JP2023160504A - Obstacle detection device and obstacle detection method - Google Patents

Obstacle detection device and obstacle detection method Download PDF

Info

Publication number
JP2023160504A
JP2023160504A JP2022070914A JP2022070914A JP2023160504A JP 2023160504 A JP2023160504 A JP 2023160504A JP 2022070914 A JP2022070914 A JP 2022070914A JP 2022070914 A JP2022070914 A JP 2022070914A JP 2023160504 A JP2023160504 A JP 2023160504A
Authority
JP
Japan
Prior art keywords
propagation path
transfer function
path transfer
obstacle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022070914A
Other languages
Japanese (ja)
Inventor
トサポーン シソクサイ
Srisooksai Tossaporn
賢史 西田
Masashi Nishida
修二 南部
Shuji Nanbu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2022070914A priority Critical patent/JP2023160504A/en
Publication of JP2023160504A publication Critical patent/JP2023160504A/en
Pending legal-status Critical Current

Links

Images

Abstract

To enable an obstacle detection device designed to improve detection accuracy to be realized by a simple device composition.SOLUTION: An obstacle detection device 1 for transmitting/receiving wireless signals and detecting obstacles in a detection target range on a trajectory comprises: a transmitter 10 that transmits a prescribed transmit signal from a prescribed transmit position; a receiver 20 that receives at a prescribed receive position; a propagation path transfer function calculation unit 34 that calculates, on the basis of the analysis result of having analyzed the frequencies of transmitted and received signals, a propagation path transfer function including a frequency response component that pertains to a reflected wave propagation path from being transmitted from the transmit position to being received at the receive position; and an obstacle presence determination unit 35 that determines, on the basis of a reference propagation path transfer function and the propagation path transfer function, the presence of obstacles in a detection target range.SELECTED DRAWING: Figure 1

Description

本発明は、軌道上の障害物を検知する障害物検知装置等に関する。 The present invention relates to an obstacle detection device and the like that detect obstacles on a track.

鉄道において、自動列車運転制御の導入には、事故防止のため、軌道上の障害物を検知し必要に応じて列車を停止させる技術が必要である。軌道上の障害物を検知する技術として、例えば、地上にレーダー装置とリフレクタ(反射部材)とを一体化した検知装置を設置する技術(例えば、特許文献1参照)や、列車の前部(車上)にミリ波レーダーを搭載する技術(例えば、特許文献2参照)が知られている。 In railways, the introduction of automatic train operation control requires technology to detect obstacles on the tracks and stop trains as necessary to prevent accidents. Technologies for detecting obstacles on tracks include, for example, a technology that installs a detection device that integrates a radar device and a reflector on the ground (for example, see Patent Document 1), and a technology that installs a detection device that integrates a radar device and a reflector (reflector) on the ground, There is a known technology (for example, see Patent Document 2) in which a millimeter wave radar is mounted on a device (above).

特開2018-144505号公報Japanese Patent Application Publication No. 2018-144505 特開2015-034793号公報Japanese Patent Application Publication No. 2015-034793

安全性の観点から、障害物の検知装置には、検知精度の更なる向上が求められている。また、軌道は長大であり、軌道上を走行する列車も多数であるから、多数の検知装置が必要であり、検知装置の設置や保守に要するコストの削減のために、簡易な装置構成とすることも求められている。 From the viewpoint of safety, obstacle detection devices are required to further improve their detection accuracy. In addition, since the track is long and there are many trains running on the track, a large number of detection devices are required.In order to reduce the cost of installing and maintaining the detection device, a simple device configuration is required. It is also required.

本発明が解決しようとする課題は、検知精度の向上を図った障害物検知装置を、簡易な装置構成によって実現可能とすることである。 The problem to be solved by the present invention is to make it possible to realize an obstacle detection device with improved detection accuracy using a simple device configuration.

上記課題を解決するための第1の発明は、
無線信号を送受信して軌道上の検知対象範囲内の障害物を検知する障害物検知装置であって、
所定の送信位置から所定の送信信号を送信する送信手段(例えば、図1の送信機10)と、
所定の受信位置で受信する受信手段(例えば、図1の受信機20)と、
前記送信信号及び前記受信手段の受信信号を周波数解析した解析結果に基づいて、前記送信位置で送信されてから前記受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分を含む伝搬路伝達関数を算出する算出手段(例えば、図1の伝搬路伝達関数算出部34)と、
前記伝搬路伝達関数の比較基準となる基準伝搬路伝達関数と前記伝搬路伝達関数とに基づいて、前記検知対象範囲内の前記障害物の有無を判定する判定手段(例えば、図1の障害物有無判定部35)と、
を備える障害物検知装置である。
The first invention for solving the above problem is:
An obstacle detection device that transmits and receives radio signals to detect obstacles within a detection target range on orbit,
Transmitting means (for example, transmitter 10 in FIG. 1) that transmits a predetermined transmission signal from a predetermined transmission position;
Receiving means for receiving at a predetermined receiving position (for example, receiver 20 in FIG. 1);
Based on the analysis results of frequency analysis of the transmitted signal and the received signal of the receiving means, the propagation includes a frequency response component related to the propagation path of the reflected wave from being transmitted at the transmitting position to being received at the receiving position. a calculation means for calculating a channel transfer function (for example, the channel transfer function calculation unit 34 in FIG. 1);
Judgment means (for example, the obstacle shown in FIG. Presence/absence determination section 35);
This is an obstacle detection device equipped with.

他の発明として、
無線信号を送受信して軌道上の検知対象範囲内の障害物を検知する障害物検知方法であって、
所定の送信位置から送信された所定の送信信号と、所定の受信位置で受信された受信信号とを周波数解析した解析結果に基づいて、前記送信位置で送信されてから前記受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分を含む伝搬路伝達関数を算出することと(例えば、図4のステップS3)、
前記伝搬路伝達関数の比較基準となる基準伝搬路伝達関数と前記伝搬路伝達関数とに基づいて、前記検知対象範囲内の前記障害物の有無を判定すること(例えば、図4のステップS5~S9,S11)と、
を含む障害物検知方法を構成してもよい。
Other inventions include
An obstacle detection method for detecting obstacles within a detection target range on orbit by transmitting and receiving radio signals, the method comprising:
Based on the results of frequency analysis of a predetermined transmission signal transmitted from a predetermined transmission position and a reception signal received at a predetermined reception position, the signal is transmitted at the transmission position and then received at the reception position. calculating a propagation path transfer function including a frequency response component related to the propagation path of the reflected wave up to (for example, step S3 in FIG. 4);
Determining the presence or absence of the obstacle within the detection target range based on the propagation path transfer function and a reference propagation path transfer function that is a comparison standard for the propagation path transfer function (for example, from step S5 in FIG. 4). S9, S11) and
An obstacle detection method including:

第1の発明等によれば、検知精度の向上を図った障害物検知装置を、簡易な装置構成によって実現することができる。つまり、無線信号を送受信して軌道上の検知対象範囲内の障害物を検知するが、障害物の有無の判定を、送信信号及び受信信号を周波数解析した解析結果に基づいて算出した伝搬路伝達関数と、比較基準となる基準伝搬路伝達関数とに基づいて行う。伝搬路伝達関数には、送信位置で送信されてから受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分が含まれる。基準伝搬路伝達関数は、例えば、検知対象範囲内に障害物が無い状況での伝搬路伝達関数といった、障害物の有無判定の基準とすることができる伝搬路伝達関数とすることができる。これにより、検知対象範囲内の障害物の有無を適確に判定することが可能となる。また、伝搬路伝達関数は、送信信号及び受信信号を周波数解析した解析結果に基づくから、送信信号の変動の影響が小さい。この点は、軌道上の検知対象範囲内の障害物の判定の精度をより向上させる。以上の通り、第1の発明等によれば、送信信号及び受信信号を信号処理するといった簡易な構成でありながら、軌道上の検知対象範囲内の障害物の有無を精度良く判定することが可能となる。 According to the first aspect of the invention, an obstacle detection device with improved detection accuracy can be realized with a simple device configuration. In other words, obstacles within the detection range on the orbit are detected by transmitting and receiving radio signals, but the propagation path transfer is calculated based on the analysis results of frequency analysis of the transmitted and received signals. This is performed based on the function and a reference propagation path transfer function that serves as a comparison standard. The propagation path transfer function includes a frequency response component related to the propagation path of the reflected wave from transmission at the transmission position to reception at the reception position. The reference propagation path transfer function can be, for example, a propagation path transfer function that can be used as a reference for determining the presence or absence of an obstacle, such as a propagation path transfer function in a situation where there is no obstacle within the detection target range. This makes it possible to accurately determine the presence or absence of an obstacle within the detection target range. Furthermore, since the propagation path transfer function is based on the analysis results of frequency analysis of the transmitted signal and the received signal, the influence of fluctuations in the transmitted signal is small. This point further improves the accuracy of determining obstacles within the detection target range on the orbit. As described above, according to the first invention, etc., it is possible to accurately determine the presence or absence of an obstacle within the detection target range on the orbit, even though it has a simple configuration in which the transmitted signal and the received signal are processed. becomes.

第2の発明は、第1の発明において、
前記算出手段は、前記送信信号の周波数成分と前記受信信号の周波数成分の比として前記伝搬路伝達関数を算出し、
前記基準伝搬路伝達関数と前記伝搬路伝達関数との差分に基づいて前記障害物の位置を推測する推測手段(例えば、図1の障害物位置推測部36)、
を更に備える障害物検知装置である。
The second invention is, in the first invention,
The calculating means calculates the propagation path transfer function as a ratio of a frequency component of the transmitted signal and a frequency component of the received signal,
Estimating means for estimating the position of the obstacle based on the difference between the reference propagation path transfer function and the propagation path transfer function (for example, the obstacle position estimating unit 36 in FIG. 1);
An obstacle detection device further comprising:

第2の発明によれば、基準伝搬路伝達関数と伝搬路伝達関数との差分に基づいて、障害物の位置を推測することができる。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い状況での伝搬路伝達関数といった、障害物の有無判定の基準とすることができる伝搬路伝達関数となるため、基準伝搬路伝達関数と伝搬路伝達関数との差分は、検知対象範囲内の障害物からの反射波の周波数成分に相当すると判定することができる。このように、基準伝搬路伝達関数と伝搬路伝達関数との差分に基づくことで、障害物の位置を精度良く推測することが可能となる。 According to the second invention, the position of the obstacle can be estimated based on the difference between the reference channel transfer function and the channel transfer function. The reference propagation path transfer function is a propagation path transfer function that can be used as a standard for determining the presence or absence of an obstacle, such as a propagation path transfer function in a situation where there is no obstacle within the detection target range. It can be determined that the difference between and the propagation path transfer function corresponds to the frequency component of the reflected wave from the obstacle within the detection target range. In this way, based on the difference between the reference propagation path transfer function and the propagation path transfer function, it is possible to accurately estimate the position of the obstacle.

第3の発明は、第2の発明において、
前記推測手段は、前記伝搬路伝達関数に含まれる前記基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づいて、前記障害物からの反射波の到来方向を推測する、
障害物検知装置である。
A third invention is, in the second invention,
The estimating means estimates the arrival direction of the reflected wave from the obstacle based on a frequency component that satisfies a predetermined amplitude relative difference condition with respect to the reference propagation path transfer function included in the propagation path transfer function.
It is an obstacle detection device.

第3の発明によれば、伝搬路伝達関数に含まれる基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づいて、障害物からの反射波の到来方向を推測することができる。伝搬路伝達関数に含まれる基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づくことで、例えば、障害物からの反射信号についての周波数成分のみを抽出することが可能となり、その周波数成分に基づくことで、障害物からの反射波の到来方向、つまり、障害物の方向を精度良く推測することが可能となるのである。また、伝搬路伝達関数は、反射波の伝搬路に係る周波数応答成分を含む。そこで、反射波に係る振幅(受信強度)の大きさから、当該反射波に係る無線信号の伝搬路である、送信位置~障害物~受信位置までの距離を求めることができる。従って、これらより、障害物の位置を推測することも可能である。 According to the third invention, the direction of arrival of the reflected wave from the obstacle is estimated based on a frequency component that satisfies a predetermined amplitude relative difference condition with respect to a reference propagation path transfer function included in the propagation path transfer function. I can do it. By using the frequency component that satisfies a predetermined amplitude relative difference condition with respect to the reference propagation path transfer function included in the propagation path transfer function, it becomes possible, for example, to extract only the frequency component of the reflected signal from an obstacle. Based on the frequency components, it is possible to accurately estimate the arrival direction of the reflected wave from the obstacle, that is, the direction of the obstacle. Further, the propagation path transfer function includes a frequency response component related to the propagation path of the reflected wave. Therefore, from the magnitude of the amplitude (reception intensity) of the reflected wave, it is possible to determine the distance from the transmission position to the obstacle to the reception position, which is the propagation path of the radio signal related to the reflected wave. Therefore, it is also possible to estimate the position of the obstacle from these.

第4の発明は、第1~第3の何れかの発明において、
前記判定手段により障害物無しと判定された前記伝搬路伝達関数を用いて、前記基準伝搬路伝達関数を更新する更新手段(例えば、図1の基準伝搬路伝達関数更新部37)、
を更に備える障害物検知装置である。
The fourth invention is any one of the first to third inventions,
updating means for updating the reference propagation path transfer function using the propagation path transfer function determined to be free of obstacles by the determination means (for example, the reference propagation path transfer function updating unit 37 in FIG. 1);
An obstacle detection device further comprising:

第4の発明によれば、障害物の検知精度の更なる向上を図ることができる。つまり、沿線の環境は時間経過に伴って変化し得るので、検知対象範囲内に障害物が無くとも受信信号が変化し得るし、その結果として伝搬路伝達関数も変化し得る。このため、障害物無しと判定された伝搬路伝達関数を用いて基準伝搬路伝達関数を更新することで、最新の環境を反映した基準伝搬路伝達関数とすることができ、障害物の検知精度の向上を図ることが可能となる。 According to the fourth invention, it is possible to further improve the accuracy of detecting obstacles. That is, since the environment along the railway can change over time, the received signal can change even if there are no obstacles within the detection target range, and as a result, the propagation path transfer function can also change. Therefore, by updating the standard propagation path transfer function using the propagation path transfer function that has been determined to be free of obstacles, the standard propagation path transfer function can be made to reflect the latest environment, and the obstacle detection accuracy can be improved. This makes it possible to improve the

障害物検知装置の適用例。Application example of obstacle detection device. 障害物の検知の説明図。An explanatory diagram of obstacle detection. 検知対象範囲の説明図。An explanatory diagram of a detection target range. 障害物検知処理のフローチャート。Flowchart of obstacle detection processing.

