JP2023155324A - tapered roller bearing - Google Patents

tapered roller bearing Download PDF

Info

Publication number
JP2023155324A
JP2023155324A JP2023135483A JP2023135483A JP2023155324A JP 2023155324 A JP2023155324 A JP 2023155324A JP 2023135483 A JP2023135483 A JP 2023135483A JP 2023135483 A JP2023135483 A JP 2023135483A JP 2023155324 A JP2023155324 A JP 2023155324A
Authority
JP
Japan
Prior art keywords
tapered roller
large flange
inner ring
flange surface
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023135483A
Other languages
Japanese (ja)
Other versions
JP2023155324A5 (en
JP7504270B2 (en
Inventor
崇 川井
Takashi Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2023135483A priority Critical patent/JP7504270B2/en
Publication of JP2023155324A publication Critical patent/JP2023155324A/en
Publication of JP2023155324A5 publication Critical patent/JP2023155324A5/ja
Application granted granted Critical
Publication of JP7504270B2 publication Critical patent/JP7504270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

To smoothly rotate a bearing that prevents a rapid temperature rise even when a tapered roller bearing is used under a severe lubricating condition.SOLUTION: Assuming an intersection point of a virtual line extending a bus line of a raceway surface 11 of an inner ring 10 to a grinding recess 13 side and a virtual line extending a bus line of a large collar surface 12a to the grinding recess 13 side as a reference point O2, the cut-off width of the grinding recess 13 from the reference point O2 to a large collar surface 12a as A, and the width of a chamfering 32 of a tapered roller 30 in a direction along the bus line of the large collar surface 12a as RC, the width RC is 0.7 mm or less, and A<RC. Assuming an acute angle made by a virtual line connecting from a contact point of the large collar surface 12a and a large end surface 33 of a tapered roller 30 to an apex O1 of a cone angle β of a rolling surface 31 with respect to the bus line of the raceway surface 11 as ρ, β/7≥ρ.SELECTED DRAWING: Figure 3

Description

この発明は、円すいころ軸受に関する。 The present invention relates to tapered roller bearings.

回転部を支持する転がり軸受は、その転がり軸受で受ける荷重の方向や大きさ、軸受設置スペースに適したものを使用しなければならない。自動車のトランスミッション(MT、AT、DCT、CVT、ハイブリッド等)又はデファレンシャルに備わる回転部を支持する用途の場合、ラジアル荷重、アキシアル荷重およびモーメント荷重を受ける使用条件でありながら、コンパクト化も要求される。このため、ラジアル荷重及びアキシアル荷重を負荷でき、その負荷容量に優れた円すいころ軸受が使用されている。 The rolling bearings that support the rotating parts must be suitable for the direction and magnitude of the load received by the rolling bearings and the space in which the bearings are installed. For applications that support the rotating parts of automobile transmissions (MT, AT, DCT, CVT, hybrid, etc.) or differentials, compactness is also required despite the usage conditions of radial loads, axial loads, and moment loads. . For this reason, tapered roller bearings are used which can carry radial loads and axial loads and have excellent load capacity.

円すいころ軸受では、運転時、円すいころを大径側へ押す推力が生じる。このため、内輪には、円すいころの大端面を支持しつつ、円すいころの公転方向(周方向)に案内するための大鍔が形成されている。大鍔は、円すいころの大端面を摺接させるための大鍔面を有する。内輪には、その大鍔面と軌道面を繋ぐ研削逃げが全周に形成されている。 During operation, a tapered roller bearing generates a thrust force that pushes the tapered rollers toward the larger diameter side. For this reason, the inner ring is formed with a large flange for supporting the large end surface of the tapered roller and guiding it in the revolution direction (circumferential direction) of the tapered roller. The large flange has a large flange surface for slidingly contacting the large end surfaces of the tapered rollers. The inner ring has a grinding relief formed around the entire circumference that connects the large collar surface and the raceway surface.

一般に、円すいころの大端面と内輪の大鍔面の形状は、幾何的に一点のみで接触するように設計されている。運転時には、円すいころの大端面が内輪の大鍔面に対して公転方向に滑り接触するが、前述の諸荷重や推力により、その滑り接触部は、概ね、その設計上の接触点を中心とする径方向の短軸をもった長楕円状の領域に生じる。その滑り接触部の潤滑が不十分であると、発熱し、急昇温を招く。 Generally, the shapes of the large end surface of the tapered roller and the large flange surface of the inner ring are designed so that they geometrically come into contact at only one point. During operation, the large end surface of the tapered roller slides into contact with the large flange surface of the inner ring in the direction of revolution, but due to the various loads and thrusts mentioned above, the sliding contact area generally moves around the designed contact point. It occurs in a long elliptical region with a short radial axis. If the sliding contact part is not sufficiently lubricated, heat will be generated and the temperature will rise rapidly.

自動車のトランスミッションのように円すいころ軸受が高速運転され、潤滑油が高温になる場合、円すいころの大端面と内輪の大鍔面の滑り接触部において良好な潤滑モードを維持できず、境界潤滑になって、潤滑が不十分になる可能性がある。このような高温運転時における耐焼付き性を向上させるため、円すいころの大端面、内輪の大鍔面における形状や表面性状を工夫することが行われている(特許文献1~3)。 When tapered roller bearings are operated at high speeds, such as in automobile transmissions, and the lubricating oil becomes hot, a good lubrication mode cannot be maintained at the sliding contact area between the large end surface of the tapered roller and the large flange surface of the inner ring, resulting in boundary lubrication. This may result in insufficient lubrication. In order to improve the seizure resistance during such high-temperature operation, the shape and surface properties of the large end surface of the tapered roller and the large flange surface of the inner ring have been devised (Patent Documents 1 to 3).

特許文献1では、円すいころの大端面の曲率半径をRとし、円すいころの円すい角の頂点から大鍔面の接触部までの距離をRBASEとしたとき、R/RBASEを0.75~0.87の範囲にすることにより、円すいころの大端面と内輪の大鍔面間で潤滑油が引き摺られる際のくさび効果を良好に発揮させて、その滑り接触部における油膜厚さを向上(発熱低減)させることができる。 In Patent Document 1, when the radius of curvature of the large end face of the tapered roller is R, and the distance from the vertex of the cone angle of the tapered roller to the contact portion of the large flange surface is R BASE , R/R BASE is 0.75 to 0.75. By setting it in the range of 0.87, the wedge effect when the lubricating oil is dragged between the large end surface of the tapered roller and the large flange surface of the inner ring can be exhibited well, and the thickness of the oil film at the sliding contact area can be improved ( heat generation).

特許文献2では、大鍔面の外径側縁から大鍔の面取り内径側縁に向かって円すいころの大端面から遠ざかる形状の逃げ面を形成することにより、円すいころの大端面と内輪の大鍔面との接触部への潤滑油の引き込み作用を高めて油膜形成能力を向上させることができる。 In Patent Document 2, the large end surface of the tapered rollers and the large end surface of the inner ring are formed by forming a relief surface that is shaped to move away from the large end surface of the tapered rollers from the outer diameter side edge of the large flange surface toward the chamfered inner diameter side edge of the large flange surface. The ability to form an oil film can be improved by increasing the drawing effect of lubricating oil to the contact portion with the collar surface.

特許文献3では、前述のR/RBASEを0.75~0.87の範囲にするとともに、円すいころの大端面の実曲率半径をRACTUALとしたとき、RACTUAL/Rを0.5以上とすることにより、厳しい潤滑環境下でも円すいころの大端面と内輪の大鍔面における発熱を抑えて耐焼付き性を向上させ、特に、潤滑状態の厳しさのレベルを表す指標としてのつば部潤滑係数の導入により、RACTUAL/Rの比の実用可能な範囲を拡大し、使用条件に応じて適正な軸受仕様を選定することができる。 In Patent Document 3, the aforementioned R/R BASE is set in the range of 0.75 to 0.87, and when the actual radius of curvature of the large end face of the tapered roller is R ACTUAL , R ACTUAL /R is set to 0.5 or more. This suppresses heat generation on the large end surface of the tapered roller and the large flange surface of the inner ring even in harsh lubrication environments, improving seizure resistance. By introducing the coefficient, it is possible to expand the practical range of the ratio R ACTUAL /R and select an appropriate bearing specification according to the usage conditions.

特開2000-170774号公報Japanese Patent Application Publication No. 2000-170774 特開2000-170775号公報Japanese Patent Application Publication No. 2000-170775 特開2018-136027号公報Japanese Patent Application Publication No. 2018-136027

しかしながら、自動車用トランスミッションやデファレンシャルでは燃費向上を目的に、潤滑油の粘度やユニット内潤滑油量を低減させる傾向があり、今後ともこの傾向は続くと考えられる。そのため、転がり軸受にとっては潤滑条件が一層厳しくなる。特に、円すいころ軸受では、円すいころの大端面と内輪の大鍔面の滑り接触部における油膜厚さを確保することや潤滑油による昇温抑制への配慮が一層重要となる。 However, in automotive transmissions and differentials, there is a trend to reduce the viscosity of lubricating oil and the amount of lubricating oil in the unit in order to improve fuel efficiency, and this trend is expected to continue in the future. Therefore, the lubrication conditions for rolling bearings become even more severe. In particular, in tapered roller bearings, it is even more important to ensure the thickness of the oil film at the sliding contact area between the large end surface of the tapered roller and the large flange surface of the inner ring, and to take into account the suppression of temperature rise by lubricating oil.

上述の背景に鑑み、この発明が解決しようとする課題は、厳しい潤滑条件で円すいころ軸受が使用される場合でも急昇温を防いで軸受を円滑に回転させることにある。 In view of the above-mentioned background, the problem to be solved by the present invention is to prevent rapid temperature rise and rotate the bearing smoothly even when the tapered roller bearing is used under severe lubrication conditions.

上記の課題を達成するため、この発明は、内輪と、外輪と、内輪と外輪間に配置された複数の円すいころと、これら円すいころを収容する保持器とを備え、前記円すいころが、円すい状に形成された転動面と、前記転動面の大径側に連続する面取りと、前記面取りに連続する大端面とを有し、前記内輪が、円すい状に形成された軌道面と、前記円すいころの大端面を受ける大鍔面と、前記大鍔面と前記軌道面を繋ぐ溝状に形成された研削逃げとを有する円すいころ軸受において、前記軌道面の母線を前記研削逃げ側へ延長した仮想線と、前記大鍔面の母線を前記研削逃げ側へ延長した仮想線との交点を基準点とし、当該基準点から大鍔面までのヌスミ幅をAとし、前記円すいころの面取りが前記大鍔面の母線に沿った方向に有する幅をRCとしたとき、幅RCが0.7mm以下であって、A<RCであり、前記転動面の円すい角をβとし、前記大鍔面と前記円すいころの大端面との接触点から前記円すい角βの頂点まで結ぶ仮想線が前記軌道面の母線に対して成す鋭角をρとしたとき、β/7≧ρである構成を採用した。 In order to achieve the above object, the present invention includes an inner ring, an outer ring, a plurality of tapered rollers arranged between the inner ring and the outer ring, and a cage that accommodates these tapered rollers, wherein the tapered rollers are a raceway surface in which the inner ring is formed in a conical shape, the raceway surface having a raceway surface formed in a shape, a chamfer continuous to a large diameter side of the rolling surface, and a large end surface continuous to the chamfer; In a tapered roller bearing having a large flange surface that receives a large end surface of the tapered roller, and a grinding relief formed in a groove shape that connects the large flange surface and the raceway surface, the generatrix of the raceway surface is directed to the grinding relief side. The intersection of the extended imaginary line and the imaginary line extending the generatrix of the large flange surface to the grinding relief side is set as a reference point, the width of the gap from the reference point to the large flange surface is defined as A, and the chamfering of the tapered roller is performed. When the width of the large flange surface in the direction along the generatrix is RC, the width RC is 0.7 mm or less, A<RC, the conical angle of the rolling surface is β, and the large flange surface is When the acute angle that an imaginary line connecting the contact point between the collar surface and the large end surface of the tapered roller to the vertex of the conical angle β makes with the generatrix of the raceway surface is ρ, a configuration in which β/7≧ρ is satisfied. Adopted.

上記構成によれば、円すいころの面取りの幅RCを0.7mm以下、かつ研削逃げのヌスミ幅A<幅RCという特に小さな寸法としたことにより、大鍔面の幅を広くし、円すいころの大端面を受けるのに十分な幅にすることができる。このため、大鍔面と円すいころの大端面との接触関係の最適化を図り、大鍔面と円すいころの大端面との間で作用するくさび効果を良好に発揮させ、油膜形成能力を向上させることができる。併せて、大鍔面と円すいころの大端面の接触点が基準点に対して有する径方向の高さを示す角度ρをβ/7より低い範囲としたことにより、その滑り接触部での滑り速度の上昇を防ぎ、大鍔面の発熱量を抑えて急昇温を防止することができる。 According to the above configuration, the width RC of the chamfer of the tapered roller is set to 0.7 mm or less, and the width of the grinding relief gap A<width RC, which is a particularly small dimension, increases the width of the large flange surface, and the width of the tapered roller It can be made wide enough to receive the large end face. For this reason, we have optimized the contact relationship between the large flange surface and the large end surface of the tapered roller to better exert the wedge effect that acts between the large flange surface and the large end surface of the tapered roller, improving oil film formation ability. can be done. In addition, by setting the angle ρ, which indicates the radial height of the contact point between the large flange surface and the large end surface of the tapered roller, with respect to the reference point, to a range lower than β/7, it is possible to prevent slippage at the sliding contact area. It is possible to prevent the speed from increasing and suppress the amount of heat generated by the large flange surface, thereby preventing a sudden rise in temperature.

