of solvent thrown into the fire point) / (Total weight of supplied solvent) ... (2)

上記課題を有利に解決する転炉吹錬方法は、上吹きランスを用い、該上吹きランスから酸素ガスを吹き付けて溶鉄からりんを酸化除去する転炉吹錬方法であって、前記上吹きランスは、ランス軸に対し回転対称に配置された複数の周孔を有し、上記の(1)式で定義される噴流直進度γを0.31以上0.50以下(0.37以下を除く)とすることを特徴とする。 A converter blowing method that advantageously solves the above problems is a converter blowing method in which a top blowing lance is used and oxygen gas is blown from the top blowing lance to oxidize and remove phosphorus from molten iron. has a plurality of circumferential holes arranged rotationally symmetrically with respect to the lance axis, and has a jet straightness γ defined by equation (1) above of 0.31 or more and 0.50 or less (excluding 0.37 or less). ).

なお、本発明にかかる転炉吹錬方法は、転炉内の溶鉄に上吹きランスから酸素ガスを吹き付けるとともに、CaOを主成分とする脱りん用媒溶材を転炉内の溶鉄に供給して溶鉄からりんを酸化除去する転炉吹錬方法であって、前記脱りん用媒溶材の少なくとも一部を上吹きランスから転炉内の溶鉄浴面に向けて吹き付け添加するにあたり、上記の(2)式で定義される媒溶材のラップ率λを、0.19以上とすること、がより好ましい解決手段になり得るものと考えられる。 The converter blowing method according to the present invention includes blowing oxygen gas from a top blowing lance onto the molten iron in the converter, and supplying a dephosphorizing medium containing CaO as a main component to the molten iron in the converter. A converter blowing method for oxidizing and removing phosphorus from molten iron, in which at least a part of the dephosphorizing medium is added by spraying from an upper blowing lance toward the molten iron bath surface in the converter, the above (2) ) It is considered that a more preferable solution may be to set the wrap rate λ of the solvent material to 0.19 or more.

本発明によれば、多孔ランスから供給される酸素ジェットを積極的に干渉させ、合体噴流とし、ランス高さの変動による減衰の小さな噴流を得ることでスロッピングを抑制しうる。その結果、安定して脱りん処理を行うことができる。 According to the present invention, slopping can be suppressed by actively interfering with the oxygen jets supplied from the porous lance to form a combined jet to obtain a jet with little attenuation due to variations in the lance height. As a result, dephosphorization can be performed stably.

また、加えて、好ましくは、ノズル形状・粉体媒溶材粒度・送酸量などの設計項目のパラメーターが酸化性ガスと粉体媒溶材の軌道へ与える影響を事前に推定し、噴流合体下において火点へ到達する媒溶材量を最大化しうるランスを提供できる。その結果、スロッピングの恐れがなく安定操業可能であり、かつ、副原料コストの抑制が達成される。 In addition, it is preferable to estimate in advance the influence of design parameters such as nozzle shape, particle size of the powder medium, and amount of oxygen supplied on the trajectory of the oxidizing gas and the powder medium, and to It is possible to provide a lance that can maximize the amount of solvent that reaches the flash point. As a result, stable operation is possible without fear of slopping, and the cost of auxiliary raw materials can be suppressed.

本発明の一実施形態にかかる上吹きランス先端の縦断面の拡大模式図である。FIG. 2 is an enlarged schematic diagram of a longitudinal section of the top blow lance tip according to an embodiment of the present invention. 図1に示す周孔のノズル形状を拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of the nozzle shape of the circumferential hole shown in FIG. 1. FIG. 本発明の一実施形態にかかる噴流直進度γの概念を示す模式図である。FIG. 3 is a schematic diagram illustrating the concept of jet straightness γ according to an embodiment of the present invention. 数値解析により得た、浴面相当面上の火点分布に対する石灰の分布を示す図である。It is a figure showing the distribution of lime with respect to the fire point distribution on the surface equivalent to the bath surface obtained by numerical analysis.

以下、本発明を好ましい実施形態に基づき説明するにあたり、まず、本発明に至った検討結果について説明する。図1は、本発明の一実施形態にかかる上吹きランス先端部2の縦断面の拡大模式図である。図2は、図1に示す周孔のノズル部3形状を拡大した断面図である。 Hereinafter, in explaining the present invention based on preferred embodiments, first, the study results that led to the present invention will be explained. FIG. 1 is an enlarged schematic longitudinal cross-sectional view of a top blow lance tip 2 according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the shape of the nozzle portion 3 of the circumferential hole shown in FIG.