以下、図面を参照して本発明の好適な実施形態について説明する。なお、本発明を適用可能な形態が以下の実施形態に限定されるものではない。また、図面の記載において、同一要素には同一符号を付す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that the form to which the present invention can be applied is not limited to the following embodiments. In addition, in the description of the drawings, the same elements are given the same reference numerals.

[全体構成]
図1は、本実施形態における障害物検知装置の適用例である。障害物検知装置1は、無線信号を送受信して軌道上の検知対象範囲内の障害物を検知する装置であり、送信機10と、受信機20と、信号処理部30とを備える。検知対象範囲としては、例えば、踏切を含む範囲を対象範囲としたり、プラットフォーム脇の線路を含む範囲を対象範囲としたり、落石や雪崩等が発生し得る山間部の線路を含む範囲を対象範囲とすることができる。
[overall structure]
FIG. 1 is an example of application of the obstacle detection device in this embodiment. The obstacle detection device 1 is a device that transmits and receives wireless signals to detect obstacles within a detection target range on an orbit, and includes a transmitter 10, a receiver 20, and a signal processing section 30. For example, the detection target range may include a railroad crossing, a track beside a platform, or a track in a mountainous area where falling rocks or avalanches may occur. can do.

送信機10は、軌道近傍に設置され、軌道上の検知対象範囲に向けて、指向性アンテナから無線信号を送信する。つまり、信号処理部30の送信OFDM信号生成部32から入力される送信OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)信号を、信号処理部30の発振部31から入力される発振信号を用いた直交変調処理を行うことで無線周波数の信号(無線信号)に変換して送信する。 The transmitter 10 is installed near the orbit, and transmits a radio signal from a directional antenna toward a detection target range on the orbit. That is, the transmission OFDM (Orthogonal Frequency Division Multiplexing) signal input from the transmission OFDM signal generation section 32 of the signal processing section 30 is used as the oscillation signal input from the oscillation section 31 of the signal processing section 30. By performing orthogonal modulation processing, it is converted into a radio frequency signal (radio signal) and transmitted.

受信機20は、軌道沿線に設置され、軌道上の検知対象範囲からの反射信号を含む無線信号を、指向性アンテナによって受信する。つまり、受信された無線信号(受信信号)を、信号処理部30の発振部31から入力される発振信号を用いた直交復調処理を行うことで受信OFDM信号に変換し、信号処理部30へ出力する。 The receiver 20 is installed along the orbit, and receives radio signals including reflected signals from the detection target range on the orbit using a directional antenna. That is, a received radio signal (received signal) is converted into a received OFDM signal by performing orthogonal demodulation processing using an oscillation signal input from the oscillation unit 31 of the signal processing unit 30, and output to the signal processing unit 30. do.

信号処理部30は、送信機10により送信された送信信号(無線信号)、及び、受信機20により受信された受信信号(無線信号)に基づき、軌道上の検知対象範囲内の障害物の有無を判定するとともに、障害物有りと判定した場合にはその障害物の位置を推測する。 The signal processing unit 30 determines the presence or absence of obstacles within the detection target range on the orbit based on the transmission signal (radio signal) transmitted by the transmitter 10 and the reception signal (radio signal) received by the receiver 20. If it is determined that there is an obstacle, the location of the obstacle is estimated.

信号処理部30による障害物の検知(障害物の有無の判定、及び、障害物の位置の推測)について説明する。障害物の検知は、送信信号及び受信信号を周波数解析した解析結果に基づく伝搬路伝達関数を用いて行う。伝搬路伝達関数は、送信位置(送信機10の設置位置)で送信されてから受信位置(受信機20の設置位置)で受信されるまでの反射波の伝搬路に係る周波数応答成分を含むものであり、送信信号の周波数成分と受信信号の周波数成分の比として算出する。本実施形態では、周波数解析としてFFT(Fast Fourier Transformation:高速フーリエ変換)を行う。従って、送信位置(送信機10の設置位置)~受信位置(受信機20の設置位置)に至るまでの無線信号の伝搬路に関する伝搬路伝達関数は、次式(1)で表される。
A×exp(-i×2π×(D/λ))・・・(1)
式(1)において、「D」は伝搬路の距離であり、「λ」はサブキャリア周波数fによって決まる波長(=光速C/f)である。伝搬路伝達関数は周波数領域の信号であるから、この伝搬路伝達関数を表した周波数スペクトル(振幅スペクトル)において、伝搬路の距離Dに応じた周波数F(=距離D/波長λ)にピークが生じる。また、そのピーク値は、伝搬路伝達関数の式(1)における振幅Aとなる。距離Dには、例えば、図1における直接波の距離D1もあれば、何らかの物体で反射する反射波(間接波)の距離D2,D3もある。
Detection of an obstacle by the signal processing unit 30 (determining the presence or absence of an obstacle and estimating the position of the obstacle) will be described. Obstacle detection is performed using a propagation path transfer function based on the results of frequency analysis of the transmitted signal and the received signal. The propagation path transfer function includes a frequency response component related to the propagation path of the reflected wave from when it is transmitted at the transmission position (the installation position of the transmitter 10) until it is received at the reception position (the installation position of the receiver 20). It is calculated as the ratio of the frequency component of the transmitted signal and the frequency component of the received signal. In this embodiment, FFT (Fast Fourier Transformation) is performed as frequency analysis. Therefore, the propagation path transfer function regarding the propagation path of the radio signal from the transmission position (the installation position of the transmitter 10) to the reception position (the installation position of the receiver 20) is expressed by the following equation (1).
A×exp(-i×2π×(D/λ))...(1)
In equation (1), "D" is the distance of the propagation path, and "λ" is the wavelength (=speed of light C/f) determined by the subcarrier frequency f. Since the propagation path transfer function is a signal in the frequency domain, in the frequency spectrum (amplitude spectrum) representing this propagation path transfer function, there is a peak at the frequency F (=distance D/wavelength λ) corresponding to the distance D of the propagation path. arise. Further, the peak value becomes the amplitude A in equation (1) of the propagation path transfer function. The distance D includes, for example, the distance D1 of a direct wave in FIG. 1, and the distances D2 and D3 of reflected waves (indirect waves) reflected by some object.

