JP2023160232A - Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure - Google Patents

Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure Download PDF

Info

Publication number
JP2023160232A
JP2023160232A JP2022070432A JP2022070432A JP2023160232A JP 2023160232 A JP2023160232 A JP 2023160232A JP 2022070432 A JP2022070432 A JP 2022070432A JP 2022070432 A JP2022070432 A JP 2022070432A JP 2023160232 A JP2023160232 A JP 2023160232A
Authority
JP
Japan
Prior art keywords
nuclear power
power generation
underground
small
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022070432A
Other languages
Japanese (ja)
Inventor
太 松山
Futoshi Matsuyama
デラクルーズ エリノア デュモン
Cruz Ellynor Dumon Dela
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022070432A priority Critical patent/JP2023160232A/en
Publication of JP2023160232A publication Critical patent/JP2023160232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

To start a project in which a next-generation small-sized nuclear reactor having strength against attack, the safety, the controlled radioactivity, the safety secured for wastes and inhabitants and capable of being started at a low cost in a short period of time is produced in a factory in units similar to assembling a plastic model, through a partnership between the public and private sectors.SOLUTION: The solution means of the present invention begins with the establishment of a project team to solve the following problems. That will solve the above problem. 1. Development of Unit Type Small Module Reactor SMR. 2. Test installation of deep underground nuclear power generation at the lake bottom of a hydroelectric power plant and mine ruins. 3. Systematization of nuclear power generation disposal and radioactivity measurement. 4. Total cost calculation and cost comparison with other electric power. 5. Monitoring of the presence or absence of radioactive contamination during cooling use.SELECTED DRAWING: None

Description

本発明は、突発的であるにせよ直近のロシアのウクライナ侵攻による化石燃料の輸入制限や国際価格の高騰、CN(カーボンニュートラル)やSDG’s、日本では円安による物価高などエネルギーなどの諸課題を、一挙に解決する大深度小型原子炉と原子力発電とその立地に関するものである。
本発明の要点:1は、発電の中心となる小型モジュール原子炉を始めとして、 すべて工場で一括製造される点である。モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージであり、あたかもプラモデルのように、現地では「組み立てるだけ」である。これらは「水中、地中、小型で高性能」のトリプル合成安全を実現する。
本発明の要点:2は、原子炉を大深度地下に設置することである。本発明の要点2は、すでに送電や機器輸送道路インフラの完備したポイントでの敷設利用であり、設置費用の軽減と工期短縮を図る。
本発明の立地例として、水力発電ダムの湖底や、鉱山、坑道、廃鉱、湖沼などを利用する。本発明は、原子力発電の長年の課題として、冷却水、放射能漏れ、天災、地震、津波、ミサイル攻撃、火災など不測の事故にも対応できるものである。
The present invention solves various energy-related issues such as restrictions on fossil fuel imports due to the recent Russian invasion of Ukraine, soaring international prices, CN (Carbon Neutral) and SDG's, and rising prices in Japan due to the weak yen, even if it is sudden. This is about small deep nuclear reactors, nuclear power generation, and their location, which will be solved all at once.
Key points of the present invention: 1. Everything is manufactured in a factory at once, including the small module nuclear reactor that plays a central role in power generation. The module is an integrated package that includes a ``pressure vessel,'' ``steam generator,''``pressurizer,'' and ``containment vessel.'' Just like a plastic model, it ``simply assembles'' on site. These offer triple composite safety: "underwater, underground, compact and high performance."
Point 2 of the present invention is to install the nuclear reactor deep underground. The second point of the present invention is to install and use the system at a point where power transmission and equipment transportation road infrastructure is already complete, thereby reducing installation costs and shortening the construction period.
Examples of locations for the present invention include the lakebed of a hydroelectric dam, a mine, a tunnel, an abandoned mine, and a lake. The present invention can also deal with unforeseen accidents such as cooling water leaks, radioactivity leaks, natural disasters, earthquakes, tsunamis, missile attacks, and fires, which have long been issues associated with nuclear power generation.

つまり本発明はプレハブ住宅のように、主要機器を事前に工場で製造してから現地で据え付ける小型モジュール炉 SMR(Small Modular Reactor)を大深度地下または湖(大地、海)の底深く設置しAIとロボットで稼働コントロール・燃料補給・放射性廃棄物メンテナンスの自動で行うというものである。
本発明の要点「地中に埋設設置」する主たる利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
In other words, the present invention uses a small modular reactor (SMR), in which the main equipment is manufactured in advance at a factory and then installed on site, similar to a prefabricated house. The system uses robots to automatically control operations, refuel, and maintain radioactive waste.
The main advantages of ``installation underground'' of the present invention are: 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.

本発明では20世紀の休眠インフラを、1.水力発電所、2.炭鉱と炭鉱跡、3.湖沼と水利、4.河川と治水と考えこれらを次世代発電に生かせると考える。
本発明のインフラ遺産とは、日本においては江戸時代に遡る産業と戦後日本の復興を象徴する水力発電所、炭鉱、地下鉄、地下街などを指す。
本発明は、1900年代から作られ今も稼働中の全国に点在する2494基の水力発電所の「湖底または近接した場所への小型モジュール原子炉 SMR設置」の関するものである。
本発明の立地は、約2500箇所から小型原子炉設置の好適地を選ぶことができる。本発明の「水力発電の湖底立地や発電同士のコラボ」は未だ報告がない発明である。
In the present invention, the dormant infrastructure of the 20th century is: 1. Hydroelectric power plant, 2. Coal mines and coal mine ruins, 3. Lakes and water resources, 4. We think of rivers and flood control and think that these can be utilized for next-generation power generation.
In Japan, the infrastructure heritage of the present invention refers to industries dating back to the Edo period and hydroelectric power plants, coal mines, subways, underground malls, etc. that symbolize Japan's postwar recovery.
The present invention relates to the "installation of small module nuclear reactors SMR on lakebeds or nearby locations" of the 2,494 hydroelectric power plants that were built in the 1900s and are still in operation across the country.
According to the present invention, suitable locations for installing a small nuclear reactor can be selected from approximately 2,500 locations. The "lake bottom location of hydroelectric power generation and collaboration between power generators" of the present invention is an invention that has not yet been reported.

本発明の、立地である水力発電所の湖底は、小型モジュール原子炉 SMR(Small Modular Reactor)/1モジュールの出力は6万kW(5億2560万KWh)、通常の「加圧水型」原子炉の1/20の発電量があり安全な設置場所として最適である。以下に2494箇所の水力発電所とのコラボが発明であり画期的かを以下に示す。
1.水力発電所には常に原子炉冷却用の水がある。(利点1)
2.水力発電所(ダム型)の貯水は抜くことができる。小型原子炉建設工事中は流入する水をパイプラインで迂回させ乾いた地面の地下への工事と発電ユニットの埋設が可能である。(利点2)
3.水を一定期間抜いて湖底地面の地下深く小型モジュール炉 SMR(Small Modular Reactor)を埋設しその後に水を張れば、小型原子炉冷却は安心で、冷却用循環水は放射能には汚染せず下流の飲料水利用にも安心である。同時に湖底の地下位置するため外敵からの攻撃に対する防御性も高い。(利点3)
4.発電全体の管理棟はAIとロボットでコントロールされ近隣地に設置する。万一想像を超えた災害や攻撃があり放射能漏れが懸念された場合でも、そのままコンクリートで埋めることができる。(利点4)
5.放射性廃棄物の処理も簡単で安全である。なぜなら、先ず常に水中にありしかも地下深くに保存されているため被爆の心配がない。(利点5)
6.水力発電所は山奥であっても建設時に作った道路ありそのまま直ぐに使用でき費用節減と時間短縮につながる。(利点6)
7.水力発電所はすでに送電線・変電設備を持っておりそなまま直ぐに使用できる。(利点7)
8.緊急電力が必要な場合も水力発電と原子力発電を融通し合うことができる。例えば電力需要の少ない夜間には原子力で得られた電気で下に溜めた水をポンプアップし揚水し昼間の発電に利用できる。(利点8)
9.小型モジュール原子炉はプラモデルのようにパーツごとに分けられている。1モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージであり、ウラン燃料棒交換などは放射能を遮断したパッケージごとロボットを用いて交換される。福島原発事故で「冷却水」の重要性は公知であり「ダムの大深度湖底への小型モジュール炉 設置」は住民理解だ得られやすい。福島原発の水素爆発などの模様も繰り返し放送されており、一定の住民理解は得られるだろうが、ダム堤防決壊の安全シミュレーションも用意するべきであろう。
The lakebed of the hydroelectric power plant where the present invention is located is a small modular nuclear reactor (SMR) with an output of 60,000 kW (525.6 million KWh) per module, compared to a normal "pressurized water type" reactor. It generates 1/20th the power and is ideal for safe installation. The following shows how the collaboration with 2,494 hydroelectric power plants is an invention and a breakthrough.
1. Hydroelectric power plants always have water for reactor cooling. (Advantage 1)
2. Water stored in hydroelectric power plants (dam type) can be drained. During the construction of a small nuclear reactor, incoming water can be diverted using a pipeline, allowing construction to proceed underground on dry ground and burying the power generation unit. (Advantage 2)
3. If water is drained for a certain period of time, a small modular reactor (SMR) is buried deep underground in the lake bed, and then water is filled, cooling of the small reactor is safe and the circulating water for cooling will not be contaminated with radioactivity. It is also safe for downstream drinking water use. At the same time, since it is located underground at the bottom of the lake, it has high protection against attacks from external enemies. (Advantage 3)
4. The entire power generation administration building will be controlled by AI and robots and will be located in a nearby location. In the unlikely event that an unimaginable disaster or attack occurs and there are concerns about radioactivity leaking, it can be buried in concrete. (Advantage 4)
5. Disposal of radioactive waste is also easy and safe. First of all, because it is always underwater and stored deep underground, there is no need to worry about exposure to atomic bombs. (Advantage 5)
6. Even if a hydroelectric power plant is located deep in the mountains, there are roads built at the time of construction and it can be used immediately, leading to cost savings and time savings. (Advantage 6)
7. Hydroelectric power plants already have transmission lines and substation equipment and can be used immediately. (Advantage 7)
8. Hydroelectric power and nuclear power can be used interchangeably when emergency power is needed. For example, at night when electricity demand is low, electricity generated from nuclear power can be used to pump up water stored below and use it to generate electricity during the day. (Advantage 8)
9. The small modular nuclear reactor is divided into parts like a plastic model. One module is an integrated package that includes a ``pressure vessel,'' ``steam generator,''``pressurizer,'' and ``containment vessel.'' Replacement of uranium fuel rods and other tasks are carried out using robots, including the radioactive-blocking package. The importance of ``cooling water'' in the Fukushima nuclear power plant accident is well known, and it is easy to gain the understanding of residents about ``installing a small module reactor on the deep lakebed of a dam.'' Scenes such as the hydrogen explosion at the Fukushima nuclear power plant have been repeatedly broadcast, which should help gain a certain level of understanding among residents, but safety simulations of dam embankment bursts should also be prepared.

次の本発明の要旨「立地」は、小型原子炉を、黄金の国「ジパング」に象徴される江戸時代から採掘されてきた全国2000カ所以上の「鉱山」と「鉱山跡」で大深度地中に設置し初期費用をかけずに安全な原子力発電所を設置することである。
例えば日本には地中原発の好適地と考える、約2000にも上る鉱山と鉱山跡がある。鉱山のない都道府県はなく大深度地下への小型原子炉設置場所の選択容易であり、それは下記0009にある原子力発電への懸念材料を解決する。
1. 鉱山には坑道がある。坑道は通常地下深くあるいは山中深く掘り下げられている。つまりすでに「道」や「エレベーター」や「トロッコ線路」がつけられている。小型原子炉ユニット設置のために新たな費用が掛からないだけでなく工期の大幅な短縮が見込める。
2. 露天掘りの場合は「開削工法」(構造物を埋めたり、建造した後に土砂やコンクリートで埋め戻す方法)でも同様に小型原子炉または大型原子炉を埋めて大深度原子炉・原子力発電所とする。
3. この工法は地下鉄、地下街を建造した方法が生かされる。大深度地下原発の利点は基本的には「水力発電の湖底」と同じであるが、冷却水の調達は「湖沼」「河川」の近接立地を勘案しなければならない。
4. ちなみに日本における湖沼は226箇所、河川は126の大きな河川がある。また最近では冷凍温度の低い塩化ナトリウム水溶液が用いられ小型原子炉の冷却には必ずしも冷却水が必要でない研究も進んでいる。
The next key point of the present invention, ``location,'' is that small nuclear reactors are installed in deep underground mines and mine ruins, more than 2,000 of which have been mined since the Edo period, symbolized by the golden country ``Zipangu.'' The aim is to establish a safe nuclear power plant without incurring initial costs.
For example, Japan has approximately 2,000 mines and mine ruins that are considered suitable sites for underground nuclear power plants. There are no prefectures without mines, and it is easy to choose a location for installing a small nuclear reactor deep underground, which solves the concerns about nuclear power generation mentioned in 0009 below.
1. There is a shaft in the mine. Mine shafts are usually dug deep underground or into mountains. In other words, ``roads'', ``elevators'', and ``trolley tracks'' have already been added. Not only will there be no additional costs for installing a small nuclear reactor unit, but the construction period can be expected to be significantly shortened.
2. In the case of open-pit mining, the ``open-cut method'' (a method of burying the structure or backfilling it with earth and concrete after construction) similarly buries a small or large nuclear reactor to create a deep nuclear reactor or nuclear power plant.
3. This construction method makes use of the methods used to construct subways and underground malls. The advantages of deep underground nuclear power plants are basically the same as those of ``hydroelectric lake bottoms,'' but when procuring cooling water, consideration must be given to the proximity of ``lakes'' and ``rivers.''
4. By the way, there are 226 lakes and marshes in Japan, and 126 large rivers. Recently, research has also progressed in which cooling water is not necessarily required for cooling small nuclear reactors by using a sodium chloride aqueous solution with a low freezing temperature.