具体的には、前記内輪の大鍔面に対する前記研削逃げの進入角をaとし、前記軌道面に対する前記研削逃げの進入角をbとしたとき、a>bであり、前記基準点から前記大鍔面までのヌスミ幅をAとし、前記基準点から前記軌道面までのヌスミ幅をBとしたとき、A<Bであるとよい。製造上、0.5mm以下のヌスミ幅Aを満足させるためには、加工時に大鍔面の研削量が前後したときに、大鍔面の幅が研削逃げの進入角aに依存して変化することを考慮しておく必要がある。大鍔面に対する進入角aが大きい程、大鍔面の研削量が前後したときの大鍔面の幅の変化量が小さくなるから、進入角aは大きい方がよい。さらに、研削逃げの旋削加工時における切粉排出し易さを考慮すると、a>b及びA<Bの関係を満足することが好ましい。 Specifically, when the approach angle of the grinding relief to the large flange surface of the inner ring is a, and the approach angle of the grinding relief to the raceway surface is b, a>b, and the distance from the reference point to the large When the clearance width up to the flange surface is A, and the clearance width from the reference point to the raceway surface is B, it is preferable that A<B. In manufacturing, in order to satisfy the gap width A of 0.5 mm or less, when the amount of grinding of the large flange surface changes during processing, the width of the large flange surface changes depending on the approach angle a of the grinding clearance. It is necessary to take this into consideration. The larger the approach angle a to the large flange surface, the smaller the amount of change in the width of the large flange surface when the amount of grinding of the large flange surface changes, so the larger the approach angle a is, the better. Furthermore, in consideration of the ease of discharging chips during turning machining for grinding relief, it is preferable to satisfy the relationships a>b and A<B.

前記内輪の軌道面に対する前記研削逃げの深さをcとし、前記大鍔面に対する前記研削逃げの深さをdとしたとき、c>dであるとよい。このようにすると、円すいころの大端面から内輪の大鍔面に加わる荷重により発生する大鍔の応力を低減し、内輪の大鍔の強度向上を図ることができる。 When the depth of the grinding relief with respect to the raceway surface of the inner ring is c, and the depth of the grinding relief with respect to the large flange surface is d, it is preferable that c>d. In this way, the stress in the large flange caused by the load applied from the large end surface of the tapered rollers to the large flange surface of the inner ring can be reduced, and the strength of the large flange of the inner ring can be improved.

前記内輪の大鍔面に対する前記研削逃げの深さをdとしたとき、深さdが0.3mm以下であるとよい。このようにすると、内輪の大鍔の強度向上が確実に得られる。 When the depth of the grinding relief with respect to the large flange surface of the inner ring is d, the depth d is preferably 0.3 mm or less. In this way, the strength of the inner ring's large flange can be surely improved.

前記内輪の大鍔面に対する前記研削逃げの進入角をaとしたとき、20°≦a≦50°であるとよい。このようにすると、大鍔面の研削時にヌスミ幅Aの制御が行い易い。 When the approach angle of the grinding relief with respect to the large flange surface of the inner ring is a, it is preferable that 20°≦a≦50°. In this way, it is easy to control the gap width A when grinding the large flange surface.

前記内輪の中心軸に対して前記軌道面の母線が成す鋭角をθとし、前記円すいころの転動面の大端径をDwとし、前記円すいころのころ長さをLとし、前記大鍔面の幅をWとしたとき、幅Wが次の式1を満足する値であるとよい。
W≧{Dw×(1/2)×Tanθ/(L/Dw)}・・・式1
このようにすると、大鍔面を円すいころの大端面と十分に対向させておき、円すいころの大端面と内輪の大鍔面の滑り接触部が大鍔外径側に上がった時にも良好な接触を保つことができる。
The acute angle formed by the generatrix of the raceway surface with the central axis of the inner ring is θ, the large end diameter of the rolling surface of the tapered roller is Dw, the length of the tapered roller is L, and the large flange surface Let W be the width of , it is preferable that the width W is a value that satisfies the following equation 1.
W≧{Dw×(1/2)×Tanθ/(L/Dw)}...Formula 1
By doing this, the large flange surface is sufficiently opposed to the large end surface of the tapered roller, and even when the sliding contact area between the large end surface of the tapered roller and the large flange surface of the inner ring rises to the outside diameter side of the large flange, a good condition can be maintained. can maintain contact.

前記内輪の大鍔面における旧オーステナイト結晶粒の粒度番号が6番以上であるとよい。このような大鍔面は、円すいころの大端面との金属接触による表面損傷を遅延させるのに好適である。 It is preferable that the grain size number of the prior austenite crystal grains on the large flange surface of the inner ring is No. 6 or higher. Such a large flange surface is suitable for delaying surface damage due to metal contact with the large end surface of the tapered roller.

前記内輪の大鍔面が、窒素含有量0.05wt%以上の窒化層によって形成されているとよい。このような大鍔面は、円すいころの大端面との金属接触による表面損傷を遅延させるのに好適である。 It is preferable that the large flange surface of the inner ring is formed of a nitrided layer having a nitrogen content of 0.05 wt% or more. Such a large flange surface is suitable for delaying surface damage due to metal contact with the large end surface of the tapered roller.

前記内輪の大鍔面の表面粗さが0.1μmRa以下であり、前記円すいころの大端面の表面粗さが0.12μmRa以下であるとよい。このようにすると、大鍔面と円すいころの大端面間の油膜形成を良好にすることができる。 It is preferable that the surface roughness of the large flange surface of the inner ring is 0.1 μmRa or less, and the surface roughness of the large end surface of the tapered roller is 0.12 μmRa or less. In this way, it is possible to improve the formation of an oil film between the large flange surface and the large end surface of the tapered roller.

前記円すいころの大端面の設定曲率半径をRとし、前記転動面の円すい角の頂点から前記内輪の大鍔面までの基本曲率半径をRBASEとしたとき、R/RBASEが0.70以上0.95以下であり、前記円すいころの大端面の実曲率半径をRACTUALとしたとき、前記複数の円すいころのうち、少なくとも一つの円すいころにおけるRACTUAL/Rが0.3以上で0.5未満であってもよい。この発明では、大鍔面側で油膜形成能力を向上させることができるので、特許文献3の円すいころ軸受に比してR/RBASE、RACTUAL/Rの範囲を緩和することができる。その分、円すいころの歩留まりが向上するため、円すいころ軸受を比較的安価に提供することができる。 When the set radius of curvature of the large end face of the tapered roller is R, and the basic radius of curvature from the vertex of the conical angle of the rolling surface to the large flange surface of the inner ring is R BASE , R/R BASE is 0.70. and 0.95 or less, and when R ACTUAL is the actual radius of curvature of the large end surface of the tapered roller, R ACTUAL /R of at least one tapered roller among the plurality of tapered rollers is 0.3 or more and 0. It may be less than .5. In this invention, since the ability to form an oil film on the large flange surface side can be improved, the ranges of R/R BASE and R ACTUAL /R can be relaxed compared to the tapered roller bearing of Patent Document 3. Since the yield of tapered rollers improves accordingly, tapered roller bearings can be provided at relatively low cost.

この発明に係る円すいころ軸受は、厳しい潤滑条件下における耐焼き付き性に優れるので、自動車のトランスミッション又はデファレンシャルに備わる回転部を支持する用途に好適である。 The tapered roller bearing according to the present invention has excellent seizure resistance under severe lubrication conditions, and is therefore suitable for use in supporting rotating parts of automobile transmissions or differentials.

上述のように、この発明は、上記構成の採用により、内輪の大鍔面と円すいころの大端面との接触関係の最適化を図り、油膜形成能力を向上させ、その滑り接触部での滑り速度の上昇を防ぐことが可能なため、厳しい潤滑条件で円すいころ軸受が使用される場合でも急昇温を防いで軸受を円滑に回転させることができる。 As described above, by adopting the above configuration, the present invention optimizes the contact relationship between the large flange surface of the inner ring and the large end surface of the tapered roller, improves the ability to form an oil film, and prevents slippage at the sliding contact portion. Since it is possible to prevent speed increases, even when tapered roller bearings are used under severe lubrication conditions, rapid temperature rises can be prevented and the bearings can rotate smoothly.

この発明の実施形態に係る円すいころ軸受の大鍔面付近の母線形状を示す図A diagram showing the generatrix shape near the large flange surface of the tapered roller bearing according to the embodiment of the present invention. この実施形態に係る円すいころ軸受の断面図A cross-sectional view of a tapered roller bearing according to this embodiment 図2の円すいころの大端面と大鍔面の理想的な接触状態における大鍔面付近の母線形状を示す図A diagram showing the generatrix shape near the large flange surface in the ideal contact state between the large end face and the large flange surface of the tapered roller in Figure 2. 図2の円すいころ軸受の設計仕様を示す半縦断面Half-longitudinal section showing the design specifications of the tapered roller bearing in Figure 2 図2の円すいころの大端面の詳細形状を示す模式図Schematic diagram showing the detailed shape of the large end face of the tapered roller in Figure 2 図5の円すいころの大端面の加工形状を示す模式図Schematic diagram showing the processed shape of the large end face of the tapered roller in Figure 5 図2の円すいころの大端面の曲率半径と油膜厚さの関係を示すグラフGraph showing the relationship between the radius of curvature of the large end face of the tapered roller in Figure 2 and the oil film thickness 図1の大鍔面付近の母線形状の変更例を示す図A diagram showing an example of changing the generatrix shape near the large tsuba surface in Figure 1. 図2の円すいころ軸受を組み込んだ自動車用デファレンシャルの一例を示す断面図A cross-sectional view showing an example of an automotive differential incorporating the tapered roller bearing shown in Figure 2. 図2の円すいころ軸受を組み込んだ自動車用トランスミッションの一例を示す断面図A sectional view showing an example of an automotive transmission incorporating the tapered roller bearing shown in Figure 2.

この発明の一例としての実施形態に係る円すいころ軸受を添付図面に基づいて説明する。 A tapered roller bearing according to an exemplary embodiment of the present invention will be described based on the accompanying drawings.

図2に示すこの円すいころ軸受は、内輪10と、外輪20と、内輪10と外輪20との間に配置された複数の円すいころ30と、これら円すいころ30を収容する保持器40と、を備える。この円すいころ軸受は、自動車用トランスミッション又はデファレンシャルの中でも主に乗用車用のものに対する適用を想定したものであって、その軸受外径は、150mm以下である。 This tapered roller bearing shown in FIG. 2 includes an inner ring 10, an outer ring 20, a plurality of tapered rollers 30 arranged between the inner ring 10 and the outer ring 20, and a cage 40 that accommodates these tapered rollers 30. Be prepared. This tapered roller bearing is intended for use in automobile transmissions or differentials, mainly for passenger cars, and has an outer diameter of 150 mm or less.

内輪10は、図2、図3に示すように、円すい状に形成された軌道面11と、軌道面11の大径側縁よりも大径に形成された大鍔12と、大鍔12の基部から軌道面11まで形成された研削逃げ13と、軌道面11の小径側縁よりも大径に形成された小鍔14と、小鍔14の基部から軌道面11まで形成された小径側研削逃げ15とを外周側に有する軌道輪からなる。 As shown in FIGS. 2 and 3, the inner ring 10 includes a raceway surface 11 formed in a conical shape, a large flange 12 formed to have a larger diameter than the large-diameter side edge of the raceway surface 11, and a large flange 12. A grinding relief 13 formed from the base to the raceway surface 11, a small flange 14 formed to have a larger diameter than the small diameter side edge of the raceway surface 11, and a small diameter side grinding formed from the base of the small flange 14 to the raceway surface 11. It consists of a bearing ring having a relief 15 on the outer circumferential side.

外輪20は、図2に示すように、円すい状に形成された軌道面21を内周側に有する軌道輪からなる。内輪10と外輪20間の軸受内部空間には、外部から潤滑油が供給される。 As shown in FIG. 2, the outer ring 20 is a raceway ring having a conical raceway surface 21 on the inner circumferential side. Lubricating oil is supplied from the outside to the bearing internal space between the inner ring 10 and the outer ring 20.

円すいころ30は、円すい状に形成された転動面31と、転動面31の大径側に連続する面取り32と、面取り32に連続する大端面33と、大端面33と反対側に形成された小端面34とを有する転動体からなる。円すいころ30の大端面33と小端面34は、円すいころ30のころ長さLを規定する両側端を含む。 The tapered roller 30 includes a rolling surface 31 formed in a conical shape, a chamfer 32 continuous to the large diameter side of the rolling surface 31, a large end surface 33 continuous to the chamfer 32, and a large end surface 33 formed on the opposite side of the large end surface 33. It consists of a rolling element having a small end surface 34 that is curved. The large end surface 33 and small end surface 34 of the tapered roller 30 include both side ends that define the roller length L of the tapered roller 30.

複数の円すいころ30は、内外の軌道面11,21間に単列に配置されている。保持器40は、複数の円すいころ30を周方向に均等間隔に保つ環状の軸受部品からなる。各円すいころ30は、保持器40に周方向に等間隔に形成されたポケットに収容されている。 The plurality of tapered rollers 30 are arranged in a single row between the inner and outer raceway surfaces 11 and 21. The retainer 40 is made of an annular bearing component that maintains a plurality of tapered rollers 30 at equal intervals in the circumferential direction. Each tapered roller 30 is accommodated in pockets formed in the cage 40 at equal intervals in the circumferential direction.

図示例の保持器40は、かご形の打ち抜き保持器を例示したが、保持器40の材料や製法は特に問わない。 Although the cage 40 in the illustrated example is a cage-shaped punched cage, the material and manufacturing method of the cage 40 are not particularly limited.

ここで、内輪10の回転中心である中心軸CLに沿った方向のことを「軸方向」といい、その中心軸CLに直交する方向のことを「径方向」といい、その中心軸CL回りに一周する円周方向のことを「周方向」という。内輪10の中心軸CLは、この円すいころ軸受の設計上の回転中心に相当する。 Here, the direction along the central axis CL, which is the center of rotation of the inner ring 10, is referred to as the "axial direction", and the direction perpendicular to the central axis CL is referred to as the "radial direction", and the direction around the central axis CL is referred to as the "radial direction". The circumferential direction that goes around once is called the "circumferential direction." The central axis CL of the inner ring 10 corresponds to the designed rotation center of this tapered roller bearing.

内外の軌道面11,21は、円すいころ30の転動面31が転がり接触可能であって、その転動面31からラジアル荷重を負荷される表面部である。 The inner and outer raceway surfaces 11 and 21 are surface portions on which the rolling surfaces 31 of the tapered rollers 30 can roll and are subjected to a radial load.

図4に示すように、内輪10、外輪20及び円すいころ30の各中心軸が同一の仮想アキシアル平面に含まれ、かつ円すいころ30の中心軸(図示省略)が内輪10の中心軸CL上の一点Oに真っすぐに対向する位置関係のとき、内外の軌道面11,21と、円すいころ30の転動面31の各円すい状における頂点は、点Oに一致する。円すいころ30の大端面33は、設計上、図4において点Oと円すいころ30の中心軸とを結ぶ直線上に中心をおいた設定曲率半径Rの球面状に基づいて規定されている。 As shown in FIG. 4, the center axes of the inner ring 10, the outer ring 20, and the tapered rollers 30 are included in the same virtual axial plane, and the center axis (not shown) of the tapered rollers 30 is on the center axis CL of the inner ring 10. When the rollers are in a positional relationship that directly faces one point O1 , the apex of each cone of the inner and outer raceway surfaces 11, 21 and the rolling surface 31 of the tapered roller 30 coincides with the point O1 . The large end surface 33 of the tapered roller 30 is designed based on a spherical shape with a set radius of curvature R centered on a straight line connecting the point O1 and the central axis of the tapered roller 30 in FIG.