従来から、転炉脱りん処理用の上吹きランス1では、上掲(3)式にて表現される脱りん反応の促進を目的とし、FeOの生成を促す設計をしている。具体的には、(A)低浴面動圧によりスラグ中へのFeO蓄積量を高め、(B)鉄浴面に酸素が吸収される火点の面積を拡大するようにしている。つまり、上記AおよびBの条件を満たすため、複数個のノズルを有する多孔ランスを用いてジェットを分散させ、衝突圧を低減し、かつ、火点面積を拡大しうることを目的としたランス設計がなされていた。なお、上吹きランス先端部2に複数個のノズルを設置する場合、中心位置(ランス軸と同軸)に設置されたノズルを中心孔、中心孔の周囲に設置されたノズルを周孔4と称している。周孔4はランス軸を中心として回転対称に均等に配置される。一方で、ランスの孔数を増やして、ノズル間隔を狭めると、噴流どうしが相互に干渉し合体することが知られている。 Conventionally, the top blowing lance 1 for converter dephosphorization treatment has been designed to promote the production of FeO with the aim of promoting the dephosphorization reaction expressed by the above equation (3). Specifically, (A) the amount of FeO accumulated in the slag is increased by lowering the bath surface dynamic pressure, and (B) the area of the hot spot where oxygen is absorbed on the iron bath surface is expanded. In other words, in order to satisfy conditions A and B above, the lance design uses a porous lance with multiple nozzles to disperse jets, reduce collision pressure, and expand the flash point area. was being done. In addition, when multiple nozzles are installed on the top-blowing lance tip 2, the nozzle installed at the center position (coaxial with the lance axis) is called the center hole, and the nozzle installed around the center hole is called the peripheral hole 4. ing. The circumferential holes 4 are evenly arranged rotationally symmetrically about the lance axis. On the other hand, it is known that when the number of holes in the lance is increased and the nozzle spacing is narrowed, the jets interfere with each other and coalesce.

また、従来の設計では、ノズル間隔を大きくとり、噴流どうしの干渉を避け、かつ火点を大きくするためにノズル傾角θを大きくするランス設計も広くとられてきた。ここで、ノズル傾角θとは、上吹きランスの中心軸(ランス軸)11と、各周孔4の吐出方向中心軸42とのなす角である。なお、ノズル傾角θを過度に大きくすると、ランス先端部2から吐出された酸化性ガス噴流が直接転炉内壁に衝突し炉内レンガを著しく損耗させるため、ノズル傾角θには上限が存在する。上記のように、従来の転炉脱りん処理用の上吹きランス1は独立噴流型の多孔ランスを使用してきた。 Furthermore, in conventional designs, a lance design has been widely adopted in which the nozzle interval is increased to avoid interference between jets and the nozzle inclination angle θ is increased in order to increase the spark point. Here, the nozzle inclination angle θ is the angle formed between the central axis (lance axis) 11 of the top blowing lance and the central axis 42 of each circumferential hole 4 in the discharge direction. Note that if the nozzle inclination angle θ is excessively large, the oxidizing gas jet discharged from the lance tip 2 will directly collide with the inner wall of the converter, causing significant damage to the bricks in the furnace, so there is an upper limit to the nozzle inclination angle θ. As mentioned above, the conventional top blowing lance 1 for converter dephosphorization has used an independent jet type porous lance.

