JP2023154217A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2023154217A
JP2023154217A JP2022063396A JP2022063396A JP2023154217A JP 2023154217 A JP2023154217 A JP 2023154217A JP 2022063396 A JP2022063396 A JP 2022063396A JP 2022063396 A JP2022063396 A JP 2022063396A JP 2023154217 A JP2023154217 A JP 2023154217A
Authority
JP
Japan
Prior art keywords
lightweight
carbon dioxide
ground material
lightweight ground
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022063396A
Other languages
Japanese (ja)
Inventor
友博 森澤
Tomohiro Morisawa
義夫 御手洗
Yoshio Mitarai
正人 中道
Masato Nakamichi
英紀 高橋
Hidenori Takahashi
大 栗原
Masaru Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Toa Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp, National Institute of Maritime Port and Aviation Technology filed Critical Toa Corp
Priority to JP2022063396A priority Critical patent/JP2023154217A/en
Publication of JP2023154217A publication Critical patent/JP2023154217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

To provide a ground improvement method capable of forming a lightweight ground with more stable quality by suppressing disappearance or connection of air bubbles contained in a lightweight ground material.SOLUTION: When forming a lightweight ground LG having a large number of air bubbles B by preparing a lightweight ground material LM by mixing slurry-like muddy water 3, a foamed foam 5 having a large number of air bubbles B, and a solidifying material 4, and pouring and solidifying the lightweight ground material LM, the lightweight ground material LM is mixed with cellulose nanofibers F.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良方法に関し、さらに詳しくは、軽量地盤材料に含まれる気泡の消失や気泡どうしの連結を抑制して、より品質の安定した軽量地盤を形成できる地盤改良方法に関するものである。 The present invention relates to a ground improvement method, and more specifically, to a ground improvement method that can suppress the disappearance of air bubbles contained in lightweight ground materials and the connection of air bubbles to form a lightweight ground with more stable quality.

原料土に水を加えて作製したスラリー状の泥水と、多数の気泡を有する発泡フォームと、固化材とを混合してスラリー状の軽量地盤材料を作製し、その軽量地盤材料を打設して固化させることにより多数の気泡を有する軽量地盤を形成する地盤改良方法(所謂、SGM軽量土工法)が行われている(例えば、特許文献1参照)。従来では、軽量地盤材料に含まれる気泡の被膜が比較的不安定な状態であるため、軽量地盤材料が作製されてから固化するまでに、軽量地盤材料に含まれる気泡が比較的消失し易かった。また、軽量地盤材料に含まれる気泡どうしが比較的連結し易く、軽量地盤に含まれる気泡の大きさにバラツキが生じ易かった。それ故、軽量地盤の品質にバラツキが生じ易いという課題があった。 A slurry-like muddy water created by adding water to the raw soil, foamed foam with a large number of air bubbles, and a solidifying material are mixed to create a slurry-like lightweight ground material, and the lightweight ground material is poured. A ground improvement method (so-called SGM lightweight earthwork method) is being carried out in which a lightweight ground having a large number of air bubbles is formed by solidification (see, for example, Patent Document 1). Conventionally, since the film of air bubbles contained in lightweight ground material was in a relatively unstable state, the air bubbles contained in lightweight ground material were relatively easy to disappear from the time the lightweight ground material was created until it solidified. . In addition, the air bubbles contained in the lightweight ground material were relatively easy to connect with each other, and the size of the air bubbles contained in the lightweight ground material tended to vary. Therefore, there was a problem in that the quality of the lightweight ground was likely to vary.

特開2008-25126号公報Japanese Patent Application Publication No. 2008-25126

本発明の目的は、軽量地盤材料に含まれる気泡の消失や気泡どうしの連結を抑制して、より品質の安定した軽量地盤を形成できる地盤改良方法を提供することにある。 An object of the present invention is to provide a ground improvement method that can suppress the disappearance of air bubbles contained in a lightweight ground material and the connection of air bubbles to form a lightweight ground with more stable quality.

上記目的を達成するため本発明の地盤改良方法は、スラリー状の泥水と多数の気泡を有する発泡フォームと固化材とを混合して軽量地盤材料を作製し、その軽量地盤材料を打設して固化させることにより多数の気泡を有する軽量地盤を形成する地盤改良方法において、前記軽量地盤材料にセルロースナノファイバーを混合した状態にすることを特徴とする。 In order to achieve the above object, the ground improvement method of the present invention prepares a lightweight ground material by mixing slurry-like mud water, foamed foam having a large number of cells, and a solidifying material, and then pours the lightweight ground material. A ground improvement method for forming a lightweight ground having a large number of air bubbles by solidification, characterized in that the lightweight ground material is mixed with cellulose nanofibers.

本発明によれば、軽量地盤材料にセルロースナノファイバーを混合した状態にすることで、軽量地盤材料に含まれるそれぞれの気泡の被膜の安定性を向上させることができる。これにより、軽量地盤材料に含まれる気泡の消失や気泡どうしの連結を抑制することができ、より品質の安定した軽量地盤を形成することができる。 According to the present invention, by mixing the lightweight ground material with cellulose nanofibers, it is possible to improve the stability of the film of each bubble contained in the lightweight ground material. Thereby, it is possible to suppress the disappearance of air bubbles contained in the lightweight ground material and the connection of air bubbles, and it is possible to form a lightweight ground with more stable quality.

