JP2023155667A - calorimeter - Google Patents

calorimeter Download PDF

Info

Publication number
JP2023155667A
JP2023155667A JP2022065126A JP2022065126A JP2023155667A JP 2023155667 A JP2023155667 A JP 2023155667A JP 2022065126 A JP2022065126 A JP 2022065126A JP 2022065126 A JP2022065126 A JP 2022065126A JP 2023155667 A JP2023155667 A JP 2023155667A
Authority
JP
Japan
Prior art keywords
catalyst
combustion
temperature
hydrogen
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022065126A
Other languages
Japanese (ja)
Inventor
尚史 小澤
Hisafumi Ozawa
良春 名川
Yoshiharu Nakawa
辰志 南
Tatsushi Minami
香那子 倉橋
Kanako Kurahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Tokyo Gas Co Ltd
Original Assignee
Yazaki Energy System Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp, Tokyo Gas Co Ltd filed Critical Yazaki Energy System Corp
Priority to JP2022065126A priority Critical patent/JP2023155667A/en
Publication of JP2023155667A publication Critical patent/JP2023155667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a calorimeter capable of accurately measuring the calorific value of a fuel gas containing hydrogen.SOLUTION: A calorimeter 100 for measuring the calorific value of a fuel gas containing hydrogen is provided, comprising a catalyst 122 for combusting hydrogen at room temperature, a thermocouple 121 for measuring rising temperature of hydrogen caused by the combustion at normal temperature with the catalyst 122, a catalyst 132 for combusting a combustible gas other than hydrogen contained in the fuel gas, a heater 134 for heating the catalyst 132, and a thermocouple 131 for measuring rising temperature of the combustible gas caused by combustion with the catalyst 132 while being heated.SELECTED DRAWING: Figure 2

Description

本発明は、熱量計に関する。 The present invention relates to a calorimeter.

燃料ガスの熱量測定に用いられる熱量計として、燃料ガスの通路内に熱電対と触媒とを設け、通路内を通過する燃料ガスの触媒燃焼による発熱量を熱電対で測定するものが知られている(例えば、特許文献1参照)。特許文献1に記載の熱量計では、ヒーター用のニクロム線が触媒の周囲に巻回されており、メタン(CH)等の燃料ガスが燃焼温度に加熱される。 As a calorimeter used to measure the calorific value of fuel gas, one is known that has a thermocouple and a catalyst installed in the fuel gas passage, and measures the calorific value due to catalytic combustion of the fuel gas passing through the passage. (For example, see Patent Document 1). In the calorimeter described in Patent Document 1, a nichrome wire for a heater is wound around a catalyst, and a fuel gas such as methane (CH 4 ) is heated to a combustion temperature.

特開昭60-44855号公報Japanese Patent Application Laid-open No. 60-44855

水素(H)を含む燃料ガスの熱量測定に、特許文献1に記載されているような従来の熱量計を用いる場合、水素とメタン等の水素以外の可燃性ガスとの燃焼温度の差を要因として測定誤差が生じることが、本願の発明者等の実験により確認された。 When using a conventional calorimeter such as that described in Patent Document 1 to measure the calorific value of fuel gas containing hydrogen (H 2 ), the difference in combustion temperature between hydrogen and combustible gas other than hydrogen, such as methane, must be measured. It has been confirmed through experiments by the inventors of the present application that measurement errors occur as a factor.

本発明は、かかる事情に鑑みてなされたものであり、水素を含む燃料ガスの熱量を高精度に測定できる熱量計を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a calorimeter that can measure the calorific value of fuel gas containing hydrogen with high accuracy.

本発明に係る熱量計は、水素を含む燃料ガスの熱量を測定する熱量計であって、前記水素を常温で燃焼させるための第1触媒と、前記第1触媒における常温での燃焼による前記水素の上昇温度を測定する第1測温体と、前記燃料ガスに含まれる前記水素以外の可燃性ガスを加熱下で燃焼させるための第2触媒と、前記第2触媒を加熱する加熱部と、前記第2触媒における加熱下での燃焼による前記可燃性ガスの上昇温度を測定する第2測温体とを備える。 The calorimeter according to the present invention is a calorimeter that measures the calorific value of fuel gas containing hydrogen, and includes a first catalyst for combusting the hydrogen at room temperature, and the hydrogen produced by combustion at room temperature in the first catalyst. a first temperature measuring element that measures the temperature increase of the fuel gas, a second catalyst that burns a combustible gas other than the hydrogen contained in the fuel gas under heating, and a heating section that heats the second catalyst; and a second temperature measuring element that measures the temperature rise of the combustible gas due to combustion under heating in the second catalyst.

本発明の熱量計によれば、第1触媒における常温での燃焼による水素の上昇温度を第1測温体で測定し、第2触媒における加熱下での燃焼による水素以外の可燃性ガスの上昇温度を第2測温体で測定することにより、水素を含む燃料ガスの熱量を高精度に測定できる。 According to the calorimeter of the present invention, the temperature rise of hydrogen due to combustion at room temperature in the first catalyst is measured by the first temperature measuring element, and the rise in combustible gas other than hydrogen due to combustion under heating in the second catalyst is measured. By measuring the temperature with the second temperature measuring element, the amount of heat of the fuel gas containing hydrogen can be measured with high precision.

図1は、本発明の一実施形態に係る熱量計を備える測定システムの概略を示すブロック図である。FIG. 1 is a block diagram schematically showing a measurement system including a calorimeter according to an embodiment of the present invention. 図2は、図1に示す熱量計の構成を示す断面図である。FIG. 2 is a sectional view showing the configuration of the calorimeter shown in FIG. 1. 図3は、比較例に係る熱量計の構成を示す断面図である。FIG. 3 is a sectional view showing the configuration of a calorimeter according to a comparative example. 図4は、比較例に係る熱量計を用いてNo.11~No.15の試験ガスの熱量Q’[J]と上昇温度ΔT[℃]とを測定した結果を示すグラフである。FIG. 4 shows No. 2 using the calorimeter according to the comparative example. 11~No. 3 is a graph showing the results of measuring the calorific value Q' [J] and the temperature rise ΔT [° C.] of No. 15 test gas. 図5は、比較例に係る熱量計を用いてNo.16~No.18の試験ガスの単位体積当たり熱量Q[MJ/Nm]を測定した結果を示すグラフである。FIG. 5 shows No. 1 using the calorimeter according to the comparative example. 16~No. It is a graph showing the results of measuring the calorific value Q [MJ/Nm 3 ] per unit volume of No. 18 test gases. 図6は、本実施形態に係る熱量計にNo.1~No.4の試験ガスを連続的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃],ΔT[℃]との相関を確認した結果を示す表及びグラフである。FIG. 6 shows No. 1 in the calorimeter according to this embodiment. 1~No. 4 is a table and a graph showing the results of confirming the correlation between the concentration of hydrogen and methane and the temperature increase due to combustion ΔT H [°C] and ΔT E [°C] by continuously supplying the test gas of No. 4. 図7は、本実施形態に係る熱量計にNo.1~No.4の試験ガスを間欠的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃],ΔT[℃]との相関を確認した結果を示す表及びグラフである。FIG. 7 shows No. 1 in the calorimeter according to this embodiment. 1~No. 4 is a table and a graph showing the results of intermittently supplying the test gas of No. 4 and confirming the correlation between the concentration of hydrogen and methane and the temperature rise due to combustion ΔT H [°C] and ΔT E [°C]. 図8は、本発明の他の実施形態に係る熱量計の構成を示す断面図である。FIG. 8 is a sectional view showing the configuration of a calorimeter according to another embodiment of the present invention.

以下、本発明を好適な実施形態に沿って説明する。なお、本発明は、以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾が発生しない範囲内において、適宜公知又は周知の技術が適用される。 Hereinafter, the present invention will be explained along with preferred embodiments. Note that the present invention is not limited to the embodiments shown below, and can be modified as appropriate without departing from the spirit of the present invention. In addition, in the embodiments described below, illustrations and explanations of some components are omitted, but the details of the omitted techniques will be described within the scope of not contradicting the content described below. Publicly known or well-known techniques are applied as appropriate.

図1は、本発明の一実施形態に係る熱量計100を備える測定システム1の概略を示すブロック図である。この図に示すように、測定システム1は、ガス混合装置10と、熱量計100とを備える。ガス混合装置10は、可燃性ガスと空気とを混合することにより混合ガスを燃料ガスとして熱量計100に供給する。熱量計100は、ガス混合装置10から供給された燃料ガスを燃焼させて発熱量を測定する。 FIG. 1 is a block diagram schematically showing a measurement system 1 including a calorimeter 100 according to an embodiment of the present invention. As shown in this figure, the measurement system 1 includes a gas mixing device 10 and a calorimeter 100. The gas mixing device 10 mixes flammable gas and air and supplies the mixed gas to the calorimeter 100 as a fuel gas. The calorimeter 100 burns the fuel gas supplied from the gas mixing device 10 and measures the calorific value.