なお、内外の軌道面11,21、円すいころ30の転動面31の各円すい状は、母線を直線とした形状に限定されず、クラウニングをもった形状を含む概念である。ここで、母線は、軸線回りの運動による軌跡としてある種の曲面を生成する線分のことをいう。例えば、軌道面11の母線は、内輪10の中心軸CLを含む仮想アキシアル平面上において軌道面11を成す線分であり、転動面31の母線は、円すいころ30の中心軸を含む任意の仮想平面上において転動面31を成す線分である。前述のクラウニング形状としては、本出願人が特許文献3で開示したフルクラウニング形状又はカットクラウニング形状を採用することができ、転動面31のカットクラウニング形状として、対数クラウニング、例えば、特許文献3で引用された特許第5037094号公報の数式で規定される形状を採用してもよい。 Note that the conical shapes of the inner and outer raceway surfaces 11, 21 and the rolling surfaces 31 of the tapered rollers 30 are not limited to shapes with generatrix lines as straight lines, but include shapes with crowning. Here, the generatrix refers to a line segment that generates a certain kind of curved surface as a trajectory due to movement around an axis. For example, the generatrix of the raceway surface 11 is a line segment that forms the raceway surface 11 on a virtual axial plane that includes the center axis CL of the inner ring 10, and the generatrix of the raceway surface 31 is a line segment that forms the raceway surface 11 on a virtual axial plane that includes the center axis CL of the inner ring 10. This is a line segment forming a rolling surface 31 on a virtual plane. As the above-mentioned crowning shape, the full crowning shape or the cut crowning shape disclosed by the applicant in Patent Document 3 can be adopted, and as the cut crowning shape of the rolling surface 31, logarithmic crowning, for example, in Patent Document 3, can be adopted. The shape defined by the formula in the cited Japanese Patent No. 5037094 may be adopted.

内輪10の大鍔12は、図2、図3に示すように、円すいころ30の大端面33を受ける大鍔面12aと、大鍔12の外径を規定する外径面12bと、大鍔面12aの外径側縁と外径面12bを全周で繋ぐ鍔側面取り12cとを有する。大鍔12の大鍔面12aと反対側の端面は、内輪10の側面の一部を成す。 As shown in FIGS. 2 and 3, the large flange 12 of the inner ring 10 has a large flange surface 12a that receives the large end surface 33 of the tapered roller 30, an outer diameter surface 12b that defines the outer diameter of the large flange 12, and a large flange. It has a collar chamfer 12c that connects the outer diameter side edge of the surface 12a and the outer diameter surface 12b around the entire circumference. The end surface of the large flange 12 opposite to the large flange surface 12a forms a part of the side surface of the inner ring 10.

大鍔面12aは、円すいころ30の大端面33を周方向に滑り接触させるための表面部である。大鍔面12aの母線は、径方向に対して傾斜した直線状である。従い、大鍔面12aは、軌道面11と同軸の円すい状になっている。大鍔面12aは、幾何的に、円すいころ30の大端面33と一点のみで接触可能な形状であればよく、その母線形状を中凹状(この場合、接触面を持った当たりとなるが、便宜上、中凹底ところ大端面との当たり位置での点当たりと表現している)、中凸状等に変更することが可能である。 The large flange surface 12a is a surface portion for slidingly contacting the large end surface 33 of the tapered roller 30 in the circumferential direction. The generatrix of the large flange surface 12a is a straight line inclined with respect to the radial direction. Therefore, the large flange surface 12a has a conical shape coaxial with the raceway surface 11. The large flange surface 12a may be geometrically shaped so that it can come into contact with the large end surface 33 of the tapered roller 30 at only one point, and its generatrix shape should be a medium concave shape (in this case, it will be a contact with a contact surface, For convenience, it is possible to change the shape to a medium convex shape, etc. (expressed as a point contact at the contact position with the large end surface), a medium concave bottom, and a medium convex shape.

内輪10の研削逃げ13は、大鍔面12aと軌道面11を繋ぐ溝状に形成されている。研削逃げ13は、軌道面11及び大鍔面12aを研削及び超仕上げにするための全周溝であり、軌道面11及び大鍔面12aのそれぞれに対して深さをもっている。 The grinding relief 13 of the inner ring 10 is formed in the shape of a groove connecting the large collar surface 12a and the raceway surface 11. The grinding relief 13 is a circumferential groove for grinding and superfinishing the raceway surface 11 and the large flange surface 12a, and has a depth for each of the raceway surface 11 and the large flange surface 12a.

図2に示すように、内輪10の小鍔14は、複数の円すいころ30が軌道面11から小径側へ脱落することを防ぎ、これら円すいころ30と保持器40と内輪10とでアセンブリを構成するための部位である。小鍔14と、この形成に伴って採用される小径側研削逃げ15は、内輪の構成要素として必須の部位でない。 As shown in FIG. 2, the small flange 14 of the inner ring 10 prevents the plurality of tapered rollers 30 from falling off from the raceway surface 11 toward the small diameter side, and the tapered rollers 30, cage 40, and inner ring 10 form an assembly. It is a part for doing. The small flange 14 and the small diameter side grinding relief 15 adopted in conjunction with this formation are not essential parts as constituent elements of the inner ring.

内輪10、外輪20及び円すいころ30は、それぞれ鍛造、旋削、研削の順に所要部位を加工することで形成されている。 The inner ring 10, the outer ring 20, and the tapered rollers 30 are each formed by processing required parts in the order of forging, turning, and grinding.

内輪10の軌道面11及び大鍔面12aは、鍛造体を旋削及び研削することで形成され、超仕上げ加工によって研磨されている。 The raceway surface 11 and the large collar surface 12a of the inner ring 10 are formed by turning and grinding a forged body, and are polished by superfinishing.

図1、図3に示すように、内輪10の研削逃げ13は、所定の母線形状に基づいて旋削加工されている。研削逃げ13の旋削加工における母線は、大鍔面12aから傾斜した大径側直線部と、軌道面11から傾斜した小径側直線部と、これら大径側直線部と小径側直線部を繋ぐ円弧状線部とで規定されている。研削逃げ13には積極的に研削加工及び超上げ加工を行わないが、軌道面11及び大鍔面12aの研削加工時、砥石が軌道面研削部位の大径側端、大鍔面研削部位の内径側端を少し丸めてしまう。このため、研削逃げ13の略全面は旋削加工面からなるが、研削逃げ13の軌道面11との接続部及び大鍔面12aとの接続部は、僅かに丸まった研削面ないし超仕上げ面になっている。 As shown in FIGS. 1 and 3, the grinding relief 13 of the inner ring 10 is machined by turning based on a predetermined generatrix shape. The generatrix in the turning process of the grinding relief 13 is a large-diameter straight part inclined from the large collar surface 12a, a small-diameter straight part inclined from the raceway surface 11, and a circle connecting these large-diameter straight part and the small-diameter straight part. It is defined by an arcuate line part. Although grinding and super-up machining are not actively performed on the grinding clearance 13, when grinding the raceway surface 11 and the large flange surface 12a, the grinding wheel touches the large diameter side end of the raceway surface grinding area and the large flange surface grinding area. The inner edge will be slightly rounded. Therefore, almost the entire surface of the grinding relief 13 is made of a turned surface, but the connection part of the grinding relief 13 with the raceway surface 11 and the connection part with the large flange surface 12a is a slightly rounded ground surface or a super-finished surface. It has become.

ここで、図1に示すように、内輪10の軌道面11の母線を研削逃げ13側へ延長した仮想線と、大鍔面12aの母線を研削逃げ13側へ延長した仮想線との交点を基準点Oとする。大鍔面12aに対する研削逃げ13の進入角をaとする。また、軌道面11に対する研削逃げ13の進入角をbとする。また、軌道面11に対する研削逃げ13の深さをcとする。また、大鍔面12aに対する研削逃げ13の深さをdとする。また、基準点Oから大鍔面12aまでのヌスミ幅をAとする。その基準点Oから軌道面11までのヌスミ幅をBとする。また、図3に示すように、円すいころ30の面取り32が大鍔面12aの母線に沿った方向に有する幅をRCとする。 Here, as shown in FIG. 1, the intersection of an imaginary line extending the generatrix of the raceway surface 11 of the inner ring 10 toward the grinding relief 13 side and an imaginary line extending the generatrix of the large collar surface 12a toward the grinding relief 13 side. Let it be the reference point O2 . Let the approach angle of the grinding relief 13 with respect to the large collar surface 12a be a. Further, the approach angle of the grinding relief 13 with respect to the raceway surface 11 is assumed to be b. Further, the depth of the grinding relief 13 with respect to the raceway surface 11 is defined as c. Further, the depth of the grinding relief 13 with respect to the large flange surface 12a is d. Further, the width from the reference point O2 to the large flange surface 12a is defined as A. Let the width from the reference point O2 to the raceway surface 11 be B. Moreover, as shown in FIG. 3, the width that the chamfer 32 of the tapered roller 30 has in the direction along the generatrix of the large collar surface 12a is defined as RC.

図1に示す進入角a,b、ヌスミ幅A,B及び深さc,dは、研削逃げ13の形状を規定するための物理量である。ただし、研削逃げ13の軌道面11、大鍔面12aとの接続部は、前述の丸まり具合が安定しないから、進入角a,bの規定に活用することは困難である。このため、進入角a,bとして、軌道面11、大鍔面12aに対する研削逃げ13の旋削加工面の傾き角度を採用する。 The approach angles a, b, widths A, B, and depths c, d shown in FIG. 1 are physical quantities for defining the shape of the grinding relief 13. However, since the above-mentioned rounding of the connection portion between the grinding relief 13 and the raceway surface 11 and the large flange surface 12a is not stable, it is difficult to utilize it for regulating the approach angles a and b. Therefore, the inclination angle of the turning surface of the grinding relief 13 with respect to the raceway surface 11 and the large collar surface 12a is adopted as the approach angles a and b.

具体的には、研削逃げ13の進入角aは、研削逃げ13の母線の大径側直線部が大鍔面12aの内径側縁に対して成す鋭角である。研削逃げ13の進入角bは、研削逃げ13の母線の小径側直線部が軌道面11の大径側縁に対して成す鋭角である。 Specifically, the approach angle a of the grinding relief 13 is an acute angle that the large-diameter side linear portion of the generatrix of the grinding relief 13 forms with the inner diameter side edge of the large collar surface 12a. The approach angle b of the grinding relief 13 is an acute angle that the small-diameter side linear portion of the generatrix of the grinding relief 13 forms with the large-diameter side edge of the raceway surface 11 .

研削逃げ13のヌスミ幅Aは、大鍔面12aの内径側縁から大鍔面12aの母線に沿った方向に向かって基準点Oまでの長さである。研削逃げ13のヌスミ幅Bは、軌道面11の大径側縁から軌道面11の母線に沿った方向に向かって基準点Oまでの長さである。 The width A of the grinding relief 13 is the length from the inner diameter side edge of the large flange surface 12a to the reference point O2 in the direction along the generatrix of the large flange surface 12a. The width B of the grinding relief 13 is the length from the large diameter side edge of the raceway surface 11 to the reference point O2 in the direction along the generatrix of the raceway surface 11.

研削逃げ13の進入角aは、進入角bよりも大きい。研削加工において大鍔面12aの研削量(大鍔面12aの母線と直角な方向の削り代)が目標値から前後した場合、図3に示す大鍔面12aの幅Wは、研削逃げ13の進入角aに依存して変化することになる。ここで、大鍔面12aの幅Wは、大鍔面12aの母線の両端間の距離である。図示例においては、大鍔面12aの母線が直線状であるから、その母線の長さが幅Wに相当する。大鍔面12aの幅Wの変化量は、図1に示す進入角aを大きくする程に小さくすることができる。すなわち、進入角aを大きくする方が、大鍔面12aの研削量が前後した場合にヌスミ幅Aの寸法への影響が鈍感となる。 The approach angle a of the grinding relief 13 is larger than the approach angle b. When the amount of grinding of the large flange surface 12a (the amount of cutting in the direction perpendicular to the generatrix of the large flange surface 12a) deviates from the target value during the grinding process, the width W of the large flange surface 12a shown in FIG. It will change depending on the approach angle a. Here, the width W of the large flange surface 12a is the distance between both ends of the generatrix of the large flange surface 12a. In the illustrated example, since the generatrix of the large flange surface 12a is linear, the length of the generatrix corresponds to the width W. The amount of change in the width W of the large flange surface 12a can be made smaller as the approach angle a shown in FIG. 1 is increased. That is, the larger the approach angle a is, the less sensitive the influence on the size of the slit width A will be when the amount of grinding of the large flange surface 12a fluctuates.

研削逃げ13の進入角aは、20°以上50°以下であるとよい。この範囲であれば、大鍔面12aの研削量が前後しても、ヌスミ幅Aの寸法への影響が穏やかであり、ヌスミ幅Aの制御が行い易い。より好ましくは、進入角aを30°以上40°以下にするとよい。 The approach angle a of the grinding relief 13 is preferably 20° or more and 50° or less. Within this range, even if the amount of grinding of the large flange surface 12a changes or fluctuates, the influence on the size of the width A is moderate, and the width A can be easily controlled. More preferably, the approach angle a is 30° or more and 40° or less.

研削逃げ13の深さcは、軌道面11の大径側縁を基準として、軌道面11の母線を延長した仮想線と直角な方向で考えた研削逃げ13の深さである。研削逃げ13の深さdは、大鍔面12aの内径側縁を基準として、大鍔面12aの母線を延長した仮想線と直角な方向で考えた研削逃げ13の深さである。 The depth c of the grinding relief 13 is the depth of the grinding relief 13 taken in a direction perpendicular to an imaginary line extending the generatrix of the raceway surface 11 with the large-diameter side edge of the raceway surface 11 as a reference. The depth d of the grinding relief 13 is the depth of the grinding relief 13 considered in a direction perpendicular to an imaginary line extending the generatrix of the large flange surface 12a, with the inner diameter side edge of the large flange surface 12a as a reference.