本発明の地盤改良方法の実施形態を模式的に例示する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram schematically illustrating an embodiment of a ground improvement method of the present invention. セルロースナノファイバーを添加した軽量地盤材料を模式的に例示する説明図である。FIG. 2 is an explanatory diagram schematically illustrating a lightweight ground material to which cellulose nanofibers are added.

以下、本発明の地盤改良方法を図に示した実施形態に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the ground improvement method of this invention is demonstrated based on embodiment shown in the figure.

本発明の地盤改良方法は、原料土に水を加えて作製したスラリー状の泥水と、多数の気泡を有する発泡フォームと、セメント等の固化材とを混合してスラリー状の軽量地盤材料を作製し、その軽量地盤材料を打設して固化させることにより多数の気泡を有する軽量地盤を形成する地盤改良工法(所謂、SGM軽量土工法)を改良したものである。 The ground improvement method of the present invention involves creating a slurry-like lightweight ground material by mixing slurry-like muddy water created by adding water to raw material soil, foamed foam having a large number of air bubbles, and a solidifying agent such as cement. This is an improved ground improvement method (so-called SGM lightweight earth construction method) in which lightweight ground material with many air bubbles is formed by pouring and solidifying the lightweight ground material.

近年では、地球温暖化の抑制のため、土木・建築工事において温室効果ガスである二酸化炭素(CO2)の排出量の低減が重要な課題になっている。従来のSGM軽量土工法では、軽量地盤材料に含まれる気泡を空気で形成し、軽量地盤の気泡(空隙)に空気を保持させているが、その軽量地盤材料の気泡を形成する気体を、空気よりも二酸化炭素の体積割合が高い気体に置き換えることができれば、軽量地盤中に多くの二酸化炭素を貯留することが可能になり、土木・建築工事における二酸化炭素の低減に寄与できる。 In recent years, in order to suppress global warming, reducing emissions of carbon dioxide (CO 2 ), a greenhouse gas, in civil engineering and construction work has become an important issue. In the conventional SGM lightweight earthwork method, the air bubbles contained in the lightweight ground material are formed with air, and the air is held in the air bubbles (voids) in the lightweight ground. If it can be replaced with a gas with a higher volume ratio of carbon dioxide, it will be possible to store a large amount of carbon dioxide in lightweight soil, contributing to the reduction of carbon dioxide during civil engineering and construction work.

しかしながら、二酸化炭素の水に対する溶解度は空気に比べて著しく高い。また、二酸化炭素は、SGM軽量土工法で使用するセメント系の固化材のアルカリと反応する(Ca(OH)2+CO2→CaCO3+H20)。そのため、SGM軽量土工法において、単純に空気の代替として、空気よりも二酸化炭素の体積割合が高い気体を用いるだけでは、軽量地盤材料において二酸化炭素を多く含む気泡の消失を防ぐことは難しく、多数の気泡を有する品質の安定した軽量地盤を形成することはできない。 However, the solubility of carbon dioxide in water is significantly higher than that in air. Furthermore, carbon dioxide reacts with the alkali of the cement-based solidifying agent used in the SGM lightweight earthwork method (Ca(OH) 2 +CO 2 →CaCO 3 +H 2 0). Therefore, in the SGM lightweight earthwork method, it is difficult to prevent the disappearance of carbon dioxide-rich bubbles in lightweight ground materials by simply using a gas with a higher volume ratio of carbon dioxide than air as a substitute for air. It is not possible to form a quality stable lightweight ground with air bubbles.

本発明者らは、軽量地盤材料において、空気よりも二酸化炭素の体積割合が高い気体で形成した気泡の消失を抑制する方法を種々検討した。その結果、軽量地盤材料にセルロースナノファイバーを混合すると、セルロースナノファイバーがそれぞれの気泡Bの被膜(界面)に付着することで気泡の界面の機械的強度が増加することが分かった。さらに、軽量地盤材料にセルロースナノファイバーを混合して、軽量地盤材料に含まれるそれぞれの気泡の被膜の安定性を向上させることで、軽量地盤材料の気泡を空気よりも二酸化炭素の体積割合が高い気体で形成した場合にも、多数の気泡を有する品質の安定した軽量地盤を形成することが可能になることを見出した。また、軽量地盤材料の気泡を空気で形成する場合にも、軽量地盤材料にセルロースナノファイバーを混合した状態にすることで、より品質の安定した軽量地盤を形成できることも分かった。 The present inventors have studied various methods for suppressing the disappearance of bubbles formed with a gas having a higher volume ratio of carbon dioxide than air in lightweight ground materials. As a result, it was found that when cellulose nanofibers are mixed into a lightweight ground material, the cellulose nanofibers adhere to the coating (interface) of each bubble B, thereby increasing the mechanical strength of the bubble interface. Furthermore, by mixing cellulose nanofibers into the lightweight ground material to improve the stability of the film of each bubble contained in the lightweight ground material, the air bubbles in the lightweight ground material have a higher volume ratio of carbon dioxide than air. It has been found that even when formed with gas, it is possible to form a lightweight foundation with stable quality and having a large number of air bubbles. It was also found that when forming air bubbles in a lightweight ground material, by mixing cellulose nanofiber with the lightweight ground material, it is possible to form a lightweight ground with more stable quality.