本発明の三番目の要旨は、20世紀の休眠インフラを生かし最短で発電可能なモジュール式の小型原子力発電と湖沼、用水池、ため池、沼への小型原子炉ユニットの設置である。例えば日本には226の大きな湖沼があり常に冷却に使用できる水を湛えている、と同時に外敵からの攻撃から守ることができる。河川内にに施設は困難であるが、海中もしくは湖沼ならば可能である。その場合、工法としては海中トンネルを通したのと同様、改定を掘削しユニットを沈めそれを延伸し地上部とつなぐという方法である。これも本発明の大深度地下原発の一種である。 The third gist of the present invention is a modular small-scale nuclear power generation system that can generate electricity in the shortest possible time by making use of the dormant infrastructure of the 20th century, and the installation of small nuclear reactor units in lakes, irrigation ponds, reservoirs, and swamps. For example, Japan has 226 large lakes and ponds that are always full of water that can be used for cooling, and at the same time protect it from attacks from foreign enemies. It is difficult to build a facility in a river, but it is possible if it is underwater or in a lake. In that case, the construction method would be to excavate a revision, sink the unit, and extend it to connect it with the above-ground part, similar to the method used for passing through an underwater tunnel. This is also a type of deep underground nuclear power plant of the present invention.

本発明の主役「小型モジュール炉 SMR」(Small Modular Reactor)の一例として以下のようなものが考えられる。リストアイコン 1モジュールの出力は6万kW、通常の「加圧水型」原子炉の1/20程度で、リストアイコン 最大12個のモジュールを大きなプールの中に設置する。
リストアイコン 1モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージで、大型の冷却水ポンプや大口径配管が不要である。リストアイコン 各モジュールは、それぞれ独立したタービン発電機と復水器に接続し、リストアイコン 小型化と一体化を図ることにより、大規模な冷却材喪失事故のリスクを回避できる。
The following can be considered as an example of the "Small Modular Reactor" (SMR) which is the main character of the present invention. List icon The output of one module is 60,000 kW, about 1/20 of a normal "pressurized water" reactor.List icon Up to 12 modules will be installed in a large pool.
List icon 1 module is an integrated package that includes a "pressure vessel,""steamgenerator,""pressurizer," and "containment vessel," eliminating the need for large cooling water pumps or large-diameter piping. List Icon Each module connects to its own independent turbine generator and condenser, allowing list icon miniaturization and integration to avoid the risk of large-scale loss of coolant accidents.

今般、突発的であるにせよロシアのウクライナ侵攻により世界のエネルギー政策は一変した。同時にCN(カーボンニュートラル)SDG‘sも配慮しなければならないという時代がきた。
本発明の超深度原子力発電は、上記二つの問題に正面から向き合い解決するものである。この政治的、経済的背景をもって原子力発電の小型化は研究が進んでいる。代表的なもののひとつが、「小型モジュール炉」である。SMR(Small Modular Reactor)とも呼ばれ、世界各国で開発が進められている。その特徴をキーワードであらわすとすれば、「小型」「モジュール」「多目的」の3つである。原子炉を「小型」にすると、大型の原子炉よりも冷えやすくなる。技術的に言えば、小型炉は体積の割に大きな表面積をもっているために起こる現象である。この特性を突きつめていくと、原子炉に水をポンプで入れて冷やさなくても自然に冷えてくれる、といったことも可能になる。
Recently, world energy policy has changed completely due to Russia's invasion of Ukraine, albeit suddenly. At the same time, the time has come when we must also consider CN (carbon neutral) SDG's.
The ultra-deep nuclear power generation of the present invention directly faces and solves the above two problems. Against this political and economic background, research into downsizing nuclear power generation is progressing. One of the most representative ones is the "small module reactor." Also known as SMR (Small Modular Reactor), development is progressing around the world. If we were to describe its characteristics in terms of keywords, we would use three keywords: "compact,""modular," and "multipurpose." When a nuclear reactor is made smaller, it cools down more easily than a large reactor. Technically speaking, this phenomenon occurs because small reactors have a large surface area relative to their volume. If we investigate this characteristic, it will become possible to cool water naturally into a nuclear reactor without having to pump it into the reactor.

いくら安全と言っても、現にチェルノブイリ、スリーマイル島、福島原発の事故をTVなどで見た人々には、「目に見えない放射能や被爆」への恐怖やアレルギーは簡単にはなくならないだろう。
同時に脱二酸化炭素、CN(カーボンニュートラル)、SDG’s も待ったなしの解決すべき課題である。また話題のEV(電気自動車)も普及すればするほど燃料である電気エネルギーの重要性は増えることはあっても減ることはないだろう。
上記の懸念により本発明の要点「地中に埋設設置」する利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
今後のエネルギーの課題は、1)ローコスト、2)脱酸素、3)脱ロシア(化石燃料依存を減らす)、4)安全(天災のみならず戦争も想定)、5)安定供給、6)時短(着工から送電までが早い/ユニット化)、7)従来インフラの共用であろう。
No matter how safe it is, people who actually watched the Chernobyl, Three Mile Island, and Fukushima nuclear power plant accidents on TV will not easily get rid of their fears and allergies to ``invisible radiation and exposure.'' Dew.
At the same time, decarbonization, CN (carbon neutral), and SDG's are also urgent issues that need to be resolved. Furthermore, the more popular EVs (electric vehicles) become, the more the importance of electric energy as fuel will increase, but will not decrease.
Due to the above concerns, the main points of the present invention are the advantages of ``installation underground'': 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.
The future energy challenges are 1) low cost, 2) deoxidization, 3) de-Russia (reducing dependence on fossil fuels), 4) safety (assuming not only natural disasters but also war), 5) stable supply, 6) shortening of time ( 7) Common use of conventional infrastructure.

これが実現すれば、安全性が高まるうえに、原子炉全体を簡単な構造にすることができ、メンテナンスもしやすくなる。その結果、コストの削減ができ、経済性も向上する可能性が見えてくる。本発明は、まさにこれを実現するものである。原子炉の小型化、冷却への万全の備え、他の電力とのコスト競争も勘案されている。
今般、突発的であるにせよロシアのウクライナ侵攻は、西側社会に化石エネルギーの輸入制限、輸入禁止、代替供給国探し、代替エネルギーへの変換などへの対応を否応なくもたらした。石炭、石油、特に大きいエネルギー原料はLNG(液化天然ガス)である。特にEU諸国はロシアからのLNGパイプライン設備を諦め当面は一定の輸入を行うものの中長期的には禁輸の政策に舵を切らざるを得なくなった。エネルギー問題は世界中で喫緊の課題として、またSDG’s やCN(カーボンニュートラル)も相まって化石燃料からの脱局は世界的な課題となっている。
If this is realized, not only will safety be improved, but the overall structure of the reactor will be simpler and maintenance will be easier. As a result, it becomes possible to reduce costs and improve economic efficiency. The present invention accomplishes exactly this. Consideration is also being given to downsizing nuclear reactors, thorough preparation for cooling, and cost competition with other forms of electricity.
Russia's recent, albeit sudden, invasion of Ukraine has forced Western society to take measures such as restricting or banning the import of fossil energy, searching for alternative supply countries, and converting to alternative energy sources. Coal, oil, and especially large energy raw materials are LNG (liquefied natural gas). In particular, EU countries have given up on LNG pipeline facilities from Russia, and although they will continue to import a certain amount for the time being, they have been forced to adopt a policy of embargoing imports in the medium to long term. Energy issues are an urgent issue around the world, and coupled with SDG's and CN (carbon neutrality), moving away from fossil fuels has become a global issue.

自国の石炭発電所の再開、廃炉が決定していた原子力発電所の継続、それだけではなく新たな原子力発電所の建設もドイツ、イギリスを始めとして次々と発表された。原子力発電の二酸化炭素ゼロという点が見直された格好である。本発明の超深度原子力発電は新たな原子力発電所設置に大きなメリットをもたらすことに疑いはない。
今般、突発的であるにせよロシアのウクライナ侵攻でも実行されたように、原子力発電所は最初の攻撃対象になりやすい。核爆発の脅威、電力のコントロール、地域への多大で長期にわたる影響を考えれば最初の攻撃対象になるのは当然であろう。今後の原子力発電は、今までの内在的リスクのみならず、外敵からの防御も無視できないのである。
Not only the restart of coal power plants in their own countries, the continuation of nuclear power plants that had been decided to be decommissioned, but also the construction of new nuclear power plants were announced one after another, including in Germany and the United Kingdom. The fact that nuclear power generation produces zero carbon dioxide appears to have been reconsidered. There is no doubt that the ultra-deep nuclear power generation of the present invention will bring great benefits to the installation of new nuclear power plants.
Nuclear power plants are likely to be the first targets of attack, as was the case with Russia's recent, albeit sudden, invasion of Ukraine. Given the threat of a nuclear explosion, the control over power, and the huge and long-lasting impact it would have on the region, it would make sense that it would be the first target. Future nuclear power generation cannot ignore not only the inherent risks of the past, but also the protection from external enemies.

これまで、原子力発電所の建設は、ひとつひとつが1点ものとして現地で建設されており、そのため工期が長くなりがちであった。また、品質保証のために何重もの確認・認可試験を経てつくられてきた。しかし、プラモデルを組み立てるような「モジュール建築」の手法を最大限取り入れようというアイデアが生まれて状況は変わりつつある。規制、「型式認証」という方法で設計認可を取得しておき、全体を一括で「工場生産+組み立て+輸送+設置」するという手法である。まさにプレハブ住宅そのものであり、本発明もこうした、「手法/小型モジュール工法の原子炉」は根幹をなす一つである。
この場合、まず先に、輸送できるサイズ(米国なら鉄道や高速道路、欧州なら内陸運河)まで「小型化」し、それから原子炉の出力を決めるという流れになるであろう。
Until now, each nuclear power plant was built on-site as a one-of-a-kind item, which tended to take a long time. In addition, it has been manufactured through multiple confirmation and approval tests to ensure quality. However, the situation is starting to change with the idea of incorporating as much of the "modular architecture" method as possible, which involves assembling plastic models, as much as possible. The method is to obtain design approval through regulations and ``type certification,'' and then carry out the entire process at once by ``factory production, assembly, transportation, and installation.'' This is exactly what a prefabricated house is, and this ``technique/small module construction method nuclear reactor'' is one of the fundamentals of the present invention.
In this case, the process would be to first "downsize" the reactor to a size that can be transported (by rail or highway in the United States, or by inland canals in Europe), and then decide on the output of the reactor.

一方原発といえば、心理的にも抵抗はキツイ。地域住民の感情、反対運動、放射能漏れ、絶え間なく大量の冷却水の必要問題、また万一の事故のことを考え沿岸部に立地することが多く、攻撃対象になりやすさの一因でもある。本発明の超深度原子力発電所は、安全防御、放射能廃棄物、冷却水、原子炉等の対応方法を発明並びに具体的な提案をするものである。 On the other hand, when it comes to nuclear power plants, psychological resistance is difficult. Local residents' emotions, opposition movements, radioactive leaks, the constant need for large amounts of cooling water, and the fact that they are often located on the coast in case of an accident are factors that make them easy targets for attack. be. The ultra-deep nuclear power plant of the present invention invents and makes concrete proposals for safety protection, radioactive waste, cooling water, reactor handling methods, etc.

