JP2023157455A - drive mechanism - Google Patents

drive mechanism Download PDF

Info

Publication number
JP2023157455A
JP2023157455A JP2022067390A JP2022067390A JP2023157455A JP 2023157455 A JP2023157455 A JP 2023157455A JP 2022067390 A JP2022067390 A JP 2022067390A JP 2022067390 A JP2022067390 A JP 2022067390A JP 2023157455 A JP2023157455 A JP 2023157455A
Authority
JP
Japan
Prior art keywords
rotation
drive shaft
motor
shaft
drive mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022067390A
Other languages
Japanese (ja)
Inventor
宏 磯野
Hiroshi Isono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Corp filed Critical Aisin Corp
Priority to JP2022067390A priority Critical patent/JP2023157455A/en
Publication of JP2023157455A publication Critical patent/JP2023157455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)
  • Transmission Devices (AREA)

Abstract

To provide a drive mechanism which has an excellent lock function, is saved in electric power, and is simple.SOLUTION: A drive mechanism K includes a motor M having a drive shaft Ma, and a speed reduction part G which has a first shaft s1 receiving rotation of the drive shaft Ma, and transmits the rotation to a driving object while reducing the speed of the rotation. The drive mechanism K further includes a switch part C which switches, in coordination with the rotation of the drive shaft Ma, between an unlock state in which the rotation of the first shaft s1 is allowed in the rotation of the drive shaft Ma, and a lock state in which the rotation of the first shaft s1 is regulated in a stop of the drive shaft Ma.SELECTED DRAWING: Figure 1

Description

本発明は、モータと当該モータの駆動回転を減速させつつ駆動対象に伝達する減速部とを備えた駆動機構に関する。 TECHNICAL FIELD The present invention relates to a drive mechanism including a motor and a deceleration section that decelerates and transmits the drive rotation of the motor to a driven object.

従来、このような駆動機構としては例えば特許文献1に示すものがある(〔0006〕~〔0007〕および図3参照)。 Conventionally, as such a drive mechanism, there is one shown in Patent Document 1, for example (see [0006] to [0007] and FIG. 3).

この駆動機構は、転舵アクチュータの出力軸の回転を直動機構部によって直進運動に変換し、これを操舵リンク機構に伝達するステアバイワイヤ式の操舵装置である。この装置では、回転出力軸7の外径側にこれと同心に外輪部材13を配置すると共に、回転出力軸7に対して回転自在にキャリア14を支持し、このキャリア14に支持した遊星ローラ16を外輪部材13に螺合させている。 This drive mechanism is a steer-by-wire steering device that converts the rotation of the output shaft of the steering actuator into a linear motion using a linear motion mechanism and transmits this to a steering link mechanism. In this device, an outer ring member 13 is disposed concentrically with the outer diameter side of the rotary output shaft 7, a carrier 14 is rotatably supported with respect to the rotary output shaft 7, and a planetary roller 16 supported on the carrier 14 is provided. is screwed onto the outer ring member 13.

遊星ローラ16と外輪部材13とは螺旋状の凸条25と周方向溝26とで螺合しており、遊星ローラ16の自公転を軸方向移動に変換して、外輪部材13または回転出力軸7に対して各遊星ローラ16が軸方向に相対移動する。この各遊星ローラ16の相対移動に応じた外輪部材13の軸方向移動が操舵リンク機構のアームに伝達され転舵輪が転舵されるというものである。 The planetary roller 16 and the outer ring member 13 are screwed together by a spiral protrusion 25 and a circumferential groove 26, and the rotation and revolution of the planetary roller 16 is converted into axial movement, and the outer ring member 13 or the rotation output shaft is Each planetary roller 16 moves relative to 7 in the axial direction. The axial movement of the outer ring member 13 in response to the relative movement of each planetary roller 16 is transmitted to the arm of the steering link mechanism, and the steered wheels are steered.

この構成によれば、転舵アクチュエータの回転出力軸の回転を遊星ローラの自公転により外輪部材の軸方向移動に変換する。よって、遊星ローラの機構が回転力を直線運動に変換する変換機構として機能するだけでなく、減速機の役割も担うことになり、小型化および軸方向長さの短縮化が可能となる。これにより、ステアバイワイヤ式操舵装置の転舵機構をホイールハウス内に収めることができ、車内スペースを広く確保することができる。また、回転力を直線運動に変換する変換機構として遊星ローラを用いることで、荷重保持が可能となり車両の直進等で転舵輪からの逆入力を防止しつつ省電力化も可能になるとのことである。 According to this configuration, rotation of the rotation output shaft of the steering actuator is converted into axial movement of the outer ring member by rotation and revolution of the planetary roller. Therefore, the planetary roller mechanism not only functions as a conversion mechanism that converts rotational force into linear motion, but also plays the role of a speed reducer, making it possible to downsize and shorten the axial length. As a result, the steering mechanism of the steer-by-wire steering system can be housed in the wheel house, and a large interior space can be secured. In addition, by using planetary rollers as a conversion mechanism that converts rotational force into linear motion, it is possible to hold the load, prevent reverse input from the steered wheels when the vehicle is moving straight, and save power. be.