ガス混合装置10は、第1配管11と、第2配管12と、第3配管13と、第1流量計14Aと、第2流量計14Bと、第1バルブ15Aと、第2バルブ15Bと、混合器16と、第1レギュレーターR1と、第2レギュレーターR2とを備える。 The gas mixing device 10 includes a first pipe 11, a second pipe 12, a third pipe 13, a first flow meter 14A, a second flow meter 14B, a first valve 15A, a second valve 15B, It includes a mixer 16, a first regulator R1, and a second regulator R2.

第1配管11は、第1レギュレーターR1と混合器16とを接続し、第1レギュレーターR1を通して供給される可燃性ガスを混合器16まで導く。第1流量計14Aは、第1配管11に設けられ、第1配管11を流れる可燃性ガスの流量を測定する。第1バルブ15Aは、第1配管11における第1流量計14Aより下流側に設けられ、混合器16に供給される可燃性ガスの流量を調整するニードルバルブ等の流量調整バルブである。 The first pipe 11 connects the first regulator R1 and the mixer 16, and guides the flammable gas supplied through the first regulator R1 to the mixer 16. The first flow meter 14A is provided in the first pipe 11 and measures the flow rate of the combustible gas flowing through the first pipe 11. The first valve 15A is a flow rate adjustment valve such as a needle valve that is provided downstream of the first flowmeter 14A in the first pipe 11 and adjusts the flow rate of the combustible gas supplied to the mixer 16.

第2配管12は、第2レギュレーターR2と混合器16とを接続し、第2レギュレーターR2を通して供給される空気を混合器16まで導く。第2流量計14Bは、第2配管12に設けられ、第2配管12を流れる空気の流量を測定する。第2バルブ15Bは、第2配管12における第2流量計14Bより下流側に設けられ、混合器16に供給される空気の流量を調整するニードルバルブ等の流量調整バルブである。 The second pipe 12 connects the second regulator R2 and the mixer 16, and guides the air supplied through the second regulator R2 to the mixer 16. The second flow meter 14B is provided in the second pipe 12 and measures the flow rate of air flowing through the second pipe 12. The second valve 15B is a flow rate adjustment valve such as a needle valve that is provided downstream of the second flowmeter 14B in the second pipe 12 and adjusts the flow rate of air supplied to the mixer 16.

混合器16は、第1配管11から供給された可燃性ガスと第2配管12から供給された空気とを混合する。この混合器16には、第3配管13が接続されている。この第3配管13は、混合器16において混合された混合ガスを燃料ガスとして熱量計100に供給する。 The mixer 16 mixes the flammable gas supplied from the first pipe 11 and the air supplied from the second pipe 12. A third pipe 13 is connected to this mixer 16 . This third pipe 13 supplies the mixed gas mixed in the mixer 16 to the calorimeter 100 as fuel gas.

熱量計100は、燃焼測温部110と、定電圧源(電圧源)102と、データロガー103と、演算装置104とを備える。燃焼測温部110には、第3配管13から燃料ガスが供給される。定電圧源102は、燃焼測温部110に電力を供給する。燃焼測温部110は、定電圧源102から供給される電力により駆動され、第3配管13から供給された燃料ガスを燃焼させて燃焼による燃料ガスの上昇温度を測定する。 The calorimeter 100 includes a combustion temperature measuring section 110, a constant voltage source (voltage source) 102, a data logger 103, and a calculation device 104. Fuel gas is supplied to the combustion temperature measuring section 110 from the third pipe 13. Constant voltage source 102 supplies power to combustion temperature measuring section 110 . The combustion temperature measuring section 110 is driven by electric power supplied from the constant voltage source 102, burns the fuel gas supplied from the third pipe 13, and measures the temperature rise of the fuel gas due to combustion.

図2は、図1に示す熱量計100の構成を示す断面図である。この図に示す熱量計100は、第1燃焼測温部120と第2燃焼測温部130とを備え、水素を含む燃料ガスの熱量測定に対応する。 FIG. 2 is a sectional view showing the configuration of the calorimeter 100 shown in FIG. 1. The calorimeter 100 shown in this figure includes a first combustion temperature measuring section 120 and a second combustion temperature measuring section 130, and is adapted to measure the calorific value of fuel gas containing hydrogen.

第1燃焼測温部120は、燃料ガスに含まれる水素を常温で燃焼させその燃焼による水素の上昇温度ΔT[℃]を測定する。他方で、第2燃焼測温部130は、燃料ガスに含まれるメタン等の水素以外の可燃性ガスを加熱下で燃焼させその燃焼による当該可燃性ガスの上昇温度ΔT[℃]を測定する。 The first combustion temperature measurement unit 120 burns hydrogen contained in the fuel gas at room temperature and measures the temperature rise ΔT H [° C.] of hydrogen due to the combustion. On the other hand, the second combustion temperature measurement unit 130 burns a combustible gas other than hydrogen, such as methane, contained in the fuel gas under heating, and measures the temperature increase ΔT E [°C] of the combustible gas due to the combustion. .

燃焼測温部110は、管材111を備える。管材111は縦向きに配されており、管材111の上端に第3配管13が接続されている。管材111は、燃料ガスの燃焼時の温度に対する耐熱性と、燃焼時の燃料ガスの管材111外への放熱を抑える低い伝熱性とを有する管材である。本実施形態の管材111は、内径が4mmの円筒状のセラミックチューブである。なお、管材111の内径は、2mm以上10mm以下が好ましい。また、管材111はステンレスチューブでもよい。 The combustion temperature measuring section 110 includes a tube material 111. The tube material 111 is arranged vertically, and the third pipe 13 is connected to the upper end of the tube material 111. The pipe material 111 is a pipe material that has heat resistance against the temperature during combustion of the fuel gas and low heat conductivity that suppresses heat radiation of the fuel gas to the outside of the pipe material 111 during combustion. The tube material 111 of this embodiment is a cylindrical ceramic tube with an inner diameter of 4 mm. Note that the inner diameter of the tube material 111 is preferably 2 mm or more and 10 mm or less. Further, the tube material 111 may be a stainless steel tube.

管材111には、第1燃焼測温部120と第2燃焼測温部130とが設けられている。第1燃焼測温部120と第2燃焼測温部130とは、燃料ガスの流れ方向に第1燃焼測温部120、第2燃焼測温部130の順で直列に配されている。このため、第3配管13から管材111に供給された燃料ガスは、まず、第1燃焼測温部120を通過する。この際、燃料ガスに含まれる水素が常温で燃焼されその燃焼による水素の上昇温度ΔT[℃]が測定される。そして、第1燃焼測温部120を通過した燃料ガスが、第2燃焼測温部130を通過する。この際、燃料ガスに含まれるメタン等の水素以外の可燃性ガスが、加熱下で燃焼されその燃焼による当該可燃性ガスの上昇温度ΔT[℃]が測定される。 The tube material 111 is provided with a first combustion temperature measurement section 120 and a second combustion temperature measurement section 130. The first combustion temperature measurement section 120 and the second combustion temperature measurement section 130 are arranged in series in the order of the first combustion temperature measurement section 120 and the second combustion temperature measurement section 130 in the flow direction of the fuel gas. Therefore, the fuel gas supplied from the third pipe 13 to the pipe material 111 first passes through the first combustion temperature measurement section 120. At this time, hydrogen contained in the fuel gas is combusted at room temperature, and the rising temperature ΔT H [° C.] of hydrogen due to the combustion is measured. The fuel gas that has passed through the first combustion temperature measurement section 120 then passes through the second combustion temperature measurement section 130. At this time, a combustible gas other than hydrogen, such as methane, contained in the fuel gas is combusted under heating, and the temperature rise ΔT E [° C.] of the combustible gas due to the combustion is measured.