多くの場合、原子力発電と原子力発電所の問題点、心配な点、克服されるべき点は以下に集約されるだろう。
1. 事故に対する安全性(地震、津波、天地災害、台風、爆発、メルトダウン、外部からの攻撃目標化、海洋汚染、水質汚染、土壌汚染、大気汚染、被爆など)
2. 放射能汚染(環境問題、食料、風評被害、海洋投棄、作物、家畜など)稼働年数(40年、50年とも言われているがその後の廃炉はどうなるのか。
3. 放射性廃棄物(トリチウム、ヨウ素131/7日、セシウム134/88日、セシウム137/99日、ストロンチウム90/18年、プルトニウム229/20年・・・実効半減期)
4. 放射能減衰期間の長さ(トリチウム、ヨウ素131/8日、セシウム134/2年、セシウム137/30年、ストロンチウム90/29年、プルトニウム229/24000年・・・物理的半減期)
5. 放射性廃棄物の処理方法(処理後密封し地下300メートル、地震や地殻変動)
6. 冷却水(大量の水がなければ福島原発にように爆発を起こす)
7. 立地(近隣住民・地方自治体など多くの利害関係者の合意・同意を取り付けなくてはならない)
8. ウラン調達(輸入手続き、輸送、保管など)
9. インフラその1:建築、機械、機材、原子炉、発電機、構造物、建物、パイプライン、倉庫
10.インフラその2:原子炉建屋、タービン建屋、廃棄物建屋、各種サービス建屋、コントロール室建屋など
In many cases, the problems, concerns, and points to be overcome in nuclear power generation and nuclear power plants can be summarized as follows.
1. Safety against accidents (earthquakes, tsunamis, natural disasters, typhoons, explosions, meltdowns, external attack targeting, marine pollution, water pollution, soil pollution, air pollution, atomic bomb exposure, etc.)
2. Radioactive contamination (environmental issues, food, reputational damage, ocean dumping, crops, livestock, etc.) Number of operating years (some say 40 or 50 years, but what will happen to the decommissioning after that?)
3. Radioactive waste (tritium, iodine 131/7 days, cesium 134/88 days, cesium 137/99 days, strontium 90/18 years, plutonium 229/20 years...effective half-life)
4. Length of radioactivity decay period (tritium, iodine 131/8 days, cesium 134/2 years, cesium 137/30 years, strontium 90/29 years, plutonium 229/24000 years...physical half-life)
5. How to dispose of radioactive waste (sealed 300 meters underground after processing, earthquakes and crustal movements)
6. Cooling water (without a large amount of water, an explosion like the one at the Fukushima nuclear power plant will occur)
7. Location (must obtain consent from many stakeholders including neighboring residents and local governments)
8. Uranium procurement (import procedures, transportation, storage, etc.)
9. Infrastructure 1: Architecture, machinery, equipment, nuclear reactors, generators, structures, buildings, pipelines, warehouses 10. Infrastructure 2: Reactor building, turbine building, waste building, various service buildings, control room building, etc.

上記のどの部分に間違いがあっても大きな問題が起きる可能性がある。大きな問題とは、人命にかかわる問題であり太陽光発電や、風力発電とは危険度の点で大きく異なる。つまり原子力発電の問題は全て1.「危険の除去」、2.「危険度を限りなく低くすること」、3.「安定的稼働」に集約される。同時に最高の効率を持つ文明の大発見「原子力発電」を上手に動かし続けなくてはならない。本発明の要点は上記3点を実現するためのものである。 Any mistake in any of the above can cause major problems. A major problem is one that affects human life, and is significantly different from solar power generation or wind power generation in terms of the degree of risk. In other words, the problem with nuclear power generation is all 1. “Removal of danger”, 2. “Reducing the level of risk to the lowest possible level”; 3. It can be summarized as "stable operation". At the same time, we must continue to skillfully utilize ``nuclear power generation,'' a great discovery of civilization with the highest efficiency. The main point of the present invention is to realize the above three points.

本発明の要点は、上記の諸問題を一挙に解決するためにと言うものである。
本発明は以下の10課題について具体的に説明し、「発明性の証明」とする。
1.なぜ「大深度原子力発電」が求められるか?(新規・進歩の優れた点)
2.立地の経済性は?(原子力発電は建設に巨額を要する)
3.メンテナンスの優位性は?(AIとロボット利用)
4.SDG‘s、CN(カーボンニュートラル)、利権団体、住民対策、環境対策など周辺と環境への配慮は?(従来との比較/風評/放射能漏れ/CO2)
5.冷却水対策は?(24時間大量の冷却水を必要とし絶対に欠かせない)
6.放射性廃棄物と廃炉作業工程は?(地下300メートルにガラスで固め保存容器で埋設)
7.建築物配置の利点は?(原子炉建屋、タービン建屋、廃棄物建屋、各種サービス建屋、コントロール室建屋など)
8.機材と業者は?(国際特許で国内産業の再隆盛)
9.天災や外国からの攻撃への対応は?(地震、津波、台風、ミサイル攻撃など)
10.発電量、安定供給、送電は?(コストパフォーマンス計算として事故リスク対応費用、政策経費、CO2対策費用、燃料費、運転維持費、資本費)
The main point of the present invention is to solve the above problems all at once.
The present invention will specifically explain the following 10 problems, which will be referred to as "proof of inventiveness."
1. Why is “deep-depth nuclear power generation” required? (Advantages of new/progressive features)
2. What are the economics of the location? (Nuclear power generation requires a huge amount of money to construct)
3. What are the advantages of maintenance? (Using AI and robots)
4. What about consideration for the surrounding area and environment, such as SDG's, CN (carbon neutral), interest groups, resident measures, environmental measures, etc.? (Comparison with conventional/rumor/radioactivity leak/CO2)
5. What about cooling water measures? (It requires a large amount of cooling water 24 hours a day, which is absolutely essential.)
6. What about radioactive waste and the decommissioning process? (Buried 300 meters underground in a storage container sealed with glass)
7. What are the advantages of building placement? (Reactor building, turbine building, waste building, various service buildings, control room building, etc.)
8. What about the equipment and vendors? (Revival of domestic industry through international patents)
9. How should we respond to natural disasters and attacks from foreign countries? (Earthquakes, tsunamis, typhoons, missile attacks, etc.)
10. What about power generation, stable supply, and power transmission? (Cost performance calculation includes accident risk response cost, policy cost, CO2 countermeasure cost, fuel cost, operation and maintenance cost, capital cost)

本発明の「超深度原子力発電」とは、原子炉を地下30メートル程度から300メートル程度に設置される大深度地下発電所を指す。地球の外殻は約30キロメートルであり、今までの最深度ボーリングはロシアの12キロメートルが記録されている。また地震の発生は地下70キロメートル程度は一般的でそれに比較すれば「超深度とか大深度」とは言えないかもしれない。

The term "ultra-deep nuclear power generation" in the present invention refers to a deep underground power plant in which a nuclear reactor is installed approximately 30 meters to approximately 300 meters underground. The Earth's outer shell is about 30 kilometers, and the deepest drilling to date was 12 kilometers in Russia. Also, earthquakes generally occur about 70 kilometers underground, so compared to that, it may not be called "ultra-deep" or "very deep."

出願 2012-208492 (2012/09/21) 公開 2014-062830 (2014/04/10) 国際特許分類(IPC): G21C7/30 FI: G21C7/30Application 2012-208492 (2012/09/21) Publication 2014-062830 (2014/04/10) International Patent Classification (IPC): G21C7/30 FI: G21C7/30 出願 2013-104170 (2013/05/16) 公開 2014-224764 (2014/12/04) 国際特許分類(IPC): G21C7/28 FI: G21C7/28Application 2013-104170 (2013/05/16) Publication 2014-224764 (2014/12/04) International Patent Classification (IPC): G21C7/28 FI: G21C7/28 出願 JP2012008124 (2012/12/19) 公開 WO2013094196 (2013/06/27) 国際特許分類(IPC): G21C1/02 G21C3/60 G21C7/28 G21D1/00 G21D5/14 FI: G21C1/02 A G21C3/60 G21C7/28 G21D1/00 Q G21D5/14Application JP2012008124 (2012/12/19) Publication WO2013094196 (2013/06/27) International Patent Classification (IPC): G21C1/02 G21C3/60 G21C7/28 G21D1/00 G21D5/14 FI: G21C1/02 A G21C3/60 G21C7 /28 G21D1/00 Q G21D5/14 出願 2016-019801 (2016/02/04) 公開 2016-145828 (2016/08/12) 国際特許分類(IPC): G21D5/02 F01K9/02 F01D25/24 F01K9/00 F01D25/26 FI: G21D5/02 F01K9/02 F01D25/24 K F01K9/00 B F01D25/26 ZApplication 2016-019801 (2016/02/04) Publication 2016-145828 (2016/08/12) International Patent Classification (IPC): G21D5/02 F01K9/02 F01D25/24 F01K9/00 F01D25/26 FI: G21D5/02 F01K9 /02 F01D25/24 K F01K9/00 B F01D25/26 Z 出願 2012-237886 (2012/10/29) 公開 2014-089067 (2014/05/15) 国際特許分類(IPC): G21C7/28 G21C9/02 FI: G21C7/28 G21C9/02 ZApplication 2012-237886 (2012/10/29) Publication 2014-089067 (2014/05/15) International Patent Classification (IPC): G21C7/28 G21C9/02 FI: G21C7/28 G21C9/02 Z 出願 2015-509007 (2013/04/11) 公開 2015-519552 (2015/07/09) 国際特許分類(IPC): G21C1/08 G21C13/00 G21C13/028 G21C17/02 FI: G21C1/08 G21C13/00 A G21C13/02 F G21C17/02 EApplication 2015-509007 (2013/04/11) Publication 2015-519552 (2015/07/09) International Patent Classification (IPC): G21C1/08 G21C13/00 G21C13/028 G21C17/02 FI: G21C1/08 G21C13/00 A G21C13/02 F G21C17/02 E 出願 2009-299507 (2009/12/21) 公開 2011-128129 (2011/06/30) 国際特許分類(IPC): G21C1/00 G21C13/00 G21C17/003 G21F9/30 FI: G21C1/00 A G21C13/00 D G21C17/00 E G21F9/30 535AApplication 2009-299507 (2009/12/21) Publication 2011-128129 (2011/06/30) International Patent Classification (IPC): G21C1/00 G21C13/00 G21C17/003 G21F9/30 FI: G21C1/00 A G21C13/00 D G21C17/00 E G21F9/30 535A 出願 2016-507542 (2014/03/07) 公開 2016-514847 (2016/05/23) 国際特許分類(IPC): G21C17/10 FI: G21C17/10 YApplication 2016-507542 (2014/03/07) Publication 2016-514847 (2016/05/23) International Patent Classification (IPC): G21C17/10 FI: G21C17/10 Y 出願 2007-138419 (2007/04/24) 公開 2008-268163 (2008/11/06) 国際特許分類(IPC): G21C1/00 FI: G21C1/00 CApplication 2007-138419 (2007/04/24) Publication 2008-268163 (2008/11/06) International Patent Classification (IPC): G21C1/00 FI: G21C1/00 C 出願 2013-531614 (2011/09/08) 公開 2014-510897 (2014/05/01) 国際特許分類(IPC): G21C1/32 G21C1/08 G21D1/00 FI: G21C1/32 G21C1/08 G21D1/00 SApplication 2013-531614 (2011/09/08) Publication 2014-510897 (2014/05/01) International Patent Classification (IPC): G21C1/32 G21C1/08 G21D1/00 FI: G21C1/32 G21C1/08 G21D1/00 S 出願 2007-187505 (2007/07/18) 公開 2009-024368 (2009/02/05) 国際特許分類(IPC): E21D9/04 E21D9/00 E21D13/02 G21F1/02 G21F9/34 G21F9/36Application 2007-187505 (2007/07/18) Publication 2009-024368 (2009/02/05) International Patent Classification (IPC): E21D9/04 E21D9/00 E21D13/02 G21F1/02 G21F9/34 G21F9/36 1〜20 件目 / 全 655 件電中研・東芝が共同開発 小型原子炉で米国に逆上陸 分散電源時代を小型原子炉て拓く 資料名: 月刊エネルギー (エネルギー)巻: 38 号: 4 ページ: 8-9 発行年: 2005年04月01日1〜20 items / 655 items in total Jointly developed by Central Electric Power Research Institute and Toshiba Small nuclear reactors make their way back to the United States Opening up the era of distributed power sources with small nuclear reactors Material name: Monthly Energy (Energy) Volume: 38 Issue: 4 Pages: 8-9 Publication year: April 1, 2005 小型原子炉の魅力と開発動向 総論 小型原子炉の魅力クリップ著者 (1件): 鳥井弘之 (日本経済新聞)資料名: 電気評論 (Electrical Review)巻: 86 号: 6 ページ: 11-15 発行年: 2001年06月10日Attractiveness of small nuclear reactors and development trends Overview Attractive clips of small nuclear reactors Author (1): Hiroyuki Torii (Nihon Keizai Shimbun) Material name: Electrical Review Volume: 86 Issue: 6 Pages: 11-15 Publication year : June 10, 2001 中小型原子炉展開の経緯と将来 中小型原子炉から次世代炉・将来炉へDevelopmental proceses and future of small-to-medium-sized nuclear reactors. From small-to-medium-sized nuclear reactors to those of the future.Developmental processes and future of small-to-medium-sized nuclear reactors. From small-to-medium-sized nuclear reactors to those of the future. 最大出力自然循環における統合モジュラー小型原子炉操作の熱水力学的実験的検証Thermo-hydraulic experimental validation of an integrated modular small reactor operating in full power natural circulationThermo-hydraulic experimental validation of an integrated modular small reactor operating in full power natural circulation 熱供給用超小型原子炉に関する研究 (11) 大深度地下空洞の動的安定性に関する検討Research on micro-nuclear reactors for heat supply (11) Study on dynamic stability of deep underground cavities 21世紀は東京のビル地下にも... 究極安全の小型原子炉時代 消費地立地型小型軽水炉「PSRD」 大深度地下や洋上バージなど利用In the 21st century, even underground buildings in Tokyo... The age of the ultimate safe small nuclear reactor Small light water reactor "PSRD" located at the consumption site Used in deep underground and offshore barges

本発明は、プラモデルを組み立てるような容易さで組み立てられ、発電する小型モジュール炉 SMR/Small Modular Reactor/(圧力容器、蒸気発生器、加圧器、格納容器をふくむ一体型パッケージ)を、如何なる場合でも安全な水力発電の底や鉱山跡の大深度地下に埋め込み設置経費削減、最安の発電コスト、完成までの時間短縮、CN(カーボンニュートラル)、SDG’s、脱ロシアを解決するものである。 The present invention is a small modular reactor (SMR/Small Modular Reactor/(integrated package including a pressure vessel, steam generator, pressurizer, and containment vessel) that can be assembled as easily as assembling a plastic model and generates electricity in any situation. Safely embed it deep underground at the bottom of a hydroelectric power plant or mine site to reduce installation costs, have the lowest power generation costs, shorten the time to completion, solve CN (carbon neutral), SDG's, and move away from Russia.