特開2013-95310号公報JP2013-95310A

上記従来の駆動機構にあっては、車両の直進等で転舵輪からの逆入力を防止するために、遊星ローラ16と外輪部材13における螺旋状の凸条25と周方向溝26の断面が台形状とされている。しかし、本構成の場合、回転出力軸からの駆動回転が直動に変換されるまでの機械効率が低下し、モータが大型化する等の課題があった。 In the conventional drive mechanism described above, in order to prevent reverse input from the steered wheels when the vehicle is moving straight, etc., the cross sections of the spiral protrusions 25 and the circumferential grooves 26 on the planetary rollers 16 and the outer ring member 13 are flat. It is said to be the shape. However, in the case of this configuration, there were problems such as a decrease in mechanical efficiency until the drive rotation from the rotary output shaft is converted into direct motion, and an increase in the size of the motor.

このように、上記従来の駆動機構においては、種々の解決すべき課題を有しており、駆動対象を動作させない場合には良好なロック機能が発揮され、省電力且つ簡便な駆動機構が求められていた。 As described above, the above-mentioned conventional drive mechanisms have various problems that need to be solved, and there is a need for a simple and power-saving drive mechanism that exhibits a good locking function when the driven object is not in operation. was.

(特徴構成)
本発明に係る駆動機構の特徴構成は、
駆動軸を有するモータと、
前記駆動軸の回転を受ける入力軸を有し、前記回転を減速しつつ駆動対象に伝達する減速部と、を備え、
前記駆動軸の回転と連動して、前記駆動軸の回転時に前記入力軸の回転が許容されるアンロック状態となり、前記駆動軸の停止時に前記入力軸の回転が規制されるロック状態となる切替部を備えた点にある。
(Characteristic configuration)
The characteristic configuration of the drive mechanism according to the present invention is as follows:
a motor having a drive shaft;
comprising an input shaft that receives the rotation of the drive shaft, and a deceleration unit that decelerates the rotation and transmits it to the driven object,
Switching in conjunction with the rotation of the drive shaft, an unlocked state in which rotation of the input shaft is allowed when the drive shaft rotates, and a locked state in which rotation of the input shaft is restricted when the drive shaft is stopped. The point is that it has a section.

(効果)
本構成の駆動機構は、モータを駆動しない非通電の状態においては切替部がロック状態に維持される。よって、常時は非通電状態に維持される駆動対象を制御する場合には省電力化を図ることができる。
(effect)
In the drive mechanism of this configuration, the switching portion is maintained in a locked state in a non-energized state in which the motor is not driven. Therefore, when controlling a driven object that is normally maintained in a non-energized state, it is possible to save power.

また、一つのモータで切替部のロック操作およびアンロック操作と減速部への出力を行うから構成部品が少なくなり低コスト化が可能となる。 Furthermore, since a single motor performs the locking and unlocking operations of the switching section and the output to the deceleration section, the number of components is reduced and costs can be reduced.

(特徴構成)
本発明に係る駆動機構にあっては、前記切替部が、前記モータに従動回転する少なくとも一つの摩擦板と、前記摩擦板に対向配置される押圧板と、前記押圧板を前記摩擦板に押圧する付勢部材と、前記摩擦板の回転軸心と同軸心に設けられて前記押圧板の押圧を解除する回転―直動変換部と、を有するクラッチを備えていると好都合である。
(Characteristic configuration)
In the drive mechanism according to the present invention, the switching section includes at least one friction plate that rotates as a result of the motor, a pressing plate that is arranged to face the friction plate, and pressing the pressing plate against the friction plate. It is advantageous to include a clutch having a biasing member that does this, and a rotation-linear conversion unit that is provided coaxially with the rotation axis of the friction plate and releases the pressure on the press plate.

(効果)
本構成では、モータの駆動軸が回転していない状態では押圧板が摩擦板に押し付けられ入力軸がロック状態となる。しかし、モータが稼働すると駆動軸が回転し、回転―直動変換部が押圧板の押し付けを解除する。このような付勢部材を用いた押圧式のクラッチであれば、装置の小型化が容易であり搭載性に優れた駆動機構を得ることができる。
(effect)
In this configuration, when the drive shaft of the motor is not rotating, the press plate is pressed against the friction plate and the input shaft is in a locked state. However, when the motor operates, the drive shaft rotates, and the rotation-linear conversion section releases the pressing of the press plate. With a press-type clutch using such a biasing member, the device can be easily miniaturized and a drive mechanism with excellent mountability can be obtained.

また、回転―直動変換部が摩擦板の回転軸心と同軸心状に配置してあるから、切替部における特に径外方向の寸法が小径化し易く、駆動機構の小型化が可能である。 Furthermore, since the rotational-linear conversion section is arranged coaxially with the rotational axis of the friction plate, the dimensions of the switching section, particularly in the radial direction, can be easily reduced, and the drive mechanism can be downsized.

さらに、クラッチはモータの駆動軸と同軸心状に設けてあるから、モータの回転駆動力をクラッチに直接伝えるよう接続部を構成ることも容易となり、機械的効率の良い駆動機構を得ることができる。 Furthermore, since the clutch is coaxial with the drive shaft of the motor, it is easy to configure the connection part to directly transmit the rotational driving force of the motor to the clutch, making it possible to obtain a drive mechanism with good mechanical efficiency. can.