障害物の有無の判定は、この伝搬路伝達関数と比較基準となる基準伝搬路伝達関数とに基づいて行う。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い状況での伝搬路伝達関数である。但し、無線信号の送信位置~受信位置までの伝搬路としては、送信位置からの直接波を受信位置で受信する経路の他に、地面を含む何らかの物体に反射する反射波(間接波)を受信する経路が含まれる。そのため、基準伝搬路伝達関数が、検知対象範囲内に障害物が無い状況での伝搬路伝達関数であるといえども、直接波の他に何らかの間接波を含み得る。そこで、障害物の有無の判定として、本実施形態では、伝搬路伝達関数と基準伝搬路伝達関数との類似度として相関値を求め、求めた相関値が所定の閾値以上ならば“障害物無し”と判定し、閾値未満ならば“障害物有り”と判定する。 The presence or absence of an obstacle is determined based on this propagation path transfer function and a reference propagation path transfer function serving as a comparison standard. The reference propagation path transfer function is a propagation path transfer function in a situation where there is no obstacle within the detection target range. However, as a propagation path from the transmitting position to the receiving position of the wireless signal, in addition to the path in which the direct wave from the transmitting position is received at the receiving position, there is also a path in which reflected waves (indirect waves) reflected from some object including the ground are received. Includes routes to Therefore, even if the reference propagation path transfer function is a propagation path transfer function in a situation where there is no obstacle within the detection target range, it may include some indirect waves in addition to the direct waves. Therefore, in order to determine the presence or absence of an obstacle, in this embodiment, a correlation value is obtained as the degree of similarity between the propagation path transfer function and the reference propagation path transfer function, and if the obtained correlation value is equal to or greater than a predetermined threshold, it is determined that there is no obstacle. ”, and if it is less than the threshold, it is determined that “an obstacle is present”.

なお、伝搬路伝達関数及び類似度の算出を所定時間間隔で繰り返し行い、類似度が所定の閾値以上である状態が所定回数(例えば3回)或いは所定時間(例えば5秒間)以上継続している場合に“障害物無し”と判定し、閾値未満である状態が所定回数或いは所定時間以上継続している場合に“障害物有り”と判定するようにしてもよい。また、類似度の算出として、基準伝搬路伝達関数を教師データとして類似度を算出する機械学習を行い、得られた新たな伝搬路伝達関数を入力して類似度を算出するようにしてもよい。 Note that the propagation path transfer function and the similarity are repeatedly calculated at predetermined time intervals, and the state in which the similarity is greater than or equal to a predetermined threshold continues for a predetermined number of times (for example, 3 times) or for a predetermined time (for example, 5 seconds) or more. In this case, it may be determined that there is no obstacle, and when the state where the value is less than the threshold continues for a predetermined number of times or for a predetermined period of time, it may be determined that there is an obstacle. Alternatively, to calculate the similarity, machine learning may be performed to calculate the similarity using a reference channel transfer function as training data, and the obtained new channel transfer function may be input to calculate the similarity. .

そして、“障害物有り”と判定した場合には、更に、伝搬路伝達関数と基準伝搬路伝達関数との差分に基づいて、障害物の位置の推測を行う。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い状況での伝搬路伝達関数であるから、伝搬路伝達関数と基準伝搬路伝達関数との差分は、検知対象範囲内に有る障害物からの反射波についての周波数応答成分であるといえる。従って、この伝搬路伝達関数と基準伝搬路伝達関数との差分を表した周波数スペクトル(振幅スペクトル)において、ピークを生じた周波数Fに基づいて、送信位置(送信機10の設置位置)~障害物~受信位置(受信機20の設置位置)に至るまでの当該反射波に係る無線信号(間接波)の伝搬路の距離Dを求める。このときの距離Dは、図1における距離D3である。また、伝搬路伝達関数と基準伝搬路伝達関数との差分は、送信信号及び受信信号を周波数解析処理としてFFT処理した結果に基づくものであり、各周波数の振幅及び位相の情報を含む。従って、到来方向推定アルゴリズムであるMUSICアルゴリズムやESPRITアルゴリズムを用いることで、障害物からの反射波の到来方向を推定する。以上求めた距離Dと到来方向とから、送信位置(送信機10の設置位置)及び受信位置(受信機20の設置位置)に対する相対的な障害物の位置を推測する。 If it is determined that "an obstacle is present", the position of the obstacle is further estimated based on the difference between the propagation path transfer function and the reference propagation path transfer function. Since the reference propagation path transfer function is the propagation path transfer function in a situation where there is no obstacle within the detection target range, the difference between the propagation path transfer function and the reference propagation path transfer function is the one in which there is an obstacle within the detection target range. It can be said that this is the frequency response component of the reflected wave from the Therefore, based on the frequency F at which a peak occurs in the frequency spectrum (amplitude spectrum) representing the difference between this propagation path transfer function and the reference propagation path transfer function, - Find the distance D of the propagation path of the radio signal (indirect wave) related to the reflected wave up to the reception position (installation position of the receiver 20). The distance D at this time is the distance D3 in FIG. Further, the difference between the propagation path transfer function and the reference propagation path transfer function is based on the result of FFT processing of the transmitted signal and the received signal as frequency analysis processing, and includes information on the amplitude and phase of each frequency. Therefore, the direction of arrival of the reflected wave from the obstacle is estimated by using the direction of arrival estimation algorithm, such as the MUSIC algorithm or the ESPRIT algorithm. From the distance D and arrival direction determined above, the position of the obstacle relative to the transmission position (installation position of the transmitter 10) and reception position (installation position of the receiver 20) is estimated.

なお、軌道周辺の物体を含む沿線の環境は時間経過とともに変化し得るから、受信信号も変化し得るし、その結果として伝搬路伝達関数も変化し得る。このため、伝搬路伝達関数に含まれる基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づいて、障害物からの反射波の到来方向を推測する。つまり、伝搬路伝達関数と基準伝搬路伝達関数との差分において、振幅相対差が所定値以上である周波数成分に基づいて、障害物からの反射波の到来方向を推測する。 Note that since the environment along the track, including objects around the orbit, may change over time, the received signal may also change, and as a result, the propagation path transfer function may also change. Therefore, the arrival direction of the reflected wave from the obstacle is estimated based on the frequency component that satisfies a predetermined amplitude relative difference condition with respect to the reference channel transfer function included in the channel transfer function. That is, the direction of arrival of the reflected wave from the obstacle is estimated based on the frequency component whose amplitude relative difference is greater than or equal to a predetermined value in the difference between the propagation path transfer function and the reference propagation path transfer function.

図2は、伝搬路伝達関数に基づく障害物の検知の一例を示す図である。図2では、説明を分かり易くするために、送信位置から受信位置までの直接波と、検知可能範囲内であるが検知対象範囲外にある非障害物(障害物でない物体)での反射波と、検知可能範囲内であり且つ検知対象範囲内にある障害物での反射波との3つの信号が受信されるとして説明する。 FIG. 2 is a diagram illustrating an example of obstacle detection based on a propagation path transfer function. In order to make the explanation easier to understand, Figure 2 shows a direct wave from the transmitting position to the receiving position, and a reflected wave from a non-obstacle (an object that is not an obstacle) that is within the detectable range but outside the detection target range. The following description will be made assuming that three signals are received: a wave reflected from an obstacle within the detectable range, and a reflected wave from an obstacle within the detection target range.