研削逃げ13の深さcは、深さdよりも大きい。これは、研削逃げ13と内輪10の側面間の肉厚が薄くなることを避けるためである。この肉厚を十分に大きくするため、深さdは、0.3mm以下であることが好ましい。 The depth c of the grinding relief 13 is greater than the depth d. This is to prevent the wall thickness between the grinding relief 13 and the side surface of the inner ring 10 from becoming thin. In order to make this wall thickness sufficiently large, the depth d is preferably 0.3 mm or less.

研削逃げ13のヌスミ幅Aは、ヌスミ幅Bよりも小さい。ヌスミ幅Aをヌスミ幅Bよりも小さくすると、進入角aを進入角bよりも大きくすることに有利となる。研削逃げ13の加工は旋削で行われる。その際の切粉は、研削逃げ13に対して大鍔面12a側へ排出するよりも比較的広い空間を取れる軌道面11側の方が排出し易い。このため、切粉を軌道面11側へ排出する方が旋削加工を効率よく行える。研削逃げ13の進入角a>bかつヌスミ幅A<Bを満足することにより、旋削時に進入角b、ヌスミ幅B側で切粉の排出圧力が比較的小さくなり、切粉が軌道面11側へ排出され易くなる。このため、旋削加工性をよくし、加工コストを抑えることができる。 The clearance width A of the grinding relief 13 is smaller than the clearance width B. If the width A is smaller than the width B, it is advantageous to make the approach angle a larger than the approach angle b. The grinding relief 13 is processed by turning. The chips at this time can be more easily discharged from the raceway surface 11 side, which allows a relatively wider space, than from the grinding relief 13 toward the large flange surface 12a. For this reason, turning can be performed more efficiently by discharging the chips toward the raceway surface 11 side. By satisfying the approach angle a>b and the gap width A<B of the grinding relief 13, the discharge pressure of chips is relatively small at the approach angle b and the gap width B side during turning, and the chips are transferred to the raceway surface 11 side. It becomes easier to be discharged. Therefore, turning workability can be improved and machining costs can be reduced.

図3に示すように、円すいころ30の面取り32の幅RCは、大端面33の外径側縁から大鍔面12aの母線に沿った方向に向かって転動面31の大端側縁までの長さである。図示例では、面取り32の幅RCが、大端面33の外径側縁から基準点Oまでの長さと一致している。円すいころ30の面取り32の幅RCは、0.7mm以下である。 As shown in FIG. 3, the width RC of the chamfer 32 of the tapered roller 30 is from the outer diameter side edge of the large end surface 33 to the large end side edge of the rolling surface 31 in the direction along the generatrix of the large collar surface 12a. is the length of In the illustrated example, the width RC of the chamfer 32 matches the length from the outer diameter side edge of the large end surface 33 to the reference point O2 . The width RC of the chamfer 32 of the tapered roller 30 is 0.7 mm or less.

一方、研削逃げ13のヌスミ幅Aは、円すいころ30の面取り32の幅RCよりも小さい。このように小さなヌスミ幅Aを採用するのは、大鍔面12aの内径を小さくして図3に示すように円すいころ30の大端面33と対向する大鍔面12aの幅Wを十分に広くし、円すいころ30の大端面33と大鍔面12aの滑り接触部が大鍔面12aの内径側縁まで及ばないようにするためである。大鍔面12aの幅Wを広くすることは、円すいころ30の大端面33と大鍔面12aの滑り接触部の位置が移動しても、円すいころ30の大端面33と大鍔面12aを良好な接触状態に保つことに有利となる。ヌスミ幅Aは、例えば、0.5mm以下にすることができる。 On the other hand, the width A of the grinding relief 13 is smaller than the width RC of the chamfer 32 of the tapered roller 30. The reason why the small width A is adopted is that the inner diameter of the large flange surface 12a is made small and the width W of the large flange surface 12a facing the large end surface 33 of the tapered roller 30 is made sufficiently large as shown in FIG. However, this is to prevent the sliding contact portion between the large end surface 33 of the tapered roller 30 and the large flange surface 12a from reaching the inner diameter side edge of the large flange surface 12a. Increasing the width W of the large flange surface 12a means that even if the position of the sliding contact between the large end surface 33 of the tapered roller 30 and the large flange surface 12a moves, the large end surface 33 of the tapered roller 30 and the large flange surface 12a are This is advantageous in maintaining good contact. The width A can be, for example, 0.5 mm or less.

また、図2、図4に示すように、内輪10の中心軸CLに対して軌道面11の母線が成す鋭角をθとする。また、円すいころ30の転動面31の大端径をDwとする。これら軌道面11の傾斜角θと、転動面31の大端径Dwと、図2に示すころ長さLとの幾何的関係において、図3に示す大鍔面12aの幅Wは、次の式1を満足する値である。
W≧{Dw×(1/2)×Tanθ/(L/Dw)}・・・式1
Further, as shown in FIGS. 2 and 4, the acute angle formed by the generatrix of the raceway surface 11 with respect to the central axis CL of the inner ring 10 is θ. Further, the diameter of the large end of the rolling surface 31 of the tapered roller 30 is defined as Dw. In the geometric relationship between the inclination angle θ of the raceway surface 11, the large end diameter Dw of the rolling surface 31, and the roller length L shown in FIG. 2, the width W of the large collar surface 12a shown in FIG. This is a value that satisfies Equation 1.
W≧{Dw×(1/2)×Tanθ/(L/Dw)}...Formula 1

上記式1は、図2、図3に示す円すいころ30の大端面33と内輪10の大鍔面12aとを良好な接触状態に保てるように、適正な大鍔面12aの幅Wの下限値を決めるためのものである。すなわち、この円すいころ軸受にラジアル荷重(アキシアルとの複合では動等価荷重)が負荷されているとき、軌道面11の傾斜角θに従い、軌道面11に負荷される荷重と、大鍔面12aに負荷される荷重とに分配される。この分配の比率をTanθで表し、軸受負荷容量に関わりの深い転動面31の大端径Dwを乗ずる。通常、円すいころ軸受の運転時に負荷される荷重は、凡そ軸受負荷容量の半分以下の大きさであるから、これを考慮するために転動面31の大端径Dwに(1/2)を乗ずる。さらに、ころ長さLが長いと、前述の分配比率における軌道面11での受け率が大きくなることも考慮し、ころ長さLと転動面31の大端径Dwの関係も(L/Dw)-1として考慮に入れた。この式1により、負荷荷重に応じた大鍔面12aの幅Wの下限値を設定した。これにより、円すいころ30のスキューや、大きなモーメント荷重による内輪10の大鍔12の倒れ等が発生して大端面33と大鍔面12aの滑り接触部が大鍔外径側に上がったときにも良好な接触を保つことができる。 The above formula 1 is based on the lower limit value of the appropriate width W of the large flange surface 12a so that the large end surface 33 of the tapered roller 30 shown in FIGS. 2 and 3 and the large flange surface 12a of the inner ring 10 can be maintained in a good contact state. This is to determine. In other words, when a radial load (dynamic equivalent load when combined with an axial load) is applied to this tapered roller bearing, the load applied to the raceway surface 11 and the large flange surface 12a change according to the inclination angle θ of the raceway surface 11. The load to be applied is distributed between This distribution ratio is expressed as Tanθ, and is multiplied by the large end diameter Dw of the rolling surface 31, which is closely related to the bearing load capacity. Normally, the load applied during operation of a tapered roller bearing is about half or less of the bearing load capacity, so in order to take this into account, the large end diameter Dw of the rolling surface 31 is set by (1/2). Ride. Furthermore, considering that if the roller length L is long, the bearing rate on the raceway surface 11 in the above-mentioned distribution ratio becomes large, the relationship between the roller length L and the large end diameter Dw of the rolling surface 31 is also (L/ Dw) was taken into account as -1 . Based on this formula 1, the lower limit value of the width W of the large collar surface 12a was set according to the applied load. As a result, when the tapered rollers 30 become skewed or the large flange 12 of the inner ring 10 falls down due to a large moment load, and the sliding contact portion between the large end face 33 and the large flange surface 12a rises toward the outer diameter side of the large flange, You can also keep good contact.

なお、大鍔面12aの幅Wの上限値は、円すいころ30の大端面33を支持、案内する目的からは何mmでもよいが、好ましくは、式1で求まる下限値の3倍以下がよい。大鍔面12aの幅Wが大き過ぎる(つまり大鍔面12aの外径が大き過ぎる)と、円すいころ30の大端面33と大鍔面12aとの滑り接触部に潤滑油が届き難くなり、良好な潤滑状態が確保できなくなる。 Note that the upper limit value of the width W of the large flange surface 12a may be any number of mm for the purpose of supporting and guiding the large end surface 33 of the tapered roller 30, but it is preferably 3 times or less of the lower limit value determined by Equation 1. . If the width W of the large flange surface 12a is too large (that is, the outer diameter of the large flange surface 12a is too large), it becomes difficult for lubricating oil to reach the sliding contact area between the large end surface 33 of the tapered roller 30 and the large flange surface 12a. Good lubrication conditions cannot be ensured.

ここで、図3に示すように、大鍔面12aが径方向に対して成す鋭角を鍔面角αとする。また、大鍔面12aと円すいころ30の大端面33の接触点と基準点Oとの間での径方向の高低差を接点高さHとする。接点高さHは、円すいころ30の大端面33における基本曲率半径RBASEと、鍔面角αとの組み合わせにより、一義的に決定される。また、図2、図4に示すように、円すいころ30の転動面31の円すい角をβとする。転動面31の円すい角βは、その頂点Oを中心として転動面31の円すい状が成す中心角である。また、内輪10の大鍔面12aと円すいころ30の大端面33との接触点から円すい角βの頂点Oまで結ぶ仮想線が軌道面11の母線に対して成す鋭角をρとする。角度ρは、図3に示すように接点高さHに対応する。ここで、大鍔面が円すいころの大端面に向かって凸側又は大端面から遠ざかる凹側の曲率を持っている場合には、大鍔面の最深部もしくは最高部と大端面の接触点を結ぶ角度をρとする。 Here, as shown in FIG. 3, the acute angle that the large flange surface 12a makes with respect to the radial direction is defined as the flange surface angle α. Further, the height difference in the radial direction between the contact point between the large flange surface 12a and the large end surface 33 of the tapered roller 30 and the reference point O2 is defined as a contact height H. The contact height H is uniquely determined by the combination of the basic radius of curvature R BASE at the large end surface 33 of the tapered roller 30 and the collar surface angle α. Further, as shown in FIGS. 2 and 4, the conical angle of the rolling surface 31 of the tapered roller 30 is assumed to be β. The conical angle β of the rolling surface 31 is the central angle formed by the conical shape of the rolling surface 31 with its apex O1 as the center. Also, let ρ be the acute angle that an imaginary line connecting the contact point between the large flange surface 12a of the inner ring 10 and the large end surface 33 of the tapered roller 30 to the apex O1 of the conical angle β makes with the generatrix of the raceway surface 11. The angle ρ corresponds to the contact height H as shown in FIG. Here, if the large flange surface has a convex curvature toward the large end surface of the tapered roller or a concave curvature that moves away from the large end surface, the contact point between the deepest or highest part of the large flange surface and the large end surface should be Let the connecting angle be ρ.

大鍔面12aと円すいころ30の大端面33の接触点における周方向の滑り速度は、接点高さHに依存する。仮に、内輪10の軌道面11と大鍔面12aの仮想交点である基準点Oにおいて前述の接触点がある(接点高さH=0)であるならば、滑り速度は零であり、基準点Oからの接点高さHが高くなる程、その接触点での滑り速度が高くなる。前述のように小さなヌスミ幅Aの採用に伴い、大鍔面12aを研削逃げ13側へ広げて、接点高さHを低くすることが可能である。このため、大鍔面12aと円すいころ30の大端面33の接触点は、β/7≧ρを満足する低い位置に定められている。このように低い位置に接触点を設定することは、大鍔面12aと円すいころ30の大端面33の滑り接触部での滑り速度を低速化して大鍔面12aでの発熱を抑え、大鍔面12aの急昇温を防止することに有効である。 The sliding speed in the circumferential direction at the contact point between the large collar surface 12a and the large end surface 33 of the tapered roller 30 depends on the contact height H. If the aforementioned contact point exists at the reference point O2 , which is the virtual intersection of the raceway surface 11 of the inner ring 10 and the large collar surface 12a (contact height H=0), the sliding speed is zero and the reference point The higher the contact height H from point O2 , the higher the sliding speed at that contact point. As described above, by adopting the small width A, it is possible to widen the large flange surface 12a toward the grinding relief 13 side and lower the contact height H. Therefore, the contact point between the large flange surface 12a and the large end surface 33 of the tapered roller 30 is set at a low position that satisfies β/7≧ρ. Setting the contact point at such a low position reduces the sliding speed at the sliding contact portion between the large flange surface 12a and the large end surface 33 of the tapered roller 30, suppresses heat generation on the large flange surface 12a, and This is effective in preventing a sudden rise in temperature of the surface 12a.

図4に示す円すいころ30の大端面33における設定曲率半径Rと、転動面31の円すい角βの頂点Oから内輪10の大鍔面12aまでの基本曲率半径RBASEとの比R/RBASEや、大端面33の実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rについては、本出願人が特許文献3で開示した数値範囲を採用することが可能である。これらR/RBASE、RACTUAL/Rの詳細や技術的意義は特許文献3に開示の通りであるので、この実施形態の説明では、R/RBASE、RACTUAL/Rの要旨を説明するに留める。 The ratio R/ Regarding R BASE and the ratio R ACTUAL /R of the actual radius of curvature R ACTUAL of the large end face 33 to the set radius of curvature R, it is possible to adopt the numerical range disclosed by the present applicant in Patent Document 3. The details and technical significance of these R/R BASE and R ACTUAL /R are as disclosed in Patent Document 3, so in the description of this embodiment, the gist of R/R BASE and R ACTUAL /R will be explained. stop.