第1燃焼測温部120は、熱電対121と、触媒122と、ストッパー部材123とを備える。熱電対121は、熱電対素線121Aと、シース121Bとを備え、ゼーベック効果を利用して温度を測定する。熱電対素線121Aは、一端(図中の上端)に測温接点Pが設けられている。シース121Bは、直線性の高い形状を維持する硬質で細い管材であり、熱電対素線121Aを被覆している。本実施形態のシース121Bは、外径が0.5mmの金属製の管材である。シース121B内には絶縁物が充填されている。熱電対素線121Aの他端(図中の下端)には、不図示の補償導線の一端が接続されている。この補償導線は、管材111の中間部から引き出されており、データロガー103に接続されている。ここで、管材111の中間部には、補償導線が挿通される孔と、当該孔と補償導線との隙間を塞ぐ気密シール部とが形成されている(共に図示省略)。なお、本実施形態の熱電対121は、非接地型であるが、熱電対121を接地型や露出型に変えてもよい。 The first combustion temperature measuring section 120 includes a thermocouple 121, a catalyst 122, and a stopper member 123. The thermocouple 121 includes a thermocouple wire 121A and a sheath 121B, and measures temperature using the Seebeck effect. The thermocouple wire 121A is provided with a temperature measuring junction P at one end (the upper end in the figure). The sheath 121B is a hard and thin tube material that maintains a highly linear shape, and covers the thermocouple wire 121A. The sheath 121B of this embodiment is a metal tube with an outer diameter of 0.5 mm. The inside of the sheath 121B is filled with an insulator. One end of a compensation conducting wire (not shown) is connected to the other end (lower end in the figure) of the thermocouple element wire 121A. This compensation lead wire is drawn out from the middle part of the tube 111 and connected to the data logger 103. Here, a hole through which the compensation conductor is inserted, and an airtight seal portion that closes the gap between the hole and the compensation conductor are formed in the intermediate portion of the tube member 111 (both not shown). Note that although the thermocouple 121 of this embodiment is a non-grounded type, the thermocouple 121 may be changed to a grounded type or an exposed type.

触媒122は、第1燃焼測温部120の燃焼室に充填された顆粒状の触媒である。触媒122の粒径は、粉末の粒径に比して数十倍~数百倍と大きい。触媒122の粒径は、100μm未満に篩にかけて整粒するのは困難であり、1000μmより大きくすると管材111の内径と近くなって水素との接触が悪くなるという観点から、100μm以上1000μm以下が好ましく、355μm以上420μm以下がより好ましい。また、触媒122は、水素を常温(室温)で燃焼させることが可能なものであり、例えば、アルミナ担持白金触媒(Pt-Al)等の金属酸化物担持白金触媒を例示できる。ここで、0.2質量%の白金をアルミナ担体が担持した触媒(0.2%Pt-Al触媒)を用いて、1000ppmの水素を燃焼させた場合に、燃焼開始温度が室温(room temp)となることが知られている(貞森 博己、「特殊燃焼技術特集 触媒燃焼技術の現状 触媒燃焼バーターを中心として」、燃料協会誌 第58巻第626号(1979) 1979年6月発行 422~423頁)。 The catalyst 122 is a granular catalyst filled in the combustion chamber of the first combustion temperature measuring section 120 . The particle size of the catalyst 122 is several tens to hundreds of times larger than the particle size of the powder. The particle size of the catalyst 122 is preferably 100 μm or more and 1000 μm or less, since it is difficult to sieve and size the catalyst to less than 100 μm, and if it is larger than 1000 μm, it will become close to the inner diameter of the tube material 111, resulting in poor contact with hydrogen. , more preferably 355 μm or more and 420 μm or less. Further, the catalyst 122 is capable of burning hydrogen at normal temperature (room temperature), and includes, for example, a metal oxide supported platinum catalyst such as an alumina supported platinum catalyst (Pt-Al 2 O 3 ). Here, when 1000 ppm of hydrogen is combusted using a catalyst (0.2% Pt-Al 2 O 3 catalyst) in which 0.2% by mass of platinum is supported on an alumina carrier, the combustion start temperature is room temperature ( (Hiroki Sadamori, “Special Combustion Technology Special Feature: Current Status of Catalytic Combustion Technology, Focusing on Catalytic Combustion Barter”, Fuel Association Journal Vol. 58, No. 626 (1979), June 1979 issue) (pp. 422-423).

第1燃焼測温部120の燃焼室に充填された触媒122の質量及び充填高さは、測温接点Pが触媒122から露出するように適宜設定すればよく、例えば、管材111の内径が4mmの場合で0.075g、約3mm等である。なお、測温接点Pが触媒122から露出することは必須ではなく、触媒122が測温接点Pを覆うように第1燃焼測温部120の燃焼室に充填されてもよい。 The mass and filling height of the catalyst 122 filled in the combustion chamber of the first combustion temperature measurement section 120 may be set appropriately so that the temperature measurement contact point P is exposed from the catalyst 122. For example, if the inner diameter of the tube material 111 is 4 mm. In this case, it is 0.075g, about 3mm, etc. Note that it is not essential that the temperature measuring contact P be exposed from the catalyst 122, and the combustion chamber of the first combustion temperature measuring section 120 may be filled with the catalyst 122 so as to cover the temperature measuring contact P.

シース121Bの一端側(図中の上端側)の表面には、触媒層121Sが測温接点Pを覆うように形成されている。この触媒層121Sは、アルミナ担持白金触媒等の水素を常温で燃焼させる触媒により構成された塗膜である。触媒層121Sの形成方法としては、粉末状の触媒と蒸留水等とを混合した液状の触媒をシース121Bに塗布して乾燥させる方法を例示できる。 A catalyst layer 121S is formed on the surface of one end side (upper end side in the figure) of the sheath 121B so as to cover the temperature measuring contact point P. This catalyst layer 121S is a coating film made of a catalyst that burns hydrogen at room temperature, such as an alumina-supported platinum catalyst. An example of a method for forming the catalyst layer 121S is to apply a liquid catalyst, which is a mixture of a powdered catalyst and distilled water, to the sheath 121B and dry it.

触媒層121Sのシース121Bの一端(先端)からの長さは例えば約1mmであり、触媒層121Sは、測温接点Pの位置を含むシース121Bの一端から約1mmの範囲を覆っている。この触媒層121Sの大部分又は全体は触媒122から露出している。なお、触媒層121Sが触媒122から露出することは必須ではなく、触媒層121Sは触媒122に覆われるように配されてもよい。また、触媒層121Sを設けることは必須ではない。 The length of the catalyst layer 121S from one end (tip) of the sheath 121B is, for example, about 1 mm, and the catalyst layer 121S covers an area of about 1 mm from the one end of the sheath 121B including the position of the temperature measuring contact point P. Most or the entirety of this catalyst layer 121S is exposed from the catalyst 122. Note that it is not essential that the catalyst layer 121S be exposed from the catalyst 122, and the catalyst layer 121S may be covered with the catalyst 122. Further, it is not essential to provide the catalyst layer 121S.

ストッパー部材123は、第1燃焼測温部120の燃焼室の下側に配されている。このストッパー部材123は、管材111の内周面に嵌合したステンレス等の金属製の板であり、不図示の複数の通気孔が形成されている。この通気孔の直径は、触媒122の粒径(平均値)よりも小さい。これにより、燃料ガスは、通気孔は通過するが、触媒122は、通気孔を通過せずにストッパー部材123の上に堆積する。本実施形態のストッパー部材123は円板である。また、本実施形態のストッパー部材123の厚みは約1mmである。さらに、本実施形態のストッパー部材123の通気孔の直径は0.3mmである。なお、ストッパー部材123は、ガラスウールにより構成してもよい。 The stopper member 123 is arranged below the combustion chamber of the first combustion temperature measurement section 120. This stopper member 123 is a plate made of metal such as stainless steel that fits on the inner peripheral surface of the tube member 111, and has a plurality of ventilation holes (not shown) formed therein. The diameter of this vent hole is smaller than the particle size (average value) of the catalyst 122. As a result, although the fuel gas passes through the vent, the catalyst 122 is deposited on the stopper member 123 without passing through the vent. The stopper member 123 of this embodiment is a disk. Further, the thickness of the stopper member 123 of this embodiment is approximately 1 mm. Furthermore, the diameter of the ventilation hole of the stopper member 123 of this embodiment is 0.3 mm. Note that the stopper member 123 may be made of glass wool.

第2燃焼測温部130は、熱電対131と、触媒132と、ストッパー部材133と、ヒーター134とを備える。熱電対131は、熱電対121と同様の構成であり、熱電対素線131Aと、シース131Bとを備え、ゼーベック効果を利用して温度を測定する。熱電対素線131Aは、一端(図中の上端)に測温接点Pが設けられている。熱電対素線131Aの他端(図中の下端)には、不図示の補償導線の一端が接続されている。この補償導線は、管材111の下流端(図中の下端)から引き出されており、データロガー103に接続されている。ここで、管材111の下流端には、補償導線が挿通される孔と、当該孔と補償導線との隙間を塞ぐ気密シール部とが形成されている(共に図示省略)。また、管材111の下流端には、不図示の排気孔が形成されている。なお、本実施形態の熱電対131は、非接地型であるが、熱電対131を接地型や露出型に変えてもよい。 The second combustion temperature measuring section 130 includes a thermocouple 131, a catalyst 132, a stopper member 133, and a heater 134. The thermocouple 131 has the same configuration as the thermocouple 121, includes a thermocouple wire 131A and a sheath 131B, and measures temperature using the Seebeck effect. The thermocouple wire 131A is provided with a temperature measuring junction P at one end (the upper end in the figure). One end of a compensating lead wire (not shown) is connected to the other end (lower end in the figure) of the thermocouple element wire 131A. This compensating lead wire is drawn out from the downstream end (lower end in the figure) of the tube 111 and is connected to the data logger 103. Here, at the downstream end of the tube material 111, a hole through which the compensation conductor is inserted and an airtight seal portion that closes the gap between the hole and the compensation conductor are formed (both not shown). Further, an exhaust hole (not shown) is formed at the downstream end of the pipe material 111. Note that although the thermocouple 131 of this embodiment is a non-grounded type, the thermocouple 131 may be changed to a grounded type or an exposed type.