そこで、本発明では、軽量地盤を形成する地盤改良方法(SGM軽量土工法)において、軽量地盤材料にセルロースナノファイバーを混合した状態にすることにより多数の気泡を有する軽量地盤を形成する。セルロースナノファイバーは例えば、樹木や草花などのセルロースを機械的処理、化学処理またはこれらを組み合わせた処理等を経て、ナノレベルまで細分化した素材である。 Therefore, in the present invention, in a ground improvement method for forming a lightweight ground (SGM lightweight earthwork method), a lightweight ground having a large number of air bubbles is formed by mixing cellulose nanofibers with a lightweight ground material. Cellulose nanofiber is a material obtained by subdividing cellulose from trees, flowers, etc. to the nano level through mechanical processing, chemical processing, or a combination of these processes.

セルロースナノファイバーの代表的な仕様を例示すると、繊維長さは数nm~、繊維幅は数nm~数十μm程度である。繊維幅にはある程度ばらつきがあり、例えば木材からセルロースナノファイバーを製造する過程での低解繊の繊維もセルロースナノファイバーの範疇に入る。セルロースナノファイバーの原料としては例えば、木材パルプ、竹パルプ、針葉樹パルプなどが使用される。 Typical specifications of cellulose nanofibers include a fiber length of several nm to several nanometers and a fiber width of several nm to several tens of micrometers. There is some variation in fiber width, and for example, fibers that are poorly defibrated during the process of manufacturing cellulose nanofibers from wood also fall into the category of cellulose nanofibers. As raw materials for cellulose nanofibers, for example, wood pulp, bamboo pulp, softwood pulp, etc. are used.

以下、本発明の地盤改良方法を、図1を参照してより具体的に説明する。以下に例示する実施形態では、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合を高めた気体CGで形成する場合を例示する。 Hereinafter, the ground improvement method of the present invention will be explained in more detail with reference to FIG. In the embodiment illustrated below, a case will be exemplified in which the bubbles B of the lightweight ground material LM are formed with a gas CG having a higher volume ratio of carbon dioxide C than air.

標高などによって空気(地表付近の大気)に含まれる二酸化炭素Cの体積割合は多少異なるが、通常の空気における二酸化炭素Cの体積割合は約0.03~0.04%程度である。軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合を高めた気体CGで形成する場合には、例えば、二酸化炭素Cの体積割合を0.4%以上、より好ましくは2%以上、さらに好ましくは10%以上とした気体CGで軽量地盤材料LMの気泡Bを形成する。或いは、二酸化炭素Cの体積割合を、施工現場の空気に含まれる二酸化炭素Cの体積割合の例えば、10倍以上、より好ましくは50倍以上、さらに好ましくは250倍以上とした気体CGで軽量地盤材料LMの気泡Bを形成する。軽量地盤材料LMの気泡Bを形成する二酸化炭素Cの体積割合を高めた気体CGに含まれる二酸化炭素Cの体積割合の上限値は例えば、97%以下である。 The volume percentage of carbon dioxide C contained in the air (atmosphere near the earth's surface) varies somewhat depending on the altitude, etc., but the volume percentage of carbon dioxide C in normal air is about 0.03 to 0.04%. When forming the bubbles B of the lightweight ground material LM with gas CG having a higher volume ratio of carbon dioxide C than air, for example, the volume ratio of carbon dioxide C is 0.4% or more, more preferably 2% or more. , more preferably 10% or more gas CG to form the bubbles B of the lightweight ground material LM. Alternatively, lightweight ground can be created using gas CG in which the volume ratio of carbon dioxide C is, for example, 10 times or more, more preferably 50 times or more, still more preferably 250 times or more, the volume ratio of carbon dioxide C contained in the air at the construction site. Form bubbles B of material LM. The upper limit of the volume ratio of carbon dioxide C contained in the gas CG with a higher volume ratio of carbon dioxide C forming the bubbles B of the lightweight ground material LM is, for example, 97% or less.

図1に例示するように、この地盤改良方法の地盤改良システム1では、水底や陸上から採取した原料土2に水を加えて作製したスラリー状の泥水3と、多数の気泡Bを有する発泡フォーム5と、セメント等の固化材4とを混合することにより、スラリー状の軽量地盤材料LMを作製して打設する。発泡フォーム5は、気泡Bを界面活性の高い物質(界面活性剤)の膜でコーティングしたものである。 As illustrated in FIG. 1, in the ground improvement system 1 of this ground improvement method, a slurry-like muddy water 3 made by adding water to raw material soil 2 collected from the water bottom or land, and a foamed foam having a large number of air bubbles B. 5 and a solidifying material 4 such as cement, a slurry-like lightweight ground material LM is prepared and poured. The expanded foam 5 is obtained by coating the cells B with a film of a highly surface-active substance (surfactant).