すなわち、図4に示す円すいころ30の大端面33の設定曲率半径Rは、設計上、大端面33に定められた理想的な球面でできていたときのR寸法である。図5に示すように、大端面33の端部の点P、P、P、P、点P、P間の中点P、点P、P間の中点P、点P、P、Pを通る曲率半径R152、点P、P、Pを通る曲率半径R364および点P、P、P、Pを通る曲率半径R1564を考えると、理想的には、R=R152=R364=R1564である。点P、Pは、大端面33と面取り32との接続点である。点P、Pは、大端面33と逃げ部35との接続点である。実際には、図6に示すように、研削加工時に大端面33の両端がだれることで、大端面33全体のR1564に対する片側のR152、R364は、それぞれ同一にできず、小さくできてしまう。この大端面33の加工後の片側のR152、R364を実曲率半径RACTUALという。 That is, the set radius of curvature R of the large end surface 33 of the tapered roller 30 shown in FIG. 4 is the R dimension when the large end surface 33 is made of an ideal spherical surface in terms of design. As shown in FIG. 5, points P 1 , P 2 , P 3 , P 4 at the ends of the large end surface 33, a midpoint P 5 between points P 1 and P 2 , and a midpoint between points P 3 and P 4 . P 6 , radius of curvature R 152 passing through points P 1 , P 5 , P 2 , radius of curvature R 364 passing through points P 3 , P 6 , P 4 and radius of curvature passing through points P 1 , P 5 , P 6 , P 4 Considering the radius R 1564 , ideally R=R 152 =R 364 =R 1564 . Points P 1 and P 4 are connection points between the large end surface 33 and the chamfer 32 . Points P 2 and P 3 are connection points between the large end surface 33 and the relief portion 35 . In reality, as shown in FIG. 6, both ends of the large end surface 33 sag during the grinding process, so that R 152 and R 364 on one side cannot be made equal to R 1564 of the entire large end surface 33, and cannot be made smaller. I end up. R 152 and R 364 on one side of the large end face 33 after processing is referred to as the actual radius of curvature R ACTUAL .

設定曲率半径Rおよび実曲率半径RACTUALは、次のようにして求める。図6における曲率半径R1564は、図5に示す点P、P、P、Pの4点を通る近似円である。R152=R364=R1564の測定は、「株式会社ミツトヨ製表面粗さ測定機
サーフテスト」の機種名:SV-3100を用いて測定した。測定方法は、上記測定器を用いて円すいころ30の大端面33の母線に沿った方向の形状を出し、点P、P、P、Pをプロットした後、中点Pおよび中点Pをプロットした。曲率半径R152は、点P、P、Pを通る円弧曲線半径として算出した(曲率半径R364も同様である)。曲率半径R1564は、「複数回入力」というコマンドを用いて4点を取った値で近似円弧曲線半径を算出した。大端面33の母線に沿った方向の形状は、直径方向に1回の測定とした。
The set radius of curvature R and the actual radius of curvature R ACTUAL are determined as follows. The radius of curvature R 1564 in FIG. 6 is an approximate circle passing through the four points P 1 , P 5 , P 6 , and P 4 shown in FIG. 5 . R 152 = R 364 = R 1564 was measured using "Surf Test, a surface roughness measuring device manufactured by Mitutoyo Co., Ltd." model name: SV-3100. The measurement method is to obtain the shape of the large end face 33 of the tapered roller 30 in the direction along the generatrix line using the measuring instrument, plot the points P 1 , P 2 , P 3 , and P 4 , and then plot the midpoints P 5 and P 4 . The midpoint P6 was plotted. The radius of curvature R 152 was calculated as the radius of the circular arc passing through the points P 1 , P 5 , and P 2 (the same applies to the radius of curvature R 364 ). For the radius of curvature R 1564 , the approximate radius of the arc curve was calculated using a value obtained by taking four points using the command "input multiple times." The shape of the large end surface 33 in the direction along the generatrix was measured once in the diameter direction.

図3に示す内輪10の大鍔面12aは、図6に示す円すいころ30の大端面33における片側の曲率半径R152、曲率半径R364の部分としか滑り接触しない。実際の大端面33と大鍔面12aの滑り接触は、設定曲率半径R(R1564)よりも小さい実曲率半径RACTUAL(R152,R364)となる。この分、実際の大端面33と大鍔面12aとの接触面圧及び円すいころ30のスキュー角は、それぞれの設計上の理想値に比して大きくなる。油膜が十分でない環境でスキュー角や接触面圧が大きくなると、大端面33と大鍔面12aの滑り接触が不安定になり、油膜パラメータが低下する。油膜パラメータが1を切ると、大端面33と大鍔面12aは金属接触が始まる境界潤滑となり、焼付き発生の懸念が高まる。ここで、油膜パラメータとは、弾性流体潤滑理論により求まる油膜厚さhと大端面33と大鍔面12aの二乗平均粗さの合成粗さσとの比で定義されるΛ(=h/σ)である。実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲の検証には、大端面33と大鍔面12a間の潤滑油使用温度のピーク時における潤滑状態の厳しさのレベルが影響する。 The large flange surface 12a of the inner ring 10 shown in FIG. 3 slides into contact only with a portion of the large end surface 33 of the tapered roller 30 shown in FIG. 6 having a radius of curvature R 152 and a radius of curvature R 364 on one side. The actual sliding contact between the large end surface 33 and the large brim surface 12a has an actual radius of curvature R ACTUAL (R 152 , R 364 ) smaller than the set radius of curvature R (R 1564 ). Accordingly, the actual contact surface pressure between the large end face 33 and the large flange surface 12a and the skew angle of the tapered rollers 30 become larger than their respective design ideal values. If the skew angle or contact surface pressure increases in an environment where the oil film is insufficient, the sliding contact between the large end surface 33 and the large flange surface 12a becomes unstable, and the oil film parameter decreases. When the oil film parameter is less than 1, the large end face 33 and the large flange face 12a become boundary lubrication where metal contact begins, increasing the risk of seizure. Here, the oil film parameter is Λ (= h/σ ). Verification of the practical range of the ratio between the actual radius of curvature R ACTUAL and the set radius of curvature R is influenced by the level of severity of the lubrication condition at the peak of the lubricant operating temperature between the large end face 33 and the large collar face 12a. do.

大鍔面12aの母線形状が直線状で一定である場合、大端面33と大鍔面12a間の潤滑状態は、実曲率半径RACTUALと潤滑油の使用温度により決まり、トランスミッションやデファレンシャルの用途では、使用される潤滑油が基本的に決まっているので、その潤滑油の粘度も決まってくる。その潤滑油使用温度のピーク時の最大条件として、120℃で3分(180秒)間継続する極めて厳しい温度条件を想定し、この想定ピーク温度条件に潤滑油の粘度特性を加味した潤滑状態において急昇温を生じない実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rを設定するための閾値は、つば部潤滑係数として求められる。つば部潤滑係数=120℃粘度×(油膜厚さh)2/180秒
で求められる。その油膜厚さhは、Karnaの式から求められる。大端面33と大鍔面12aとの接触面圧、油膜厚さh、スキュー角、油膜パラメータの観点から、つば部潤滑係数の値が8×10-9(閾値)を超えるようにRACTUAL/Rを設定すると実用可能である。
When the generatrix shape of the large flange surface 12a is linear and constant, the lubrication state between the large end surface 33 and the large flange surface 12a is determined by the actual radius of curvature RACTUAL and the operating temperature of the lubricating oil, and in applications such as transmissions and differentials. Since the lubricating oil to be used is basically determined, the viscosity of that lubricating oil is also determined. Assuming an extremely severe temperature condition lasting 3 minutes (180 seconds) at 120°C as the maximum condition of the lubricating oil operating temperature at its peak, in the lubrication state that takes into account the viscosity characteristics of the lubricating oil to this assumed peak temperature condition. The threshold value for setting the ratio R ACTUAL /R of the actual radius of curvature R ACTUAL and the set radius of curvature R that does not cause a sudden temperature rise is determined as the flange lubrication coefficient. Rim lubrication coefficient = 120°C viscosity x (oil film thickness h) 2 /180 seconds. The oil film thickness h is determined from Karna's equation. From the viewpoint of the contact surface pressure between the large end surface 33 and the large collar surface 12a , the oil film thickness h, the skew angle, and the oil film parameters, R ACTUAL / It is practical if R is set.

トランスミッションによく使用される潤滑油であるタービン油ISO粘度グレード VG32の場合、120℃粘度は7.7cSt(=7.7mm2/s)である。VG32の
120℃粘度は低く、想定ピーク温度条件に潤滑油の粘度を加味した潤滑状態は極めて厳しい条件となる。このため、前述のRACTUAL/Rは、0.8以上が好ましい。また、デファレンシャルによく使用されるギヤ潤滑油であるSAE 75W-90の場合、RACTUAL/Rは、0.5以上が好ましい。
In the case of turbine oil ISO viscosity grade VG32, which is a lubricating oil often used in transmissions, the 120°C viscosity is 7.7 cSt (=7.7 mm 2 /s). The 120° C. viscosity of VG32 is low, and the lubrication conditions are extremely severe when the viscosity of the lubricating oil is taken into account in addition to the assumed peak temperature conditions. For this reason, the aforementioned R ACTUAL /R is preferably 0.8 or more. Further, in the case of SAE 75W-90, which is a gear lubricating oil often used in differentials, R ACTUAL /R is preferably 0.5 or more.

図4に示す円すいころ30の大端面33の設定曲率半径Rと、転動面31の円すい角βの頂点Oから内輪10の大鍔面12aまでの基本曲率半径RBASEとの比R/RBASEは、図7に示すように、大端面33と大鍔面12aの滑り接触部における油膜形成能力に関係する。大鍔面12aと大端面33の滑り接触部における最大ヘルツ応力pは、R/RBASEが大きくなる程、減少する。また、R/RBASEが小さくなる程、スキュー角が大きくなる。 The ratio of the set radius of curvature R of the large end face 33 of the tapered roller 30 shown in FIG. As shown in FIG. 7, R BASE is related to the ability to form an oil film at the sliding contact portion between the large end surface 33 and the large flange surface 12a. The maximum Hertzian stress p at the sliding contact portion between the large brim surface 12a and the large end surface 33 decreases as R/R BASE increases. Furthermore, the smaller the R/R BASE , the larger the skew angle.

図4に示す大端面33と大鍔面12aとの滑り接触部に形成される油膜厚さをtとすると、図7の縦軸は、R/RBASEが0.76のときの油膜厚さtに対する比t/tで示す。図7から、R/RBASEが0.76のときに油膜厚さtが最大となり、R/RBASEが0.9を越えると、油膜厚さtが急激に減少する。油膜厚さの最適値という面では、R/RBASEは、0.75以上0.87以下であることが特に好ましい。 If the thickness of the oil film formed at the sliding contact portion between the large end surface 33 and the large flange surface 12a shown in FIG. 4 is t, then the vertical axis in FIG. 7 is the oil film thickness when R/R BASE is 0.76. It is expressed as the ratio t/t 0 to t 0 . From FIG. 7, the oil film thickness t reaches a maximum when R/R BASE is 0.76, and when R/R BASE exceeds 0.9, the oil film thickness t rapidly decreases. In terms of the optimum value of the oil film thickness, it is particularly preferable that R/R BASE is 0.75 or more and 0.87 or less.

この円すいころ軸受では、前述のように研削逃げ13のヌスミ幅Aを小さくして大鍔面12aの幅Wを研削逃げ13側へ広く取り、円すいころ30の大端面33との接触状態を良好に保てるように大鍔面12aの最適化を図ったことから、R/RBASE、RACTUAL/Rのそれぞれについて許容可能な範囲を広げることも可能である。 In this tapered roller bearing, as described above, the width A of the grinding relief 13 is made small and the width W of the large collar surface 12a is widened toward the grinding relief 13 side, thereby improving the contact condition with the large end surface 33 of the tapered roller 30. Since the large flange surface 12a has been optimized so as to maintain R/R BASE and R ACTUAL /R, it is also possible to widen the allowable ranges for each of R/R BASE and R ACTUAL /R.

具体的には、R/RBASEは、0.70以上0.95以下でよく、好ましくは0.70以上0.90以下であり、0.75以上0.87以下であることが最も好ましい。 Specifically, R/R BASE may be 0.70 or more and 0.95 or less, preferably 0.70 or more and 0.90 or less, and most preferably 0.75 or more and 0.87 or less.

また、RACTUAL/Rは、0.3以上でよく、好ましくは0.5以上であり、最も好ましくは0.8以上である。RACTUAL/Rが0.3以上0.5未満の範囲となる出来上がりの円すいころ30について、円すいころ30のスキュー、大きなモーメント荷重による大鍔12の倒れ等、滑り接触部が移動するような多少の外乱があったとしても、前述のような大鍔面12aの最適化で円すいころ30の大端面33との良好な接触を保つことができる。 Further, R ACTUAL /R may be 0.3 or more, preferably 0.5 or more, and most preferably 0.8 or more. Regarding the finished tapered roller 30 in which R ACTUAL /R is in the range of 0.3 or more and less than 0.5, there may be some slight movement of the sliding contact part, such as skew of the tapered roller 30 or collapse of the large flange 12 due to a large moment load. Even if there is a disturbance, good contact with the large end surface 33 of the tapered roller 30 can be maintained by optimizing the large collar surface 12a as described above.

従い、複数の円すいころ30の中に、R/RBASEが0.70以上0.95以下、RACTUAL/Rが0.3以上0.5未満となる出来上がりの円すいころ30が含まれることを許容して、円すいころ30の歩留まりを向上させることができる。 Therefore, among the plurality of tapered rollers 30, it is assumed that finished tapered rollers 30 with R/R BASE of 0.70 or more and 0.95 or less and R ACTUAL /R of 0.3 or more and less than 0.5 are included. By allowing this, the yield of tapered rollers 30 can be improved.

前述の油膜パラメータは、円すいころ30の大端面33と内輪10の大鍔面12aの合成粗さに依存する。大端面33と大鍔面12aを鏡面仕上げとすることにより、油膜形成をよくして良好な油膜厚さを保つことができる。具体的には、大鍔面12aの表面粗さは、0.1μmRa以下であり、好ましくは0.08μmRa以下である。また、大端面33の表面粗さは、0.12μmRa以下であり、好ましくは0.1μmRa以下である。ここで、表面粗さは、JIS規格のB0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」で規定された算術平均粗さRaのことをいう。 The oil film parameter described above depends on the combined roughness of the large end surface 33 of the tapered rollers 30 and the large flange surface 12a of the inner ring 10. By mirror-finishing the large end surface 33 and the large flange surface 12a, it is possible to improve oil film formation and maintain a good oil film thickness. Specifically, the surface roughness of the large flange surface 12a is 0.1 μmRa or less, preferably 0.08 μmRa or less. Further, the surface roughness of the large end surface 33 is 0.12 μmRa or less, preferably 0.1 μmRa or less. Here, surface roughness refers to the arithmetic mean roughness Ra specified in JIS standard B0601:2013 "Geometric Product Specification (GPS) - Surface Texture: Contour Curve Method - Terms, Definitions and Surface Texture Parameters" means.