触媒132は、第2燃焼測温部130の燃焼室に充填された顆粒状の触媒である。触媒132の粒径は、粉末の粒径に比して数十倍~数百倍と大きい。触媒132の粒径は、100μm未満に篩にかけて整粒するのは困難であり、1000μmより大きくすると管材111の内径と近くなって可燃性ガスとの接触が悪くなるという観点から、100μm以上1000μm以下が好ましく、355μm以上420μm以下がより好ましい。また、触媒132は、メタン等の燃料ガスに含まれる水素以外の可燃性ガスを加熱下で燃焼させることが可能な触媒であり、例えば、パラジウム(Pd)や白金(Pt)等の金属や金属酸化物が担持したもの等である。 The catalyst 132 is a granular catalyst filled in the combustion chamber of the second combustion temperature measuring section 130. The particle size of the catalyst 132 is several tens to hundreds of times larger than the particle size of the powder. The particle size of the catalyst 132 is 100 μm or more and 1000 μm or less, since it is difficult to sieve and size the catalyst to less than 100 μm, and if it is larger than 1000 μm, it will be close to the inner diameter of the tube material 111 and contact with flammable gas will be poor. is preferable, and more preferably 355 μm or more and 420 μm or less. Further, the catalyst 132 is a catalyst capable of burning a combustible gas other than hydrogen contained in a fuel gas such as methane under heating, and is, for example, a metal such as palladium (Pd) or platinum (Pt). These include those supported by oxides.

第2燃焼測温部130の燃焼室に充填された触媒132の質量及び充填高さは、測温接点Pが触媒132から露出するように適宜設定すればよく、例えば、管材111の内径が4mmの場合で0.075g、約3mm等である。なお、測温接点Pが触媒132から露出することは必須ではなく、触媒132が測温接点Pを覆うように第2燃焼測温部130の燃焼室に充填されてもよい。 The mass and filling height of the catalyst 132 filled in the combustion chamber of the second combustion temperature measurement section 130 may be set appropriately so that the temperature measurement contact P is exposed from the catalyst 132. For example, if the inner diameter of the tube material 111 is 4 mm. In this case, it is 0.075g, about 3mm, etc. Note that it is not essential that the temperature measuring contact P be exposed from the catalyst 132, and the combustion chamber of the second combustion temperature measuring section 130 may be filled with the catalyst 132 so as to cover the temperature measuring contact P.

シース131Bの一端側(図中の上端側)の表面には、触媒層131Sが測温接点Pを覆うように形成されている。この触媒層131Sは、パラジウムや白金等の触媒により構成された塗膜とすればよい。この触媒層131Sの形成方法としては、粉末状の触媒と蒸留水等とを混合した液状の触媒をシース131Bに塗布して乾燥させる方法を例示できる。 A catalyst layer 131S is formed on the surface of one end side (upper end side in the figure) of the sheath 131B so as to cover the temperature measuring contact point P. This catalyst layer 131S may be a coating film made of a catalyst such as palladium or platinum. An example of a method for forming the catalyst layer 131S is a method in which a liquid catalyst prepared by mixing a powdered catalyst and distilled water is applied to the sheath 131B and dried.

この触媒層131Sのシース131Bの一端(先端)からの長さは例えば約1mmとすればよく、測温接点Pの位置を含むシース131Bの一端から約1mmの範囲を覆うようにすればよい。この触媒層131Sの大部分又は全体が触媒132から露出するようにしてもよく、この触媒層131Sが触媒132に覆われるようにしてもよい。なお、触媒層131Sを設けることは必須ではない。 The length of this catalyst layer 131S from one end (tip) of the sheath 131B may be approximately 1 mm, for example, and may cover an area of approximately 1 mm from one end of the sheath 131B including the position of the temperature measuring contact P. Most or all of this catalyst layer 131S may be exposed from the catalyst 132, or this catalyst layer 131S may be covered with the catalyst 132. Note that it is not essential to provide the catalyst layer 131S.

ストッパー部材133は、第2燃焼測温部130の燃焼室の下側に配されている。このストッパー部材133は、管材111の内周面に嵌合したステンレス等の金属製の板であり、不図示の複数の通気孔が形成されている。この通気孔の直径は、触媒132の粒径(平均値)よりも小さい。これにより、燃料ガスは、通気孔は通過するが、触媒132は、通気孔を通過せずにストッパー部材133の上に堆積する。本実施形態のストッパー部材133は円板である。また、本実施形態のストッパー部材133の厚みは約1mmである。さらに、本実施形態のストッパー部材133の通気孔の直径は0.3mmである。なお、ストッパー部材133は、ガラスウールにより構成してもよい。 The stopper member 133 is arranged below the combustion chamber of the second combustion temperature measuring section 130. This stopper member 133 is a plate made of metal such as stainless steel that fits on the inner peripheral surface of the tube member 111, and has a plurality of ventilation holes (not shown) formed therein. The diameter of this vent hole is smaller than the particle size (average value) of the catalyst 132. As a result, although the fuel gas passes through the vent, the catalyst 132 is deposited on the stopper member 133 without passing through the vent. The stopper member 133 of this embodiment is a disk. Further, the thickness of the stopper member 133 of this embodiment is approximately 1 mm. Furthermore, the diameter of the ventilation hole of the stopper member 133 of this embodiment is 0.3 mm. Note that the stopper member 133 may be made of glass wool.

ヒーター134は、管材111が挿通されたコイル型のヒーターである。このヒーター134のコイル部134Aは、少なくとも管材111の第2燃焼測温部130の燃焼室を含む範囲の周囲に巻回されている。コイル部134Aは、リード部134Bを介して定電圧源102に接続されており、定電圧源102から電圧を印加されることにより発熱する。コイル部134Aが定電圧源102から電圧を印加されることにより発熱すると、触媒132が所定の温度に加熱される。なお、コイル部134Aは、管材111の第1燃焼測温部120の燃焼室から離間して配されており、第1燃焼測温部120の触媒122は、ヒーター134により加熱されることはなく、常温に維持される。 The heater 134 is a coil type heater into which the tube material 111 is inserted. The coil portion 134A of the heater 134 is wound around at least an area of the tube material 111 that includes the combustion chamber of the second combustion temperature measuring portion 130. The coil portion 134A is connected to the constant voltage source 102 via the lead portion 134B, and generates heat when voltage is applied from the constant voltage source 102. When the coil portion 134A generates heat by applying a voltage from the constant voltage source 102, the catalyst 132 is heated to a predetermined temperature. Note that the coil section 134A is arranged apart from the combustion chamber of the first combustion temperature measurement section 120 of the tube material 111, and the catalyst 122 of the first combustion temperature measurement section 120 is not heated by the heater 134. , maintained at room temperature.

燃焼測温部110は、不図示の保護容器に収容されている。この保護容器は、例えば風の影響により、熱電対121,131の測定温度が変動することを抑制している。この保護容器には、燃料ガスの燃焼で発生した排ガスを保護容器外へ排出するための排気孔が設けられている。 The combustion temperature measuring section 110 is housed in a protective container (not shown). This protective container suppresses fluctuations in the temperature measured by the thermocouples 121 and 131 due to the influence of wind, for example. This protective container is provided with an exhaust hole for discharging exhaust gas generated by combustion of the fuel gas to the outside of the protective container.

データロガー103は、熱電対121から出力される信号、即ち、第1燃焼測温部120の触媒122及び触媒層121Sでの水素の燃焼による上昇温度ΔT[℃]を記録する。また、データロガー103は、熱電対131から出力される信号、即ち、第2燃焼測温部130の触媒132での水素以外の可燃性ガスの燃焼による上昇温度ΔT[℃]を記録する。 The data logger 103 records the signal output from the thermocouple 121, that is, the increased temperature ΔT H [° C.] due to combustion of hydrogen in the catalyst 122 and the catalyst layer 121S of the first combustion temperature measurement unit 120. Furthermore, the data logger 103 records the signal output from the thermocouple 131, that is, the increased temperature ΔT E [° C.] due to combustion of combustible gas other than hydrogen at the catalyst 132 of the second combustion temperature measuring section 130.