(特徴構成)
本発明に係る駆動機構にあっては、前記回転―直動変換部が、前記駆動軸および前記押圧板の何れか一方に保持されて前記駆動軸の軸心の周りに回動する少なくとも一つのボールと、前記駆動軸および前記押圧板の何れか他方または両方に形成されたカム面と、を備えた構成にすることができる。
(Characteristic configuration)
In the drive mechanism according to the present invention, the rotation-linear conversion section is held by either the drive shaft or the press plate and rotates around the axis of the drive shaft. It can be configured to include a ball and a cam surface formed on one or both of the drive shaft and the press plate.

(効果)
本構成のように、カム面とボールを備えるクラッチであれば、駆動軸の回転に伴うカム面の効果により押圧板の押圧解除が容易に行われる。カム面は、駆動軸および押圧板のうちボールを保持する側と反対の部材に設けるが、加えてボールを保持する側に設けることもできる。ボールはカム面に対して転がるため双方の部材にカム面を設けることで摩擦損失を減らすことができる。このようなカム面とボールの配置は比較的簡単である。よって、構成が簡略化され小型化されたクラッチの設置が容易となる。
(effect)
If the clutch includes a cam surface and a ball as in this configuration, the pressure on the press plate can be easily released due to the effect of the cam surface as the drive shaft rotates. The cam surface is provided on a member of the drive shaft and the press plate opposite to the side that holds the ball, but it can also be provided on the side that holds the ball. Since the ball rolls against the cam surface, friction loss can be reduced by providing cam surfaces on both members. This arrangement of the cam surface and the ball is relatively simple. Therefore, it becomes easy to install a clutch with a simplified configuration and reduced size.

また、カム面の傾斜角度を調節することで、駆動軸の回転角度に対するクラッチの断続応答性の設定も容易である。よって、当該駆動機構の適応対象を広げることができる。 Further, by adjusting the inclination angle of the cam surface, it is easy to set the engagement/disengagement responsiveness of the clutch to the rotation angle of the drive shaft. Therefore, the application targets of the drive mechanism can be expanded.

(特徴構成)
本発明に係る駆動機構にあっては、前記切替部に、前記押圧板を操作する第2モータを備えておいてもよい。
(Characteristic configuration)
In the drive mechanism according to the present invention, the switching section may include a second motor that operates the pressing plate.

(効果)
本構成では、切替部のロック解除を行うべく専用の第2モータを備えている。このような第2モータの駆動タイミングは、主たるモータの駆動タイミングに合わせて設定自由である。よって、例えば第2モータによってロック解除を行った後、直ちに主たるモータの回転駆動を減速部に出力することが可能となるなど、制御応答性に優れた駆動機構を得ることができる。
(effect)
In this configuration, a dedicated second motor is provided to unlock the switching section. The driving timing of such a second motor can be set freely according to the driving timing of the main motor. Therefore, for example, after unlocking is performed by the second motor, it is possible to immediately output the rotational drive of the main motor to the deceleration section, thereby providing a drive mechanism with excellent control responsiveness.

第1実施形態に係る駆動機構を示す断面図A sectional view showing the drive mechanism according to the first embodiment 第1実施形態に係るクラッチの要部を示す斜視図A perspective view showing the main parts of the clutch according to the first embodiment 第2実施形態に係る駆動機構を示す断面図A sectional view showing a drive mechanism according to a second embodiment

〔第1実施形態〕
(概要)
本発明に係る駆動機構Kは、例えば車両の電動操舵装置用のアクチュエータ等に用いられる。電動操舵装置は、前輪或いは後輪の例えば操舵リンク1に組み込まれ、モータMの駆動によって直動部2の長さを調節することで車輪の方向が決定される。
[First embodiment]
(overview)
The drive mechanism K according to the present invention is used, for example, as an actuator for an electric steering device of a vehicle. The electric steering device is incorporated in, for example, a steering link 1 of a front wheel or a rear wheel, and the direction of the wheels is determined by adjusting the length of a linear motion part 2 by driving a motor M.

本実施形態に係る駆動機構Kを図1および図2に示す。駆動機構Kは、駆動対象である操舵リンク1の直動部2を駆動するよう、モータMおよび減速部Gを備えている。直動部2は、外側で回転する筒状部材2aと、この筒状部材2aの内部にボールねじ3を介して螺合し、往復移動する直動部材2bとを備えている。直動部材2bの一部には例えば凸状のガイド部2b1が設けられ、このガイド部2b1が操舵リンク1の内面に形成された溝部1aに案内されることで直動部材2bは回転を伴わずに往復移動が可能である。筒状部材2aの外周部には大径ギアg4が設けられ、減速部Gの出力ギアg3によって駆動される。尚、この筒状部材2aおよび大径ギアg4は減速部Gの第3軸s3として機能する。 A drive mechanism K according to this embodiment is shown in FIGS. 1 and 2. The drive mechanism K includes a motor M and a speed reduction section G so as to drive the linear motion section 2 of the steering link 1 that is a driving target. The linear motion part 2 includes a cylindrical member 2a that rotates on the outside, and a linear motion member 2b that is screwed into the interior of the cylindrical member 2a via a ball screw 3 and moves back and forth. A part of the linear motion member 2b is provided with, for example, a convex guide portion 2b1, and the guide portion 2b1 is guided by the groove portion 1a formed on the inner surface of the steering link 1, so that the linear motion member 2b is rotated. It is possible to move back and forth without moving. A large-diameter gear g4 is provided on the outer circumference of the cylindrical member 2a, and is driven by the output gear g3 of the reduction section G. Incidentally, this cylindrical member 2a and the large diameter gear g4 function as the third shaft s3 of the reduction section G.