この地盤改良方法では、軽量土混練機6にスラリー状の泥水3と固化材4(例えば、セメント)と発泡フォーム5とを供給する。軽量土混練機6に泥水3を供給するラインでは、水底や陸上から原料土2を採取し、その原料土2に含まれる礫や異物の除去を行う。次いで、原料土2を、建設機械8などを使用して振動篩9に投入し、振動篩9により原料土2の分級を行うことで、原料土2から粒径の比較的大きい粒子(例えば、粒径が5mm~10mm以上)を取り除く。その後、振動篩9によって分級した原料土2を解泥機10によって解泥し、その解泥した原料土2を貯泥槽11に投入する。貯泥槽11では原料土2に水を加えてスラリー状の泥水3を作製する。 In this ground improvement method, a slurry-like muddy water 3, a solidification material 4 (for example, cement), and a foamed foam 5 are supplied to a lightweight soil mixer 6. In the line that supplies muddy water 3 to the lightweight soil mixer 6, raw soil 2 is collected from the bottom of the water or on land, and gravel and foreign matter contained in the raw soil 2 are removed. Next, the raw soil 2 is put into a vibrating sieve 9 using a construction machine 8 or the like, and the raw soil 2 is classified by the vibrating sieve 9, so that particles with relatively large particle sizes (for example, Remove particles with a particle size of 5 mm to 10 mm or more. Thereafter, the raw material soil 2 that has been classified by the vibrating sieve 9 is desilted by the desilting machine 10, and the desilted raw material soil 2 is put into the mud storage tank 11. In the mud storage tank 11, water is added to the raw material soil 2 to produce muddy water 3 in the form of slurry.

この実施形態のように、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、気泡Bを形成する気体CGに含まれる二酸化炭素Cが、軽量地盤材料LMの水分に溶解することや、固化材4のアルカリと反応することを見越して、泥水3の二酸化炭素濃度を高めておくとよい。好ましくは、泥水3の二酸化炭素濃度を飽和させた状態にする。 As in this embodiment, when the bubbles B of the lightweight ground material LM are formed with a gas CG having a higher volume ratio of carbon dioxide C than air, the carbon dioxide C contained in the gas CG forming the bubbles B is It is preferable to increase the carbon dioxide concentration of the muddy water 3 in anticipation of dissolving it in the moisture of the lightweight ground material LM and reacting with the alkali of the solidification material 4. Preferably, the carbon dioxide concentration of the muddy water 3 is saturated.

この実施形態では、原料土2に加える水として、二酸化炭素Cを溶解させた炭酸溶液CW(炭酸水)を使用することで、泥水3の二酸化炭素濃度を高めている。例えば、貯泥槽11に、二酸化炭素Cが予め貯留されている高圧容器40を接続して、高圧容器40によって貯泥槽11内に二酸化炭素Cを供給することで、泥水3に二酸化炭素Cを混入して溶解させることもできる。 In this embodiment, the carbon dioxide concentration of the muddy water 3 is increased by using a carbonate solution CW (carbonated water) in which carbon dioxide C is dissolved as water added to the raw material soil 2. For example, by connecting a high-pressure container 40 in which carbon dioxide C is stored in advance to the mud storage tank 11 and supplying carbon dioxide C into the mud storage tank 11 by the high-pressure container 40, carbon dioxide C can be added to the muddy water 3. It is also possible to mix and dissolve.

次いで、貯泥槽11に貯められた泥水3を送泥ポンプ12により軽量土調泥機13へ送る。そして、軽量土調泥機13により、泥水3の密度とフロー値の調整を行う。原料土2が砂質土の場合には、必要に応じてベントナイトなどの添加材を加えて、泥水3を所定の密度およびフロー値に調整する。軽量土調泥機13によって密度およびフロー値を調整した泥水3(調整泥土)は軽量土混練機6に圧送する。 Next, the muddy water 3 stored in the mud storage tank 11 is sent to the lightweight soil conditioning mud machine 13 by the mud pump 12. Then, the density and flow value of the muddy water 3 are adjusted using the lightweight soil conditioning mud machine 13. When the raw material soil 2 is sandy soil, additives such as bentonite are added as necessary to adjust the muddy water 3 to a predetermined density and flow value. The muddy water 3 (adjusted mud) whose density and flow value have been adjusted by the lightweight soil conditioning mud machine 13 is pumped to the lightweight soil kneading machine 6 .

軽量土混練機6に固化材4を供給するラインでは、固化材4が貯蔵された貯蔵設備14(サイロ)から軽量土混練機6に固化材4を供給する。この実施形態のように、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、気泡Bを形成する気体CGに含まれる二酸化炭素Cが、固化材4のアルカリと反応することを見越して、固化材4に予め二酸化炭素Cを混入して、固化材4の二酸化炭素濃度を高めておくとよい。この実施形態では、貯蔵設備14に二酸化炭素Cが予め貯留されている高圧容器40(40A)を接続して、貯蔵設備14に貯蔵された固化材4に二酸化炭素Cを混入して溶解させる構成にしている。 In the line for supplying the solidifying material 4 to the lightweight soil kneading machine 6, the solidifying material 4 is supplied to the lightweight soil kneading machine 6 from the storage facility 14 (silo) in which the solidifying material 4 is stored. As in this embodiment, when the bubbles B of the lightweight ground material LM are formed with a gas CG having a higher volume ratio of carbon dioxide C than air, the carbon dioxide C contained in the gas CG forming the bubbles B is In anticipation of the reaction with the alkali of the solidifying material 4, it is preferable to mix carbon dioxide C into the solidifying material 4 in advance to increase the carbon dioxide concentration of the solidifying material 4. In this embodiment, a high-pressure container 40 (40A) in which carbon dioxide C is stored in advance is connected to the storage facility 14, and carbon dioxide C is mixed and dissolved in the solidifying material 4 stored in the storage facility 14. I have to.