以下の課題を、チームごとに外注も含めて同時進行で解決していく。
1) 小型モジュール炉 SMR(Small Modular Reactor)の完成。
2) 大深度設置のテスト
3) モジュールユニットの量産化
4) 水力ダム湖底の30~100メートルのテスト採掘
5) 鉱山跡で小型モジュール原子炉を埋め込める場所の選定
6) 開削工法の可能性
7) 設置、発電、送電、ランニングコスト、放射能、飲料水への影響検証
8) 発電コスト
9) AI、ロボット、燃料棒交換、放射性廃棄物取り出し埋設
10) 住民、利害関係者との話し合い
Each team will solve the following issues simultaneously, including outsourcing.
1) Completion of small modular reactor SMR (Small Modular Reactor).
2) Testing of deep installation 3) Mass production of module units 4) Test mining 30 to 100 meters below the bottom of a hydropower dam lake 5) Selection of a site where a small modular nuclear reactor can be embedded in a former mine 6) Possibility of open-cut construction method 7 ) Installation, power generation, power transmission, running costs, radioactivity, verification of impact on drinking water 8) Power generation costs 9) AI, robots, fuel rod replacement, removal and burial of radioactive waste 10) Discussions with residents and stakeholders

世界で開発競争が激化している小型原子炉、小型原子力発電の分野で日本がリードできる。原発と言えば、中国、ロシア、フランス、アメリカであるがこの数百兆円市場に割り込めるのが本発明の大深度水中小型原子炉による原子力発電である。 Japan can take the lead in the field of small nuclear reactors and small nuclear power generation, where development competition is intensifying around the world. Speaking of nuclear power plants, China, Russia, France, and the United States are the countries, but nuclear power generation using the deep underwater small nuclear reactor of the present invention can break into this multi-hundred trillion yen market.

二酸化炭素を排出しない発電に必要な使用面積の比較原子力発電が太陽光発電、風力発電にくらべ地面の効率としては勝っているComparison of the area required for power generation that does not emit carbon dioxide Nuclear power generation is superior to solar power generation and wind power generation in terms of ground efficiency 発電コストの比較でも原子力発電は勝っているNuclear power generation is also superior when comparing power generation costs. ウランの核分裂のイメージ図Image diagram of nuclear fission of uranium 原子力発電のメカニズムMechanism of nuclear power generation 福島原発の放射能の減衰想定図Estimated decay of radioactivity at the Fukushima nuclear power plant 小型モジュール炉 ユニットのプレハブ住宅のような工業化イメージ図An image of industrialization of small modular furnace units like prefabricated houses 日本で研究が進む地中大深度小型モジュール炉 SMR(Small Modular Reactor)SMR (Small Modular Reactor), a deep underground small modular reactor that is being researched in Japan 水力発電所、この水を一旦抜いて小型原子炉を埋設する。飲料水になるため常に計測値を公表しなければならないAt the hydroelectric power plant, this water will be drained and a small nuclear reactor will be buried. Because it is used as drinking water, measurements must always be made public. 全国に水力発電所は約2500箇所もある。好適地は必ず見つかる。There are approximately 2,500 hydroelectric power plants across the country. You are sure to find a suitable location. 水力発電所2500箇所や鉱山2000箇所には送電や道路のインフラがすでに備わっている。2,500 hydropower plants and 2,000 mines already have power transmission and road infrastructure. 放射性廃棄物はカラスで固め保存容器で地下300メートルに埋められるRadioactive waste will be hardened with crows and buried 300 meters underground in storage containers. 大きな露天掘り鉱山跡。この場合は開削工法で原子炉部分を埋めて固めるだけである。天災、地震、津波、ミサイル攻撃から守るためのアイデアである。A large open pit mine. In this case, the reactor area is simply filled and solidified using the open-cut method. The idea is to protect against natural disasters, earthquakes, tsunamis, and missile attacks. 日本国内の露天掘り鉱山跡である。建材としての石材採掘場も多数あるThis is the remains of an open pit mine in Japan. There are also many quarries for stone used as building materials. 地下坑道のあと。トロッコ線路などのインフラがあり本発明の実施が早いAfter the underground tunnel. There is infrastructure such as trolley tracks, so the invention can be implemented quickly. 東京地下鉄の深度Tokyo subway depth 開削工法の現場。掘ってから埋め戻す。Open-cut construction site. Dig and then backfill. 深く、遠く、奥底に掘り進んだ坑道図。エレベータ―もあり小型原子炉の埋設に適している。これなら大型の冷却水ポンプや大口径配管が不要である。A diagram of a mine that has been dug deep, far, and deep into the depths. It also has an elevator and is suitable for burying small nuclear reactors. This eliminates the need for large cooling water pumps and large diameter piping. 日本の原発は、格好のミサイルの標的になりやすく安全上大きな危険を孕む。更にすべて大量の冷却水(海水)を得るため海岸に立地してきた。津波に弱く今後は考え直さなければならない。Japan's nuclear power plants are easy targets for missiles and pose a major safety risk. Furthermore, all of them have been located on the coast to obtain large amounts of cooling water (seawater). We are vulnerable to tsunamis and will have to reconsider going forward. 海外の内陸部に立地した原子力発電所Nuclear power plants located in inland areas overseas 開削工法を始めとした地下の建設や埋設などの代表的な工法Typical construction methods such as open-cut construction, underground construction, and burial 日本の湖沼の一例その1An example of Japanese lakes and marshes, part 1 日本の湖沼の一例その2Example of Japanese lakes and marshes part 2

本発明を実施するための形態とは、大型の冷却水ポンプや大口径配管が不要もしくは外部配管循環型で放射能漏れの心配の無い小型原子炉を地上や沿岸部への立地に比べはるかに安全で、しかも原子力発電廃棄物の管理も容易な大深度地中で稼働させようとするものである。 The form for carrying out the present invention is a small nuclear reactor that does not require large cooling water pumps or large-diameter piping, or is of an external piping circulation type and does not have to worry about radiation leakage. The aim is to operate the system deep underground, where it is safe and the management of nuclear power generation waste is easy.

本発明を実施するための実施例は、小型原子炉ユニットを水力発電所のダム湖底の地下に設置しAIとロボットで稼働とメンテナンスをコントロールする。小型原子炉ユニットは一旦稼働すれば安定的に発電するのでマニュアル的な作業で数十年間の発電が可能である。
本発明の要点「地中に埋設設置」する利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
In an embodiment of the present invention, a small nuclear reactor unit is installed underground at the bottom of a dam lake in a hydroelectric power plant, and its operation and maintenance are controlled using AI and robots. Once a small nuclear reactor unit is in operation, it generates power stably, so it can generate electricity for several decades with manual operations.
The main points of the present invention are the advantages of ``installation underground'': 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.

本発明を実施するための実施例は、小型原子炉その他小型モジュール炉(SMR=スモール・モジュラー・リアクター)の全てをプラモデルのように簡単に組み立てられるような技術を工場でプレハブ住宅のように製造することである。同時に個々の部品と建屋構造のハードとソフト技術の開発が重要である。 An embodiment of the present invention is a technology that allows all small nuclear reactors and other small modular reactors (SMR = Small Modular Reactor) to be easily assembled like plastic models, and manufactured in a factory like a prefabricated house. It is to be. At the same time, it is important to develop hardware and software technologies for individual parts and building structures.

本発明を実施するための実施例は、水中、地中、小型高性能のトリプル合成安全を実現するものとして実際に地中で稼働させることである。しかもコスト比較でも優位であり常に危険を想定しなければならない脱二酸化炭素の原子力発電には環境配慮が欠かせない。 An example of implementing the present invention is to actually operate it underground as a triple composite safety implementation of underwater, underground, and compact high performance. Moreover, environmental considerations are essential for carbon-free nuclear power generation, which has an advantage in cost comparison and requires constant consideration of risks.

本発明の産業上の利用可能性は、世界初の本発明アイデアを基本にした技術を用いて住宅産業や機械産業、電力事業など産業界の広い裾野まで活性化することである。
The industrial applicability of the present invention is to revitalize a wide range of industries such as the housing industry, machinery industry, and electric power industry by using the world's first technology based on the idea of the present invention.

本発明は、突発的であるにせよ直近のロシアのウクライナ侵攻による化石燃料の輸入制限や国際価格の高騰、CN(カーボンニュートラル)やSDG’s、日本では円安による物価高などエネルギーなどの諸課題を、一挙に解決する大深度小型原子炉と原子力発電とその立地に関するものである。
本発明の要点:1は、発電の中心となる小型モジュール原子炉を始めとして、 すべて工場で一括製造される点である。モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージであり、あたかもプラモデルのように、現地では「組み立てるだけ」である。これらは「水中、地中、小型で高性能」のトリプル合成安全を実現する。
本発明の要点:2は、原子炉を大深度地下に設置することである。本発明の要点2は、すでに送電や機器輸送道路インフラの完備したポイントでの敷設利用であり、設置費用の軽減と工期短縮を図る。
本発明の立地例として、水力発電ダムの湖底や、鉱山、坑道、廃鉱、湖沼などを利用する。本発明は、原子力発電の長年の課題として、冷却水、放射能漏れ、天災、地震、津波、ミサイル攻撃、火災など不測の事故にも対応できるものである。
The present invention solves various energy-related issues such as restrictions on fossil fuel imports due to the recent Russian invasion of Ukraine, soaring international prices, CN (Carbon Neutral) and SDG's, and rising prices in Japan due to the weak yen, even if it is sudden. This is about small deep nuclear reactors, nuclear power generation, and their location, which will be solved all at once.
Key points of the present invention: 1. Everything is manufactured in a factory at once, including the small module nuclear reactor that plays a central role in power generation. The module is an integrated package that includes a ``pressure vessel,'' ``steam generator,''``pressurizer,'' and ``containment vessel.'' Just like a plastic model, it ``simply assembles'' on site. These offer triple composite safety: "underwater, underground, compact and high performance."
Point 2 of the present invention is to install the nuclear reactor deep underground. The second point of the present invention is to install and use the system at a point where power transmission and equipment transportation road infrastructure is already complete, thereby reducing installation costs and shortening the construction period.
Examples of locations for the present invention include the lakebed of a hydroelectric dam, a mine, a tunnel, an abandoned mine, and a lake. The present invention can also deal with unforeseen accidents such as cooling water leaks, radioactivity leaks, natural disasters, earthquakes, tsunamis, missile attacks, and fires, which have long been issues associated with nuclear power generation.

つまり本発明はプレハブ住宅のように、主要機器を事前に工場で製造してから現地で据え付ける小型モジュール炉 SMR(Small Modular Reactor)を大深度地下または湖(大地、海)の底深く設置しAIとロボットで稼働コントロール・燃料補給・放射性廃棄物メンテナンスの自動で行うというものである。
本発明の要点「地中に埋設設置」する主たる利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
In other words, the present invention uses a small modular reactor (SMR), in which the main equipment is manufactured in advance at a factory and then installed on site, similar to a prefabricated house. The system uses robots to automatically control operations, refuel, and maintain radioactive waste.
The main advantages of ``installation underground'' of the present invention are: 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.

本発明では20世紀の休眠インフラを、1.水力発電所、2.炭鉱と炭鉱跡、3.湖沼と水利、4.河川と治水と考えこれらを次世代発電に生かせると考える。
本発明のインフラ遺産とは、日本においては江戸時代に遡る産業と戦後日本の復興を象徴する水力発電所、炭鉱、地下鉄、地下街などを指す。
本発明は、1900年代から作られ今も稼働中の全国に点在する2494基の水力発電所の「湖底または近接した場所への小型モジュール原子炉 SMR設置」の関するものである。
本発明の立地は、約2500箇所から小型原子炉設置の好適地を選ぶことができる。本発明の「水力発電の湖底立地や発電同士のコラボ」は未だ報告がない発明である。
In the present invention, the dormant infrastructure of the 20th century is: 1. Hydroelectric power plant, 2. Coal mines and coal mine ruins, 3. Lakes and water resources, 4. We think of rivers and flood control and think that these can be utilized for next-generation power generation.
In Japan, the infrastructure heritage of the present invention refers to industries dating back to the Edo period and hydroelectric power plants, coal mines, subways, underground malls, etc. that symbolize Japan's postwar recovery.
The present invention relates to the "installation of small module nuclear reactors SMR on lakebeds or nearby locations" of the 2,494 hydroelectric power plants that were built in the 1900s and are still in operation across the country.
According to the present invention, suitable locations for installing a small nuclear reactor can be selected from approximately 2,500 locations. The "lake bottom location of hydroelectric power generation and collaboration between power generators" of the present invention is an invention that has not yet been reported.