(減速部)
減速部Gは、後述のモータMの駆動軸Maによって駆動される入力軸s1たる第1軸s1と、出力ギアg3を有する第2軸s2とで構成される。第1軸s1および第2軸s2はともに、両端をベアリングで軸支されている。第1軸s1には小径の第1ギアg1が設けられ、第2軸s2には大径の第2ギアg2が設けられている。第2軸s2にはさらに小径の出力ギアg3が設けられ、第3軸s3である筒状部材2aの大径ギアg4に歯合している。このように本実施形態の減速部Gは3段のギア列を有する。
(reduction part)
The speed reducer G includes a first shaft s1, which is an input shaft s1 driven by a drive shaft Ma of a motor M, which will be described later, and a second shaft s2, which has an output gear g3. Both the first shaft s1 and the second shaft s2 are supported by bearings at both ends. A first gear g1 with a small diameter is provided on the first shaft s1, and a second gear g2 with a large diameter is provided on the second shaft s2. The second shaft s2 is further provided with a small-diameter output gear g3, which meshes with a large-diameter gear g4 of the cylindrical member 2a, which is the third shaft s3. In this way, the speed reducer G of this embodiment has a three-stage gear train.

減速部Gのギアは何れも平ギアであり簡便に構成されている。平ギアであれば、ギアの歯合による摩擦が少なく高効率のギア伝達機構を得ることができる。 The gears of the reduction unit G are all spur gears and have a simple structure. If the spur gear is used, there is less friction due to gear meshing, and a highly efficient gear transmission mechanism can be obtained.

(モータ)
減速部Gの第1軸s1はモータMの駆動軸Maからの回転駆動が入力される。モータMの構成は任意であり、例えば12Vで駆動する各種の直流モータが用いられる。モータMは、別途備えられた制御部ECUにより、種々の運転状況に応じて回転速度と回転方向が設定されて駆動される。
(motor)
The rotational drive from the drive shaft Ma of the motor M is input to the first shaft s1 of the deceleration section G. The configuration of the motor M is arbitrary, and for example, various DC motors driven at 12V are used. The motor M is driven by a separately provided control unit ECU, with the rotation speed and rotation direction set according to various operating conditions.

(クラッチ)
直動部材2bは、操向指示が出されていない状態では完全に停止していることが望ましい。しかし、車輪から操舵リンク1などに作用する逆入力は、減速部GおよびモータMの駆動軸Maを従動回転させようとする。直動部材2bに作用する逆入力は、ボールねじ3を介して筒状部材2aを従動回転させる。筒状部材2aに歯合する減速部Gは平歯車で構成されるため第2軸s2および第1軸s1も容易に従動回転する。さらに、第1軸s1に連動するモータMの駆動軸Maも、モータMが非通電である場合には従動回転する可能性がある。
(clutch)
It is desirable that the linearly moving member 2b is completely stopped when no steering instruction is issued. However, the reverse input acting on the steering link 1 etc. from the wheels tends to cause the reduction unit G and the drive shaft Ma of the motor M to rotate in a driven manner. The reverse input acting on the translational member 2b causes the cylindrical member 2a to rotate through the ball screw 3. Since the speed reducer G that meshes with the cylindrical member 2a is constituted by a spur gear, the second shaft s2 and the first shaft s1 are also easily driven to rotate. Furthermore, the drive shaft Ma of the motor M that is interlocked with the first shaft s1 may also be driven to rotate when the motor M is not energized.

そこで、本実施形態では、当該従動回転を阻止する切替部Cを備えている。切替部Cは所謂クラッチC1であり、モータMに従動回転する少なくとも一つの摩擦板Pと、この摩擦板Pに対向配置される押圧板Qと、この押圧板Qを摩擦板Pに押圧する付勢部材Fとを備え、摩擦板Pの回転軸心Xと同軸心に設けられて押圧板Qの押圧を解除する回転―直動変換部が形成されている。 Therefore, this embodiment includes a switching section C that prevents the driven rotation. The switching unit C is a so-called clutch C1, and includes at least one friction plate P that rotates as a result of a motor M, a pressing plate Q that is arranged opposite to this friction plate P, and an attachment that presses this pressing plate Q against the friction plate P. A rotation-linear conversion section is formed which includes a biasing member F and is provided coaxially with the rotation axis X of the friction plate P to release the pressure of the press plate Q.

この切替部Cにより、モータMの駆動軸Maが回転する際には、押圧板Qと摩擦板Pとの押圧が解除されて第1軸s1の回転が許容されるアンロック状態となる。また、駆動軸Maが停止している際には、押圧板Qが摩擦板Pに押し付けられ、第1軸s1の回転が規制されてロック状態となる。 Due to this switching part C, when the drive shaft Ma of the motor M rotates, the pressure between the press plate Q and the friction plate P is released, and an unlocked state is established in which rotation of the first shaft s1 is allowed. Further, when the drive shaft Ma is stopped, the press plate Q is pressed against the friction plate P, and the rotation of the first shaft s1 is regulated to be in a locked state.