ここで、検知可能範囲と検知対象範囲について図3を参照して説明する。図3は、障害物検知装置1の検知対象範囲を説明する図である。図3では、線路を上方向から見下ろした概略上面図を示している。検知対象範囲は、予め設定される障害物を検知したい範囲であり、軌道上の所定範囲として定められる。検知対象範囲は任意に設定することが可能であり、建築限界範囲とすることで、検知対象範囲内で検知された物体を障害物として認定することができる。 Here, the detectable range and the detection target range will be explained with reference to FIG. 3. FIG. 3 is a diagram illustrating the detection target range of the obstacle detection device 1. FIG. 3 shows a schematic top view of the track looking down from above. The detection target range is a preset range in which obstacles are to be detected, and is defined as a predetermined range on the orbit. The detection range can be arbitrarily set, and by setting it as the building limit range, objects detected within the detection range can be recognized as obstacles.

検知可能範囲は、送信機10及び受信機20が有する指向性アンテナによって送受される無線信号によって、何らかの物体が存在することを検知できる範囲であり、送信機10及び受信機20の設置位置や設置姿勢、通信性能等によって決定される範囲である。検知可能範囲が検知対象範囲を含むように、送信機10及び受信機20が設計・設定・設置される。なお、図3では、検知対象範囲及び検知可能範囲を二次元の範囲として示しているが、実際には、高さを持つ三次元の空間である。また、図3では、検知対象範囲を建築限界範囲として示しているため、検知対象範囲で検知される物体は障害物である。 The detectable range is the range in which the presence of some object can be detected by radio signals sent and received by the directional antennas of the transmitter 10 and the receiver 20, and the detectable range is the range where the presence of some object can be detected. This range is determined by attitude, communication performance, etc. The transmitter 10 and the receiver 20 are designed, set, and installed so that the detectable range includes the detection target range. Although the detection target range and the detectable range are shown as two-dimensional ranges in FIG. 3, they are actually three-dimensional spaces with height. Moreover, in FIG. 3, since the detection target range is shown as a building limit range, the object detected in the detection target range is an obstacle.

図2に戻り、送信位置から受信位置までの直接波に係る距離DをD1、非障害物での反射波の伝搬路に係る距離DをD2、障害物での反射波の伝搬路に係る距離DをD3とする(図1参照)。そして、この状況における伝搬路伝達関数として、図2の上から順に、(1)基準伝搬路伝達関数、(2)受信信号に基づく伝搬路伝達関数、(3)上記の(2)伝搬路伝達関数と(1)基準伝搬路伝達関数との差分、のそれぞれについての周波数スペクトル(振幅スペクトル)を示している。また、各伝搬路伝達関数は、OFDMにおける1つのサブキャリア周波数fに着目したものを示している。 Returning to Figure 2, the distance D related to the direct wave from the transmitting position to the receiving position is D1, the distance D related to the propagation path of the reflected wave at non-obstacles is D2, and the distance related to the propagation path of the reflected wave at obstacles Let D be D3 (see Figure 1). The propagation path transfer functions in this situation are, in order from the top of FIG. The frequency spectrum (amplitude spectrum) for each of the functions and (1) the difference from the reference propagation path transfer function is shown. Moreover, each propagation path transfer function is shown focusing on one subcarrier frequency f in OFDM.

図2の(1)に示すように、基準伝搬路伝達関数は、検知対象範囲内に障害物が存在していない状況での伝搬路伝達関数である。この場合、直接波と、非障害物からの反射波とが受信されるから、基準伝搬路伝達関数の周波数スペクトル(振幅スペクトル)において、距離D1,D2に応じた周波数F1,F2にピークが生じている。 As shown in (1) of FIG. 2, the reference propagation path transfer function is a propagation path transfer function in a situation where no obstacle exists within the detection target range. In this case, since direct waves and reflected waves from non-obstacles are received, peaks occur at frequencies F1 and F2 corresponding to distances D1 and D2 in the frequency spectrum (amplitude spectrum) of the reference channel transfer function. ing.

図2の(2)に示すように、受信信号に基づく伝搬路伝達関数は、検知対象範囲内に障害物が存在している状況での伝搬路伝達関数である。この場合、直接波と、非障害物の反射波との他に、検知対象範囲内の障害物での反射波が受信されるから、伝搬路伝達関数の周波数スペクトル(振幅スペクトル)において、距離D1,D2,D3に応じた周波数F1,F2,F3にピークが生じている。 As shown in (2) of FIG. 2, the propagation path transfer function based on the received signal is a propagation path transfer function in a situation where an obstacle exists within the detection target range. In this case, in addition to the direct wave and the reflected wave from non-obstacles, reflected waves from obstacles within the detection target range are received, so in the frequency spectrum (amplitude spectrum) of the propagation path transfer function, the distance D1 , D2, and D3, peaks occur at frequencies F1, F2, and F3.

そして、図2の(3)に示すように、上記の(2)受信信号に基づく伝搬路伝達関数と(1)基準伝搬路伝達関数との差分は、受信信号に基づく伝搬路伝達関数から、当該伝搬路伝達関数及び基準伝搬路伝達関数に共通に含まれる、直接波についての周波数応答成分と、非障害物での反射波についての周波数応答成分とが削除され、障害物での反射波についての周波数応答成分のみの伝搬路伝達関数となる。従って、この伝搬路伝達関数の周波数スペクトル(振幅スペクトル)において、障害物での反射波に係る伝搬距離である距離D3に応じた周波数F3のみにピークが生じている。このピークによって、障害物の存在を検知することができる。 As shown in (3) of FIG. 2, the difference between the above (2) channel transfer function based on the received signal and (1) the reference channel transfer function is calculated from the channel transfer function based on the received signal. The frequency response components for direct waves and the frequency response components for reflected waves at non-obstacles, which are commonly included in the propagation path transfer function and the reference propagation path transfer function, are deleted, and the frequency response components for reflected waves at obstacles are deleted. It becomes the propagation path transfer function of only the frequency response component of . Therefore, in the frequency spectrum (amplitude spectrum) of this propagation path transfer function, a peak occurs only at the frequency F3 corresponding to the distance D3, which is the propagation distance of the wave reflected by the obstacle. This peak allows the presence of an obstacle to be detected.

なお、検知対象範囲を、建築限界範囲を含む線路敷地範囲(例えば上下線の線路)およびその上空一定の範囲として、ある程度広い範囲を纏めて障害物の検知対象範囲とすることもできる。この場合には、標識等の固定位置に設置される非障害物が検知対象範囲内に存在することとなるが、この非障害物での反射波に関する情報(周波数成分)は、(1)基準伝搬路伝達関数と、(2)受信信号に基づく伝搬路伝達関数との両方に含まれるため、差分を求めることで削除される。 Note that the detection target range may be a railway site range including the building limit range (for example, up and down tracks) and a certain area above the railway site, and a somewhat wide range can be collectively set as the obstacle detection target range. In this case, a non-obstructive object installed at a fixed position such as a sign exists within the detection target range, but the information (frequency component) regarding the reflected wave from this non-obstructive object is based on (1) the standard Since it is included in both the propagation path transfer function and (2) the propagation path transfer function based on the received signal, it is deleted by calculating the difference.