本発明の、立地である水力発電所の湖底は、小型モジュール原子炉 SMR(Small Modular Reactor)/1モジュールの出力は6万kW(5億2560万KWh)、通常の「加圧水型」原子炉の1/20の発電量があり安全な設置場所として最適である。以下に2494箇所の水力発電所とのコラボが発明であり画期的かを以下に示す。
1.水力発電所には常に原子炉冷却用の水がある。(利点1)
2.水力発電所(ダム型)の貯水は抜くことができる。小型原子炉建設工事中は流入する水をパイプラインで迂回させ乾いた地面の地下への工事と発電ユニットの埋設が可能である。(利点2)
3.水を一定期間抜いて湖底地面の地下深く小型モジュール炉 SMR(Small Modular Reactor)を埋設しその後に水を張れば、小型原子炉冷却は安心で、冷却用循環水は放射能には汚染せず下流の飲料水利用にも安心である。同時に湖底の地下位置するため外敵からの攻撃に対する防御性も高い。(利点3)
4.発電全体の管理棟はAIとロボットでコントロールされ近隣地に設置する。万一想像を超えた災害や攻撃があり放射能漏れが懸念された場合でも、そのままコンクリートで埋めることができる。(利点4)
5.放射性廃棄物の処理も簡単で安全である。なぜなら、先ず常に水中にありしかも地下深くに保存されているため被爆の心配がない。(利点5)
6.水力発電所は山奥であっても建設時に作った道路ありそのまま直ぐに使用でき費用節減と時間短縮につながる。(利点6)
7.水力発電所はすでに送電線・変電設備を持っておりそなまま直ぐに使用できる。(利点7)
8.緊急電力が必要な場合も水力発電と原子力発電を融通し合うことができる。例えば電力需要の少ない夜間には原子力で得られた電気で下に溜めた水をポンプアップし揚水し昼間の発電に利用できる。(利点8)
9.小型モジュール原子炉はプラモデルのようにパーツごとに分けられている。1モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージであり、ウラン燃料棒交換などは放射能を遮断したパッケージごとロボットを用いて交換される。福島原発事故で「冷却水」の重要性は公知であり「ダムの大深度湖底への小型モジュール炉 設置」は住民理解だ得られやすい。福島原発の水素爆発などの模様も繰り返し放送されており、一定の住民理解は得られるだろうが、ダム堤防決壊の安全シミュレーションも用意するべきであろう。
The lakebed of the hydroelectric power plant where the present invention is located is a small modular nuclear reactor (SMR) with an output of 60,000 kW (525.6 million KWh) per module, compared to a normal "pressurized water type" reactor. It generates 1/20th the power and is ideal for safe installation. The following shows how the collaboration with 2,494 hydroelectric power plants is an invention and a breakthrough.
1. Hydroelectric power plants always have water for reactor cooling. (Advantage 1)
2. Water stored in hydroelectric power plants (dam type) can be drained. During the construction of a small nuclear reactor, incoming water can be diverted using a pipeline, allowing construction to proceed underground on dry ground and burying the power generation unit. (Advantage 2)
3. If water is drained for a certain period of time, a small modular reactor (SMR) is buried deep underground in the lake bed, and then water is filled, cooling of the small reactor is safe and the circulating water for cooling will not be contaminated with radioactivity. It is also safe for downstream drinking water use. At the same time, since it is located underground at the bottom of the lake, it has high protection against attacks from external enemies. (Advantage 3)
4. The entire power generation administration building will be controlled by AI and robots and will be located in a nearby location. In the unlikely event that an unimaginable disaster or attack occurs and there are concerns about radioactivity leaking, it can be buried in concrete. (Advantage 4)
5. Disposal of radioactive waste is also easy and safe. First of all, because it is always underwater and stored deep underground, there is no need to worry about exposure to atomic bombs. (Advantage 5)
6. Even if a hydroelectric power plant is located deep in the mountains, there are roads built at the time of construction and it can be used immediately, leading to cost savings and time savings. (Advantage 6)
7. Hydroelectric power plants already have transmission lines and substation equipment and can be used immediately. (Advantage 7)
8. Hydroelectric power and nuclear power can be used interchangeably when emergency power is needed. For example, at night when electricity demand is low, electricity generated from nuclear power can be used to pump up water stored below and use it to generate electricity during the day. (Advantage 8)
9. The small modular nuclear reactor is divided into parts like a plastic model. One module is an integrated package that includes a ``pressure vessel,'' ``steam generator,''``pressurizer,'' and ``containment vessel.'' Replacement of uranium fuel rods and other tasks are carried out using robots, including the radioactive-blocking package. The importance of ``cooling water'' in the Fukushima nuclear power plant accident is well known, and it is easy to gain the understanding of residents about ``installing a small module reactor on the deep lakebed of a dam.'' Scenes such as the hydrogen explosion at the Fukushima nuclear power plant have been repeatedly broadcast, which should help gain a certain level of understanding among residents, but safety simulations of dam embankment bursts should also be prepared.

次の本発明の要旨「立地」は、小型原子炉を、黄金の国「ジパング」に象徴される江戸時代から採掘されてきた全国2000カ所以上の「鉱山」と「鉱山跡」で大深度地中に設置し初期費用をかけずに安全な原子力発電所を設置することである。
例えば日本には地中原発の好適地と考える、約2000にも上る鉱山と鉱山跡がある。鉱山のない都道府県はなく大深度地下への小型原子炉設置場所の選択容易であり、それは下記0009にある原子力発電への懸念材料を解決する。
1. 鉱山には坑道がある。坑道は通常地下深くあるいは山中深く掘り下げられている。つまりすでに「道」や「エレベーター」や「トロッコ線路」がつけられている。小型原子炉ユニット設置のために新たな費用が掛からないだけでなく工期の大幅な短縮が見込める。
2. 露天掘りの場合は「開削工法」(構造物を埋めたり、建造した後に土砂やコンクリートで埋め戻す方法)でも同様に小型原子炉または大型原子炉を埋めて大深度原子炉・原子力発電所とする。
3. この工法は地下鉄、地下街を建造した方法が生かされる。大深度地下原発の利点は基本的には「水力発電の湖底」と同じであるが、冷却水の調達は「湖沼」「河川」の近接立地を勘案しなければならない。
4. ちなみに日本における湖沼は226箇所、河川は126の大きな河川がある。また最近では冷凍温度の低い塩化ナトリウム水溶液が用いられ小型原子炉の冷却には必ずしも冷却水が必要でない研究も進んでいる。
The next key point of the present invention, ``location,'' is that small nuclear reactors are installed in deep underground mines and mine ruins, more than 2,000 of which have been mined since the Edo period, symbolized by the golden country ``Zipangu.'' The aim is to establish a safe nuclear power plant without incurring initial costs.
For example, Japan has approximately 2,000 mines and mine ruins that are considered suitable sites for underground nuclear power plants. There are no prefectures without mines, and it is easy to choose a location for installing a small nuclear reactor deep underground, which solves the concerns about nuclear power generation mentioned in 0009 below.
1. There is a shaft in the mine. Mine shafts are usually dug deep underground or into mountains. In other words, ``roads'', ``elevators'', and ``trolley tracks'' have already been added. Not only will there be no additional costs for installing a small nuclear reactor unit, but the construction period can be expected to be significantly shortened.
2. In the case of open-pit mining, the ``open-cut method'' (a method of burying the structure or backfilling it with earth and concrete after construction) similarly buries a small or large nuclear reactor to create a deep nuclear reactor or nuclear power plant.
3. This construction method makes use of the methods used to construct subways and underground malls. The advantages of deep underground nuclear power plants are basically the same as those of ``hydroelectric lake bottoms,'' but when procuring cooling water, consideration must be given to the proximity of ``lakes'' and ``rivers.''
4. By the way, there are 226 lakes and marshes in Japan, and 126 large rivers. Recently, research has also progressed in which cooling water is not necessarily required for cooling small nuclear reactors by using a sodium chloride aqueous solution with a low freezing temperature.

本発明の三番目の要旨は、20世紀の休眠インフラを生かし最短で発電可能なモジュール式の小型原子力発電と湖沼、用水池、ため池、沼への小型原子炉ユニットの設置である。例えば日本には226の大きな湖沼があり常に冷却に使用できる水を湛えている、と同時に外敵からの攻撃から守ることができる。河川内にに施設は困難であるが、海中もしくは湖沼ならば可能である。その場合、工法としては海中トンネルを通したのと同様、改定を掘削しユニットを沈めそれを延伸し地上部とつなぐという方法である。これも本発明の大深度地下原発の一種である。 The third gist of the present invention is a modular small-scale nuclear power generation system that can generate electricity in the shortest possible time by making use of the dormant infrastructure of the 20th century, and the installation of small nuclear reactor units in lakes, irrigation ponds, reservoirs, and swamps. For example, Japan has 226 large lakes and ponds that are always full of water that can be used for cooling, and at the same time protect it from attacks from foreign enemies. It is difficult to build a facility in a river, but it is possible if it is underwater or in a lake. In that case, the construction method would be to excavate a revision, sink the unit, and extend it to connect it with the above-ground part, similar to the method used for passing through an underwater tunnel. This is also a type of deep underground nuclear power plant of the present invention.

本発明の主役「小型モジュール炉 SMR」(Small Modular Reactor)の一例として以下のようなものが考えられる。リストアイコン 1モジュールの出力は6万kW、通常の「加圧水型」原子炉の1/20程度で、リストアイコン 最大12個のモジュールを大きなプールの中に設置する。
リストアイコン 1モジュールは、「圧力容器」「蒸気発生器」「加圧器」「格納容器」をふくむ一体型パッケージで、大型の冷却水ポンプや大口径配管が不要である。リストアイコン 各モジュールは、それぞれ独立したタービン発電機と復水器に接続し、リストアイコン 小型化と一体化を図ることにより、大規模な冷却材喪失事故のリスクを回避できる。
The following can be considered as an example of the "Small Modular Reactor" (SMR) which is the main character of the present invention. List icon The output of one module is 60,000 kW, about 1/20 of a normal "pressurized water" reactor.List icon Up to 12 modules will be installed in a large pool.
List icon 1 module is an integrated package that includes a "pressure vessel,""steamgenerator,""pressurizer," and "containment vessel," eliminating the need for large cooling water pumps or large-diameter piping. List Icon Each module connects to its own independent turbine generator and condenser, allowing list icon miniaturization and integration to avoid the risk of large-scale loss of coolant accidents.

今般、突発的であるにせよロシアのウクライナ侵攻により世界のエネルギー政策は一変した。同時にCN(カーボンニュートラル)SDG‘sも配慮しなければならないという時代がきた。
本発明の超深度原子力発電は、上記二つの問題に正面から向き合い解決するものである。この政治的、経済的背景をもって原子力発電の小型化は研究が進んでいる。代表的なもののひとつが、「小型モジュール炉」である。SMR(Small Modular Reactor)とも呼ばれ、世界各国で開発が進められている。その特徴をキーワードであらわすとすれば、「小型」「モジュール」「多目的」の3つである。原子炉を「小型」にすると、大型の原子炉よりも冷えやすくなる。技術的に言えば、小型炉は体積の割に大きな表面積をもっているために起こる現象である。この特性を突きつめていくと、原子炉に水をポンプで入れて冷やさなくても自然に冷えてくれる、といったことも可能になる。
Recently, world energy policy has changed completely due to Russia's invasion of Ukraine, albeit suddenly. At the same time, the time has come when we must also consider CN (carbon neutral) SDG's.
The ultra-deep nuclear power generation of the present invention directly faces and solves the above two problems. Against this political and economic background, research into downsizing nuclear power generation is progressing. One of the most representative ones is the "small module reactor." Also known as SMR (Small Modular Reactor), development is progressing around the world. If we were to describe its characteristics in terms of keywords, we would use three keywords: "compact,""modular," and "multipurpose." When a nuclear reactor is made smaller, it cools down more easily than a large reactor. Technically speaking, this phenomenon occurs because small reactors have a large surface area relative to their volume. If we investigate this characteristic, it will become possible to cool water naturally into a nuclear reactor without having to pump it into the reactor.

いくら安全と言っても、現にチェルノブイリ、スリーマイル島、福島原発の事故をTVなどで見た人々には、「目に見えない放射能や被爆」への恐怖やアレルギーは簡単にはなくならないだろう。
同時に脱二酸化炭素、CN(カーボンニュートラル)、SDG’s も待ったなしの解決すべき課題である。また話題のEV(電気自動車)も普及すればするほど燃料である電気エネルギーの重要性は増えることはあっても減ることはないだろう。
上記の懸念により本発明の要点「地中に埋設設置」する利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
今後のエネルギーの課題は、1)ローコスト、2)脱酸素、3)脱ロシア(化石燃料依存を減らす)、4)安全(天災のみならず戦争も想定)、5)安定供給、6)時短(着工から送電までが早い/ユニット化)、7)従来インフラの共用であろう。
No matter how safe it is, people who actually watched the Chernobyl, Three Mile Island, and Fukushima nuclear power plant accidents on TV will not easily get rid of their fears and allergies to ``invisible radiation and exposure.'' Dew.
At the same time, decarbonization, CN (carbon neutral), and SDG's are also urgent issues that need to be resolved. Furthermore, the more popular EVs (electric vehicles) become, the more the importance of electric energy as fuel will increase, but will not decrease.
Due to the above concerns, the main points of the present invention are the advantages of ``installation underground'': 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.
The future energy challenges are 1) low cost, 2) deoxidization, 3) de-Russia (reducing dependence on fossil fuels), 4) safety (assuming not only natural disasters but also war), 5) stable supply, 6) shortening of time ( 7) Common use of conventional infrastructure.