より具体的には、図1および図2に示すように、駆動軸Maと第1軸s1との間に摩擦板支持体Hが設けられている。摩擦板支持体Hは、円盤状の基部H1を有し、基部H1の一方には筒状のボス部H2を備えている。このボス部H2の内部に第1軸s1がスライド可能に係合されている。 More specifically, as shown in FIGS. 1 and 2, a friction plate support H is provided between the drive shaft Ma and the first shaft s1. The friction plate support H has a disk-shaped base H1, and a cylindrical boss H2 on one side of the base H1. The first shaft s1 is slidably engaged inside the boss portion H2.

基部H1の他方の面には第1軸s1の回転軸心Xの周囲に沿って複数のカム面C1aが形成されている。カム面C1aはV字状の凹部として形成され、周方向に沿った中央が低く両側が高く構成されている。このカム面C1aの夫々にはボールC1bが当接し、ボールC1bは駆動軸Maの端面に形成した凹部Ma1に保持されている。つまり、駆動軸Maが正逆何れかの方向に回転すると、ボールC1bを従動回転させ、さらにこのボールC1bがV字状のカム面C1aの左右の何れかに乗り上げる。これにより、摩擦板支持体Hが回転軸心Xに沿って第1軸s1の側に押される。 A plurality of cam surfaces C1a are formed on the other surface of the base H1 along the circumference of the rotation axis X of the first shaft s1. The cam surface C1a is formed as a V-shaped recess, and the center along the circumferential direction is low and both sides are high. A ball C1b is in contact with each of the cam surfaces C1a, and the ball C1b is held in a recess Ma1 formed in the end surface of the drive shaft Ma. That is, when the drive shaft Ma rotates in either the forward or reverse direction, the ball C1b is driven to rotate, and the ball C1b rides on either the left or right side of the V-shaped cam surface C1a. As a result, the friction plate support H is pushed toward the first axis s1 along the rotation axis X.

カム面C1aの角度を大きくするほど、駆動軸Maの回転角度に対する基部H1の押出量が増えるので、後述の摩擦板Pどうしの押圧を素早く解除することができる。 As the angle of the cam surface C1a increases, the amount of extrusion of the base H1 relative to the rotation angle of the drive shaft Ma increases, so that the pressure between the friction plates P, which will be described later, can be quickly released.

尚、カム面C1aが駆動軸Maの端面に形成され、ボールC1bが基部H1に保持される構成であってもよい。また、カム面C1aは、駆動軸Maおよび押圧板QのうちボールC1bを保持する側と反対の部材に設けるが、加えてボールC1bを保持する側に設けることもできる。ボールC1bはカム面C1aに対して転がるため双方の部材にカム面C1aを設けることで摩擦損失を減らすことができる。 Alternatively, the cam surface C1a may be formed on the end surface of the drive shaft Ma, and the ball C1b may be held on the base H1. Further, although the cam surface C1a is provided on a member of the drive shaft Ma and the pressing plate Q that is opposite to the side that holds the ball C1b, it can also be provided on the side that holds the ball C1b. Since the ball C1b rolls against the cam surface C1a, friction loss can be reduced by providing the cam surface C1a on both members.

このように、カム面C1aとボールC1bを備えるクラッチC1であれば、駆動軸Maの回転に伴うカム面C1aの効果により押圧板Qの押圧解除が容易に行われる。加えて、このようなカム面C1aとボールC1bの配置は比較的簡単である。よって、構成が簡略化され小型化されたクラッチC1の設置が容易となる。また、カム面C1aの傾斜角度を調節することで、駆動軸Maの回転角度に対するクラッチC1の断続応答性の設定も容易である。よって、当該駆動機構Kの適応対象を広げることができる。 In this way, if the clutch C1 includes the cam surface C1a and the ball C1b, the pressure on the press plate Q can be easily released due to the effect of the cam surface C1a accompanying the rotation of the drive shaft Ma. In addition, such arrangement of the cam surface C1a and the ball C1b is relatively simple. Therefore, it becomes easy to install the clutch C1, which has a simplified configuration and is miniaturized. Further, by adjusting the inclination angle of the cam surface C1a, it is easy to set the engagement/disengagement responsiveness of the clutch C1 to the rotation angle of the drive shaft Ma. Therefore, the application targets of the drive mechanism K can be expanded.

図2に示すように、基部H1はスラストベアリング4を介して環状の押圧板Qと接している。押圧板Qはハウジング5の底部に反力を取る複数の付勢部材Fによって基部H1に向けて常に付勢されている。ここでは付勢部材FとしてコイルスプリングFaを用い、このコイルスプリングFaを受けるために、ハウジング5及び押圧板Qには保持孔6が形成してある。この保持孔6の深さは、仮に押圧板Qがハウジング5に当接するまで押し戻された状態でもコイルスプリングFaが保持孔6の内部で完全に縮まない程度に設定してある。 As shown in FIG. 2, the base H1 is in contact with the annular pressing plate Q via the thrust bearing 4. The pressing plate Q is constantly urged toward the base H1 by a plurality of urging members F that take a reaction force at the bottom of the housing 5. Here, a coil spring Fa is used as the biasing member F, and a holding hole 6 is formed in the housing 5 and the pressing plate Q to receive the coil spring Fa. The depth of this holding hole 6 is set to such an extent that even if the pressing plate Q is pushed back until it comes into contact with the housing 5, the coil spring Fa will not completely contract inside the holding hole 6.