上記効果検討のため、発明者らは様々な形状の多孔ランスを用いて、340t規模の転炉を用いた脱りん吹錬試験を各ランスに対しそれぞれ40~80チャージ実施した。その際、酸化性ガス噴流の干渉度合いを定量評価するために、下記(1)式によって噴流直進度γを定義した。その概念を図3に示す。噴流直進度γは以下のように計算する。まず、酸素ジェットが直線的に進み偏向しないものとした場合に、酸化性ガス噴流中心の計算浴面到達位置(=ランス高さH相当位置100)、つまり、周孔中心軸42の延長線の浴面相当面100上位置と浴面相当面100上のランス軸11投影位置との間の距離(Xlinear)を分母とする。そして、噴流の干渉の影響を考慮して、数値流体解析にて算出した噴流中心101の浴面相当面100上位置と浴面相当面100上のランス軸11投影位置との間の距離(Xjet)を分子として表した数値である。噴流直進度γが高いほど噴流の独立性が高く、低いほど噴流が偏向し合体傾向が強くなっていることを表す。なお噴流の軌跡101を算出する数値流体解析はSTAR-CCM+を用いた。計算に当たり、上吹きランス1下端中心位置Oを原点とし、周孔出口41中心位置を含む水平線をX軸と置き、ランス軸11を垂直下向きにZ軸と置いた。また、X軸上(Z=0)の噴流開始位置は、上吹きランス下端位置での周孔出口41中心をつなぐ円の直径Pの半分と置いた。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置101を示し、
添字linearは、周孔中心軸線42の延長上の位置を表す。
In order to study the above effects, the inventors used porous lances of various shapes and conducted a dephosphorization blowing test using a 340-ton converter with 40 to 80 charges for each lance. At this time, in order to quantitatively evaluate the degree of interference of the oxidizing gas jet, the jet straightness γ was defined by the following equation (1). The concept is shown in Figure 3. The jet straightness γ is calculated as follows. First, when it is assumed that the oxygen jet advances linearly and is not deflected, the calculated bath surface arrival position of the center of the oxidizing gas jet (=position 100 corresponding to lance height H), that is, the extension line of the peripheral hole central axis 42, The distance (X linear ) between the position on the bath surface equivalent surface 100 and the projected position of the lance shaft 11 on the bath surface equivalent surface 100 is taken as the denominator. Taking into account the influence of jet interference, the distance (X jet ) as a numerator. The higher the jet straightness γ, the higher the independence of the jets, and the lower the jet straightness γ, the stronger the tendency of the jets to deflect and coalesce. Note that STAR-CCM+ was used for computational fluid analysis to calculate the trajectory 101 of the jet flow. In the calculation, the center position O of the lower end of the top-blowing lance 1 was set as the origin, a horizontal line including the center position of the peripheral hole outlet 41 was set as the X-axis, and the lance shaft 11 was set vertically downward as the Z-axis. Further, the jet start position on the X axis (Z=0) was set at half the diameter P of the circle connecting the centers of the peripheral hole outlet 41 at the lower end position of the top blowing lance.
γ=X jet /X linear ...(1)
Here, Xi represents the distance from the lance axis projected position on the surface equivalent to the bath surface under condition i,
The subscript jet indicates the center position 101 of the jet deflected by interference,
The subscript linear represents a position on the extension of the peripheral hole center axis 42.

340t規模転炉での脱りん吹錬結果を実施した際、発明者らは噴流直進度γの高いランスほどスロッピング頻度が高くなる傾向を見出した。また、噴流直進度γの低いランスではスロッピングの発生頻度が低いことも併せて見出した。スロッピングの主たる原因が前述の通り上吹き噴流の動圧不足と考えると、噴流直進度の高いランスでは、吹錬時に設計浴面動圧以下に動圧が低下しているチャージが頻度として高かったことが推定される。これは上吹きランスから供給する酸素ガスが同じ総流量であっても、独立噴流とした場合のほうが噴流の表面積が大きく、雰囲気ガスを巻き込みやすくなることにより、噴流の減衰が顕著化して、ランス高さの影響に敏感になることが一因と考えられる。それに加え、吹錬ごとに炉内環境が変動し浴面高さが操業の中で時々刻々と変化して、設計値から外れた状態が発生しうることを合わせて考慮すれば定性的に説明可能である。 When carrying out dephosphorization blowing results in a 340-ton scale converter, the inventors found that the slopping frequency tended to be higher for lances with higher jet straightness γ. We also found that slopping occurs less frequently in lances with low jet straightness γ. Considering that the main cause of slopping is the lack of dynamic pressure in the top-blowing jet as mentioned above, in lances with a high jet straightness, there are many cases where the dynamic pressure drops below the design bath surface dynamic pressure during blowing. It is presumed that This is because even if the total flow rate of oxygen gas supplied from the top blowing lance is the same, when the jet is an independent jet, the surface area of the jet is larger and atmospheric gas is more likely to be drawn in, so the attenuation of the jet becomes more pronounced and the lance This is thought to be due to sensitivity to the effects of height. In addition, if we take into account the fact that the furnace environment fluctuates during each blowing process, and the bath surface height changes from moment to moment during operation, conditions that deviate from the design value may occur, this can be qualitatively explained. It is possible.