これが実現すれば、安全性が高まるうえに、原子炉全体を簡単な構造にすることができ、メンテナンスもしやすくなる。その結果、コストの削減ができ、経済性も向上する可能性が見えてくる。本発明は、まさにこれを実現するものである。原子炉の小型化、冷却への万全の備え、他の電力とのコスト競争も勘案されている。
今般、突発的であるにせよロシアのウクライナ侵攻は、西側社会に化石エネルギーの輸入制限、輸入禁止、代替供給国探し、代替エネルギーへの変換などへの対応を否応なくもたらした。石炭、石油、特に大きいエネルギー原料はLNG(液化天然ガス)である。特にEU諸国はロシアからのLNGパイプライン設備を諦め当面は一定の輸入を行うものの中長期的には禁輸の政策に舵を切らざるを得なくなった。エネルギー問題は世界中で喫緊の課題として、またSDG’s やCN(カーボンニュートラル)も相まって化石燃料からの脱局は世界的な課題となっている。
If this is realized, not only will safety be improved, but the overall structure of the reactor will be simpler and maintenance will be easier. As a result, it becomes possible to reduce costs and improve economic efficiency. The present invention accomplishes exactly this. Consideration is also being given to downsizing nuclear reactors, thorough preparation for cooling, and cost competition with other forms of electricity.
Russia's recent, albeit sudden, invasion of Ukraine has forced Western society to take measures such as restricting or banning the import of fossil energy, searching for alternative supply countries, and converting to alternative energy sources. Coal, oil, and especially large energy raw materials are LNG (liquefied natural gas). In particular, EU countries have given up on LNG pipeline facilities from Russia, and although they will continue to import a certain amount for the time being, they have been forced to adopt a policy of embargoing imports in the medium to long term. Energy issues are an urgent issue around the world, and coupled with SDG's and CN (carbon neutrality), moving away from fossil fuels has become a global issue.

自国の石炭発電所の再開、廃炉が決定していた原子力発電所の継続、それだけではなく新たな原子力発電所の建設もドイツ、イギリスを始めとして次々と発表された。原子力発電の二酸化炭素ゼロという点が見直された格好である。本発明の超深度原子力発電は新たな原子力発電所設置に大きなメリットをもたらすことに疑いはない。
今般、突発的であるにせよロシアのウクライナ侵攻でも実行されたように、原子力発電所は最初の攻撃対象になりやすい。核爆発の脅威、電力のコントロール、地域への多大で長期にわたる影響を考えれば最初の攻撃対象になるのは当然であろう。今後の原子力発電は、今までの内在的リスクのみならず、外敵からの防御も無視できないのである。
Not only the restart of coal power plants in their own countries, the continuation of nuclear power plants that had been decided to be decommissioned, but also the construction of new nuclear power plants were announced one after another, including in Germany and the United Kingdom. The fact that nuclear power generation produces zero carbon dioxide appears to have been reconsidered. There is no doubt that the ultra-deep nuclear power generation of the present invention will bring great benefits to the installation of new nuclear power plants.
Nuclear power plants are likely to be the first targets of attack, as was the case with Russia's recent, albeit sudden, invasion of Ukraine. Given the threat of a nuclear explosion, the control over power, and the huge and long-lasting impact it would have on the region, it would make sense that it would be the first target. Future nuclear power generation cannot ignore not only the inherent risks of the past, but also the protection from external enemies.

これまで、原子力発電所の建設は、ひとつひとつが1点ものとして現地で建設されており、そのため工期が長くなりがちであった。また、品質保証のために何重もの確認・認可試験を経てつくられてきた。しかし、プラモデルを組み立てるような「モジュール建築」の手法を最大限取り入れようというアイデアが生まれて状況は変わりつつある。規制、「型式認証」という方法で設計認可を取得しておき、全体を一括で「工場生産+組み立て+輸送+設置」するという手法である。まさにプレハブ住宅そのものであり、本発明もこうした、「手法/小型モジュール工法の原子炉」は根幹をなす一つである。
この場合、まず先に、輸送できるサイズ(米国なら鉄道や高速道路、欧州なら内陸運河)まで「小型化」し、それから原子炉の出力を決めるという流れになるであろう。
Until now, each nuclear power plant was built on-site as a one-of-a-kind item, which tended to take a long time. In addition, it has been manufactured through multiple confirmation and approval tests to ensure quality. However, the situation is starting to change with the idea of incorporating as much of the "modular architecture" method as possible, which involves assembling plastic models, as much as possible. The method is to obtain design approval through regulations and ``type certification,'' and then carry out the entire process at once by ``factory production, assembly, transportation, and installation.'' This is exactly what a prefabricated house is, and this ``technique/small module construction method nuclear reactor'' is one of the fundamentals of the present invention.
In this case, the process would be to first "downsize" the reactor to a size that can be transported (by rail or highway in the United States, or by inland canals in Europe), and then decide on the output of the reactor.

一方原発といえば、心理的にも抵抗はキツイ。地域住民の感情、反対運動、放射能漏れ、絶え間なく大量の冷却水の必要問題、また万一の事故のことを考え沿岸部に立地することが多く、攻撃対象になりやすさの一因でもある。本発明の超深度原子力発電所は、安全防御、放射能廃棄物、冷却水、原子炉等の対応方法を発明並びに具体的な提案をするものである。一方小型原子炉には次世代エネルギーとしての水素製造とのダブルメリットも期待できる。(以下引用)
高温ガス炉は、約 950℃の熱を供給でき、水の熱化学分解による水素製造、ガスタービン高効率発電、地域暖房等、需要に応じて高温から低温まで熱を高効率で利用する多様なシステムを構築することができます。このため、高温ガス炉は、発電だけでなく多様な用途に利用でき、化石資源の代替として二酸化炭素排出削減に大きく貢献することができます。
原子力機構は、高温ガス炉の商用炉の実現に向け、高温工学試験研究炉(以下「HTTR」という。)を活用した高温ガス炉に係わる原子炉技術の研究開発、無尽蔵の水を原料にして二酸化炭素を排出せずに水素を製造する。先端的な熱化学法 IS プロセス1)等の熱利用技術の研究開発を行っています。
将来のエネルギー源として注目されている水素を,原子力エネルギーによって製造するための研究開発を行っている。軽水炉の 250 ℃程度の低温熱源を使う場合にはジメチルエーテル(DME)の改質を,ガス炉や高速炉の500 ℃以上の熱源には高温水蒸気電解法を,更に 900 ℃を超える高温が得られる高温ガス炉には水の熱化学分解法の一つである IS(Iodine-Sulfur)法を,それぞれの水素製造方法として選定した。
日本の官民が原子力発電とグリーン水素の製造を同時にやってのけるハイブリッドプラントの開発に臨んでいる。原子炉から熱を取り出し、主原料の水を化学反応させて水素を生む。高温ガス炉(HTGR)と呼ばれる次世代炉の1つだ。水素は製鉄所や化学産業の脱炭素への貢献が期待される。
本発明の大深度地中に設置された小型モジュール炉 SMRは未来のエネルギー政策の中心なるだろう。エネルギーは全て宇宙(太陽や引力・重力)から得られたものである。化石も地熱も風力も太陽光も原子力も同じである。大深度原子力発電が地中に設置されるのは人間の英知の賜物でありむしろ自然である。
On the other hand, when it comes to nuclear power plants, psychological resistance is difficult. Local residents' emotions, opposition movements, radioactive leaks, the constant need for large amounts of cooling water, and the fact that they are often located on the coast in case of an accident are factors that make them easy targets for attack. be. The ultra-deep nuclear power plant of the present invention invents and makes concrete proposals for safety protection, radioactive waste, cooling water, reactor handling methods, etc. On the other hand, small nuclear reactors can also be expected to have the double benefit of producing hydrogen as a next-generation energy source. (quoted below)
High-temperature gas furnaces can supply heat of approximately 950℃, and are used in a variety of applications that utilize heat from high to low temperatures with high efficiency depending on demand, such as hydrogen production through thermochemical decomposition of water, high-efficiency gas turbine power generation, and district heating. You can build a system. For this reason, high-temperature gas furnaces can be used for a variety of purposes in addition to power generation, and can greatly contribute to reducing carbon dioxide emissions as an alternative to fossil resources.
In order to realize commercial high-temperature gas reactors, the Japan Atomic Energy Agency is researching and developing nuclear reactor technology related to high-temperature gas reactors using the High Temperature Engineering Test and Research Reactor (hereinafter referred to as "HTTR"), using inexhaustible water as a raw material. Produce hydrogen without emitting carbon dioxide. We are conducting research and development on heat utilization technologies such as the advanced thermochemical method IS process 1).
We are conducting research and development to produce hydrogen using nuclear energy, which is attracting attention as a future energy source. Dimethyl ether (DME) reforming is used when using a low-temperature heat source of about 250 °C in a light water reactor, and high-temperature steam electrolysis is used when using a heat source of 500 °C or higher in a gas reactor or fast reactor, and high temperatures exceeding 900 °C can be obtained. The IS (Iodine-Sulfur) method, which is one of the thermochemical decomposition methods of water, was selected as the hydrogen production method for each high-temperature gas reactor.
Japan's public and private sectors are working to develop a hybrid plant that can simultaneously generate nuclear power and produce green hydrogen. Heat is extracted from the nuclear reactor and the main raw material, water, undergoes a chemical reaction to produce hydrogen. It is one of the next generation reactors called high-temperature gas reactors (HTGRs). Hydrogen is expected to contribute to the decarbonization of steel plants and the chemical industry.
The small modular reactor SMR of the present invention installed deep underground will play a central role in future energy policy. All energy is obtained from the universe (sun, gravity, gravity). Fossil, geothermal, wind, solar, and nuclear power are all the same. The fact that deep nuclear power generation is installed underground is a result of human wisdom and is rather natural.

多くの場合、原子力発電と原子力発電所の問題点、心配な点、克服されるべき点は以下に集約されるだろう。
1. 事故に対する安全性(地震、津波、天地災害、台風、爆発、メルトダウン、外部からの攻撃目標化、海洋汚染、水質汚染、土壌汚染、大気汚染、被爆など)
2. 放射能汚染(環境問題、食料、風評被害、海洋投棄、作物、家畜など)稼働年数(40年、50年とも言われているがその後の廃炉はどうなるのか。
3. 放射性廃棄物(トリチウム、ヨウ素131/7日、セシウム134/88日、セシウム137/99日、ストロンチウム90/18年、プルトニウム229/20年・・・実効半減期)
4. 放射能減衰期間の長さ(トリチウム、ヨウ素131/8日、セシウム134/2年、セシウム137/30年、ストロンチウム90/29年、プルトニウム229/24000年・・・物理的半減期)
5. 放射性廃棄物の処理方法(処理後密封し地下300メートル、地震や地殻変動)
6. 冷却水(大量の水がなければ福島原発にように爆発を起こす)
7. 立地(近隣住民・地方自治体など多くの利害関係者の合意・同意を取り付けなくてはならない)
8. ウラン調達(輸入手続き、輸送、保管など)
9. インフラその1:建築、機械、機材、原子炉、発電機、構造物、建物、パイプライン、倉庫
10.インフラその2:原子炉建屋、タービン建屋、廃棄物建屋、各種サービス建屋、コントロール室建屋など
In many cases, the problems, concerns, and points to be overcome in nuclear power generation and nuclear power plants can be summarized as follows.
1. Safety against accidents (earthquakes, tsunamis, natural disasters, typhoons, explosions, meltdowns, external attack targeting, marine pollution, water pollution, soil pollution, air pollution, atomic bomb exposure, etc.)
2. Radioactive contamination (environmental issues, food, reputational damage, ocean dumping, crops, livestock, etc.) Number of operating years (some say 40 or 50 years, but what will happen to the decommissioning after that?)
3. Radioactive waste (tritium, iodine 131/7 days, cesium 134/88 days, cesium 137/99 days, strontium 90/18 years, plutonium 229/20 years...effective half-life)
4. Length of radioactivity decay period (tritium, iodine 131/8 days, cesium 134/2 years, cesium 137/30 years, strontium 90/29 years, plutonium 229/24000 years...physical half-life)
5. How to dispose of radioactive waste (sealed 300 meters underground after processing, earthquakes and crustal movements)
6. Cooling water (without a large amount of water, an explosion like the one at the Fukushima nuclear power plant will occur)
7. Location (must obtain consent from many stakeholders including neighboring residents and local governments)
8. Uranium procurement (import procedures, transportation, storage, etc.)
9. Infrastructure 1: Architecture, machinery, equipment, nuclear reactors, generators, structures, buildings, pipelines, warehouses 10. Infrastructure 2: Reactor building, turbine building, waste building, various service buildings, control room building, etc.