基部H1の外周面は略円筒状であるが、回転軸心Xに沿って延出する凸部7が少なくとも一つ形成してある。基部H1の外周側には複数の摩擦板Pが配置される。摩擦板Pは二種類あり、一つは、環状の内縁側に少なくとも一つの切欠き8を備え、基部H1の凸部7に係合するように構成された第1摩擦板P1である。もう一つは、環状の外縁に切欠き8を備えた第2摩擦板P2である。ハウジング5の内面にも回転軸心Xに沿って少なくとも一つの凸部7が延出しており、ここに第2摩擦板P2の切欠き8が係合する。 The outer circumferential surface of the base H1 is approximately cylindrical, and has at least one convex portion 7 extending along the rotation axis X. A plurality of friction plates P are arranged on the outer peripheral side of the base H1. There are two types of friction plates P, one of which is a first friction plate P1 that has at least one notch 8 on the annular inner edge side and is configured to engage with the convex portion 7 of the base H1. The other is a second friction plate P2 having a notch 8 on the annular outer edge. At least one convex portion 7 also extends from the inner surface of the housing 5 along the rotation axis X, and the notch 8 of the second friction plate P2 engages with this convex portion 7.

つまり、付勢部材Fによって押圧板Qが第1摩擦板P1と第2摩擦板P2を押し付けることで、双方の摩擦板Pの相対回転が阻止され、中央の基部H1がロック状態となる。押圧板Qが回転しないように、押圧板Qに当接する最外側には第2摩擦板P2が配置される。 That is, the pressing plate Q presses the first friction plate P1 and the second friction plate P2 by the biasing member F, thereby preventing the relative rotation of both friction plates P, and the central base H1 becomes in a locked state. A second friction plate P2 is disposed on the outermost side that contacts the press plate Q so that the press plate Q does not rotate.

以上のクラッチC1を備えることで、当該駆動機構Kは、モータMを駆動しない非通電の状態においては切替部Cがロック状態に維持される。よって、常時は非通電状態に維持されるため省電力化を高めることができる。 By including the clutch C1 described above, in the drive mechanism K, the switching portion C is maintained in a locked state in a non-energized state in which the motor M is not driven. Therefore, since the power is always maintained in a non-energized state, power saving can be improved.

付勢部材Fを用いた押圧式のクラッチC1であれば小型化が容易であり搭載性に優れた駆動機構Kを得ることができる。
また、一つのモータMで切替部Cのロック操作およびアンロック操作と減速部Gへの出力を行うから構成部品が少なくなり低コスト化が可能となる。
If the clutch C1 is a press-type clutch C1 using the biasing member F, it is possible to easily downsize the clutch C1 and obtain a drive mechanism K with excellent mountability.
In addition, since one motor M performs the locking and unlocking operations of the switching section C and the output to the deceleration section G, the number of components is reduced and costs can be reduced.

回転―直動変換部であるクラッチC1が摩擦板Pの回転軸心Xと同軸心状に配置してあることで、クラッチC1における特に径外方向の寸法が小径化し易く、駆動機構Kの小型化が可能である。また、クラッチC1がモータMの駆動軸Maと同軸心状に設けてあるから、モータMの回転駆動力をクラッチC1に直接伝えるよう接続部を構成ることも容易となり、機械的効率の良い駆動機構Kを得ることができる。 Since the clutch C1, which is a rotational-linear motion converter, is arranged coaxially with the rotational axis X of the friction plate P, the dimensions of the clutch C1, especially in the radial direction, can be easily reduced, and the drive mechanism K can be made smaller. It is possible to In addition, since the clutch C1 is provided coaxially with the drive shaft Ma of the motor M, it is easy to configure the connection part to directly transmit the rotational driving force of the motor M to the clutch C1, resulting in a mechanically efficient drive. Mechanism K can be obtained.

〔第2実施形態〕
図3には、本発明の第2実施形態を示す。ここでは、切替部Cを外側に配置し、減速部G、モータM、切替部Cの順に構成してある。減速部GおよびモータMの構成は同じであり、モータMの駆動軸Maに基部H1がスライド可能に係合している。基部H1の外周部には第1摩擦板P1および第2摩擦板P2が配置され、第2摩擦板P2には押圧板Qが当接している。ハウジング5と押圧板Qとの間には付勢部材Fが設けてある。ただし、切替部Cの動作機構が第1実施形態とは異なっている。
[Second embodiment]
FIG. 3 shows a second embodiment of the invention. Here, the switching section C is arranged on the outside, and the deceleration section G, the motor M, and the switching section C are arranged in this order. The configurations of the speed reducer G and the motor M are the same, and the base H1 is slidably engaged with the drive shaft Ma of the motor M. A first friction plate P1 and a second friction plate P2 are arranged on the outer periphery of the base H1, and a press plate Q is in contact with the second friction plate P2. A biasing member F is provided between the housing 5 and the pressing plate Q. However, the operating mechanism of the switching section C is different from that of the first embodiment.