一般に浴面高さの測定にはサブランスを用いるが、サブランスでの浴面測定をしている時間の分、吹錬時間が延長するため、頻繁に実施することは生産性を著しく低下させる。安定して浴面高さを測定することが困難である以上、転炉脱りん処理用上吹きランスの具備条件としてランス高さの影響に鈍感であること、すなわち減衰しにくい噴流を満たす必要があると分かった。以上より、あえて噴流同士を干渉・合体させ減衰させにくくする合体噴流型の多孔ランスを採用するべきことを知見した。上記知見の確認のため試験結果より噴流の合体度を示す指標である噴流直進度γを低下させ噴流合体型ランスによる試験を実施したところ、噴流直進度γを0.50以下に設定するとスロッピング頻度を低減しうることを確認した。一方で噴流直進度を0.31よりも小さくした際、噴流が完全に合体し、単孔ノズル(中心孔のみのランス)と同様の挙動をとり制御しえない高浴面動圧をとなった。その結果、溶鉄の飛散が発生しランス地金付き等のトラブルが発生するおそれがあることがわかった。また0.31よりも小さくした水準では高浴面動圧の強すぎる攪拌力に起因し、生成したFeOが脱炭に消費されてしまい脱りん効率も悪化した。以上から噴流直進度γは0.31以上0.50以下の範囲とする必要があると判断した。 Generally, a sub-lance is used to measure the bath surface height, but since the blowing time is extended by the time spent measuring the bath surface with the sub-lance, frequent measurement will significantly reduce productivity. Since it is difficult to stably measure the bath surface height, the top-blowing lance for converter dephosphorization treatment must be insensitive to the influence of lance height, that is, it must satisfy a jet flow that is difficult to attenuate. I found out that there is. From the above, it was found that a combined jet type porous lance should be adopted, which makes it difficult for the jets to interfere with each other and combine to cause attenuation. In order to confirm the above findings, we conducted a test using a jet combination type lance by lowering the jet straightness γ, which is an index of the degree of jet coalescence, and found that when the jet straightness γ was set to 0.50 or less, slopping occurred. It was confirmed that the frequency could be reduced. On the other hand, when the straightness of the jet stream is made smaller than 0.31, the jet streams completely coalesce, resulting in a behavior similar to that of a single-hole nozzle (lance with only a center hole), resulting in uncontrollable high bath surface dynamic pressure. Ta. As a result, it was found that there was a risk of molten iron scattering and problems such as lance attachment. Further, at a level lower than 0.31, the generated FeO was consumed for decarburization due to the excessively strong stirring force of the high bath surface dynamic pressure, and the dephosphorization efficiency also deteriorated. From the above, it was determined that the jet straightness γ should be in the range of 0.31 or more and 0.50 or less.

CaOの滓化促進のために上吹きランスより酸化性ガスとともに石灰を含有する粉体状精錬媒溶材をFeO生成サイトである火点へ吹き付けるような操業を行う。このような操業に上記噴流合体型のランスを採用した際、噴流と石灰の軌道が異なることが懸念事項として挙げられた。これは低密度・低慣性力のため偏向しやすい噴流に対し密度が高く慣性力も大きな固体である粉体状媒溶材は直進性が高いことに起因する。上記を定量的に評価するため、本発明では下記(2)式で定義するラップ率λを採用した。上記検討の一例として、STAR-CCM+による数値流体解析を利用し、周孔数を8孔、ノズル傾角θ=16°のランスノズルから30000Nm/hの酸素ガスとともに平均粒度200μmの石灰を投射した際の火点相当領域6と石灰分布(石灰投射領域)7とを計算して比較した結果を図4に示す。なお、ここで火点相当領域6は0.1kPa以上の動圧がかかっている領域とした。本解析からもわかる通り、噴流が偏向する際の粉体の追従性は低く、火点相当領域6に到達しえない媒溶材が発生し脱りん吹錬への寄与効率が低下する。
λ=(火点内へ投射された媒溶材総重量)/(供給した媒溶材総重量) ・・・(2)
In order to promote CaO slag formation, an operation is carried out in which a powdered refining medium containing oxidizing gas and lime is blown from a top blowing lance to the fire point, which is the FeO generation site. When the above-mentioned jet combined type lance was adopted for such operations, a concern was raised that the trajectories of the jet and the lime differed. This is because the powdered medium, which is a solid with a high density and a large inertial force, has a high straightness, whereas a jet flow is easily deflected due to its low density and low inertial force. In order to quantitatively evaluate the above, the present invention employs a wrap rate λ defined by the following equation (2). As an example of the above study, using computational fluid analysis using STAR-CCM+, lime with an average particle size of 200 μm was projected along with 30,000 Nm 3 /h of oxygen gas from a lance nozzle with 8 circumferential holes and a nozzle inclination of θ = 16°. FIG. 4 shows the results of calculating and comparing the area 6 corresponding to the flash point and the lime distribution (lime projection area) 7. Here, the region 6 corresponding to the flash point was defined as a region to which a dynamic pressure of 0.1 kPa or more was applied. As can be seen from this analysis, the followability of the powder when the jet is deflected is low, and a solvent material that cannot reach the region 6 corresponding to the flash point is generated, reducing the contribution efficiency to dephosphorization blowing.
λ = (Total weight of solvent thrown into the fire point) / (Total weight of supplied solvent) ... (2)