演算装置104は、データロガー103の記録内容に基づいて燃焼測温部110に供給された燃料ガスの燃焼時の発熱量を演算する。発熱量を演算するに際し、演算装置104には、第1流量計14A及び第2流量計14B(図1参照)の測定値も入力される。演算装置104としては、例えばPC(Personal Computer)を用いることができる。 The calculation device 104 calculates the calorific value during combustion of the fuel gas supplied to the combustion temperature measuring section 110 based on the recorded contents of the data logger 103. When calculating the calorific value, the measurement values of the first flowmeter 14A and the second flowmeter 14B (see FIG. 1) are also input to the calculation device 104. As the arithmetic device 104, for example, a PC (Personal Computer) can be used.

以上のような構成の熱量計100において、演算装置104は、熱電対121,131により測定されてデータロガー103に記録された上昇温度ΔT[℃],ΔT[℃]に基づいて、燃料ガスの燃焼時の発熱量を演算する。演算装置104には、熱電対121,131の測定温度の変化と燃料ガスの燃焼時の発熱量との相関関係を示す相関データが記憶されており、演算装置104は、この相関データを利用して、燃料ガスの燃焼時の発熱量を演算する。 In the calorimeter 100 configured as described above, the calculation device 104 calculates the temperature of the fuel based on the rising temperatures ΔT H [°C] and ΔT E [°C] measured by the thermocouples 121 and 131 and recorded in the data logger 103. Calculates the amount of heat generated when gas is combusted. The calculation device 104 stores correlation data indicating the correlation between the change in temperature measured by the thermocouples 121 and 131 and the calorific value during combustion of the fuel gas, and the calculation device 104 uses this correlation data. Then, the calorific value during combustion of the fuel gas is calculated.

具体的には、制御装置(図示省略)が、図1に示す第1バルブ15A、第2バルブ15B、及び混合器16を制御し、可燃性ガスを第1配管11に流し、空気を第2配管12に流し、可燃性ガスと空気とを混合器16にて混合する。これにより、所定濃度の可燃性ガスを含む燃料ガスを生成する。この燃料ガスは、第3配管13を通じて熱量計100に供給される。この際、第1流量計14Aは、第1配管11を流れる可燃性ガスの流量を測定して測定情報を演算装置104に出力し、第2流量計14Bは、第2配管12を流れる空気の流量を測定して測定情報を演算装置104に出力する。 Specifically, a control device (not shown) controls the first valve 15A, second valve 15B, and mixer 16 shown in FIG. The flammable gas is flowed through the pipe 12 and mixed with air in the mixer 16. As a result, fuel gas containing a predetermined concentration of combustible gas is generated. This fuel gas is supplied to the calorimeter 100 through the third pipe 13. At this time, the first flowmeter 14A measures the flow rate of the combustible gas flowing through the first pipe 11 and outputs the measurement information to the calculation device 104, and the second flowmeter 14B measures the flow rate of the combustible gas flowing through the second pipe 12. The flow rate is measured and the measurement information is output to the calculation device 104.

定電圧源102はヒーター134に電圧を印加しており、第2燃焼測温部130の熱電対131のベース温度は例えば250~400℃程度となる。この状態において、燃料ガスに含まれる水素以外の可燃性ガスの燃焼時の発熱によって熱電対131の測温接点Pの周囲の温度が上昇する。熱電対131は、測温接点Pの周囲の温度に応じた信号をデータロガー103に送信し、データロガー103はこれを記憶する。 The constant voltage source 102 applies a voltage to the heater 134, and the base temperature of the thermocouple 131 of the second combustion temperature measuring section 130 is, for example, about 250 to 400°C. In this state, the temperature around the temperature measuring junction P of the thermocouple 131 increases due to heat generated during combustion of combustible gas other than hydrogen contained in the fuel gas. The thermocouple 131 transmits a signal corresponding to the temperature around the temperature measuring junction P to the data logger 103, and the data logger 103 stores this signal.

他方で、第1燃焼測温部120の熱電対121のベース温度は常温である。この状態において、燃料ガスに含まれる水素の燃焼時の発熱によって熱電対121の測温接点Pの周囲の温度が上昇する。熱電対121は、測温接点Pの周囲の温度に応じた信号をデータロガー103に送信し、データロガー103はこれを記憶する。 On the other hand, the base temperature of the thermocouple 121 of the first combustion temperature measuring section 120 is room temperature. In this state, the temperature around the temperature measuring junction P of the thermocouple 121 increases due to heat generated during combustion of hydrogen contained in the fuel gas. The thermocouple 121 transmits a signal corresponding to the temperature around the temperature measuring junction P to the data logger 103, and the data logger 103 stores this signal.

演算装置104は、予め記憶している相関データと、データロガー103が記憶した熱電対121,131の測温情報と、第1流量計14A及び第2流量計14Bの流量情報とから、燃料ガスの燃焼時の発熱量を演算する。ここで、演算装置104は、熱電対121から出力されてデータロガー103に記憶された水素の燃焼による上昇温度ΔT[℃]と、第1流量計14A及び第2流量計14Bの流量情報とから、熱量Qを算出する。また、演算装置104は、熱電対131から出力されてデータロガー103に記憶された水素以外の可燃性ガスの燃焼による上昇温度ΔT[℃]と、第1流量計14A及び第2流量計14Bの流量情報とから、熱量Qを算出する。そして、演算装置104は、熱量Qと熱量Qとを合計する。 The calculation device 104 calculates the fuel gas based on the correlation data stored in advance, the temperature measurement information of the thermocouples 121 and 131 stored in the data logger 103, and the flow rate information of the first flow meter 14A and the second flow meter 14B. Calculate the amount of heat generated during combustion. Here, the calculation device 104 calculates the increased temperature ΔT H [°C] due to hydrogen combustion output from the thermocouple 121 and stored in the data logger 103, and the flow rate information of the first flow meter 14A and the second flow meter 14B. From this, calculate the amount of heat QH . In addition, the calculation device 104 calculates the increased temperature ΔT E [°C] due to combustion of combustible gas other than hydrogen outputted from the thermocouple 131 and stored in the data logger 103, and the first flowmeter 14A and the second flowmeter 14B. The amount of heat QE is calculated from the flow rate information. Then, the arithmetic unit 104 totals the amount of heat QH and the amount of heat QE .

以下、本実施形態に係る熱量計100の熱量測定の精度を確認するために実施された実験について説明する。本実験では、比較例に係る熱量計100Cを用いた試験ガスの熱量測定と、本実施形態に係る熱量計100を用いた試験ガスの熱量測定とを実施した。 Hereinafter, an experiment conducted to confirm the accuracy of calorimetry of the calorimeter 100 according to the present embodiment will be described. In this experiment, the calorific value of the test gas was measured using the calorimeter 100C according to the comparative example, and the calorimetric value of the test gas was measured using the calorimeter 100 according to the present embodiment.

図3は、比較例に係る熱量計100Cの構成を示す断面図である。この図に示すように、比較例に係る熱量計100Cの燃焼測温部110Cは、第1燃焼測温部120(図2参照)を備えず、第2燃焼測温部130を備える。即ち、比較例の燃焼測温部110Cでは、常温での水素の燃焼及びその燃焼による水素の上昇温度ΔT[℃]の測定は行われず、相対的に高温(本実験では330℃)での試験ガスの燃焼及びその燃焼による試験ガスの上昇温度ΔT[℃]の測定が行われる。 FIG. 3 is a cross-sectional view showing the configuration of a calorimeter 100C according to a comparative example. As shown in this figure, the combustion temperature measurement section 110C of the calorimeter 100C according to the comparative example does not include the first combustion temperature measurement section 120 (see FIG. 2), but includes a second combustion temperature measurement section 130. That is, in the combustion temperature measurement section 110C of the comparative example, hydrogen combustion at room temperature and measurement of the rising temperature ΔT H [°C] of hydrogen due to the combustion are not performed, but rather at a relatively high temperature (330°C in this experiment). The combustion of the test gas and the temperature increase ΔT [° C.] of the test gas due to the combustion are measured.