ここでは、切替部Cとして第2モータM2を用いている。第2モータM2は切替部Cのさらに外側に設けられ、第2モータM2の第2駆動軸Ma2が押圧板Qに螺合している。第2駆動軸Ma2の先端には雄ねじ部9が形成され、押圧板Qの中央に形成されたボス部H2の内面には当該雄ねじ部9に螺合する雌ねじ部10が形成してある。雄ねじ部9および雌ねじ部10のピッチは第2駆動軸Ma2の回転に際して押圧板Qが素早く移動できるように適宜設定する。この場合、第2モータM2への通電が解除されると、押圧板Qの位置が不安定になる可能性がある。ただし、本実施形態では、付勢部材Fによって押圧板Qを第2摩擦板P2に向けて常時付勢しているので、第2モータM2が非通電の状態であっても、切替部Cはロック状態を維持することができる。 Here, the second motor M2 is used as the switching section C. The second motor M2 is provided further outside the switching section C, and a second drive shaft Ma2 of the second motor M2 is screwed into the press plate Q. A male threaded portion 9 is formed at the tip of the second drive shaft Ma2, and a female threaded portion 10 screwed into the male threaded portion 9 is formed on the inner surface of a boss portion H2 formed at the center of the pressing plate Q. The pitch of the male threaded portion 9 and the female threaded portion 10 is appropriately set so that the pressing plate Q can move quickly when the second drive shaft Ma2 rotates. In this case, when the second motor M2 is de-energized, the position of the press plate Q may become unstable. However, in this embodiment, since the pressing member F constantly urges the pressing plate Q toward the second friction plate P2, even if the second motor M2 is de-energized, the switching part C is It is possible to maintain the locked state.

第2モータM2は、制御部ECUによって作動制御される。その際には、モータMとのタイミングをとりつつ第2モータM2が正逆回転される。これにより、押圧板Qの第2摩擦板P2に対する押し付け状態が変化し、切替部Cのロック状態とアンロック状態が切り替わる。 The operation of the second motor M2 is controlled by the control unit ECU. At this time, the second motor M2 is rotated in forward and reverse directions in synchronization with the motor M. As a result, the pressing state of the pressing plate Q against the second friction plate P2 changes, and the switching portion C switches between the locked state and the unlocked state.

本構成であれば、第2モータM2が非通電の状態で減速部Gの回転を規制することができ、操舵リンクの状態を変更すべくモータMを駆動する際には、第2モータM2によってロック解除を行った後、直ちにモータMの回転駆動を減速部Gに出力することができ、制御応答性に優れた駆動機構Kを得ることができる。 With this configuration, the rotation of the speed reducer G can be regulated when the second motor M2 is de-energized, and when the motor M is driven to change the state of the steering link, the second motor M2 After the lock is released, the rotational drive of the motor M can be immediately outputted to the reduction unit G, and a drive mechanism K with excellent control responsiveness can be obtained.

〔その他の実施形態〕
上記第2実施形態において、雄ねじ部9と雌ねじ部10のピッチが小さく、モータMからの逆入力によって第2駆動軸Ma2が従動回転し難い場合には、付勢部材Fを省略することもできる。つまり、第2モータM2を駆動して押圧板Qを第2摩擦板P2に押し付けた状態で通電を止め、押圧板Qの押し付け状態がそのまま維持されるのであれば、付勢部材Fは不要となる。
[Other embodiments]
In the second embodiment, if the pitch between the male threaded portion 9 and the female threaded portion 10 is small and it is difficult for the second drive shaft Ma2 to rotate due to reverse input from the motor M, the biasing member F may be omitted. . In other words, if the second motor M2 is driven to stop energizing the pressing plate Q while pressing it against the second friction plate P2, and the pressing state of the pressing plate Q is maintained as it is, the biasing member F is unnecessary. Become.

上記クラッチC1においては、摩擦板Pどうしの押圧が解除された後は、駆動軸Maの回転駆動が基部H1に効率的に伝わるのが好ましい。そのためには、駆動軸Maの端面と、基部H1の表面との間に、互いに周方向に沿って回転力の伝達が可能な当接面を設けておくとよい。つまり、ボールC1bとカム面C1aとで摩擦板Pどうしの押圧を解除されたのちさらに駆動軸Maが回転された状態で、互いの当接面が接触する。これによって駆動軸Maから基部H1へ回転駆動力が伝わるようにし、ボールC1bとカム面C1aとが回転駆動のトルクを受けないようにする。これにより、ボールC1bおよびカム面C1aの摩耗等が低減され、クラッチC1部の耐久性が向上する。 In the clutch C1, after the pressure between the friction plates P is released, it is preferable that the rotational drive of the drive shaft Ma is efficiently transmitted to the base H1. For this purpose, it is preferable to provide an abutment surface between the end surface of the drive shaft Ma and the surface of the base H1 so that rotational force can be transmitted to each other along the circumferential direction. In other words, after the pressure between the friction plates P is released by the ball C1b and the cam surface C1a, the contact surfaces of the friction plates P come into contact with each other in a state where the drive shaft Ma is further rotated. This allows the rotational driving force to be transmitted from the drive shaft Ma to the base H1, and prevents the ball C1b and the cam surface C1a from receiving rotational driving torque. This reduces wear and the like on the ball C1b and the cam surface C1a, and improves the durability of the clutch C1 portion.