上記のどの部分に間違いがあっても大きな問題が起きる可能性がある。大きな問題とは、人命にかかわる問題であり太陽光発電や、風力発電とは危険度の点で大きく異なる。つまり原子力発電の問題は全て1.「危険の除去」、2.「危険度を限りなく低くすること」、3.「安定的稼働」に集約される。同時に最高の効率を持つ文明の大発見「原子力発電」を上手に動かし続けなくてはならない。本発明の要点は上記3点を実現するためのものである。 Any mistake in any of the above can cause major problems. A major problem is one that affects human life, and is significantly different from solar power generation or wind power generation in terms of the degree of risk. In other words, the problem with nuclear power generation is all 1. “Removal of danger”, 2. “Reducing the level of risk to the lowest possible level”; 3. It can be summarized as "stable operation". At the same time, we must continue to skillfully utilize ``nuclear power generation,'' a great discovery of civilization with the highest efficiency. The main point of the present invention is to realize the above three points.

本発明の要点は、上記の諸問題を一挙に解決するためにと言うものである。
本発明は以下の10課題について具体的に説明し、「発明性の証明」とする。
1.なぜ「大深度原子力発電」が求められるか?(新規・進歩の優れた点)
2.立地の経済性は?(原子力発電は建設に巨額を要する)
3.メンテナンスの優位性は?(AIとロボット利用)
4.SDG‘s、CN(カーボンニュートラル)、利権団体、住民対策、環境対策など周辺と環境への配慮は?(従来との比較/風評/放射能漏れ/CO2)
5.冷却水対策は?(24時間大量の冷却水を必要とし絶対に欠かせない)
6.放射性廃棄物と廃炉作業工程は?(地下300メートルにガラスで固め保存容器で埋設)
7.建築物配置の利点は?(原子炉建屋、タービン建屋、廃棄物建屋、各種サービス建屋、コントロール室建屋など)
8.機材と業者は?(国際特許で国内産業の再隆盛)
9.天災や外国からの攻撃への対応は?(地震、津波、台風、ミサイル攻撃など)
10.発電量、安定供給、送電は?(コストパフォーマンス計算として事故リスク対応費用、政策経費、CO2対策費用、燃料費、運転維持費、資本費)
The main point of the present invention is to solve the above problems all at once.
The present invention will specifically explain the following 10 problems, which will be referred to as "proof of inventiveness."
1. Why is “deep-depth nuclear power generation” required? (Advantages of new/progressive features)
2. What are the economics of the location? (Nuclear power generation requires a huge amount of money to construct)
3. What are the advantages of maintenance? (Using AI and robots)
4. What about consideration for the surrounding area and environment, such as SDG's, CN (carbon neutral), interest groups, resident measures, environmental measures, etc.? (Comparison with conventional/rumor/radioactivity leak/CO2)
5. What about cooling water measures? (It requires a large amount of cooling water 24 hours a day, which is absolutely essential.)
6. What about radioactive waste and the decommissioning process? (Buried 300 meters underground in a storage container sealed with glass)
7. What are the advantages of building placement? (Reactor building, turbine building, waste building, various service buildings, control room building, etc.)
8. What about the equipment and vendors? (Revival of domestic industry through international patents)
9. How should we respond to natural disasters and attacks from foreign countries? (Earthquakes, tsunamis, typhoons, missile attacks, etc.)
10. What about power generation, stable supply, and power transmission? (Cost performance calculation includes accident risk response cost, policy cost, CO2 countermeasure cost, fuel cost, operation and maintenance cost, capital cost)

本発明の「超深度原子力発電」とは、原子炉を地下30メートル程度から300メートル程度に設置される大深度地下発電所を指す。地球の外殻は約30キロメートルであり、今までの最深度ボーリングはロシアの12キロメートルが記録されている。また地震の発生は地下70キロメートル程度は一般的でそれに比較すれば「超深度とか大深度」とは言えないかもしれない。 The term "ultra-deep nuclear power generation" in the present invention refers to a deep underground power plant in which a nuclear reactor is installed approximately 30 meters to approximately 300 meters underground. The Earth's outer shell is about 30 kilometers, and the deepest drilling to date was 12 kilometers in Russia. Also, earthquakes generally occur about 70 kilometers underground, so compared to that, it may not be called "ultra-deep" or "very deep."

出願 2012-208492 (2012/09/21) 公開 2014-062830 (2014/04/10) 国際特許分類(IPC): G21C7/30 FI: G21C7/30Application 2012-208492 (2012/09/21) Publication 2014-062830 (2014/04/10) International Patent Classification (IPC): G21C7/30 FI: G21C7/30 出願 2013-104170 (2013/05/16) 公開 2014-224764 (2014/12/04) 国際特許分類(IPC): G21C7/28 FI: G21C7/28Application 2013-104170 (2013/05/16) Publication 2014-224764 (2014/12/04) International Patent Classification (IPC): G21C7/28 FI: G21C7/28 出願 JP2012008124 (2012/12/19) 公開 WO2013094196 (2013/06/27) 国際特許分類(IPC): G21C1/02 G21C3/60 G21C7/28 G21D1/00 G21D5/14 FI: G21C1/02 A G21C3/60 G21C7/28 G21D1/00 Q G21D5/14Application JP2012008124 (2012/12/19) Publication WO2013094196 (2013/06/27) International Patent Classification (IPC): G21C1/02 G21C3/60 G21C7/28 G21D1/00 G21D5/14 FI: G21C1/02 A G21C3/60 G21C7 /28 G21D1/00 Q G21D5/14 出願 2016-019801 (2016/02/04) 公開 2016-145828 (2016/08/12) 国際特許分類(IPC): G21D5/02 F01K9/02 F01D25/24 F01K9/00 F01D25/26 FI: G21D5/02 F01K9/02 F01D25/24 K F01K9/00 B F01D25/26 ZApplication 2016-019801 (2016/02/04) Publication 2016-145828 (2016/08/12) International Patent Classification (IPC): G21D5/02 F01K9/02 F01D25/24 F01K9/00 F01D25/26 FI: G21D5/02 F01K9 /02 F01D25/24 K F01K9/00 B F01D25/26 Z 出願 2012-237886 (2012/10/29) 公開 2014-089067 (2014/05/15) 国際特許分類(IPC): G21C7/28 G21C9/02 FI: G21C7/28 G21C9/02 ZApplication 2012-237886 (2012/10/29) Publication 2014-089067 (2014/05/15) International Patent Classification (IPC): G21C7/28 G21C9/02 FI: G21C7/28 G21C9/02 Z 出願 2015-509007 (2013/04/11) 公開 2015-519552 (2015/07/09) 国際特許分類(IPC): G21C1/08 G21C13/00 G21C13/028 G21C17/02 FI: G21C1/08 G21C13/00 A G21C13/02 F G21C17/02 EApplication 2015-509007 (2013/04/11) Publication 2015-519552 (2015/07/09) International Patent Classification (IPC): G21C1/08 G21C13/00 G21C13/028 G21C17/02 FI: G21C1/08 G21C13/00 A G21C13/02 F G21C17/02 E 出願 2009-299507 (2009/12/21) 公開 2011-128129 (2011/06/30) 国際特許分類(IPC): G21C1/00 G21C13/00 G21C17/003 G21F9/30 FI: G21C1/00 A G21C13/00 D G21C17/00 E G21F9/30 535AApplication 2009-299507 (2009/12/21) Publication 2011-128129 (2011/06/30) International Patent Classification (IPC): G21C1/00 G21C13/00 G21C17/003 G21F9/30 FI: G21C1/00 A G21C13/00 D G21C17/00 E G21F9/30 535A 出願 2016-507542 (2014/03/07) 公開 2016-514847 (2016/05/23) 国際特許分類(IPC): G21C17/10 FI: G21C17/10 YApplication 2016-507542 (2014/03/07) Publication 2016-514847 (2016/05/23) International Patent Classification (IPC): G21C17/10 FI: G21C17/10 Y 出願 2007-138419 (2007/04/24) 公開 2008-268163 (2008/11/06) 国際特許分類(IPC): G21C1/00 FI: G21C1/00 CApplication 2007-138419 (2007/04/24) Publication 2008-268163 (2008/11/06) International Patent Classification (IPC): G21C1/00 FI: G21C1/00 C 出願 2013-531614 (2011/09/08) 公開 2014-510897 (2014/05/01) 国際特許分類(IPC): G21C1/32 G21C1/08 G21D1/00 FI: G21C1/32 G21C1/08 G21D1/00 SApplication 2013-531614 (2011/09/08) Publication 2014-510897 (2014/05/01) International Patent Classification (IPC): G21C1/32 G21C1/08 G21D1/00 FI: G21C1/32 G21C1/08 G21D1/00 S 出願 2007-187505 (2007/07/18) 公開 2009-024368 (2009/02/05) 国際特許分類(IPC): E21D9/04 E21D9/00 E21D13/02 G21F1/02 G21F9/34 G21F9/36Application 2007-187505 (2007/07/18) Publication 2009-024368 (2009/02/05) International Patent Classification (IPC): E21D9/04 E21D9/00 E21D13/02 G21F1/02 G21F9/34 G21F9/36 1〜20 件目 / 全 655 件電中研・東芝が共同開発 小型原子炉で米国に逆上陸 分散電源時代を小型原子炉て拓く 資料名: 月刊エネルギー (エネルギー)巻: 38 号: 4 ページ: 8-9 発行年: 2005年04月01日1〜20 items / 655 items in total Jointly developed by Central Electric Power Research Institute and Toshiba Small nuclear reactors make their way back to the United States Opening up the era of distributed power sources with small nuclear reactors Material name: Monthly Energy (Energy) Volume: 38 Issue: 4 Pages: 8-9 Publication year: April 1, 2005 小型原子炉の魅力と開発動向 総論 小型原子炉の魅力クリップ著者 (1件): 鳥井弘之 (日本経済新聞)資料名: 電気評論 (Electrical Review)巻: 86 号: 6 ページ: 11-15 発行年: 2001年06月10日Attractiveness of small nuclear reactors and development trends Overview Attractive clips of small nuclear reactors Author (1): Hiroyuki Torii (Nihon Keizai Shimbun) Material name: Electrical Review Volume: 86 Issue: 6 Pages: 11-15 Publication year : June 10, 2001 中小型原子炉展開の経緯と将来 中小型原子炉から次世代炉・将来炉へDevelopmental proceses and future of small-to-medium-sized nuclear reactors. From small-to-medium-sized nuclear reactors to those of the future.Developmental processes and future of small-to-medium-sized nuclear reactors. From small-to-medium-sized nuclear reactors to those of the future. 最大出力自然循環における統合モジュラー小型原子炉操作の熱水力学的実験的検証Thermo-hydraulic experimental validation of an integrated modular small reactor operating in full power natural circulationThermo-hydraulic experimental validation of an integrated modular small reactor operating in full power natural circulation 熱供給用超小型原子炉に関する研究 (11) 大深度地下空洞の動的安定性に関する検討Research on micro-nuclear reactors for heat supply (11) Study on dynamic stability of deep underground cavities 21世紀は東京のビル地下にも... 究極安全の小型原子炉時代 消費地立地型小型軽水炉「PSRD」 大深度地下や洋上バージなど利用In the 21st century, even underground buildings in Tokyo... The age of the ultimate safe small nuclear reactor Small light water reactor "PSRD" located at the consumption site Used in deep underground and offshore barges

本発明は、プラモデルを組み立てるような容易さで組み立てられ、発電する小型モジュール炉 SMR/Small Modular Reactor/(圧力容器、蒸気発生器、加圧器、格納容器をふくむ一体型パッケージ)を、如何なる場合でも安全な水力発電の底や鉱山跡の大深度地下に埋め込み設置経費削減、最安の発電コスト、完成までの時間短縮、CN(カーボンニュートラル)、SDG’s、脱ロシアを解決するものである。 The present invention is a small modular reactor (SMR/Small Modular Reactor/(integrated package including a pressure vessel, steam generator, pressurizer, and containment vessel) that can be assembled as easily as assembling a plastic model and generates electricity in any situation. Safely embed it deep underground at the bottom of a hydroelectric power plant or mine site to reduce installation costs, have the lowest power generation costs, shorten the time to completion, solve CN (carbon neutral), SDG's, and move away from Russia.

以下の課題を、チームごとに外注も含めて同時進行で解決していく。
1) 小型モジュール炉 SMR(Small Modular Reactor)の完成。
2) 大深度設置のテスト
3) モジュールユニットの量産化
4) 水力ダム湖底の30~100メートルのテスト採掘
5) 鉱山跡で小型モジュール原子炉を埋め込める場所の選定
6) 開削工法の可能性
7) 設置、発電、送電、ランニングコスト、放射能、飲料水への影響検証
8) 発電コスト
9) AI、ロボット、燃料棒交換、放射性廃棄物取り出し埋設
10) 住民、利害関係者との話し合い
Each team will solve the following issues simultaneously, including outsourcing.
1) Completion of small modular reactor SMR (Small Modular Reactor).
2) Testing of deep installation 3) Mass production of module units 4) Test mining 30 to 100 meters below the bottom of a hydropower dam lake 5) Selection of a site where a small modular nuclear reactor can be embedded in a former mine 6) Possibility of open-cut construction method 7 ) Installation, power generation, power transmission, running costs, radioactivity, verification of impact on drinking water 8) Power generation costs 9) AI, robots, fuel rod replacement, removal and burial of radioactive waste 10) Discussions with residents and stakeholders

世界で開発競争が激化している小型原子炉、小型原子力発電の分野で日本がリードできる。原発と言えば、中国、ロシア、フランス、アメリカであるがこの数百兆円市場に割り込めるのが本発明の大深度水中小型原子炉による原子力発電である。 Japan can take the lead in the field of small nuclear reactors and small nuclear power generation, where development competition is intensifying around the world. Speaking of nuclear power plants, China, Russia, France, and the United States are the countries, but nuclear power generation using the deep underwater small nuclear reactor of the present invention can break into this multi-hundred trillion yen market.