次に、例えば自動車のような移動する物体が検知対象範囲外であるが検知可能範囲内に一時的に存在した状況を考える。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い状況での伝搬路伝達関数であるが、障害物の検知に用いられる前に、先立って予め用意される比較基準のデータであるため、通常時に存在しない物体が検知可能範囲内に存在するような時のデータではない。そのため、基準伝搬路伝達関数は、自動車のような移動する物体が検知対象範囲外であるが検知可能範囲内に一時的に存在している状況のデータではない。 Next, consider a situation in which a moving object, such as a car, is outside the detection target range but temporarily within the detectable range. The reference propagation path transfer function is a propagation path transfer function in a situation where there are no obstacles within the detection target range, but it is comparison standard data that is prepared in advance before being used for detecting obstacles. , it is not data when an object that does not normally exist exists within the detectable range. Therefore, the reference propagation path transfer function is not data for a situation where a moving object such as a car is outside the detection target range but temporarily exists within the detectable range.

したがって、受信信号に基づく伝搬路伝達関数(図2の(2)に相当)と、基準伝搬路伝達関数(図2の(1)に相当)との差分(図2の(3)に相当)は、検知対象範囲内の障害物の他にも、検知対象範囲外で且つ検知可能範囲内の非障害物(例えば自動車のような移動する物体)での反射波に関する情報(周波数成分)が含まれる可能性があり、これを区別する必要がある。この区別は、送信位置(送信機10の設置位置)及び受信位置(受信機20の設置位置)に対する推測される相対的な位置によって行うことができる。 Therefore, the difference (corresponding to (3) in FIG. 2) between the propagation path transfer function based on the received signal (corresponding to (2) in FIG. 2) and the reference propagation path transfer function (corresponding to (1) in FIG. 2) In addition to obstacles within the detection target range, information (frequency components) regarding reflected waves from non-obstacles (for example, moving objects such as cars) outside the detection target range and within the detectable range is included. It is necessary to distinguish between This distinction can be made based on the estimated relative position to the transmitting position (installation position of the transmitter 10) and the receiving position (installation position of the receiver 20).

このような障害物の検知に係る機能を実現するために、信号処理部30は、図1に示すように、発振部31と、送信OFDM信号生成部32と、FFT部33と、伝搬路伝達関数算出部34と、障害物有無判定部35と、障害物位置推測部36と、基準伝搬路伝達関数更新部37とを有する。 In order to realize the function related to detecting such an obstacle, the signal processing section 30 includes an oscillation section 31, a transmission OFDM signal generation section 32, an FFT section 33, and a propagation path transfer function, as shown in FIG. It has a function calculation section 34, an obstacle presence/absence determination section 35, an obstacle position estimation section 36, and a reference propagation path transfer function updating section 37.

発振部31は、所定周波数の発振信号を生成する発振器であり、生成した発振信号を、送信機10及び受信機20に対して共通の局部発振信号(ローカル信号)として出力する。 The oscillator 31 is an oscillator that generates an oscillation signal of a predetermined frequency, and outputs the generated oscillation signal to the transmitter 10 and the receiver 20 as a common local oscillation signal (local signal).

送信OFDM信号生成部32は、任意の送信データに対してOFDM変調処理であるIFFT(Inverse fast Fourier transform:逆高速フーリエ変換)処理等を行うことで送信OFDM信号を生成し、送信機10へ出力する。 The transmission OFDM signal generation unit 32 generates a transmission OFDM signal by performing IFFT (Inverse fast Fourier transform) processing, which is OFDM modulation processing, on arbitrary transmission data, and outputs it to the transmitter 10. do.

FFT部33は、送信機10により送信された送信信号、及び、受信機20により受信された受信信号を周波数解析する。つまり、送信信号である送信OFDM信号、及び、受信信号である受信OFDM信号に対して、周波数解析処理であるFFT処理を行って、時間領域の信号から周波数領域の信号に変換する。 The FFT unit 33 performs frequency analysis on the transmission signal transmitted by the transmitter 10 and the reception signal received by the receiver 20. That is, FFT processing, which is frequency analysis processing, is performed on the transmission OFDM signal, which is a transmission signal, and the reception OFDM signal, which is a reception signal, to convert a time domain signal into a frequency domain signal.

伝搬路伝達関数算出部34は、送信信号及び受信信号を周波数解析した解析結果に基づいて、送信位置で送信されてから受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分を含む伝搬路伝達関数を、送信信号の周波数成分と受信信号の周波数成分との比として算出する。つまり、送信信号の周波数解析の解析結果である送信OFDM信号をフーリエ変換した信号に対する、受信信号の周波数解析の解析結果である受信OFDM信号をフーリエ変換した信号の比を、送信位置から受信位置までの伝搬路の伝達関数である伝搬路伝達関数として算出する(図2参照)。 The propagation path transfer function calculation unit 34 calculates a frequency response component related to the propagation path of the reflected wave from being transmitted at the transmitting position to being received at the receiving position, based on the analysis results of frequency analysis of the transmitted signal and the received signal. The included propagation path transfer function is calculated as a ratio between the frequency component of the transmitted signal and the frequency component of the received signal. In other words, the ratio of the Fourier-transformed signal of the received OFDM signal, which is the analysis result of the frequency analysis of the received signal, to the Fourier-transformed signal of the transmitted OFDM signal, which is the analysis result of the frequency analysis of the transmitted signal, from the transmitting position to the receiving position. It is calculated as a propagation path transfer function, which is a transfer function of the propagation path (see FIG. 2).

障害物有無判定部35は、伝搬路伝達関数の比較基準である基準伝搬路伝達関数と伝搬路伝達関数とに基づいて、検知対象範囲内の障害物の有無を判定する。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い場合の伝搬路伝達関数である(図2参照)。 The obstacle presence/absence determination unit 35 determines the presence or absence of an obstacle within the detection target range based on a reference propagation path transfer function and a propagation path transfer function that are comparison standards for propagation path transfer functions. The reference propagation path transfer function is a propagation path transfer function when there is no obstacle within the detection target range (see FIG. 2).

障害物位置推測部36は、基準伝搬路伝達関数と伝搬路伝達関数との差分に基づいて、障害物の位置を推測する。障害物の位置は、伝搬路の距離Dと、障害物からの反射波の到来方向とに基づいて推測する。障害物からの反射波の到来方向は、伝搬路伝達関数に含まれる基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づいて推測する(図2参照)。 The obstacle position estimation unit 36 estimates the position of the obstacle based on the difference between the reference channel transfer function and the channel transfer function. The position of the obstacle is estimated based on the distance D of the propagation path and the arrival direction of the reflected wave from the obstacle. The arrival direction of the reflected wave from the obstacle is estimated based on frequency components that satisfy a predetermined amplitude relative difference condition with respect to a reference channel transfer function included in the channel transfer function (see FIG. 2).