この比較例に係る熱量計100Cの燃焼測温部110Cに以下のNo1.~No.5の5種類の試験ガスを供給して当該試験ガスの燃焼による熱量Q’[J]と上昇温度ΔT[℃]とを測定した。
No.11:単位体積当たり発熱量=32MJ/Nm、H=0%、CH=100%
No.12:単位体積当たり発熱量=36MJ/Nm、H=0%、CH=100%
No.13:単位体積当たり発熱量=40MJ/Nm、H=0%、CH=100%
No.14:単位体積当たり発熱量=43MJ/Nm、H=0%、CH=100%
No.15:単位体積当たり発熱量=45MJ/Nm、H=0%、CH=100%
The combustion temperature measuring section 110C of the calorimeter 100C according to this comparative example has the following No. ~No. Five types of test gases No. 5 were supplied, and the amount of heat Q' [J] due to combustion of the test gases and the temperature rise ΔT [° C.] were measured.
No. 11: Calorific value per unit volume = 32 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%
No. 12: Calorific value per unit volume = 36 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%
No. 13: Calorific value per unit volume = 40 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%
No. 14: Calorific value per unit volume = 43 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%
No. 15: Calorific value per unit volume = 45 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%

図4は、比較例に係る熱量計100Cを用いてNo.11~No.15の試験ガスの熱量Q’[J]と上昇温度ΔT[℃]とを測定した結果を示すグラフである。このグラフに示すように、燃料ガスの熱量Q’[J]と上昇温度ΔT[℃]との決定係数R=0.998となり、上昇温度ΔT[℃]の測定誤差は最大で0.43%となった。以上により、燃料ガスが水素を含まない場合には、熱量Q’[J]と上昇温度ΔT[℃]とを高精度に測定できることが確認された。 FIG. 4 shows No. 1 using a calorimeter 100C according to a comparative example. 11~No. It is a graph showing the results of measuring the calorific value Q′ [J] and the temperature rise ΔT [° C.] of No. 15 test gas. As shown in this graph, the determination coefficient R 2 between the calorific value Q' [J] of the fuel gas and the rising temperature ΔT [°C] is 0.998, and the measurement error for the rising temperature ΔT [°C] is 0.43 at maximum. %. From the above, it was confirmed that when the fuel gas does not contain hydrogen, the amount of heat Q' [J] and the temperature rise ΔT [° C.] can be measured with high accuracy.

比較例に係る熱量計100Cの燃焼測温部110Cに以下のNo.16~No.18の3種類の試験ガスを供給して当該燃料ガスの燃焼による単位体積当たり熱量Q[MJ/Nm]を測定した。
No.16:単位体積当たり発熱量=34.5MJ/Nm、H=20%、CH=80%
No.17:単位体積当たり発熱量=37MJ/Nm、H=10%、CH=90%
No.18:単位体積当たり発熱量=45MJ/Nm、H=20%、CH=80%
The combustion temperature measuring section 110C of the calorimeter 100C according to the comparative example has the following No. 16~No. Three types of test gases No. 18 were supplied, and the amount of heat Q [MJ/Nm 3 ] per unit volume due to combustion of the fuel gas was measured.
No. 16: Calorific value per unit volume = 34.5 MJ/Nm 3 , H 2 = 20%, CH 4 = 80%
No. 17: Calorific value per unit volume = 37 MJ/Nm 3 , H 2 = 10%, CH 4 = 90%
No. 18: Calorific value per unit volume = 45 MJ/Nm 3 , H 2 = 20%, CH 4 = 80%

図5は、比較例に係る熱量計100Cを用いてNo.16~No.18の試験ガスの単位体積当たり熱量Q[MJ/Nm]を測定した結果を示すグラフである。このグラフに示すように、試験ガスの単位体積当たり熱量Q[MJ/Nm]の真値と算出値との間には、最大で10.0%の測定誤差が生じた。具体的には、No.16の試験ガスの単位体積当たり熱量Q[MJ/Nm]については、10.0%の誤差の分だけ真値に対して過小に評価された。また、No.17の試験ガスの単位体積当たり熱量Q[MJ/Nm]については、4.3%の誤差の分だけ真値に対して過小に評価された。さらに、No.18の試験ガスの単位体積当たり熱量Q[MJ/Nm]については、8.4%の誤差の分だけ真値に対して過小に評価された。 FIG. 5 shows No. 1 using a calorimeter 100C according to a comparative example. 16~No. It is a graph showing the results of measuring the calorific value Q [MJ/Nm 3 ] per unit volume of No. 18 test gases. As shown in this graph, a maximum measurement error of 10.0% occurred between the true value and the calculated value of the calorific value Q [MJ/Nm 3 ] per unit volume of the test gas. Specifically, No. The calorific value Q [MJ/Nm 3 ] per unit volume of test gas No. 16 was underestimated compared to the true value by an error of 10.0%. Also, No. The calorific value Q [MJ/Nm 3 ] per unit volume of test gas No. 17 was underestimated compared to the true value by an error of 4.3%. Furthermore, No. The calorific value Q [MJ/Nm 3 ] per unit volume of test gas No. 18 was underestimated compared to the true value by an error of 8.4%.

本実施形態に係る熱量計100に以下のNo1.~No.4の4種類の試験ガスを連続的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃],ΔT[℃]との相関を確認するための実験を実施した。本実験では、3mL/minの流量の試験ガスと97mL/minの流量の空気とを連続的に熱量計100に供給し、第1燃焼測温部120による上昇温度ΔT[℃]の測定と、第2燃焼測温部130による上昇温度ΔT[℃]の測定とを連続的に行った。
No.1:単位体積当たり発熱量=39.9MJ/Nm、H=0%、CH=100%
No.2:単位体積当たり発熱量=34.7MJ/Nm、H=19.2%、CH=80.8%
No.3:単位体積当たり発熱量=26.3MJ/Nm、H=50%、CH=50%
No.4:単位体積当たり発熱量=12.8MJ/Nm、H=100%、CH=0%
The calorimeter 100 according to this embodiment has the following No. 1. ~No. An experiment was conducted to confirm the correlation between the concentration of hydrogen and methane and the temperature increase due to combustion ΔT H [°C] and ΔT E [°C] by continuously supplying the four types of test gases described in Section 4. In this experiment, a test gas at a flow rate of 3 mL/min and air at a flow rate of 97 mL/min were continuously supplied to the calorimeter 100, and the first combustion temperature measuring section 120 measured the increased temperature ΔT H [°C]. , and measurement of the temperature increase ΔT E [° C.] by the second combustion temperature measurement unit 130 were performed continuously.
No. 1: Calorific value per unit volume = 39.9 MJ/Nm 3 , H 2 = 0%, CH 4 = 100%
No. 2: Calorific value per unit volume = 34.7 MJ/Nm 3 , H 2 = 19.2%, CH 4 = 80.8%
No. 3: Calorific value per unit volume = 26.3 MJ/Nm 3 , H 2 = 50%, CH 4 = 50%
No. 4: Calorific value per unit volume = 12.8 MJ/Nm 3 , H 2 = 100%, CH 4 = 0%

図6は、本実施形態に係る熱量計100にNo.1~No.4の試験ガスを連続的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃],ΔT[℃]との相関を確認した結果を示す表及びグラフである。これらの表及びグラフに示すように、水素の濃度が高くなるほど、第1燃焼測温部120により測定される上昇温度ΔT[℃]が高くなり、第2燃焼測温部130により測定される上昇温度ΔT[℃]が低くなることが確認された。他方で、メタンの濃度が高くなるほど、第2燃焼測温部130により測定される上昇温度ΔT[℃]が高くなり、第1燃焼測温部120により測定される上昇温度ΔT[℃]が低くなることが確認された。 FIG. 6 shows No. 1 in the calorimeter 100 according to this embodiment. 1~No. 4 is a table and a graph showing the results of confirming the correlation between the concentration of hydrogen and methane and the temperature increase due to combustion ΔT H [°C] and ΔT E [°C] by continuously supplying the test gas of No. 4. As shown in these tables and graphs, the higher the concentration of hydrogen, the higher the temperature rise ΔT H [°C] measured by the first combustion temperature measurement unit 120, and the higher the temperature rise ΔT H [°C] measured by the second combustion temperature measurement unit 130. It was confirmed that the temperature increase ΔT E [°C] was lower. On the other hand, the higher the concentration of methane, the higher the temperature rise ΔT E [°C] measured by the second combustion temperature measurement unit 130, and the higher the temperature rise ΔT H [°C] measured by the first combustion temperature measurement unit 120. was confirmed to be lower.

本実施形態に係る熱量計100に上記のNo1.~No.4の試験ガスを間欠的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃]との相関を確認するための実験を実施した。本実験では、85mL/minの流量の空気を連続的に熱量計100に供給しながら体積が0.36mLの燃料ガスを間欠的に熱量計100に供給し、第1燃焼測温部120による上昇温度ΔT[℃]の測定と、第2燃焼測温部130による上昇温度ΔT[℃]の測定とを間欠的に行った。 The calorimeter 100 according to this embodiment has the above-mentioned No. 1. ~No. An experiment was conducted to confirm the correlation between the concentration of hydrogen and methane and the temperature increase ΔT [° C.] due to combustion by intermittently supplying the test gas No. 4. In this experiment, fuel gas having a volume of 0.36 mL was intermittently supplied to the calorimeter 100 while air at a flow rate of 85 mL/min was continuously supplied to the calorimeter 100. Measurement of the temperature ΔT H [°C] and measurement of the increased temperature ΔT E [°C] by the second combustion temperature measuring section 130 were performed intermittently.