二酸化炭素を排出しない発電に必要な使用面積の比較原子力発電が太陽光発電、風力発電にくらべ地面の効率としては勝っているComparison of the area required for power generation that does not emit carbon dioxide Nuclear power generation is superior to solar power generation and wind power generation in terms of ground efficiency 発電コストの比較でも原子力発電は勝っているNuclear power generation is also superior when comparing power generation costs. ウランの核分裂のイメージ図Image diagram of nuclear fission of uranium 原子力発電のメカニズムMechanism of nuclear power generation 福島原発の放射能の減衰想定図Estimated decay of radioactivity at the Fukushima nuclear power plant 小型モジュール炉 ユニットのプレハブ住宅のような工業化イメージ図An image of industrialization of small modular furnace units like prefabricated houses 日本で研究が進む地中大深度小型モジュール炉 SMR(Small Modular Reactor)SMR (Small Modular Reactor), a deep underground small modular reactor that is being researched in Japan 水力発電所、この水を一旦抜いて小型原子炉を埋設する。飲料水になるため常に計測値を公表しなければならないAt the hydroelectric power plant, this water will be drained and a small nuclear reactor will be buried. Because it is used as drinking water, measurements must always be made public. 全国に水力発電所は約2500箇所もある。好適地は必ず見つかる。There are approximately 2,500 hydroelectric power plants across the country. You are sure to find a suitable location. 水力発電所2500箇所や鉱山2000箇所には送電や道路のインフラがすでに備わっている。2,500 hydropower plants and 2,000 mines already have power transmission and road infrastructure. 放射性廃棄物はカラスで固め保存容器で地下300メートルに埋められるRadioactive waste will be hardened with crows and buried 300 meters underground in storage containers. 大きな露天掘り鉱山跡。この場合は開削工法で原子炉部分を埋めて固めるだけである。天災、地震、津波、ミサイル攻撃から守るためのアイデアである。A large open pit mine. In this case, the reactor area is simply filled and solidified using the open-cut method. The idea is to protect against natural disasters, earthquakes, tsunamis, and missile attacks. 日本国内の露天掘り鉱山跡である。建材としての石材採掘場も多数あるThis is the remains of an open pit mine in Japan. There are also many quarries for stone used as building materials. 地下坑道のあと。トロッコ線路などのインフラがあり本発明の実施が早いAfter the underground tunnel. There is infrastructure such as trolley tracks, so the invention can be implemented quickly. 東京地下鉄の深度Tokyo subway depth 開削工法の現場。掘ってから埋め戻す。Open-cut construction site. Dig and then backfill. 深く、遠く、奥底に掘り進んだ坑道図。エレベータ―もあり小型原子炉の埋設に適している。これなら大型の冷却水ポンプや大口径配管が不要である。A diagram of a mine that has been dug deep, far, and deep into the depths. It also has an elevator and is suitable for burying small nuclear reactors. This eliminates the need for large cooling water pumps and large diameter piping. 日本の原発は、格好のミサイルの標的になりやすく安全上大きな危険を孕む。更にすべて大量の冷却水(海水)を得るため海岸に立地してきた。津波に弱く今後は考え直さなければならない。Japan's nuclear power plants are easy targets for missiles and pose a major safety risk. Furthermore, all of them have been located on the coast to obtain large amounts of cooling water (seawater). It is vulnerable to tsunamis and must be reconsidered in the future. 海外の内陸部に立地した原子力発電所Nuclear power plants located in inland areas overseas 開削工法を始めとした地下の建設や埋設などの代表的な工法Typical construction methods such as open-cut construction, underground construction, and burial 日本の湖沼の一例その1An example of Japanese lakes and marshes, part 1 日本の湖沼の一例その2Example of Japanese lakes and marshes part 2

本発明を実施するための形態とは、大型の冷却水ポンプや大口径配管が不要もしくは外部配管循環型で放射能漏れの心配の無い小型原子炉を地上や沿岸部への立地に比べはるかに安全で、しかも原子力発電廃棄物の管理も容易な大深度地中で稼働させようとするものである。 The form for carrying out the present invention is a small nuclear reactor that does not require large cooling water pumps or large-diameter piping, or is of an external piping circulation type and does not have to worry about radiation leakage. The aim is to operate the system deep underground, where it is safe and the management of nuclear power generation waste is easy.

本発明を実施するための実施例は、小型原子炉ユニットを水力発電所のダム湖底の地下に設置しAIとロボットで稼働とメンテナンスをコントロールする。小型原子炉ユニットは一旦稼働すれば安定的に発電するのでマニュアル的な作業で数十年間の発電が可能である。
本発明の要点「地中に埋設設置」する利点は、1.放射能からの遮断、2.放射性廃棄物がそのまま大深度保管、3.送電線や道路など既存インフラの利用、4.不測の事故、天災、他国からの攻撃など不測の事態からエネルギー源を守る、5.ローコスト電力の実現などである。
In an embodiment of the present invention, a small nuclear reactor unit is installed underground at the bottom of a dam lake in a hydroelectric power plant, and its operation and maintenance are controlled using AI and robots. Once a small nuclear reactor unit is in operation, it generates power stably, so it can generate electricity for several decades with manual operations.
The main points of the present invention are the advantages of ``installation underground'': 1. Shielding from radioactivity, 2. Radioactive waste is stored at deep depths, 3. Utilization of existing infrastructure such as power lines and roads; 4. 5. Protecting energy sources from unexpected situations such as unexpected accidents, natural disasters, and attacks from other countries. These include the realization of low-cost electricity.

本発明を実施するための実施例は、小型原子炉その他小型モジュール炉(SMR=スモール・モジュラー・リアクター)の全てをプラモデルのように簡単に組み立てられるような技術を工場でプレハブ住宅のように製造することである。同時に個々の部品と建屋構造のハードとソフト技術の開発が重要である。 An embodiment of the present invention is a technology that allows all small nuclear reactors and other small modular reactors (SMR = Small Modular Reactor) to be easily assembled like plastic models, and manufactured in a factory like a prefabricated house. It is to be. At the same time, it is important to develop hardware and software technologies for individual parts and building structures.

本発明を実施するための実施例は、水中、地中、小型高性能のトリプル合成安全を実現するものとして実際に地中で稼働させることである。しかもコスト比較でも優位であり常に危険を想定しなければならない脱二酸化炭素の原子力発電には環境配慮が欠かせない。 An example of implementing the present invention is to actually operate it underground as a triple composite safety implementation of underwater, underground, and compact high performance. Moreover, environmental considerations are essential for carbon-free nuclear power generation, which has an advantage in cost comparison and requires constant consideration of risks.

本発明の産業上の利用可能性は、世界初の本発明アイデアを基本にした技術を用いて住宅産業や機械産業、電力事業など産業界の広い裾野まで活性化することである。
The industrial applicability of the present invention is to revitalize a wide range of industries such as the housing industry, machinery industry, and electric power industry by using the world's first technology based on the idea of the present invention.

Claims (6)

小型原子力発電に関係する殆どのモジュールがプレハブ住宅のように工場で製造され、それらがプラモデルのように簡単な設計図だけで現地において組み立て可能な小型原子炉と小型原子力発電ユニット一式 Most of the modules related to small nuclear power generation are manufactured in factories like prefabricated houses, and they can be assembled on site using simple blueprints like plastic models.A set of small nuclear reactors and small nuclear power generation units. 当該発明のユニットが、湖底、用水池、沼地や、鉱山や廃鉱の10メートルから500メートルの地中または海中に設置されAIやロボットで稼働やメンテナンスをコントロールされる二重、三重の合成安全に守られた地下又は水中又は海中で発電する小型原子力発電ユニット The unit of the invention is installed in lakebeds, irrigation ponds, swamps, mines and abandoned mines 10 meters to 500 meters underground or under the sea, and its operation and maintenance are controlled by AI and robots, making it a double and triple safety system. A small nuclear power generation unit that generates power underground, under water, or under the sea. 水力発電のダム湖底や、湖沼の湖底、海底、鉱山の中に地中深く沈められるかもしくは埋められ天災、地震、津波、台風、火災、ミサイル攻撃などのからの、安全性が補強された地中の小型原子炉と小型原子力発電ユニット一式もしくは大型地下原子力発電所 Hydraulic dams are built on the bottom of lakes, on the ocean floor, on the ocean floor, or buried deep underground in mines to provide added safety from natural disasters, earthquakes, tsunamis, typhoons, fires, missile attacks, etc. A small nuclear reactor inside and a small nuclear power generation unit set or a large underground nuclear power plant 設置とメンテナンス、住民対策などのイニシャルとランニングの経費削減と工期の短縮が可能な、水力発電や鉱山の送電線、トロッコ線路、エレベーター、アクセス道路を共用利用が可能な山岳地帯や平野地域に設置される小型原子力発電ユニット一式もしくは大型地中原子力発電所 Installation in mountainous and plain areas where hydroelectric power generation and mine transmission lines, trolley tracks, elevators, and access roads can be shared, reducing initial and running costs and shortening the construction period for installation, maintenance, and resident countermeasures. A complete set of small nuclear power generation units or large underground nuclear power plants 内陸部の10メートルから600メートルの地中に設置され原子炉冷却水として、湖沼、河川、ダムの貯水などの淡水を用いる小型原子力発電ユニット一式もしくは大型地中原子力発電所 A set of small nuclear power generation units or large underground nuclear power plants that are installed 10 to 600 meters underground inland and use fresh water from lakes, rivers, dams, etc. as reactor cooling water. 原子力発電からでる放射性廃棄物を数十年から数百年以上大深度地中に費用をかけずにそのまま保管容器に保管可能な地中原子力発電設備と、それを移動操作可能なロボットと移動機器
Underground nuclear power generation equipment that can store radioactive waste from nuclear power generation in storage containers deep underground for decades to hundreds of years without any expense, and robots and mobile equipment that can move and operate it.
JP2022070432A 2022-04-21 2022-04-21 Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure Pending JP2023160232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022070432A JP2023160232A (en) 2022-04-21 2022-04-21 Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022070432A JP2023160232A (en) 2022-04-21 2022-04-21 Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure

Publications (1)

Publication Number Publication Date
JP2023160232A true JP2023160232A (en) 2023-11-02

Family

ID=88516248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022070432A Pending JP2023160232A (en) 2022-04-21 2022-04-21 Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure

Country Status (1)

Country Link
JP (1) JP2023160232A (en)

Similar Documents

Publication Publication Date Title
US4851183A (en) Underground nuclear power station using self-regulating heat-pipe controlled reactors
US8660232B2 (en) Supersafe and simply-/easily-decommissionable nuclear power plant
JP2010101144A (en) Energy supply system reusing existing underground cavity
Högselius Atomic shocks of the old: Putting water at the center of nuclear energy history
CN108417283B (en) Underground neutron energy power station
JP2023160232A (en) Small-scale nuclear power generation and underground installation of next generation module unit capable of generating power in short time utilizing existing infrastructure
RU2273901C2 (en) Underground nuclear power station
JP2024054880A (en) Even if an unexpected event occurs, the automatic water supply and cooling system from the lake will thoroughly protect the safety of residents and the environment. This is a small deep lake bottom nuclear reactor power generation system manufactured in a factory using AI information sharing.
Wilkes et al. The story of nukey poo
Eerkens The nuclear imperative
Dupre Sustainable Energy for Scientific Antarctic Stations: development of a concept power plant using a small modular reactor coupled with a supercritical CO2 Brayton cycle
CN212303096U (en) Arrangement structure for arranging nuclear power plant buildings by using abandoned mines
Pawłowski Sustainable energy: Technology, industry, transport and agriculture
Kunze et al. Underground nuclear energy complexes: technical and economic advantages
Loyd Alternate Novel Thermal Structure Interaction Designs of Molten Salt Shell Structures at High Temperatures Ranging from 565 C to 700 C
Svenne The case for a return to nuclear power
Kampouris Risk assessment of an underground nuclear power plant. The case study of Halden's research nuclear reactor, Norway.
Kunze et al. Underground Siting of Nuclear Power Plants: Enhancing Safety and Reducing Construction Cost
Bustos Dupre Sustainable energy for scientific Antarctic stations: development of a concept power plant using a small modular reactor coupled with a supercritical a CO2 Brayton cycle
US20150047355A1 (en) Ciudad Sinergia: a production and research facility in the southwestern United States for electrical power and fresh water, and for processing burnable waste, without the use of nuclear fission, coal or oil
Myers et al. Underground siting of small modular reactors in bedrock: Rationale, Concepts, and applications
Mahar et al. Underground Nuclear Power Parks: Power Plant Design Implications
Robertson Nuclear energy in Canada: the CANDU system
UA155624U (en) Method of reconstruction of a thermal power plant
JP2007056855A (en) Multiple tank water circulation type power generation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620