また、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、固化材4のアルカリと二酸化炭素Cが反応することで、軽量地盤材料LMのpHが低下する場合がある。軽量地盤材料LMのpHが規定値より低くなると、軽量地盤LGの長期的な強度が低下する可能性がある。そのため、軽量地盤材料LMのpHが規定値よりも低くなることを抑制できる固化材4の混合量(セメント添加量)を、室内配合試験などによって予め把握しておくことが好ましい。 In addition, when the bubbles B of the lightweight ground material LM are formed with gas CG having a higher volume ratio of carbon dioxide C than air, the alkali of the solidification material 4 and carbon dioxide C react, so that the lightweight ground material LM pH may decrease. When the pH of the lightweight ground material LM becomes lower than the specified value, the long-term strength of the lightweight ground LG may decrease. Therefore, it is preferable to know in advance the mixing amount of the solidifying agent 4 (cement addition amount) that can suppress the pH of the lightweight ground material LM from becoming lower than the specified value, through an indoor mixing test or the like.

軽量土混練機6に発泡フォーム5を供給するラインでは、起泡剤15を水16で希釈した希釈液17を希釈液ポンプ18によって発泡機19に供給する。この実施形態では、貯留槽22に貯留されたセルロースナノファイバーFを含んでいる液状の乳化剤を希釈液ポンプ18に供給することで、発泡機19にセルロースナノファイバーFを添加した希釈液17を供給する構成にしている。 In the line for supplying the expanded foam 5 to the lightweight soil kneader 6, a diluted liquid 17 obtained by diluting a foaming agent 15 with water 16 is supplied to the foaming machine 19 by a diluted liquid pump 18. In this embodiment, by supplying a liquid emulsifier containing cellulose nanofibers F stored in a storage tank 22 to a diluent pump 18, a diluted liquid 17 containing cellulose nanofibers F is supplied to a foaming machine 19. It is configured to do this.

この実施形態のように、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、気泡Bを形成する気体CGに含まれる二酸化炭素Cが希釈液17に含まれる水分に溶解することを抑制するために、希釈液17の二酸化炭素濃度を高めておくとよい。好ましくは、希釈液17の二酸化炭素濃度を飽和させた状態にする。 As in this embodiment, when the bubbles B of the lightweight ground material LM are formed with a gas CG having a higher volume ratio of carbon dioxide C than air, the carbon dioxide C contained in the gas CG forming the bubbles B is diluted. In order to suppress dissolution in the water contained in the liquid 17, it is preferable to increase the carbon dioxide concentration of the diluent 17. Preferably, the carbon dioxide concentration of the diluent 17 is saturated.

この実施形態では、希釈に用いる水16として、二酸化炭素Cが溶解された炭酸溶液CW(炭酸水)を使用している。例えば、希釈に用いる水16を貯留した貯水槽20に二酸化炭素Cが予め貯留されている高圧容器40を接続して、高圧容器40によって貯水槽20内に二酸化炭素Cを供給することで、希釈に用いる水16に二酸化炭素Cを混入して溶解させておく構成にすることもできる。また、例えば、起泡剤15を貯留した貯液槽21に高圧容器40を接続して、高圧容器40によって貯液槽21内に二酸化炭素Cを供給することで、起泡剤15に二酸化炭素Cを混入して溶解させておく構成にすることもできる。 In this embodiment, a carbonic acid solution CW (carbonated water) in which carbon dioxide C is dissolved is used as the water 16 used for dilution. For example, by connecting a high-pressure container 40 in which carbon dioxide C is stored in advance to a water storage tank 20 storing water 16 used for dilution, and supplying carbon dioxide C into the water storage tank 20 by the high-pressure container 40, dilution can be performed. It is also possible to adopt a configuration in which carbon dioxide C is mixed and dissolved in the water 16 used for the purpose. Further, for example, by connecting the high pressure container 40 to the liquid storage tank 21 storing the foaming agent 15 and supplying carbon dioxide C into the liquid storage tank 21 by the high pressure container 40, the foaming agent 15 can be filled with carbon dioxide. It is also possible to have a structure in which C is mixed and dissolved.

発泡機19にはさらに圧縮機30(30A)によって、発泡フォーム5の気泡Bを形成する気体CGを供給する。この実施形態では、二酸化炭素Cが予め貯留されている高圧容器40(40B)を圧縮機30Aに接続し、高圧容器40Bから圧縮機30Aに二酸化炭素Cを供給することで、圧縮機30Aから発泡機19に施工現場の空気よりも二酸化炭素Cの体積割合を高めた気体CGを供給する構成にしている。高圧容器40Bを接続可能な圧縮機30は、例えば、従来使用されている空気圧縮機の給気構造を改良することで簡易に作製できる。 The foaming machine 19 is further supplied with gas CG for forming the cells B of the foaming foam 5 by a compressor 30 (30A). In this embodiment, a high-pressure container 40 (40B) in which carbon dioxide C is stored in advance is connected to a compressor 30A, and carbon dioxide C is supplied from the high-pressure container 40B to the compressor 30A. The structure is such that gas CG with a higher volume ratio of carbon dioxide C than the air at the construction site is supplied to the machine 19. The compressor 30 to which the high-pressure container 40B can be connected can be easily manufactured, for example, by improving the air supply structure of a conventionally used air compressor.