上記欠点を改良するには粉体の追従性を上げるか、スロッピングを引き起こさない範囲で噴流の直進性を高めることにより解決可能である。しかし、粉体の追従性を向上するためには石灰の粒度を細かくする必要があり、粒度を細かくするほどに媒溶材の重量当たり単価が上がりコストが上昇する。そのうえ、過度に粒度の細かな粉体は静電気の影響を受けやすいため、送給の際に輸送管内へ固着しやすく閉塞を引き起こす。そこで、本実施形態ではスロッピングの発生しない領域で噴流の直進性を高めることを選択した。 The above drawbacks can be improved by increasing the followability of the powder or by increasing the straightness of the jet flow within a range that does not cause slopping. However, in order to improve the followability of the powder, it is necessary to make the particle size of lime finer, and the finer the particle size, the higher the unit price per weight of the solvent material and the higher the cost. Moreover, powder with excessively fine particle size is easily affected by static electricity, so it tends to stick inside the transport pipe during feeding, causing blockage. Therefore, in this embodiment, it was chosen to improve the straightness of the jet flow in a region where slopping does not occur.

噴流の直進性の向上のためには噴流の慣性力を大きくするか、噴流間の干渉を小さくすることがあげられる。前者に関しては送酸流量を大きくすることで達成しうるが、過度な送酸は脱炭を促進し、溶銑温度を上昇させるため脱りん反応にとっては不利となる。そこで、本実施形態では噴流間の干渉を小さくすることを採用した。噴流間の干渉を小さくすることは噴流間の距離を大きくとることと同義であり、上吹きランスではノズル孔数・傾角を変更することで調整する。本実施形態においてもノズル孔数、傾角θをパラメーターとし噴流の干渉を変化させ、このときの各ラップ率λを数値流体解析から評価した。なお本検討に関して、火点相当領域6は0.1kPa以上の動圧がかかっている領域を採用し、30000Nm/hの酸素ガスとともに平均粒度200μmの粉体石灰を5kg/t-溶鉄となるよう投射した場合を設定した。また同じ条件のもと340t転炉にて脱りん吹錬を実施した。 In order to improve the straightness of the jet flow, it is possible to increase the inertial force of the jet flow or to reduce the interference between the jet flows. The former can be achieved by increasing the oxygen flow rate, but excessive oxygen flow promotes decarburization and increases the hot metal temperature, which is disadvantageous for the dephosphorization reaction. Therefore, in this embodiment, it is adopted to reduce the interference between the jets. Reducing interference between jets is synonymous with increasing the distance between jets, and in the case of a top-blowing lance, this is adjusted by changing the number of nozzle holes and the angle of inclination. In this embodiment as well, the number of nozzle holes and the angle of inclination θ were used as parameters to change the interference of the jet flow, and each wrap rate λ at this time was evaluated from computational fluid analysis. Regarding this study, the region 6 corresponding to the flash point is an area where a dynamic pressure of 0.1 kPa or more is applied, and powdered lime with an average particle size of 200 μm is mixed with 30,000 Nm 3 /h of oxygen gas to form 5 kg/t of molten iron. I set the case when projected like this. Dephosphorization blowing was also carried out in a 340t converter under the same conditions.