また、内輪10の大鍔面12aの外径側縁に円すいころ30の大端面33が滑り接触すること(エッジ当たり)を防ぐため、図1に示す大鍔面12a及び鍔側面取り12c間に逃げ面を形成してもよい。その変更例を図8に示す。同図に示すように、大鍔面12aと鍔側面取り12cとの間に逃げ面12dが形成されている。逃げ面12dは、大鍔面12aの外径側縁から鍔側面取り12cに向かう程に外径面12b側へ曲がっている。逃げ面12dの母線は、曲率半径Rdの円孤線状になっている。 In addition, in order to prevent the large end surfaces 33 of the tapered rollers 30 from sliding into contact (edge contact) with the outer diameter side edge of the large flange surface 12a of the inner ring 10, a space between the large flange surface 12a and the flange chamfer 12c shown in FIG. A relief surface may also be formed. An example of the modification is shown in FIG. As shown in the figure, a relief surface 12d is formed between the large collar surface 12a and the collar side chamfer 12c. The flank surface 12d is curved toward the outer diameter surface 12b from the outer diameter side edge of the large collar surface 12a toward the collar side chamfer 12c. The generatrix of the flank surface 12d is in the shape of a circular arc line with a radius of curvature Rd.

ここで、大鍔面12aの母線を延長した仮想線と、鍔側面取り12cの母線を延長した仮想線との仮想交点を考え、当該仮想交点から大鍔面12aの母線に沿った方向に向かって外径面12bと同径の位置までの距離を鍔側面取り12bの幅Lとし、大鍔面12aの外径側縁から大鍔面12aの母線に沿った方向に向かって当該仮想交点までの距離を逃げ面12dの幅Lとする。逃げ面12dの幅Lが小さくなり過ぎるのを防ぐため、逃げ面12dの曲率半径Rdは、2mm以下であることが好ましい。また、逃げ面12dの幅Lを稼ぐため、鍔側面取り12cの幅Lは、1mm以下であることが好ましい。 Here, consider an imaginary intersection between an imaginary line extending the generatrix of the large tsuba surface 12a and an imaginary line extending the generatrix of the collar side chamfer 12c, and move from the imaginary intersection in a direction along the generatrix of the large tsuba surface 12a. The width L1 of the flange chamfer 12b is defined as the distance to the position with the same diameter as the outer diameter surface 12b. The distance up to this point is defined as the width L2 of the flank surface 12d. In order to prevent the width L2 of the flank surface 12d from becoming too small, the radius of curvature Rd of the flank surface 12d is preferably 2 mm or less. Furthermore, in order to increase the width L2 of the flank 12d, the width L1 of the collar chamfer 12c is preferably 1 mm or less.

また、図1、図3、図8に示すような内輪10の大鍔面12aの最適化と、内輪10の熱処理特性との組合せによって更なる機能向上を図ることが好ましい。すなわち、円すいころ30の大端面33と大鍔面12aの滑り接触における潤滑条件が厳しい場合、金属接触して表面損傷が懸念されるため、大鍔面12a側に表面損傷を遅延させる特性をもたせるとよい。 Further, it is preferable to further improve the function by optimizing the large flange surface 12a of the inner ring 10 as shown in FIGS. 1, 3, and 8, and by combining the heat treatment characteristics of the inner ring 10. That is, if the lubrication conditions in the sliding contact between the large end surface 33 of the tapered roller 30 and the large flange surface 12a are severe, there is a risk of surface damage due to metal contact, so the large flange surface 12a side is provided with characteristics that delay surface damage. Good.

具体的には、内輪10の大鍔面12aにおける旧オーステナイト結晶粒の粒度番号が6番以上であるとよい。ここで、旧オーステナイト結晶粒の粒度番号は、JIS規格のG0551:2013「鋼-結晶粒度の顕微鏡試験方法」として規定されたものをいう。旧オーステナイト結晶粒は、焼入れ後におけるオーステナイトの結晶粒のことをいう。旧オーステナイトの結晶粒の境目(粒界)を旧オーステナイト結晶粒界といい、その旧オーステナイト結晶粒界に囲まれたものが旧オーステナイト結晶粒である。旧オーステナイト結晶粒の粒度が細かくなる(粒度番号が大きくなる)程、その結晶粒界により損傷の進行を遅らせることが可能となる。このため、大鍔面12aのような滑り接触する金属母材組織には、粒度番号6番以上が好適であり、10番以上がより好ましく、11番以上がさらに好ましい。 Specifically, it is preferable that the grain size number of the prior austenite crystal grains in the large flange surface 12a of the inner ring 10 is No. 6 or higher. Here, the grain size number of the old austenite grain is defined as JIS standard G0551:2013 "Steel - Microscopic test method for grain size". Prior austenite crystal grains refer to austenite crystal grains after quenching. The boundaries (grain boundaries) between crystal grains of prior austenite are called prior austenite grain boundaries, and those surrounded by the prior austenite grain boundaries are prior austenite grains. The finer the grain size of the prior austenite crystal grains (the larger the grain size number), the more the progress of damage can be delayed by the grain boundaries. For this reason, for the metal base material structure in sliding contact such as the large flange surface 12a, grain size number 6 or higher is suitable, grain size number 10 or higher is more preferred, and grain size number 11 or higher is even more preferred.

また、内輪10の大鍔面12aが、窒素含有量0.05wt%以上の窒化層によって形成されているとよく、あるいは、窒素侵入深さ0.1mm以上であるとよい。窒素含有量0.05wt%以上の窒化層は、その窒素富化効果により、焼き戻し軟化抵抗性を有する。このため、大鍔面12aの滑り接触での局部発熱への抵抗性が高まる。窒化層は、大鍔面12aの表層に形成されている窒素含有量を増加した層であって、例えば浸炭窒化、窒化、浸窒などの処理によって実現される。窒化層における窒素含有量は、好ましくは0.1wt%以上0.7wt%以下である。窒素含有量が0.1wt%以上であれば特に異物混入条件での転動寿命向上を期待でき、0.7wt%を超えると、ボイドと呼ばれる空孔ができたり、残留オーステナイトが多くなりすぎて硬度が出なくなったりして短寿命の懸念が高まる。窒素含有量は、研削後の大鍔面12aの表層10μmにおける値であり、例えばEPMA(波長分散型X線マイクロアナライザ)で測定することができる。 Further, the large flange surface 12a of the inner ring 10 is preferably formed of a nitrided layer with a nitrogen content of 0.05 wt% or more, or the nitrogen penetration depth is preferably 0.1 mm or more. A nitrided layer with a nitrogen content of 0.05 wt% or more has temper softening resistance due to its nitrogen enrichment effect. Therefore, resistance to local heat generation due to sliding contact of the large flange surface 12a is increased. The nitrided layer is a layer with increased nitrogen content formed on the surface layer of the large flange surface 12a, and is realized by, for example, treatments such as carbonitriding, nitriding, and nitriding. The nitrogen content in the nitrided layer is preferably 0.1 wt% or more and 0.7 wt% or less. If the nitrogen content is 0.1wt% or more, it can be expected that the rolling life will be improved, especially under conditions of foreign matter contamination, but if it exceeds 0.7wt%, pores called voids may be formed or there may be too much retained austenite. There is a growing concern that the hardness will be lost and the lifespan will be shortened. The nitrogen content is a value in the surface layer 10 μm of the large flange surface 12a after grinding, and can be measured using, for example, an EPMA (wavelength dispersive X-ray microanalyzer).

図2に示す内輪10、外輪20および円すいころ30は、高炭素クロム軸受鋼(例えば、SUJ2材)からなる。これら内輪10、外輪20および円すいころ30には、窒化層を形成するため熱処理を施している。この熱処理方法は、特許文献3に開示の方法でもよいし、他の方法でもよい。内輪10及び外輪20および円すいころ30の材料は、高炭素クロム軸受鋼に限定されない。例えば、内輪10および外輪20は、クロム鋼、クロムモリブデン鋼などの浸炭鋼とし、熱処理として従来からある浸炭焼入れ焼戻しを適用してもよい。 The inner ring 10, outer ring 20, and tapered rollers 30 shown in FIG. 2 are made of high carbon chromium bearing steel (for example, SUJ2 material). These inner ring 10, outer ring 20, and tapered rollers 30 are subjected to heat treatment to form a nitrided layer. This heat treatment method may be the method disclosed in Patent Document 3, or may be another method. The materials of the inner ring 10, outer ring 20, and tapered rollers 30 are not limited to high carbon chromium bearing steel. For example, the inner ring 10 and the outer ring 20 may be made of carburized steel such as chromium steel or chromium molybdenum steel, and conventional carburizing, quenching and tempering may be applied as the heat treatment.

この円すいころ軸受の有効性を検証する試験を実施した。その第1試験における検証条件と試験品の基本仕様は、次の通りである(以下、適宜、図1~図3を参照)。
<検証条件>
・ 試験軸受 : 型番32007X(JISミリ系標準の円すいころ軸受)
・ 軸受サイズ: φ35×φ62×18
・ 潤滑油 : タービン油 ISO VG32(粘度32mm/s@40
℃、5.5mm/s@100℃)
・ 荷重条件 : ラジアル荷重=0.3Cr(Crは基本動定格荷重)
・ 回転速度 : 4000r/min
・ 潤滑油量 : 滴下 給油量 8 mL/min
<試験品の出来栄え>
・ RACTUAL/R = 0.54
・ 大鍔面12aの幅W = 1.69
・ 大鍔面12aの表面粗さ = 0.039μmRa
・ 大端面33の表面粗さ = 0.032μmRa
・ R/RBASE = 0.75
Tests were conducted to verify the effectiveness of this tapered roller bearing. The verification conditions and basic specifications of the test product in the first test are as follows (see FIGS. 1 to 3 as appropriate below).
<Verification conditions>
・Test bearing: Model number 32007X (JIS metric standard tapered roller bearing)
・Bearing size: φ35×φ62×18
・ Lubricating oil: Turbine oil ISO VG32 (viscosity 32mm 2 /s @ 40
°C, 5.5 mm 2 /s @ 100 °C)
・ Load conditions: Radial load = 0.3Cr (Cr is basic dynamic load rating)
・Rotation speed: 4000r/min
・Lubricating oil amount: Dripping oil amount 8 mL/min
<Quality of test product>
RACTUAL /R=0.54
- Width W of large tsuba surface 12a = 1.69
・Surface roughness of large flange surface 12a = 0.039μmRa
・Surface roughness of large end surface 33 = 0.032μmRa
・R/R BASE = 0.75

第1試験では、前述の基本仕様に加え、以下のように、円すい角βと角度ρの比を一定として、円すいころ30の面取り32の幅RCと、研削逃げ13のヌスミ幅Aとを異ならせた様々な仕様違いを評価した。それらの評価結果を表1に示す。 In the first test, in addition to the above-mentioned basic specifications, the width RC of the chamfer 32 of the tapered roller 30 and the groove width A of the grinding relief 13 were set to be different, with the ratio of the conical angle β and the angle ρ being constant, as shown below. We evaluated various differences in specifications. Table 1 shows the evaluation results.

Figure 2023155324000002
Figure 2023155324000002

上記表1に示すように、β/ρが8.0であるとき、面取り32の幅RC≦0.69mmかつヌスミ幅A<幅RCである試験品1~3では、厳しい潤滑条件でも温度上昇を抑えて十分な軸受寿命を得ることができる。試験品4では、幅RCを試験品3よりも小さい0.65mmとしたが、ヌスミ幅Aを幅RCよりも大きな0.77mmとしたことで、昇温し易くなるも、軸受寿命に悪影響を及ぼす程の温度にならない。幅RCをさらに小さくすると共にヌスミ幅Aをさらに大きくした試験品5、6では、昇温抑制ができず、軸受寿命を期待できない。つまり、β/ρ=8.0(β/8=ρ)のとき、幅RCを0.7mm以下とし、かつヌスミ幅A<幅RCにすることは、厳しい潤滑条件でも温度上昇を抑えることに有効であると考えられる。 As shown in Table 1 above, when β/ρ is 8.0, the temperature rises even under severe lubrication conditions for test products 1 to 3 where the width RC of the chamfer 32 is 0.69 mm and the width A is less than the width RC. It is possible to suppress this and obtain sufficient bearing life. In test sample 4, the width RC was set to 0.65 mm, which is smaller than that of test sample 3, but the Nusumi width A was set to 0.77 mm, which is larger than width RC, which makes it easier to raise the temperature, but does not have a negative impact on the bearing life. The temperature is not high enough to cause damage. In test specimens 5 and 6 in which the width RC was further reduced and the width A was further increased, temperature rise could not be suppressed, and bearing life could not be expected. In other words, when β/ρ = 8.0 (β/8 = ρ), setting the width RC to 0.7 mm or less and making the Nusumi width A < width RC will suppress the temperature rise even under severe lubrication conditions. It is considered to be effective.

第2試験における検証条件と試験品の基本仕様は、次の通りである。
<検証条件>
・ 試験軸受 : 型番32007X(JISミリ系標準の円すいころ軸受)
・ 軸受サイズ: φ35×φ62×18
・ 潤滑油 : タービン油 ISO VG32(粘度32mm/s@40
℃、5.5mm/s@100℃)
・ 荷重条件 : ラジアル荷重=0.3Cr(Crは基本動定格荷重)
・ 回転速度 : 4000r/min
・ 潤滑油量 : 滴下 給油量 8 mL/min
<試験品の出来栄え>
・ RACTUAL/R = 0.61
・ 大鍔面12aの幅W = 1.71
・ 大鍔面12aの表面粗さ = 0.023μmRa
・ 大端面33の表面粗さ = 0.025μmRa
・ R/RBASE = 0.76
The verification conditions and basic specifications of the test product in the second test are as follows.
<Verification conditions>
・Test bearing: Model number 32007X (JIS metric standard tapered roller bearing)
・Bearing size: φ35×φ62×18
・ Lubricating oil: Turbine oil ISO VG32 (viscosity 32mm 2 /s @ 40
°C, 5.5 mm 2 /s @ 100 °C)
・ Load conditions: Radial load = 0.3Cr (Cr is basic dynamic load rating)
・Rotation speed: 4000r/min
・Lubricating oil amount: Dripping oil amount 8 mL/min
<Quality of test product>
RACTUAL /R=0.61
- Width W of large tsuba surface 12a = 1.71
・Surface roughness of large flange surface 12a = 0.023μmRa
・Surface roughness of large end surface 33 = 0.025μmRa
・R/R BASE = 0.76

第2試験では、前述の基本仕様に加え、以下のように、ヌスミ幅Aを一定として、円すいころ30の面取り32の幅RCと、円すい角βと角度ρの比とを異ならせた様々な仕様違いを評価した。それらの評価結果を表2に示す。 In the second test, in addition to the above-mentioned basic specifications, various tests were carried out in which the width RC of the chamfer 32 of the tapered roller 30 and the ratio of the cone angle β to the angle ρ were varied while keeping the width A constant. Differences in specifications were evaluated. Table 2 shows the evaluation results.