発泡機19では、供給された希釈液17と気体CGを使用して多数の細かな気泡Bを有する発泡フォーム5を作製する。発泡機19によって作製された発泡フォーム5は軽量土混練機6に送る。軽量土混練機6では、供給された泥水3(調整泥土)と固化材4と発泡フォーム5とをミキサにより撹拌混合し、多数の気泡Bを含むスラリー状の軽量地盤材料LMを作製する。 The foaming machine 19 uses the supplied diluent 17 and the gas CG to produce a foamed foam 5 having a large number of fine bubbles B. The foam 5 produced by the foaming machine 19 is sent to the lightweight soil kneading machine 6. In the lightweight soil kneading machine 6, the supplied mud water 3 (adjusted mud), solidifying material 4, and foam 5 are stirred and mixed by a mixer to produce a slurry-like lightweight ground material LM containing a large number of air bubbles B.

この実施形態のように、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、軽量土混練機6により軽量地盤材料LMを作製する過程で、発泡フォーム5の気泡Bを形成する気体CGに含まれる二酸化炭素Cの一部が、泥水3に含まれる水分に溶解することや、固化材4のアルカリと反応することで消費される場合がある。そのため、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、空気で気泡Bを形成する場合よりも、軽量地盤材料LMにおける発泡フォーム5の混合割合を増やすとよい。軽量地盤材料LMにおける気泡Bを十分に確保できる適切な発泡フォーム5の混合割合は、室内配合試験を行うことで予め把握することが可能である。 As in this embodiment, when the bubbles B of the lightweight ground material LM are formed with gas CG having a higher volume ratio of carbon dioxide C than air, in the process of producing the lightweight ground material LM using the lightweight soil kneading machine 6. , a part of the carbon dioxide C contained in the gas CG forming the bubbles B of the expanded foam 5 may be consumed by dissolving in the water contained in the muddy water 3 or reacting with the alkali of the solidification material 4. be. Therefore, when the bubbles B of the lightweight ground material LM are formed with gas CG having a higher volume ratio of carbon dioxide C than air, the foam 5 of the lightweight ground material LM is It is better to increase the mixing ratio. An appropriate mixing ratio of the expanded foam 5 that can sufficiently secure the air bubbles B in the lightweight ground material LM can be determined in advance by conducting an indoor mixing test.

図2に例示するイメージ図のように、セルロースナノファイバーFを添加して混合した軽量地盤材料LMでは、それぞれの気泡Bの被膜(界面)が、発泡フォーム5に含まれている界面活性剤とセルロースナノファイバーFによって覆われて保護された状態になる。そのため、セルロースナノファイバーFを添加しない場合よりも、セルロースナノファイバーFによる乳化安定性によって軽量地盤材料LMに含まれるそれぞれの気泡Bの界面の機械的強度が増加して、それぞれの気泡Bが消失し難くなり、気泡Bどうしもより連結し難くなる。さらに、それぞれの気泡Bの被膜がセルロースナノファイバーFによって保護されることで、気泡Bを形成する気体CGに含まれる二酸化炭素Cが被膜の外側へ溶け出すことやアルカリと反応することが抑制される。 As shown in the image diagram shown in FIG. 2, in the lightweight ground material LM mixed with cellulose nanofibers F, the coating (interface) of each cell B is between the surfactant contained in the foam 5 and the cellulose. It is covered and protected by nanofibers F. Therefore, the mechanical strength of the interface of each air bubble B contained in the lightweight ground material LM increases due to the emulsification stability of cellulose nanofiber F than when cellulose nanofiber F is not added, and each air bubble B disappears. This makes it more difficult for the bubbles B to connect with each other. Furthermore, since the film of each bubble B is protected by the cellulose nanofibers F, carbon dioxide C contained in the gas CG forming the bubble B is suppressed from dissolving to the outside of the film and from reacting with alkali. Ru.

図1に例示するように、軽量土混練機6によって作製した固化前の軽量地盤材料LMは打設機7に圧送し、打設機7によって軽量地盤材料LMを、地盤改良を行う水底や陸上に打設する。固化前の軽量地盤材料LMを打設機7に圧送する過程では、軽量地盤材料LMからの気泡Bの逸散を抑制するために、軽量地盤材料LMを圧送する圧送管24の内圧を陽圧状態に保った状態にするとよい。 As illustrated in FIG. 1, the lightweight ground material LM before solidification produced by the lightweight soil kneading machine 6 is pumped to the pouring machine 7, and the lightweight soil material LM is transferred to the water bottom or on land where the ground is being improved. to be poured. In the process of pumping the lightweight ground material LM before solidification to the casting machine 7, in order to suppress the escape of air bubbles B from the lightweight ground material LM, the internal pressure of the pressure feeding pipe 24 that pumps the lightweight ground material LM is set to a positive pressure. It is best to keep it in good condition.