上記検討の結果より、ノズル傾角θを大きくするに従いラップ率λが向上する傾向がえられたが、傾角θを20°としたときラップ率λが低下した。上記現象は、直進性の高い石灰は傾角θが大きくなるほど幾何学的にランス高さ×tanθだけランス中心から離れた箇所へ投射される一方で、噴流直進度γの向上が追随できなくなることに起因する。またラップ率λの向上に応じて石灰の脱りん能が向上したことから、ラップ率λが石灰の脱りん効率を表現しうることを確認した。このときラップ率λが0.19より小さくなると脱P量が1.0kg/tを下回ることから最低でもλを0.19以上とすることが望ましい。なお、上記した噴流直進度γの適切な範囲を考慮すると、ラップ率λの上限は0.55程度となる。より好ましくは、ラップ率λが0.20以上であり、さらに好ましくは、0.20~0.50の範囲である。 From the results of the above study, it was found that the wrap rate λ tended to improve as the nozzle inclination angle θ increased, but when the inclination angle θ was set to 20°, the wrap rate λ decreased. The above phenomenon is due to the fact that as the inclination angle θ increases, the lime with high straightness is geometrically projected to a location that is distanced from the lance center by the lance height x tan θ, but the improvement in the straightness of the jet flow γ cannot be followed. to cause. Furthermore, since the dephosphorization ability of lime improved as the wrap rate λ increased, it was confirmed that the wrap rate λ can express the dephosphorization efficiency of lime. At this time, if the wrap rate λ becomes less than 0.19, the amount of P removed will be less than 1.0 kg/t, so it is desirable that λ be at least 0.19 or more. Note that, considering the appropriate range of the jet flow straightness γ described above, the upper limit of the wrap rate λ is about 0.55. More preferably, the wrap rate λ is 0.20 or more, and even more preferably in the range of 0.20 to 0.50.

以下、発明例を比較例、参考例とともに示す。容量が340トンで、酸素を上吹きし、攪拌用ガスを底吹きする上底吹き複合吹錬用転炉内に約340トンの溶鉄を装入し、脱りん吹錬を行った。用いた溶鉄は、脱硫処理後溶鉄であり、溶鉄のケイ素濃度は0.3~0.5質量%、リン濃度は0.12~0.14質量%であった。転炉内には石灰系フラックスを上吹きランスから精錬酸素とともに5kg/t-溶鉄となるよう投射した。転炉底吹き用に設置した羽口からは溶湯攪拌のためアルゴンまたは窒素を10~50Nm/minの範囲で吹き込んだ。また、送酸は上吹きランスにより行い、吹錬前半の脱Si期では50000Nm/h程度、後半の脱りん期では30000Nm/h程度吹き込んだ。ランス高さHは動圧が極力同一となるよう各ランスノズルに対して設定した。吹錬開始時の溶鉄温度は約1250℃、吹錬終了時の目標溶鉄温度は1380℃を目標とした。用いた発明例の上吹きランスは周孔のみがそれぞれ8個設置されたノズルで傾角θは14~18°、噴流直進度γは0.31~0.50、ラップ率λは0.19~0.40であった。 Invention examples will be shown below along with comparative examples and reference examples. Approximately 340 tons of molten iron was charged into a top-bottom blowing combined blowing furnace with a capacity of 340 tons, in which oxygen was blown from the top and stirring gas was blown from the bottom, and dephosphorization blowing was performed. The molten iron used was desulfurized molten iron, and the silicon concentration of the molten iron was 0.3 to 0.5% by mass, and the phosphorus concentration was 0.12 to 0.14% by mass. Lime-based flux was injected into the converter from a top blowing lance together with refining oxygen to give 5 kg/t of molten iron. Argon or nitrogen was blown at a rate of 10 to 50 Nm 3 /min through the tuyeres installed for bottom blowing of the converter to stir the molten metal. Further, oxygen was supplied using a top-blowing lance, and the amount of oxygen was blown at about 50,000 Nm 3 /h in the first half of the de-Si phase of blowing, and about 30,000 Nm 3 /h in the second half of the dephosphorizing phase. The lance height H was set for each lance nozzle so that the dynamic pressure was as similar as possible. The target molten iron temperature at the start of blowing was approximately 1250°C, and the target molten iron temperature at the end of blowing was 1380°C. The top-blowing lance used in the invention example has a nozzle in which only eight peripheral holes are installed, and the inclination angle θ is 14 to 18 degrees, the jet straightness γ is 0.31 to 0.50, and the wrap rate λ is 0.19 to 0.19. It was 0.40.

また、比較例として噴流直進度γが1.00となるよう設計した傾角θ=14°の4孔ノズル(No.1)、および、噴流直進度γが0.84となるよう設計した傾角θ=14°の5孔ノズル(No.2)の試験を実施した。なおラップ率λに関してはそれぞれ1.00、0.87であった。操業条件は発明例と同一である。 In addition, as a comparative example, a four-hole nozzle (No. 1) with an inclination angle θ = 14° designed so that the jet straightness γ is 1.00, and an inclination θ nozzle designed so that the jet straightness γ is 0.84. A test was conducted using a 5-hole nozzle (No. 2) with an angle of 14°. Note that the wrap rate λ was 1.00 and 0.87, respectively. The operating conditions are the same as in the invention example.