基準伝搬路伝達関数更新部37は、障害物有無判定部35により障害物無しと判定された伝搬路伝達関数を用いて、基準伝搬路伝達関数を更新する。基準伝搬路伝達関数の更新は、例えば、障害物無しと判定されたときの伝搬路伝達関数を既存の基準伝搬路伝達関数と置き換えることで行ってもよいし、障害物無しと判定された複数の伝搬路伝達関数の平均を既存の基準伝搬路伝達関数と置き換えることで行ってもよいし、障害物無しと判定されたときの伝搬路伝達関数と既存の基準伝搬路伝達関数との平均を既存の基準伝搬路伝達関数と置き換えることで行ってもよい。 The reference propagation path transfer function updating section 37 updates the reference propagation path transfer function using the propagation path transfer function determined by the obstacle presence/absence determining section 35 to be free of obstacles. The reference propagation path transfer function may be updated, for example, by replacing the propagation path transfer function when it is determined that there is no obstacle with the existing reference propagation path transfer function, or by replacing the propagation path transfer function when it is determined that there is no obstacle, or by replacing the propagation path transfer function when it is determined that there is no obstacle. This can be done by replacing the average of the propagation path transfer functions of This may be done by replacing the existing reference propagation path transfer function.

[処理の流れ]
図4は、信号処理部30が行う障害物検知処理の流れを説明するフローチャートである。
[Processing flow]
FIG. 4 is a flowchart illustrating the flow of obstacle detection processing performed by the signal processing unit 30.

先ず、初期状態として、基準伝搬路伝達関数更新部37が、基準伝搬路伝達関数の初期設定を行う(ステップS1)。その後に、測定状態に移行する。すなわち、伝搬路伝達関数算出部34が、送信信号及び受信信号に基づいて伝搬路伝達関数を算出する(ステップS3)。次いで、障害物有無判定部35が、算出された伝搬路伝達関数に基づいて、軌道上の検知対象範囲内の障害物の有無を判定する。つまり、算出された伝搬路伝達関数と基準伝搬路伝達関数との類似度(例えば、相関値)を算出し(ステップS5)、算出した類似度が所定の閾値以上ならば(ステップS7:YES)、“障害物無し”と判定する(ステップS9)。そして、基準伝搬路伝達関数更新部37が、基準伝搬路伝達関数を更新する(ステップS11)。 First, as an initial state, the reference channel transfer function updating unit 37 initializes the reference channel transfer function (step S1). After that, the state shifts to the measurement state. That is, the propagation path transfer function calculation unit 34 calculates the propagation path transfer function based on the transmitted signal and the received signal (step S3). Next, the obstacle presence/absence determining unit 35 determines the presence/absence of an obstacle within the detection target range on the orbit based on the calculated propagation path transfer function. That is, the similarity (for example, correlation value) between the calculated propagation path transfer function and the reference propagation path transfer function is calculated (step S5), and if the calculated similarity is greater than or equal to a predetermined threshold (step S7: YES). , it is determined that there is no obstacle (step S9). Then, the reference channel transfer function updating unit 37 updates the reference channel transfer function (step S11).

一方、類似度が閾値未満ならば(ステップS7:NO)、障害物有無判定部35は“障害物有り”と判定する(ステップS13)。次いで、障害物位置推測部36が、障害物の位置を推測する。つまり、算出された伝搬路伝達関数と基準伝搬路伝達関数との差分を算出し(ステップS15)、算出した差分に基づいて、障害物の位置を推測する(ステップS17)。 On the other hand, if the similarity is less than the threshold (step S7: NO), the obstacle presence/absence determining unit 35 determines that "an obstacle is present" (step S13). Next, the obstacle position estimation unit 36 estimates the position of the obstacle. That is, the difference between the calculated propagation path transfer function and the reference propagation path transfer function is calculated (step S15), and the position of the obstacle is estimated based on the calculated difference (step S17).

その後、障害物の検知を終了するか否かを判断し、終了しないならば(ステップS19:NO)、ステップS3に戻る。終了するならば(ステップS19:YES)、本処理は終了となる。 Thereafter, it is determined whether or not to end the obstacle detection, and if it is not ended (step S19: NO), the process returns to step S3. If it ends (step S19: YES), this process ends.

[作用効果]
このように、本実施形態によれば、検知精度の向上を図った障害物検知装置1を、簡易な装置構成によって実現することができる。つまり、無線信号を送受信して軌道上の検知対象範囲内の障害物を検知するが、障害物の有無の判定を、送信信号及び受信信号を周波数解析した解析結果に基づいて算出した伝搬路伝達関数と、比較基準となる基準伝搬路伝達関数とに基づいて行う。伝搬路伝達関数には、送信位置で送信されてから受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分が含まれる。基準伝搬路伝達関数は、検知対象範囲内に障害物が無い状況での伝搬路伝達関数であり、障害物の有無判定の基準とすることができる伝搬路伝達関数である。これにより、検知対象範囲内の障害物の有無を適確に判定することが可能となる。また、伝搬路伝達関数は、送信信号及び受信信号を周波数解析した解析結果に基づくから、送信信号の変動の影響が小さい。この点は、軌道上の検知対象範囲内の障害物の判定の精度をより向上させる。以上の通り、送信信号及び受信信号を信号処理するといった簡易な構成でありながら、軌道上の検知対象範囲内の障害物の有無を精度良く判定する障害物検知装置を実現することが可能となる。
[Effect]
In this way, according to the present embodiment, the obstacle detection device 1 with improved detection accuracy can be realized with a simple device configuration. In other words, obstacles within the detection range on the orbit are detected by transmitting and receiving radio signals, but the propagation path transfer is calculated based on the analysis results of frequency analysis of the transmitted and received signals. This is performed based on the function and a reference propagation path transfer function that serves as a comparison standard. The propagation path transfer function includes a frequency response component related to the propagation path of the reflected wave from transmission at the transmission position to reception at the reception position. The reference propagation path transfer function is a propagation path transfer function in a situation where there is no obstacle within the detection target range, and is a propagation path transfer function that can be used as a reference for determining the presence or absence of an obstacle. This makes it possible to accurately determine the presence or absence of an obstacle within the detection target range. Furthermore, since the propagation path transfer function is based on the analysis results of frequency analysis of the transmitted signal and the received signal, the influence of fluctuations in the transmitted signal is small. This point further improves the accuracy of determining obstacles within the detection target range on the orbit. As described above, it is possible to realize an obstacle detection device that accurately determines the presence or absence of an obstacle within the detection target range on orbit, even though it has a simple configuration that processes transmitted signals and received signals. .

なお、本発明の適用可能な実施形態は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。 Note that the applicable embodiments of the present invention are not limited to the above-described embodiments, and of course can be modified as appropriate without departing from the spirit of the present invention.

例えば、上述の実施形態では、障害物有無判定部35は、基準伝搬路伝達関数と伝搬路伝達関数との類似度を算出することで障害物の有無を判定することとした。これを、基準伝搬路伝達関数と伝搬路伝達関数との差分を用いて、障害物の有無を判定することとしてもよい。この場合、例えば、当該差分に、所定の振幅閾値以上の振幅を有する周波数スペクトルが含まれている場合に障害物有りとして判定する。 For example, in the embodiment described above, the obstacle presence/absence determining unit 35 determines the presence or absence of an obstacle by calculating the degree of similarity between the reference propagation path transfer function and the propagation path transfer function. This may be done by determining the presence or absence of an obstacle using the difference between the reference propagation path transfer function and the propagation path transfer function. In this case, for example, if the difference includes a frequency spectrum having an amplitude greater than or equal to a predetermined amplitude threshold, it is determined that an obstacle is present.