この実施形態では、圧送ポンプ23により固化前の軽量地盤材料LMを圧送管24内で圧送するとともに、圧縮機30(30B)によって圧送管24内に施工現場の空気よりも二酸化炭素Cの体積割合を高めた圧縮した気体CGを送気することで、軽量地盤材料LMを圧送する圧送管24の内圧を陽圧状態に保った状態で固化前の軽量地盤材料LMを打設機7に圧送する構成にしている。この実施形態では、圧縮機30Bに二酸化炭素Cが貯留された高圧容器40(40C)を接続し、高圧容器40Cから圧縮機30Bに二酸化炭素Cを供給する構成にしている。なお、圧縮機30Bによる圧縮した気体CGの送気量が高圧容器40Cから供給される二酸化炭素Cの体積割合が高い気体CGの供給量を上回る場合には、圧縮機30Bは高圧容器40Cから供給される二酸化炭素Cの体積割合が高い気体CGとともに施工現場の空気を給気して、施工現場の空気よりも二酸化炭素Cの体積割合を高めた圧縮した気体CGを送気する構成にすることもできる。 In this embodiment, the lightweight ground material LM before solidification is pumped through the pressure feed pipe 24 by the pressure pump 23, and the volume proportion of carbon dioxide C is higher than that of the air at the construction site by the compressor 30 (30B). By supplying compressed gas CG with increased pressure, the lightweight ground material LM before solidification is pumped to the pouring machine 7 while the internal pressure of the pressure feeding pipe 24 that pumps the lightweight ground material LM is maintained in a positive pressure state. It is configured. In this embodiment, a high-pressure container 40 (40C) storing carbon dioxide C is connected to the compressor 30B, and carbon dioxide C is supplied from the high-pressure container 40C to the compressor 30B. Note that if the amount of gas CG compressed by the compressor 30B exceeds the amount of gas CG supplied from the high-pressure container 40C and having a high volume ratio of carbon dioxide C, the compressor 30B will supply the compressed gas CG from the high-pressure container 40C. The structure is such that air at the construction site is supplied together with gas CG having a high volume ratio of carbon dioxide C, and compressed gas CG having a higher volume ratio of carbon dioxide C than the air at the construction site is supplied. You can also do it.

打設した軽量地盤材料LMが固化すると、気泡Bによって形成された多数の独立した空隙が保持された状態の軽量地盤LGが形成される。軽量地盤LGの内部には、多数の独立した空隙に、空気よりも二酸化炭素Cの体積割合が高い気体CGが保持された状態となる。硬化した状態の軽量地盤材料LMの単位体積重量は8~13kN/m3程度と一般的な地盤材料に比べて軽量であり、軽量地盤材料LMは地盤沈下や地震、液状化などに対する十分な強度を有している。そのため、この地盤改良方法により軽量地盤材料LMを打設することで、安定した軽量地盤LGを形成することができる。 When the cast lightweight ground material LM hardens, a lightweight ground LG is formed in which a large number of independent voids formed by air bubbles B are retained. Inside the lightweight ground LG, a gas CG having a higher volume ratio of carbon dioxide C than air is retained in a large number of independent voids. The unit volume weight of the lightweight ground material LM in the hardened state is approximately 8 to 13 kN/ m3 , which is lighter than general ground materials, and the lightweight ground material LM has sufficient strength against ground subsidence, earthquakes, liquefaction, etc. have. Therefore, by placing the lightweight ground material LM using this ground improvement method, a stable lightweight ground LG can be formed.

このように、本発明によれば、軽量地盤材料LMにセルロースナノファイバーFを混合した状態にすることで、セルロースナノファイバーFによる乳化安定性によって軽量地盤材料LMに含まれるそれぞれの気泡Bの被膜の安定性を向上させることができる。これにより、軽量地盤材料LMに含まれる気泡Bの消失や気泡Bどうしの連結を抑制することができ、より品質の安定した軽量地盤LGを形成することができる。 As described above, according to the present invention, by mixing the lightweight ground material LM with the cellulose nanofibers F, the emulsification stability of the cellulose nanofibers F causes each air bubble B contained in the lightweight ground material LM to form a coating. stability can be improved. Thereby, it is possible to suppress the disappearance of the bubbles B contained in the lightweight ground material LM and the connection of the bubbles B with each other, and it is possible to form a lightweight ground LG with more stable quality.

この実施形態のように、軽量地盤材料LMを打設する以前の軽量地盤材料LMを作製する過程でセルロースナノファイバーFを添加すると、打設機7によって軽量地盤材料LMを打設する以前に、セルロースナノファイバーFによって軽量地盤材料LMに含まれる気泡Bの被膜が安定した状態になる。そのため、軽量地盤材料LMに含まれる気泡Bが消失する割合を低くするには有利になる。 As in this embodiment, when cellulose nanofibers F are added in the process of producing the lightweight ground material LM before casting the lightweight ground material LM, before the lightweight ground material LM is cast by the casting machine 7, The cellulose nanofibers F stabilize the film of the bubbles B contained in the lightweight ground material LM. Therefore, it is advantageous to reduce the rate at which the bubbles B contained in the lightweight ground material LM disappear.