表1にノズル条件および操業結果を示す。なお、各条件につき、40~80チャージ程度実施した。表1において、スロッピング頻度は各条件実施時発生したスロッピングチャージ数をカウントし、条件ごとの実施チャージ総数にて除算し百分率をとった指標である。脱りん量ΔPは条件ごとに実施チャージの平均値を算出した。 Table 1 shows the nozzle conditions and operational results. Note that approximately 40 to 80 charges were performed for each condition. In Table 1, the slopping frequency is an index obtained by counting the number of slopping charges that occurred when each condition was implemented, dividing the number by the total number of charges performed for each condition, and taking the percentage. The dephosphorization amount ΔP was calculated as the average value of the charges performed for each condition.

Figure 2023160925000002
Figure 2023160925000002

表1に示すように、発明例においてはスロッピング頻度を比較例に比べ低減させており、また溶鉄当たりの副原料(粉体媒溶材)を同一とした条件の中でも脱りん量を向上させ、効率の良い脱りん吹錬を実現しうることが確認できた。 As shown in Table 1, in the invention example, the slopping frequency was reduced compared to the comparative example, and the amount of dephosphorization was improved even under the same conditions as the auxiliary raw material (powder medium material) per molten iron. It was confirmed that efficient dephosphorization blowing can be achieved.

本発明の上吹きランスは、転炉を用いた脱りん吹錬に適用して好適である。 The top blowing lance of the present invention is suitable for application to dephosphorization blowing using a converter.

1 上吹きランス
11 ランス軸
2 ランス先端部
3 ノズル部
4 周孔
41 周孔出口
42 周孔中心軸
5 スロート部
6 火点相当領域
7 石灰分布(石灰投射領域)
100 浴面相当面位置
101 噴流軌跡
P 上吹きランス下端位置での周孔出口中心をつなぐ円の直径
H 上吹きランス高さ(上吹きランス下端から浴面相当位置までの距離)
θ ノズル傾角
O 上吹きランス下端中心位置

1 Top-blowing lance 11 Lance shaft 2 Lance tip 3 Nozzle portion 4 Peripheral hole 41 Peripheral hole outlet 42 Peripheral hole center axis 5 Throat portion 6 Area equivalent to the flash point 7 Lime distribution (lime projection area)
100 Position equivalent to the bath surface 101 Jet flow trajectory P Diameter of the circle connecting the peripheral hole outlet centers at the lower end position of the upper blow lance H Top blow lance height (distance from the lower end of the upper blow lance to the position equivalent to the bath surface)
θ Nozzle inclination angle O Upper blow lance lower end center position

Claims (2)

転炉脱りん処理用の上吹きランスであって、
ランス軸に対し回転対称に配置され精錬酸素のための複数の周孔を有し、該周孔からの噴流は下記の(1)式で定義される噴流直進度γが0.31以上0.50以下(0.37以下を除く)であることを特徴とする転炉脱りん処理用上吹きランス。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置を示し、
添字linearは、周孔中心軸線の延長上の位置を表す。
A top blowing lance for converter dephosphorization treatment,
It has a plurality of circumferential holes arranged rotationally symmetrically with respect to the lance axis for refining oxygen, and the jet flow from the circumferential holes has a jet straightness γ defined by the following equation (1) of 0.31 or more and 0.31 or more. 50 or less (excluding 0.37 or less). A top blowing lance for converter dephosphorization treatment.
γ=X jet /X linear ...(1)
Here, Xi represents the distance from the lance axis projected position on the surface equivalent to the bath surface under condition i,
The subscript jet indicates the center position of the jet deflected by interference,
The subscript linear represents a position on the extension of the central axis of the circumferential hole.
上吹きランスを用い、該上吹きランスから酸素ガスを吹き付けて溶鉄からりんを酸化除去する転炉吹錬方法であって、
前記上吹きランスは、ランス軸に対し回転対称に配置され精錬酸素のための複数の周孔を有し、該周孔からの噴流は下記の(1)式で定義される噴流直進度γを0.31以上0.50以下(0.37以下を除く)とすることを特徴とする転炉吹錬方法。
γ=Xjet/Xlinear ・・・(1)
ここで、Xiは、条件iにおいて、浴面相当面上のランス軸投影位置からの距離を表し、
添字jetは、干渉によって偏向させられた噴流の中心位置を示し、
添字linearは、周孔中心軸線の延長上の位置を表す。