Figure 2023155324000003
Figure 2023155324000003

上記表2に示すように、ヌスミ幅Aが0.7mmのとき、面取り32の幅RC≦0.65mmかつβ/ρが7.1以上である試験品7~9では、厳しい潤滑条件でも温度上昇を抑えて十分な軸受寿命を得ることができる。試験品10では、幅RCを試験品7~9よりも小さい0.55mmにしたが、β/ρを試験品7~9よりも小さい6.7としたことで、昇温し易くなるも、軸受寿命に悪影響を及ぼす程の温度にならない。幅RCをさらに小さくすると共にβ/ρをさらに小さくした試験品11、12では、昇温抑制ができず、軸受寿命を期待できない。つまり、ヌスミ幅Aが0.7mmのとき、幅RCを0.7mm未満とし、かつβ/ρ≧7(β/7≧ρ)にすることは、厳しい潤滑条件でも温度上昇を抑えることに有効であると考えられる。 As shown in Table 2 above, when the width A is 0.7 mm, the test products 7 to 9, in which the width RC of the chamfer 32 is 0.65 mm and β/ρ is 7.1 or more, can be heated even under severe lubrication conditions. It is possible to suppress the rise and obtain sufficient bearing life. In test product 10, the width RC was set to 0.55 mm, which is smaller than test products 7 to 9, but β/ρ was set to 6.7, which is smaller than test products 7 to 9, making it easier to increase the temperature. The temperature should not reach a level that would adversely affect bearing life. In test specimens 11 and 12 in which the width RC was further reduced and β/ρ was further reduced, temperature rise could not be suppressed, and a long bearing life could not be expected. In other words, when the width A is 0.7 mm, setting the width RC to less than 0.7 mm and making β/ρ≧7 (β/7≧ρ) is effective in suppressing temperature rise even under severe lubrication conditions. It is thought that.

第1試験の結果と第2試験の結果を併せて考えると、幅RCを0.7mm以下かつヌスミ幅A<幅RCとし、さらにβ/7≧ρとすることは、厳しい潤滑条件でも温度上昇を抑えることに特に有効であると考えられる。 Considering the results of the first test and the second test together, setting the width RC to 0.7 mm or less, Nusumi width A < width RC, and β/7 ≥ ρ means that the temperature will increase even under severe lubrication conditions. It is considered to be particularly effective in suppressing

この円すいころ軸受は、上述のように、円すいころ30の面取り32の幅RCを0.7mm以下、かつ研削逃げのヌスミ幅A<幅RCという特に小さな寸法としたことにより、大鍔面12aの幅Wを広くし、円すいころ30の大端面33を受けるのに十分な幅にすることができる。このため、大鍔面12aと大端面33との接触関係の最適化を図り、大鍔面12aと大端面33との間で作用するくさび効果を良好に発揮させ、大鍔面12aと大端面33の滑り接触部での油膜形成能力を向上させることができる。 As described above, this tapered roller bearing has a particularly small dimension in which the width RC of the chamfer 32 of the tapered roller 30 is 0.7 mm or less, and the clearance width A<width RC of the grinding relief, so that the large flange surface 12a The width W can be made wide enough to receive the large end surface 33 of the tapered roller 30. For this reason, the contact relationship between the large flange surface 12a and the large end surface 33 is optimized, and the wedge effect acting between the large flange surface 12a and the large end surface 33 is well exerted, and the large flange surface 12a and the large end surface The ability to form an oil film at the sliding contact portion of No. 33 can be improved.

また、この円すいころ軸受は、円すいころ30の円すい角β/7≧角度ρであるので、内輪10の大鍔面12aと大端面33の基準点Oに対する径方向の接点高さHが低く、大鍔面12aと大端面33の滑り接触部での滑り速度の上昇を防ぎ、大鍔面12aの発熱量を抑えて急昇温を防止することができる。 In addition, in this tapered roller bearing, since the conical angle β/7 of the tapered rollers 30≧the angle ρ, the radial contact height H of the large flange surface 12a of the inner ring 10 and the large end surface 33 with respect to the reference point O2 is low. It is possible to prevent an increase in the sliding speed at the sliding contact portion between the large flange surface 12a and the large end surface 33, suppress the amount of heat generated by the large flange surface 12a, and prevent a sudden temperature rise.

このように、この円すいころ軸受は、内輪10の大鍔面12aと円すいころ30の大端面33との接触関係の最適化を図り、滑り接触部での油膜形成能力を向上させ、その滑り接触部での滑り速度の上昇を防ぐことが可能なため、厳しい潤滑条件で円すいころ軸受が使用される場合でも急昇温を防いで軸受を円滑に回転させることができる。 In this way, this tapered roller bearing optimizes the contact relationship between the large flange surface 12a of the inner ring 10 and the large end surface 33 of the tapered rollers 30, improves the ability to form an oil film at the sliding contact part, and improves the sliding contact. Since it is possible to prevent the sliding speed from increasing at the parts, even when tapered roller bearings are used under severe lubrication conditions, sudden temperature rises can be prevented and the bearings can rotate smoothly.

例えば、特に潤滑条件が厳しく、大鍔面12aと大端面33の滑り接触部の潤滑が境界膜程度である場合には、大鍔面12a側が摩耗することも考えられる。仮に、大鍔面12aの摩耗が研削逃げ13まで到達して大端面33と大鍔面12aの内径側縁が角当たりとなって大きな応力集中が生じ、円すいころ30の滑り挙動に不安定さが生じ、急昇温の懸念が生じる。これに対し、この円すいころ軸受では、大鍔面12aが摩耗したとしても、大鍔面12aの幅Wが広く、大端面33と十分に対向させられ、しかも研削逃げ13(ヌスミ幅A)が小さいため、大鍔面12aの摩耗が研削逃げ13との境界(大鍔面12aの内径側縁)まで到達せず、大鍔面12aの内径側の端部領域が保たれるため、このような特に潤滑条件が厳しい場合でも大鍔面12aと大端面33が適正に接触する状態を保つことができる。 For example, if the lubrication conditions are particularly severe and the lubrication of the sliding contact portion between the large flange surface 12a and the large end surface 33 is at the level of a boundary film, it is possible that the large flange surface 12a side will wear out. If the wear of the large flange surface 12a reaches the grinding relief 13 and the large end surface 33 and the inner diameter side edge of the large flange surface 12a come into contact with each other, a large stress concentration occurs, causing instability in the sliding behavior of the tapered rollers 30. occurs, raising concerns about rapid temperature rise. On the other hand, in this tapered roller bearing, even if the large flange surface 12a wears out, the width W of the large flange surface 12a is wide and it can be sufficiently opposed to the large end surface 33, and the grinding relief 13 (width A) is small. Because of the small size, the wear of the large flange surface 12a does not reach the boundary with the grinding relief 13 (the inner diameter side edge of the large flange surface 12a), and the inner diameter side edge area of the large flange surface 12a is maintained. In particular, even when the lubrication conditions are severe, the state in which the large flange surface 12a and the large end surface 33 are in proper contact can be maintained.

また、この円すいころ軸受は、内輪10の研削逃げ13の進入角a>bであり、ヌスミ幅A<Bであるので、研削逃げ13の旋削加工性に優れるとともに、大鍔面12aの研削量が前後したときに大鍔面12aの幅Wの変化量(ヌスミ幅Aの寸法)に影響しにくく、大鍔面12aの研削加工も困難とならない。このため、この円すいころ軸受は、加工コストに不安がなく、格別コスト高にならない。 In addition, this tapered roller bearing has an approach angle a>b of the grinding relief 13 of the inner ring 10 and a width A<B, so that the grinding relief 13 has excellent lathe machinability, and the amount of grinding of the large flange surface 12a When it moves back and forth, it does not easily affect the amount of change in the width W of the large flange surface 12a (dimension of the width A), and the grinding process of the large flange surface 12a does not become difficult. Therefore, this tapered roller bearing has no concerns about processing costs and does not require particularly high costs.

また、この円すいころ軸受は、内輪10の研削逃げ13の深さc>dであるので、円すいころ30の大端面33から内輪10の大鍔面12aに加わる荷重により発生する大鍔12の応力を低減し、大鍔12の強度向上を図ることができる。このことは、外乱等による大鍔12の倒れを抑え、大鍔面12aと大端面33の接触状態を適正に保つことに有利である。 Further, in this tapered roller bearing, since the depth of the grinding relief 13 of the inner ring 10 is c>d, the stress in the large flange 12 caused by the load applied from the large end surface 33 of the tapered roller 30 to the large flange surface 12a of the inner ring 10 is can be reduced, and the strength of the large tsuba 12 can be improved. This is advantageous in suppressing the collapse of the large flange 12 due to external disturbances, etc., and maintaining an appropriate state of contact between the large flange surface 12a and the large end surface 33.

また、この円すいころ軸受は、内輪10の研削逃げ13の深さdが0.3mm以下であるので、大鍔12の強度向上が確実に得られる。 Further, in this tapered roller bearing, since the depth d of the grinding relief 13 of the inner ring 10 is 0.3 mm or less, the strength of the large flange 12 can be surely improved.

また、この円すいころ軸受は、内輪10の研削逃げ13の進入角aが20°≦a≦50°の範囲であるので、大鍔面12aの研削量が前後しても、大鍔面12aの幅Wの変化量(ヌスミ幅A)の寸法への影響が穏やかであり、大鍔面12aの幅W(ヌスミ幅A)の制御が行い易い。 In addition, in this tapered roller bearing, since the approach angle a of the grinding relief 13 of the inner ring 10 is in the range of 20°≦a≦50°, even if the amount of grinding of the large flange surface 12a fluctuates, the large flange surface 12a The amount of change in the width W (the width A) has a gentle influence on the dimensions, and the width W (the width A) of the large flange surface 12a can be easily controlled.

また、この円すいころ軸受は、内輪10の大鍔面12aの幅Wが上記式1を満足する値であるので、大鍔面12aを円すいころ30の大端面33と十分に対向させておき、外乱で大端面33と大鍔面12aの滑り接触部が大鍔外径側に上がった時にも良好な接触を保つことができる。 In addition, in this tapered roller bearing, since the width W of the large flange surface 12a of the inner ring 10 is a value that satisfies the above formula 1, the large flange surface 12a is sufficiently opposed to the large end surface 33 of the tapered roller 30, Good contact can be maintained even when the sliding contact portion between the large end surface 33 and the large flange surface 12a rises toward the outer diameter side of the large flange due to disturbance.

また、この円すいころ軸受は、内輪10の大鍔面12aにおける旧オーステナイト結晶粒の粒度番号が6番以上であるので、円すいころ30の大端面33との金属接触による表面損傷を遅延させることができる。 Furthermore, in this tapered roller bearing, the grain size number of the prior austenite crystal grains on the large flange surface 12a of the inner ring 10 is No. 6 or higher, so that surface damage due to metal contact with the large end surface 33 of the tapered roller 30 can be delayed. can.

また、この円すいころ軸受は、内輪10の大鍔面12aが窒素含有量0.05wt%以上の窒化層によって形成されているので、円すいころ30の大端面33との金属接触による表面損傷を遅延させることができる。 In addition, in this tapered roller bearing, the large flange surface 12a of the inner ring 10 is formed of a nitrided layer with a nitrogen content of 0.05 wt% or more, thereby retarding surface damage caused by metal contact with the large end surface 33 of the tapered roller 30. can be done.

また、この円すいころ軸受は、内輪10の大鍔面12aの表面粗さが0.1μmRa以下であり、円すいころ30の大端面33の表面粗さが0.12μmRa以下であるので、大鍔面12aと大端面33間の油膜パラメータを向上させて油膜形成を良好にすることができる。 Further, in this tapered roller bearing, the large flange surface 12a of the inner ring 10 has a surface roughness of 0.1 μmRa or less, and the large end surface 33 of the tapered roller 30 has a surface roughness of 0.12 μmRa or less, so the large flange surface It is possible to improve oil film formation between the oil film 12a and the large end face 33 by improving oil film parameters.

また、この円すいころ軸受は、R/RBASEが0.70以上0.95以下であり、複数の円すいころ30のうち、少なくとも一つの円すいころ30におけるRACTUAL/Rが0.3以上0.5未満であっても、厳しい潤滑条件で使用可能なものでありながら、特許文献3に開示の円すいころ軸受に比して、円すいころ30の歩留まりを向上させ、比較的安価に提供することができる。 Further, in this tapered roller bearing, R/R BASE is 0.70 or more and 0.95 or less, and R ACTUAL /R of at least one tapered roller 30 among the plurality of tapered rollers 30 is 0.3 or more and 0. Even if it is less than 5, it can be used under severe lubrication conditions, and the yield of the tapered roller 30 can be improved compared to the tapered roller bearing disclosed in Patent Document 3, and it can be provided at a relatively low cost. can.

この円すいころ軸受は、自動車用トランスミッション又はデファレンシャルの回転軸を支持する用途であって、跳ね掛け又は油浴潤滑によって、潤滑油を外部から軸受内部へ供給する用途に好適である。その使用例を図9に基づいて説明する。図9は、自動車用デファレンシャルの一例を示すものである。 This tapered roller bearing is used to support the rotating shaft of an automobile transmission or differential, and is suitable for supplying lubricating oil from the outside to the inside of the bearing by splashing or oil bath lubrication. An example of its use will be explained based on FIG. 9. FIG. 9 shows an example of an automobile differential.

図9に示すデファレンシャルは、ハウジング101に対して2つの円すいころ軸受102、103で回転自在に支持されたドライブピニオン104と、このドライブピニオン104に噛み合うリングギヤ105と、図示省略の差動歯車機構とを備え、これらがギヤ潤滑油の封入されたハウジング101内に収納されている。このギヤ潤滑油は、各円すいころ軸受102、103を潤滑する潤滑油にもなっており、跳ね掛け又は油浴潤滑法により軸受側面に供給される。 The differential shown in FIG. 9 includes a drive pinion 104 rotatably supported on a housing 101 by two tapered roller bearings 102 and 103, a ring gear 105 that meshes with the drive pinion 104, and a differential gear mechanism (not shown). These are housed in a housing 101 filled with gear lubricating oil. This gear lubricating oil also serves as lubricating oil for each tapered roller bearing 102, 103, and is supplied to the side surface of the bearing by splashing or oil bath lubrication.