1…障害物検知装置
10…送信機
20…受信機
30…信号処理部
31…発振部
32…送信OFDM信号生成部
33…FFT部
34…伝搬路伝達関数算出部
35…障害物有無判定部
36…障害物位置推測部
37…基準伝搬路伝達関数更新部
1...Obstacle detection device 10...Transmitter 20...Receiver 30...Signal processing section 31...Oscillation section 32...Transmission OFDM signal generation section 33...FFT section 34...Propagation path transfer function calculation section 35...Obstacle presence/absence determination section 36 ...Obstacle position estimation unit 37...Reference propagation path transfer function update unit

Claims (5)

無線信号を送受信して軌道上の検知対象範囲内の障害物を検知する障害物検知装置であって、
所定の送信位置から所定の送信信号を送信する送信手段と、
所定の受信位置で受信する受信手段と、
前記送信信号及び前記受信手段の受信信号を周波数解析した解析結果に基づいて、前記送信位置で送信されてから前記受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分を含む伝搬路伝達関数を算出する算出手段と、
前記伝搬路伝達関数の比較基準となる基準伝搬路伝達関数と前記伝搬路伝達関数とに基づいて、前記検知対象範囲内の前記障害物の有無を判定する判定手段と、
を備える障害物検知装置。
An obstacle detection device that transmits and receives radio signals to detect obstacles within a detection target range on orbit,
Transmitting means for transmitting a predetermined transmission signal from a predetermined transmission position;
a receiving means for receiving at a predetermined receiving position;
Based on the analysis result of frequency analysis of the transmitted signal and the received signal of the receiving means, the propagation includes a frequency response component related to the propagation path of the reflected wave from being transmitted at the transmitting position to being received at the receiving position. calculation means for calculating a path transfer function;
determining means for determining the presence or absence of the obstacle within the detection target range based on the propagation path transfer function and a reference propagation path transfer function that is a comparison standard for the propagation path transfer function;
Obstacle detection device equipped with.
前記算出手段は、前記送信信号の周波数成分と前記受信信号の周波数成分の比として前記伝搬路伝達関数を算出し、
前記基準伝搬路伝達関数と前記伝搬路伝達関数との差分に基づいて前記障害物の位置を推測する推測手段、
を更に備える請求項1に記載の障害物検知装置。
The calculating means calculates the propagation path transfer function as a ratio of a frequency component of the transmitted signal and a frequency component of the received signal,
Estimating means for estimating the position of the obstacle based on the difference between the reference propagation path transfer function and the propagation path transfer function;
The obstacle detection device according to claim 1, further comprising:
前記推測手段は、前記伝搬路伝達関数に含まれる前記基準伝搬路伝達関数に対して所定の振幅相対差条件を満たす周波数成分に基づいて、前記障害物からの反射波の到来方向を推測する、
請求項2に記載の障害物検知装置。
The estimating means estimates the arrival direction of the reflected wave from the obstacle based on a frequency component that satisfies a predetermined amplitude relative difference condition with respect to the reference propagation path transfer function included in the propagation path transfer function.
The obstacle detection device according to claim 2.
前記判定手段により障害物無しと判定された前記伝搬路伝達関数を用いて、前記基準伝搬路伝達関数を更新する更新手段、
を更に備える請求項1~3の何れか一項に記載の障害物検知装置。
updating means for updating the reference propagation path transfer function using the propagation path transfer function determined to be free of obstacles by the determination means;
The obstacle detection device according to any one of claims 1 to 3, further comprising:
無線信号を送受信して軌道上の検知対象範囲内の障害物を検知する障害物検知方法であって、
所定の送信位置から送信された所定の送信信号と、所定の受信位置で受信された受信信号とを周波数解析した解析結果に基づいて、前記送信位置で送信されてから前記受信位置で受信されるまでの反射波の伝搬路に係る周波数応答成分を含む伝搬路伝達関数を算出することと、
前記伝搬路伝達関数の比較基準となる基準伝搬路伝達関数と前記伝搬路伝達関数とに基づいて、前記検知対象範囲内の前記障害物の有無を判定することと、
を含む障害物検知方法。
An obstacle detection method for detecting obstacles within a detection target range on orbit by transmitting and receiving radio signals, the method comprising:
Based on the results of frequency analysis of a predetermined transmission signal transmitted from a predetermined transmission position and a reception signal received at a predetermined reception position, the signal is transmitted at the transmission position and then received at the reception position. calculating a propagation path transfer function including a frequency response component related to the propagation path of the reflected wave up to;
Determining the presence or absence of the obstacle within the detection target range based on a reference propagation path transfer function and the propagation path transfer function that serve as a comparison standard for the propagation path transfer function;
Obstacle detection method including.
JP2022070914A 2022-04-22 2022-04-22 Obstacle detection device and obstacle detection method Pending JP2023160504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022070914A JP2023160504A (en) 2022-04-22 2022-04-22 Obstacle detection device and obstacle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022070914A JP2023160504A (en) 2022-04-22 2022-04-22 Obstacle detection device and obstacle detection method

Publications (1)

Publication Number Publication Date
JP2023160504A true JP2023160504A (en) 2023-11-02

Family

ID=88516070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022070914A Pending JP2023160504A (en) 2022-04-22 2022-04-22 Obstacle detection device and obstacle detection method

Country Status (1)

Country Link
JP (1) JP2023160504A (en)

Similar Documents

Publication Publication Date Title
US6930638B2 (en) Passive moving object detection system and method using signals transmitted by a mobile telephone station
KR102488038B1 (en) Radar apparatus for vehicle and method for determining target of the same
US6693583B2 (en) Object recognition apparatus and method thereof
JPWO2006013689A1 (en) Radar
KR101892306B1 (en) Method and apparatus for detecting road environment based on frequency modulated continuous wave radar
EP1031851B1 (en) Radar Apparatus
JP2021511488A (en) Systems and methods for virtual aperture radar tracking
KR100778309B1 (en) Apparatus and Method for computing location of a moving beacon using received signal strength and multi-frequencies
KR102177912B1 (en) Vehicle identification
US9008584B2 (en) Environment estimation in a wireless communication system
JP6701983B2 (en) Target detection device
JP2011017634A (en) Device for estimating information on target object
JP3608991B2 (en) Inter-vehicle distance sensor
KR20150063639A (en) Method and apparatus for detecting surrounding environment based on sensing signal of frequency modulated continuous wave radar and continuous wave radar
US10712429B2 (en) Radar device and signal processing method
JP6291873B2 (en) Wireless positioning device
CN103323838B (en) Radar device
JPH085733A (en) Radar equipment
JP2017166985A (en) Rader system and target object detection method
RU2181680C2 (en) Device for locating vehicle moving along electromagnetic wave propagation facility
JP2007155728A (en) Fm-cw radar system
JP4314262B2 (en) Automotive radar equipment
US20210173078A1 (en) Object detection apparatus
JP2023160504A (en) Obstacle detection device and obstacle detection method
KR20190016254A (en) Method and apparatus for measurment of distance