図7は、本実施形態に係る熱量計100にNo.1~No.4の試験ガスを間欠的に供給して水素、メタンの濃度と燃焼による上昇温度ΔT[℃],ΔT[℃]との相関を確認した結果を示す表及びグラフである。これらの表及びグラフに示すように、水素の濃度が高くなるほど、第1燃焼測温部120により測定される上昇温度ΔT[℃]が高くなり、第2燃焼測温部130により測定される上昇温度ΔT[℃]が低くなることが確認された。他方で、メタンの濃度が高くなるほど、第2燃焼測温部130により測定される上昇温度ΔT[℃]が高くなり、第1燃焼測温部120により測定される上昇温度ΔT[℃]が低くなることが確認された。 FIG. 7 shows No. 1 in the calorimeter 100 according to the present embodiment. 1~No. 4 is a table and a graph showing the results of intermittently supplying the test gas of No. 4 and confirming the correlation between the concentration of hydrogen and methane and the temperature rise due to combustion ΔT H [°C] and ΔT E [°C]. As shown in these tables and graphs, the higher the concentration of hydrogen, the higher the temperature rise ΔT H [°C] measured by the first combustion temperature measurement unit 120, and the higher the temperature rise ΔT H [°C] measured by the second combustion temperature measurement unit 130. It was confirmed that the temperature increase ΔT E [°C] was lower. On the other hand, the higher the concentration of methane, the higher the temperature rise ΔT E [°C] measured by the second combustion temperature measurement unit 130, and the higher the temperature rise ΔT H [°C] measured by the first combustion temperature measurement unit 120. was confirmed to be lower.

以上説明したように、本実施形態に係る熱量計100の燃焼測温部110は、燃料ガスに含まれる水素を常温で燃焼させてその燃焼による上昇温度ΔT[℃]を測定する第1燃焼測温部120と、燃料ガスに含まれる水素以外の可燃性ガスを加熱下で燃焼させてその燃焼による上昇温度ΔT[℃]を測定する第2燃焼測温部130とを備える。これにより、水素を含む燃料ガスの熱量を、水素の燃焼による上昇温度ΔT[℃]とメタン等の水素以外の可燃性ガスの燃焼による上昇温度ΔT[℃]とに基づいて算出することが可能になる。従って、燃料ガスに水素が含まれることに起因する燃料ガスの熱量測定の精度低下を抑制でき、水素を含む燃料ガスの熱量測定の高精度化を実現できる。 As explained above, the combustion temperature measurement section 110 of the calorimeter 100 according to the present embodiment burns hydrogen contained in the fuel gas at room temperature and measures the temperature increase ΔT H [°C] due to the combustion. It includes a temperature measurement section 120 and a second combustion temperature measurement section 130 that combusts a combustible gas other than hydrogen contained in the fuel gas under heating and measures the temperature increase ΔT E [° C.] due to the combustion. Thereby, the calorific value of fuel gas containing hydrogen can be calculated based on the increased temperature ΔT H [°C] due to combustion of hydrogen and the increased temperature ΔT E [°C] due to combustion of flammable gas other than hydrogen such as methane. becomes possible. Therefore, it is possible to suppress a decrease in accuracy in measuring the calorific value of the fuel gas due to hydrogen being contained in the fuel gas, and it is possible to achieve high accuracy in measuring the calorific value of the fuel gas containing hydrogen.

また、本実施形態に係る熱量計100では、演算装置104が、第1燃焼測温部120の熱電対121により測定された水素の燃焼による上昇温度ΔT[℃]に基づいて熱量Qを算出し、第2燃焼測温部130により測定された水素以外の可燃性ガスの燃焼による上昇温度ΔT[℃]に基づいて熱量Qを算出し、熱量の合計値(Q+Q)[℃]を算出する。これによって、水素を含む燃料ガスの熱量を、当該熱量に相応した上昇温度ΔT[℃],ΔT[℃]に基づいて高精度に算出することが可能になる。 In addition, in the calorimeter 100 according to the present embodiment, the calculation device 104 calculates the amount of heat Q H based on the temperature increase ΔT H [°C] due to hydrogen combustion measured by the thermocouple 121 of the first combustion temperature measuring section 120. The amount of heat Q E is calculated based on the increased temperature ΔT E [°C] due to combustion of combustible gas other than hydrogen, which is measured by the second combustion temperature measurement unit 130, and the total value of the amount of heat (Q H +Q E ) is calculated. Calculate [℃]. This makes it possible to calculate the calorific value of the hydrogen-containing fuel gas with high accuracy based on the temperature rise ΔT H [°C] and ΔT E [°C] corresponding to the calorific value.

また、本実施形態に係る熱量計100では、第1燃焼測温部120の触媒122、及び第2燃焼測温部130の触媒132が、燃料ガスが第1燃焼測温部120の触媒122を通過し、この触媒122を通過した燃料ガスが第2燃焼測温部130の触媒132を通過するように、管材111に収容されている。即ち、本実施形態に係る熱量計100では、第1燃焼測温部120と第2燃焼測温部130とが直列に接続されている。これによって、燃料ガスに含まれる水素が第1燃焼測温部120において常温で燃焼し、燃料ガスに含まれる水素以外の可燃性ガスが第2燃焼測温部130において加熱下で燃焼する。即ち、燃料ガスに含まれる水素と水素以外の可燃性ガスとが、管材111内の燃焼部を必ず通過する。従って、燃料ガスに含まれる水素と水素以外の可燃性ガスとが、燃焼することなく管材111から排気されることを防止できる。 In addition, in the calorimeter 100 according to the present embodiment, the catalyst 122 of the first combustion temperature measurement section 120 and the catalyst 132 of the second combustion temperature measurement section 130 are arranged such that the fuel gas passes through the catalyst 122 of the first combustion temperature measurement section 120. The fuel gas that has passed through the catalyst 122 is accommodated in the pipe material 111 so as to pass through the catalyst 132 of the second combustion temperature measuring section 130 . That is, in the calorimeter 100 according to the present embodiment, the first combustion temperature measuring section 120 and the second combustion temperature measuring section 130 are connected in series. As a result, hydrogen contained in the fuel gas is combusted at room temperature in the first combustion temperature measurement section 120, and combustible gases other than hydrogen contained in the fuel gas are combusted under heating in the second combustion temperature measurement section 130. That is, hydrogen contained in the fuel gas and combustible gases other than hydrogen always pass through the combustion section within the pipe material 111. Therefore, hydrogen contained in the fuel gas and combustible gases other than hydrogen can be prevented from being exhausted from the pipe material 111 without being combusted.

図8は、本発明の他の実施形態に係る熱量計200の構成を示す断面図である。この図に示すように、本実施形態に係る熱量計200は、第1燃焼測温部120と第2燃焼測温部130とが並列に配された燃焼測温部210を備える。この燃焼測温部210は、第1管材211と第2管材212とを備える。 FIG. 8 is a sectional view showing the configuration of a calorimeter 200 according to another embodiment of the present invention. As shown in this figure, the calorimeter 200 according to the present embodiment includes a combustion temperature measurement section 210 in which a first combustion temperature measurement section 120 and a second combustion temperature measurement section 130 are arranged in parallel. This combustion temperature measuring section 210 includes a first pipe material 211 and a second pipe material 212.

第1管材211の一端には、第3配管13が接続されている。また、第2管材212の一端には、第3配管13から分岐した第4配管14が接続されている。第1管材211及び第2管材212は、燃料ガスの燃焼時の温度に対する耐熱性と、燃焼時の燃料ガスの管外への放熱を抑える低い伝熱性とを有する管材である。本実施形態の第1管材211及び第2管材212は、内径が4mmの円筒状のセラミックチューブである。なお、第1管材211及び第2管材212の内径は、2mm以上10mm以下が好ましい。また、第1管材211及び第2管材212はステンレスチューブでもよい。 The third pipe 13 is connected to one end of the first pipe material 211 . Furthermore, a fourth pipe 14 branched from the third pipe 13 is connected to one end of the second pipe 212 . The first tube material 211 and the second tube material 212 are tube materials that have heat resistance against the temperature during combustion of the fuel gas and low heat conductivity that suppresses heat radiation of the fuel gas to the outside of the tube during combustion. The first tube material 211 and the second tube material 212 of this embodiment are cylindrical ceramic tubes with an inner diameter of 4 mm. Note that the inner diameter of the first tube material 211 and the second tube material 212 is preferably 2 mm or more and 10 mm or less. Further, the first tube material 211 and the second tube material 212 may be stainless steel tubes.