この円すいころ軸受の別の使用例を図10に基づいて説明する。図10は、自動車用トランスミッションの一例を示すものである。 Another usage example of this tapered roller bearing will be explained based on FIG. 10. FIG. 10 shows an example of an automobile transmission.

図10に示すトランスミッションは、段階的に変速比を変化させる多段変速機になっており、その回転軸(例えば、エンジンの回転が入力される入力軸201)を回転可能に支持する円すいころ軸受202~205として、上述の実施形態のいずれかに係る円すいころ軸受を備えている。図示のトランスミッションは、クラッチ(図示省略)を選択的に係合させることで使用するギヤ列206、207を切り替え、入力軸201から出力軸側へ伝達する回転の変速比を変化させるものである。また、このトランスミッションは、ギヤの回転に伴う潤滑油(ミッション潤滑油)のはね掛けにより、潤滑油が各円すいころ軸受202~205の側面にかかるようになっている。 The transmission shown in FIG. 10 is a multi-stage transmission that changes the gear ratio in stages, and a tapered roller bearing 202 rotatably supports its rotating shaft (for example, an input shaft 201 to which engine rotation is input). - 205 is provided with a tapered roller bearing according to any of the embodiments described above. The illustrated transmission switches the gear trains 206 and 207 to be used by selectively engaging a clutch (not shown), thereby changing the gear ratio of the rotation transmitted from the input shaft 201 to the output shaft side. Further, in this transmission, the lubricating oil (transmission lubricating oil) is splashed as the gears rotate, so that the lubricating oil is applied to the sides of each of the tapered roller bearings 202 to 205.

図9、図10に例示する各円すいころ軸受102、103、202~205は、図1等に示すこの円すいころ軸受に該当するものであるから、省燃費化のために希薄な潤滑環境であっても、運転開始の際の初期潤滑において内輪の大鍔面と円すいころの大端面間の滑り接触による急昇温を防ぎ、また、運転温度が上がって潤滑油の粘度が低下しても安定した滑り接触を保って良好な油膜形成を図り、これら両面の損傷防止を図ることができる。 The tapered roller bearings 102, 103, 202 to 205 illustrated in FIGS. 9 and 10 correspond to the tapered roller bearings shown in FIG. However, during the initial lubrication at the start of operation, it prevents sudden temperature rise due to sliding contact between the large flange surface of the inner ring and the large end surface of the tapered roller, and is stable even when the operating temperature rises and the viscosity of the lubricating oil decreases. It is possible to maintain a good sliding contact and form a good oil film, thereby preventing damage to both surfaces.

ただし、この円すいころ軸受は、トランスミッション用途に限定されるものではなく、その他の極めて厳しい潤滑状態の用途に適用することができる。今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 However, this tapered roller bearing is not limited to transmission applications, but can be applied to other applications requiring extremely severe lubrication conditions. The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Therefore, the scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.

10 内輪
11 軌道面
12 大鍔
12a 大鍔面
13 研削逃げ
20 外輪
30 円すいころ
31 転動面
32 面取り
33 大端面
102、103、202~205 円すいころ軸受
104 ドライブピニオン(回転部)
201 入力軸(回転部)
10 Inner ring 11 Raceway surface 12 Large flange 12a Large flange surface 13 Grinding relief 20 Outer ring 30 Tapered roller 31 Rolling surface 32 Chamfer 33 Large end surface 102, 103, 202-205 Tapered roller bearing 104 Drive pinion (rotating part)
201 Input shaft (rotating part)

Claims (11)

内輪と、外輪と、内輪と外輪間に配置された複数の円すいころと、これら円すいころを収容する保持器とを備え、
前記円すいころが、円すい状に形成された転動面と、前記転動面の大径側に連続する面取りと、前記面取りに連続する大端面とを有し、
前記内輪が、円すい状に形成された軌道面と、前記円すいころの大端面を受ける大鍔面と、前記大鍔面と前記軌道面を繋ぐ溝状に形成された研削逃げとを有する円すいころ軸受において、
前記軌道面の母線を前記研削逃げ側へ延長した仮想線と、前記大鍔面の母線を前記研削逃げ側へ延長した仮想線との交点を基準点とし、当該基準点から大鍔面までのヌスミ幅をAとし、前記円すいころの面取りが前記大鍔面の母線に沿った方向に有する幅をRCとしたとき、幅RCが0.7mm以下であって、A<RCであり、
前記転動面の円すい角をβとし、前記大鍔面と前記円すいころの大端面との接触点から前記円すい角βの頂点まで結ぶ仮想線が前記軌道面の母線に対して成す鋭角をρとしたとき、β/7≧ρであることを特徴とする円すいころ軸受。
It comprises an inner ring, an outer ring, a plurality of tapered rollers arranged between the inner ring and the outer ring, and a cage that accommodates these tapered rollers,
The tapered roller has a rolling surface formed in a conical shape, a chamfer continuous to the large diameter side of the rolling surface, and a large end surface continuous to the chamfer,
A tapered roller in which the inner ring has a raceway surface formed in a conical shape, a large flange surface that receives a large end surface of the tapered roller, and a grinding relief formed in a groove shape that connects the large flange surface and the raceway surface. In bearings,
The intersection of an imaginary line extending the generatrix of the raceway surface to the grinding relief side and an imaginary line extending the generatrix of the large flange surface to the grinding relief side is set as a reference point, and from the reference point to the large flange surface. When the width of the tapered roller is A, and the width that the chamfer of the tapered roller has in the direction along the generatrix of the large flange surface is RC, the width RC is 0.7 mm or less, and A<RC,
Let β be the conical angle of the rolling surface, and let ρ be the acute angle that an imaginary line connecting the contact point between the large flange surface and the large end face of the tapered roller to the vertex of the conical angle β makes with the generatrix of the raceway surface. A tapered roller bearing characterized in that β/7≧ρ.
前記内輪の大鍔面に対する前記研削逃げの進入角をaとし、前記軌道面に対する前記研削逃げの進入角をbとしたとき、a>bであり、
前記基準点から前記大鍔面までのヌスミ幅をAとし、前記基準点から前記軌道面までのヌスミ幅をBとしたとき、A<Bである請求項1に記載の円すいころ軸受。
When the approach angle of the grinding relief to the large flange surface of the inner ring is a, and the approach angle of the grinding relief to the raceway surface is b, a>b,
The tapered roller bearing according to claim 1, wherein A<B, where A is a width from the reference point to the large flange surface, and B is a width from the reference point to the raceway surface.
前記内輪の軌道面に対する前記研削逃げの深さをcとし、前記大鍔面に対する前記研削逃げの深さをdとしたとき、c>dである請求項1又は2に記載の円すいころ軸受。 The tapered roller bearing according to claim 1 or 2, wherein c>d, where c is the depth of the grinding relief with respect to the raceway surface of the inner ring, and d is the depth of the grinding relief with respect to the large collar surface. 前記内輪の大鍔面に対する前記研削逃げの深さをdとしたとき、深さdが0.3mm以下である請求項1から3のいずれか1項に記載の円すいころ軸受。 The tapered roller bearing according to any one of claims 1 to 3, wherein the depth d is 0.3 mm or less, where d is the depth of the grinding relief relative to the large flange surface of the inner ring. 前記内輪の大鍔面に対する前記研削逃げの進入角をaとしたとき、20°≦a≦50°である請求項1から4のいずれか1項に記載の円すいころ軸受。 The tapered roller bearing according to any one of claims 1 to 4, wherein 20°≦a≦50°, where a is an approach angle of the grinding relief with respect to the large flange surface of the inner ring. 前記内輪の中心軸に対して前記軌道面の母線が成す鋭角をθとし、前記円すいころの転動面の大端径をDwとし、前記円すいころのころ長さをLとし、前記大鍔面の幅をWとしたとき、幅Wが次の式1を満足する値である請求項1から5のいずれか1項に記載の円すいころ軸受。
W≧{Dw×(1/2)×Tanθ/(L/Dw)}・・・式1
The acute angle formed by the generatrix of the raceway surface with the central axis of the inner ring is θ, the large end diameter of the rolling surface of the tapered roller is Dw, the length of the tapered roller is L, and the large flange surface The tapered roller bearing according to any one of claims 1 to 5, wherein the width W is a value satisfying the following formula 1.
W≧{Dw×(1/2)×Tanθ/(L/Dw)}...Formula 1
前記内輪の大鍔面における旧オーステナイト結晶粒の粒度番号が6番以上である請求項1から6のいずれかに記載の円すいころ軸受。 7. The tapered roller bearing according to claim 1, wherein the grain size number of the prior austenite crystal grains on the large flange surface of the inner ring is No. 6 or higher. 前記内輪の大鍔面が、窒素含有量0.05wt%以上の窒化層によって形成されている請求項1から7のいずれか1項に記載の円すいころ軸受。 The tapered roller bearing according to any one of claims 1 to 7, wherein the large flange surface of the inner ring is formed of a nitrided layer having a nitrogen content of 0.05 wt% or more. 前記内輪の大鍔面の表面粗さが0.1μmRa以下であり、前記円すいころの大端面の表面粗さが0.12μmRa以下である請求項1から8のいずれか1項に記載の円すいころ軸受。 The tapered roller according to any one of claims 1 to 8, wherein the large flange surface of the inner ring has a surface roughness of 0.1 μmRa or less, and the large end surface of the tapered roller has a surface roughness of 0.12 μmRa or less. bearing. 前記円すいころの大端面の設定曲率半径をRとし、前記転動面の円すい角の頂点から前記内輪の大鍔面までの基本曲率半径をRBASEとしたとき、R/RBASEが0.70以上0.95以下であり、
前記円すいころの大端面の実曲率半径をRACTUALとしたとき、前記複数の円すいころのうち、少なくとも一つの円すいころにおけるRACTUAL/Rが0.3以上である請求項1から9のいずれか1項に記載の円すいころ軸受。
When the set radius of curvature of the large end face of the tapered roller is R, and the basic radius of curvature from the vertex of the conical angle of the rolling surface to the large flange surface of the inner ring is R BASE , R/R BASE is 0.70. 0.95 or less,
Any one of claims 1 to 9, wherein R ACTUAL /R of at least one tapered roller among the plurality of tapered rollers is 0.3 or more, where R ACTUAL is the actual radius of curvature of the large end surface of the tapered roller. The tapered roller bearing described in item 1.
自動車のトランスミッション又はデファレンシャルに備わる回転部を支持する請求項1から10のいずれか1項に記載の円すいころ軸受。 The tapered roller bearing according to any one of claims 1 to 10, which supports a rotating part included in a transmission or a differential of an automobile.
JP2023135483A 2019-09-19 2023-08-23 Tapered roller bearings Active JP7504270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023135483A JP7504270B2 (en) 2019-09-19 2023-08-23 Tapered roller bearings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170279A JP7339090B2 (en) 2019-09-19 2019-09-19 tapered roller bearing
JP2023135483A JP7504270B2 (en) 2019-09-19 2023-08-23 Tapered roller bearings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019170279A Division JP7339090B2 (en) 2019-09-19 2019-09-19 tapered roller bearing

Publications (3)

Publication Number Publication Date
JP2023155324A true JP2023155324A (en) 2023-10-20
JP2023155324A5 JP2023155324A5 (en) 2023-12-14
JP7504270B2 JP7504270B2 (en) 2024-06-21

Family

ID=74878145

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019170279A Active JP7339090B2 (en) 2019-09-19 2019-09-19 tapered roller bearing
JP2023135483A Active JP7504270B2 (en) 2019-09-19 2023-08-23 Tapered roller bearings

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019170279A Active JP7339090B2 (en) 2019-09-19 2019-09-19 tapered roller bearing

Country Status (1)

Country Link
JP (2) JP7339090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024013443A (en) * 2022-07-20 2024-02-01 Ntn株式会社 Bearing device for wheel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951036B2 (en) * 1991-04-30 1999-09-20 エヌティエヌ株式会社 Tapered roller bearing
JP2584623Y2 (en) * 1992-04-30 1998-11-05 エヌティエヌ株式会社 Tapered roller bearing
JPH11236920A (en) * 1998-02-24 1999-08-31 Nippon Seiko Kk Rolling bearing
JP4399905B2 (en) * 1999-07-16 2010-01-20 日本精工株式会社 Roller bearing
JP2017150649A (en) * 2016-02-26 2017-08-31 日本精工株式会社 Conical roller bearing and method of manufacturing conical roller bearing
JP6965006B2 (en) * 2017-03-28 2021-11-10 Ntn株式会社 Conical roller bearing
JP7029371B2 (en) 2017-09-28 2022-03-03 Ntn株式会社 Conical roller bearing

Also Published As

Publication number Publication date
JP7339090B2 (en) 2023-09-11
JP2021046915A (en) 2021-03-25
JP7504270B2 (en) 2024-06-21

Similar Documents

Publication Publication Date Title
US7090405B2 (en) Tapered roller bearings and gear shaft support devices
CN111919040B (en) Tapered roller bearing
WO2018181317A1 (en) Tapered roller bearing
JP7504270B2 (en) Tapered roller bearings
JP7449059B2 (en) tapered roller bearing
WO2021054279A1 (en) Tapered roller bearing
WO2021054281A1 (en) Tapered roller bearing
WO2019065750A1 (en) Tapered roller bearing
JP6965005B2 (en) Conical roller bearing
JP7405544B2 (en) tapered roller bearing
JP7449058B2 (en) tapered roller bearing
US20070127860A1 (en) Tapered roller bearing an automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
WO2019065753A1 (en) Conical roller bearing
JP2019066039A (en) Taper roller bearing
JP6965007B2 (en) Conical roller bearing
JP6858051B2 (en) Tapered roller bearing
WO2018181174A1 (en) Tapered roller bearing
JP7394939B2 (en) tapered roller bearing
JP2019066037A (en) Taper roller bearing
JP2006112559A (en) Tapered roller bearing
JP2019066041A (en) Taper roller bearing
JP2019066038A (en) Taper roller bearing
US6800046B2 (en) Toroidal-type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611

R150 Certificate of patent or registration of utility model

Ref document number: 7504270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150