A converter blowing method using a top blowing lance and blowing oxygen gas from the top blowing lance to oxidize and remove phosphorus from molten iron,
The top blowing lance has a plurality of circumferential holes for refining oxygen arranged rotationally symmetrically with respect to the lance axis, and the jet flow from the circumferential holes has a jet straightness γ defined by the following equation (1). A converter blowing method characterized in that the temperature is 0.31 or more and 0.50 or less (excluding 0.37 or less).
γ=X jet /X linear ...(1)
Here, Xi represents the distance from the lance axis projected position on the surface equivalent to the bath surface under condition i,
The subscript jet indicates the center position of the jet deflected by interference,
The subscript linear represents a position on the extension of the central axis of the circumferential hole.

JP2023143335A 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method Pending JP2023160925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023143335A JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108571A JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method
JP2023143335A JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020108571A Division JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method

Publications (1)

Publication Number Publication Date
JP2023160925A true JP2023160925A (en) 2023-11-02

Family

ID=80110237

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020108571A Active JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method
JP2023143335A Pending JP2023160925A (en) 2020-06-24 2023-09-05 Top blowing lance for converter dephosphorization treatment and converter blowing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020108571A Active JP7380444B2 (en) 2020-06-24 2020-06-24 Top blowing lance for converter dephosphorization treatment and converter blowing method

Country Status (1)

Country Link
JP (2) JP7380444B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348331A (en) 2005-06-14 2006-12-28 Jfe Steel Kk Top-blowing lance for refining molten metal, and blowing method for molten metal
JP2009203491A (en) 2008-02-26 2009-09-10 Kobe Steel Ltd Method for producing dephosphorized molten iron
JP5353463B2 (en) 2009-06-17 2013-11-27 新日鐵住金株式会社 How to remove hot metal
BR112013020045B1 (en) 2011-02-10 2018-07-24 Nippon Steel & Sumitomo Metal Corp desalination and dephosphorization method of cast iron
US9493854B2 (en) 2011-12-20 2016-11-15 Jfe Steel Corporation Converter steelmaking method
JP5999157B2 (en) 2013-10-02 2016-09-28 Jfeスチール株式会社 Method of refining hot metal in the converter
JP6052263B2 (en) 2013-10-17 2016-12-27 Jfeスチール株式会社 Top blow lance for refining and method for refining molten iron
JP6048379B2 (en) 2013-12-03 2016-12-21 Jfeスチール株式会社 Molten metal refining method and refining equipment
JP6421732B2 (en) 2015-09-17 2018-11-14 Jfeスチール株式会社 Converter operation method
KR20200003114A (en) 2017-08-21 2020-01-08 닛폰세이테츠 가부시키가이샤 Method of refining intake lance and charter for converter

Also Published As

Publication number Publication date
JP7380444B2 (en) 2023-11-15
JP2022006385A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
KR101346726B1 (en) Method for refining molten iron
TWI473883B (en) Converter steelmaking method
JP2006348331A (en) Top-blowing lance for refining molten metal, and blowing method for molten metal
JP5135836B2 (en) Hot metal dephosphorization method
JP5544807B2 (en) Top blowing lance for refining and converter refining method
JP7380444B2 (en) Top blowing lance for converter dephosphorization treatment and converter blowing method
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP4360270B2 (en) Method for refining molten steel
JP6721129B2 (en) Top blowing lance for converter blowing and refining method of hot metal
JP7001148B2 (en) How to remove phosphorus from hot metal
JP2012082492A (en) Converter refining method
JPH05195037A (en) Top blowing oxygen lance in converter
JP4686880B2 (en) Hot phosphorus dephosphorization method
JPS6056009A (en) Steel making method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP2012082491A (en) Converter refining method
KR102559151B1 (en) How to dephosphorize molten iron
JP2005139529A (en) Method for dephosphorization-refining molten pig iron
WO2021014918A1 (en) Molten iron dephosphorization method
JP4025713B2 (en) Dephosphorization method of hot metal
JP2010095785A (en) Method for dephosphorizing molten iron
JP6578939B2 (en) Top blowing lance for converter blowing and converter blowing method
JPS62196314A (en) Operating method for converter
JPH1112633A (en) Lance for refining molten metal and refining method
JP2020128586A (en) Method of refining molten iron by oxygen blowing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423