本発明の駆動機構は、モータおよび減速部を用いて駆動対象を動作させる各種のアクチュエータに広く用いることができる。 The drive mechanism of the present invention can be widely used in various actuators that operate a driven object using a motor and a speed reducer.

C 切替部
C1 クラッチ
C1a カム面
C1b ボール
F 付勢部材
G 減速部
K 駆動機構
M モータ
Ma 駆動軸
M2 第2モータ
P 摩擦板
Q 押圧板
s1 入力軸
X 回転軸心
C Switching part C1 Clutch C1a Cam surface C1b Ball F Biasing member G Reduction part K Drive mechanism M Motor Ma Drive shaft M2 Second motor P Friction plate Q Pressing plate s1 Input shaft X Rotation axis center

Claims (4)

駆動軸を有するモータと、
前記駆動軸の回転を受ける入力軸を有し、前記回転を減速しつつ駆動対象に伝達する減速部と、を備え、
前記駆動軸の回転と連動して、前記駆動軸の回転時に前記入力軸の回転が許容されるアンロック状態となり、前記駆動軸の停止時に前記入力軸の回転が規制されるロック状態となる切替部を備えた駆動機構。
a motor having a drive shaft;
comprising an input shaft that receives the rotation of the drive shaft, and a deceleration unit that decelerates the rotation and transmits it to the driven object,
Switching in conjunction with the rotation of the drive shaft, an unlocked state in which rotation of the input shaft is allowed when the drive shaft rotates, and a locked state in which rotation of the input shaft is restricted when the drive shaft is stopped. A drive mechanism with parts.
前記切替部が、前記モータに従動回転する少なくとも一つの摩擦板と、前記摩擦板に対向配置される押圧板と、前記押圧板を前記摩擦板に押圧する付勢部材と、前記摩擦板の回転軸心と同軸心に設けられて前記押圧板の押圧を解除する回転―直動変換部と、を有するクラッチを備えている請求項1に記載の駆動機構。 The switching unit includes at least one friction plate that rotates as a result of the motor, a pressing plate that is arranged opposite to the friction plate, an urging member that presses the pressing plate against the friction plate, and rotation of the friction plate. 2. The drive mechanism according to claim 1, further comprising a clutch having a rotational-linear conversion section that is provided coaxially with an axial center and releases the pressing force of the pressing plate. 前記回転―直動変換部が、前記駆動軸および前記押圧板の何れか一方に保持されて前記駆動軸の軸心の周りに回動する少なくとも一つのボールと、前記駆動軸および前記押圧板の何れか他方または両方に形成されたカム面と、を備えている請求項2に記載の駆動機構。 The rotation-linear conversion unit includes at least one ball that is held on either one of the drive shaft and the press plate and rotates around the axis of the drive shaft; The drive mechanism according to claim 2, further comprising a cam surface formed on one or both of the surfaces. 前記切替部に、前記押圧板を操作する第2モータが備えられている請求項2または3に記載の駆動機構。 The drive mechanism according to claim 2 or 3, wherein the switching section includes a second motor that operates the press plate.
JP2022067390A 2022-04-15 2022-04-15 drive mechanism Pending JP2023157455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022067390A JP2023157455A (en) 2022-04-15 2022-04-15 drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022067390A JP2023157455A (en) 2022-04-15 2022-04-15 drive mechanism

Publications (1)

Publication Number Publication Date
JP2023157455A true JP2023157455A (en) 2023-10-26

Family

ID=88469385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022067390A Pending JP2023157455A (en) 2022-04-15 2022-04-15 drive mechanism

Country Status (1)

Country Link
JP (1) JP2023157455A (en)

Similar Documents

Publication Publication Date Title
JP7115643B2 (en) clutch device
JP5282998B2 (en) Electric linear actuator and electric brake device
CN105723113B (en) Motor vehicle brake
US20110287884A1 (en) Parking mechanism for transmission
JP5319687B2 (en) Gear stage for vehicle seat
US20130075205A1 (en) Disk brake apparatus
JP2012007674A (en) Disc brake
WO2009104578A1 (en) Electrically operated linear actuator and electrically operated braking system
WO2013062017A1 (en) Electric vehicle driving device
WO2017170040A1 (en) Electric actuator
CN109952239B (en) Brake subassembly and set of brake subassemblies
JP4697784B2 (en) Electric linear actuator
CN110131327B (en) Spiral actuator of automobile clutch
JP2004514587A (en) Automotive four-wheel drive transfer
JP2005083474A (en) Electric linear actuator
KR100852870B1 (en) Device for operating a clutch
JP6682316B2 (en) Electric actuator
JP2018157722A (en) Actuator
JP2011047448A (en) Electric actuator
JP2007002934A (en) Clutch mechanism and electric actuator
JP2023157455A (en) drive mechanism
JP3941512B2 (en) Linear actuator with clutch mechanism
EP3553346A1 (en) Gearshift actuator
JP2020046065A (en) Differential device
WO2016199646A1 (en) Electric actuator