上述したように、本実施形態の燃焼測温部210では、第1燃焼測温部120と第2燃焼測温部130とが燃料ガスの流れ方向に対して並列に配されている。このため、第3配管13から第1管材211に供給された燃料ガスは、第1燃焼測温部120を通過する。この際、燃料ガスに含まれる水素が常温で燃焼されその燃焼による水素の上昇温度ΔT[℃]が測定される。他方で、第4配管14から第2管材212に供給された燃料ガスは、第2燃焼測温部130を通過する。この際、燃料ガスに含まれるメタン等の水素以外の可燃性ガスが、加熱下で燃焼されその燃焼による当該可燃性ガスの上昇温度ΔT[℃]が測定される。 As described above, in the combustion temperature measuring section 210 of this embodiment, the first combustion temperature measuring section 120 and the second combustion temperature measuring section 130 are arranged in parallel with respect to the flow direction of the fuel gas. Therefore, the fuel gas supplied from the third pipe 13 to the first pipe material 211 passes through the first combustion temperature measurement section 120. At this time, hydrogen contained in the fuel gas is combusted at room temperature, and the rising temperature ΔT H [° C.] of hydrogen due to the combustion is measured. On the other hand, the fuel gas supplied from the fourth pipe 14 to the second pipe material 212 passes through the second combustion temperature measuring section 130. At this time, a combustible gas other than hydrogen, such as methane, contained in the fuel gas is combusted under heating, and the temperature rise ΔT E [° C.] of the combustible gas due to the combustion is measured.

以上のような構成の熱量計200において、演算装置104は、熱電対121から出力されてデータロガー103に記憶された水素の燃焼による上昇温度ΔT[℃]と、第1流量計14A及び第2流量計14Bの流量情報とから、熱量Qを算出する。また、熱電対131から出力されてデータロガー103に記憶された水素以外の可燃性ガスの燃焼による上昇温度ΔT[℃]と、第1流量計14A及び第2流量計14Bの流量情報とから、熱量Qを算出する。そして、演算装置104は、算出した熱量Qと熱量Qとを合計する。 In the calorimeter 200 configured as described above, the calculation device 104 calculates the increased temperature ΔT H [°C] due to hydrogen combustion output from the thermocouple 121 and stored in the data logger 103, and the first flow meter 14A and the first flow meter 14A. The amount of heat QH is calculated from the flow rate information of the second flow meter 14B. Also, from the temperature increase ΔT E [°C] due to combustion of combustible gas other than hydrogen, which is output from the thermocouple 131 and stored in the data logger 103, and the flow rate information of the first flow meter 14A and the second flow meter 14B. , calculate the amount of heat QE . Then, the calculation device 104 adds up the calculated amount of heat Q H and the amount of heat Q E.

以上、上記実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、適宜公知や周知の技術を組み合わせてもよい。 Although the present invention has been described above based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and changes may be made without departing from the spirit of the present invention. Technologies may be combined.

例えば、上記実施形態では、触媒122,132を顆粒状にしたが、触媒122,132を粉末状にしてもよい。また、管材111、第1管材211、及び第2管材212を縦向きとしたが、管材111、第1管材211、及び第2管材212を横向きにしてもよい。また、燃焼測温部110,210の構造は、上記実施形態の構成には限らず、適宜変更してもよい。 For example, in the above embodiment, the catalysts 122, 132 are made into granules, but the catalysts 122, 132 may be made into powders. Further, although the tube material 111, the first tube material 211, and the second tube material 212 are oriented vertically, the tube material 111, the first tube material 211, and the second tube material 212 may be oriented horizontally. Further, the structure of the combustion temperature measuring sections 110, 210 is not limited to the structure of the above embodiment, and may be changed as appropriate.

また、上記実施形態では、測温体として熱電対121,131を用いたが、測温抵抗体等の他の測温体を用いてもよい。 Further, in the embodiment described above, the thermocouples 121 and 131 are used as temperature measuring bodies, but other temperature measuring bodies such as a resistance temperature measuring body may be used.

100 熱量計
104 演算装置(算出部)
111 管材
121 熱電対(第1測温体)
122 触媒(第1触媒)
131 熱電対(第2測温体)
132 触媒(第2触媒)
134 ヒーター(加熱部)
200 熱量計
P 測温接点
ΔT 上昇温度
ΔT 上昇温度
熱量(第1熱量)
熱量(第2熱量)
100 Calorimeter 104 Arithmetic unit (calculation unit)
111 Tube material 121 Thermocouple (first temperature sensing element)
122 Catalyst (first catalyst)
131 Thermocouple (second temperature measuring element)
132 Catalyst (second catalyst)
134 Heater (heating part)
200 Calorimeter P Temperature measurement junction ΔT H rising temperature ΔT E rising temperature Q H calorie (first calorie)
Q E calorie (secondary calorie)

Claims (3)

水素を含む燃料ガスの熱量を測定する熱量計であって、
前記水素を常温で燃焼させるための第1触媒と、
前記第1触媒における常温での燃焼による前記水素の上昇温度を測定する第1測温体と、
前記燃料ガスに含まれる前記水素以外の可燃性ガスを加熱下で燃焼させるための第2触媒と、
前記第2触媒を加熱する加熱部と、
前記第2触媒における加熱下での燃焼による前記可燃性ガスの上昇温度を測定する第2測温体と
を備える熱量計。
A calorimeter that measures the calorific value of fuel gas containing hydrogen,
a first catalyst for burning the hydrogen at room temperature;
a first temperature measuring element that measures the temperature rise of the hydrogen due to combustion at room temperature in the first catalyst;
a second catalyst for burning a combustible gas other than hydrogen contained in the fuel gas under heating;
a heating section that heats the second catalyst;
and a second temperature measuring element that measures the temperature increase of the combustible gas due to combustion under heating in the second catalyst.
前記第1測温体により測定された前記水素の上昇温度に基づいて第1熱量を算出し、前記第2測温体により測定された前記可燃性ガスの上昇温度に基づいて第2熱量を算出し、前記第1熱量と前記第2熱量との合計値を算出する算出部を備える請求項1に記載の熱量計。 A first amount of heat is calculated based on the increased temperature of the hydrogen measured by the first temperature sensor, and a second amount of heat is calculated based on the increased temperature of the combustible gas measured by the second temperature sensor. The calorimeter according to claim 1, further comprising a calculation unit that calculates a total value of the first amount of heat and the second amount of heat. 前記第1触媒、前記第1測温体の測温接点、前記第2触媒、前記第2測温体の測温接点を収容し、前記燃料ガスが流入する管材を備え、
前記第1触媒、及び前記第2触媒が、前記燃料ガスが前記第1触媒を通過し、前記第1触媒を通過した前記燃料ガスが前記第2触媒を通過するように、前記管材に収容されている請求項1又は2に記載の熱量計。
a pipe material that accommodates the first catalyst, the temperature measuring contact of the first temperature measuring body, the second catalyst, and the temperature measuring contact of the second temperature measuring body, and into which the fuel gas flows;
The first catalyst and the second catalyst are housed in the pipe material such that the fuel gas passes through the first catalyst, and the fuel gas that has passed through the first catalyst passes through the second catalyst. The calorimeter according to claim 1 or 2.
JP2022065126A 2022-04-11 2022-04-11 calorimeter Pending JP2023155667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022065126A JP2023155667A (en) 2022-04-11 2022-04-11 calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022065126A JP2023155667A (en) 2022-04-11 2022-04-11 calorimeter

Publications (1)

Publication Number Publication Date
JP2023155667A true JP2023155667A (en) 2023-10-23

Family

ID=88417854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022065126A Pending JP2023155667A (en) 2022-04-11 2022-04-11 calorimeter

Country Status (1)

Country Link
JP (1) JP2023155667A (en)

Similar Documents

Publication Publication Date Title
EP2392901B1 (en) Thermal fluid flow apparatus
US8486710B2 (en) Method, sensor and system for measuring a lower heating value and a Wobbe Index of a gaseous fuel
US2652315A (en) Gas analyzing devices
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
US4613482A (en) Constant temperature heating value measurement apparatus
JP2011226945A (en) Heat conduction type hydrogen gas sensor
JP2023155667A (en) calorimeter
JP3326715B2 (en) Gas analyzer
JP3055941B2 (en) Method and apparatus for measuring calorific value of combustible gas and Wobbe index of natural gas
Månsson A 4.5 cm3 bomb combustion calorimeter and an ampoule technique for 5 to 10 mg samples with vapour pressures below approximately 3 kPa (20 Torr)
US2821462A (en) Gas analyzing devices
JP6765798B2 (en) Calorimeter
Heisig et al. Investigation and optimization of the hot disk method for thermal conductivity measurements up to 750 C
JP2020060471A (en) Calorimeter
JP7461833B2 (en) Calorimeter
Lee et al. Measurement of the Calorific value of methane by calorimetry using metal burner
US2619409A (en) Apparatus for measuring the combustible content of a gas
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
JP2023030921A (en) Calorimeter
RU2138799C1 (en) Gas analyzer
US3724261A (en) Device for measuring heat release in continuous calorimeter
US977970A (en) Means for indicating and recording the calorific value of gases.
Yurchenko et al. Differential thermal analysis techniques as a tool for preliminary examination of catalyst for combustion
US2420430A (en) Gas analyzer
JP7333261B2 (en) Calorimeter