特に、この実施形態のように、発泡機19によって発泡フォーム5を作製する過程で、発泡フォーム5にセルロースナノファイバーFを添加した状態にすると、軽量土混練機6によって泥水3、固化材4および発泡フォーム5を混合する工程よりも前の段階で、セルロースナノファイバーFによって発泡フォーム5に含まれる気泡Bの被膜が安定した状態になる。そのため、軽量土混練機6による混合工程で気泡Bが消失する割合を低くするにはさらに有利になる。また、発泡フォーム5を作製する過程でセルロースナノファイバーFを添加すると、セルロースナノファイバーFが有する分散性によって、発泡フォーム5に含まれる気泡Bが均一に分散した状態になる。そのため、軽量土混練機6による混合工程で、泥水3と固化材4と発泡フォーム5とが短時間で均一に混ざり易くなり、軽量土混練機6による混合時間を短縮するには有利になる。軽量土混練機6による混合時間が短縮できることで、軽量地盤材料LMに含まれる気泡Bが消失する割合を低くするにも有利になる。 In particular, as in this embodiment, when cellulose nanofibers F are added to the foam 5 in the process of producing the foam 5 using the foaming machine 19, the lightweight soil kneader 6 produces muddy water 3, solidifying material 4 and At a stage before the step of mixing the foam 5, the film of the cells B contained in the foam 5 is stabilized by the cellulose nanofibers F. Therefore, it is more advantageous to reduce the rate at which the air bubbles B disappear in the mixing process using the lightweight soil kneader 6. Further, when cellulose nanofibers F are added in the process of producing the foamed foam 5, the air bubbles B contained in the foamed foam 5 are uniformly dispersed due to the dispersibility of the cellulose nanofibers F. Therefore, in the mixing process using the lightweight soil kneader 6, the muddy water 3, the solidifying material 4, and the expanded foam 5 are easily mixed uniformly in a short time, which is advantageous in shortening the mixing time using the lightweight soil kneader 6. Since the mixing time by the lightweight soil kneader 6 can be shortened, it is also advantageous to reduce the rate at which the air bubbles B contained in the lightweight soil material LM disappear.

なお、本発明では、軽量地盤材料LMが完全に固化する以前に軽量地盤材料LMにセルロースナノファイバーFを混合した状態にすればよく、上記で例示した発泡フォーム5を作製する過程以外でセルロースナノファイバーFを添加して混合することもできる。例えば、スラリー状の泥水3を作製する過程で、原料土2や原料土2に加える水、調整後の泥水3などにセルロースナノファイバーFを添加することもできる。また、例えば、固化材4にセルロースナノファイバーFを添加することもできる。また、例えば、軽量土混練機6によって泥水3、発泡フォーム5および固化材4を混合する工程でセルロースナノファイバーFを添加することもできる。この場合には、泥水3、固化材4および発泡フォーム5とともに、軽量土混練機6にセルロースナノファイバーFを投入するだけでよいため、非常に簡便にセルロースナノファイバーFを添加した軽量地盤材料LMを作製できる。また、例えば、作製した軽量地盤材料LMを打設機7に圧送する工程でセルロースナノファイバーFを添加して混合することもできる。また、例えば、打設機7によって軽量地盤材料LMを打設した後に、固化する以前の軽量地盤材料LMにセルロースナノファイバーFを添加して混合することもできる。この実施形態では、セルロースナノファイバーFが含まれている液状の乳化剤を使用したが、例えば、粉末状のセルロースナノファイバーFを添加することもできる。 In addition, in the present invention, the cellulose nanofibers F may be mixed with the lightweight ground material LM before the lightweight ground material LM is completely solidified, and the cellulose nanofibers F may be mixed with the lightweight ground material LM in a process other than the process of producing the expanded foam 5 exemplified above. Fiber F can also be added and mixed. For example, in the process of producing slurry-like muddy water 3, cellulose nanofibers F can be added to raw material soil 2, water added to raw material soil 2, adjusted muddy water 3, and the like. Furthermore, for example, cellulose nanofibers F can also be added to the solidifying material 4. Furthermore, for example, the cellulose nanofibers F can be added in the step of mixing the muddy water 3, the expanded foam 5, and the solidifying material 4 using the lightweight soil kneader 6. In this case, it is only necessary to put the cellulose nanofibers F into the lightweight soil kneading machine 6 along with the muddy water 3, the solidification material 4, and the foam 5, so it is very easy to create a lightweight ground material LM to which cellulose nanofibers F have been added. can be created. Furthermore, for example, cellulose nanofibers F can be added and mixed in the step of pumping the produced lightweight ground material LM to the pouring machine 7. Further, for example, after the lightweight ground material LM is cast by the pouring machine 7, the cellulose nanofibers F can be added and mixed with the lightweight ground material LM before solidification. In this embodiment, a liquid emulsifier containing cellulose nanofibers F was used, but for example, powdered cellulose nanofibers F may also be added.

上述したように、セルロースナノファイバーFを添加しない従来方法では、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成して品質の安定した軽量地盤LGを形成することは困難であった。それに対して、本発明では、軽量地盤材料LMにセルロースナノファイバーFを混合した状態にすることで、軽量地盤材料LMの気泡Bに含まれる二酸化炭素Cの体積割合が高い場合にも、セルロースナノファイバーFの乳化安定性によって気泡Bが消失することを効果的に抑制できる。そのため、施工現場の空気よりも二酸化炭素Cの体積割合を高めた気体CGによって発泡フォーム5の気泡Bを形成した場合にも、多数の気泡Bを有する軽量地盤LGを安定した品質で形成することが可能になる。 As mentioned above, in the conventional method in which cellulose nanofibers F are not added, the air bubbles B of the lightweight ground material LM are formed with gas CG having a higher volume ratio of carbon dioxide C than air to form a lightweight ground LG with stable quality. It was difficult to do so. In contrast, in the present invention, by mixing cellulose nanofibers F with the lightweight ground material LM, even when the volume ratio of carbon dioxide C contained in the bubbles B of the lightweight ground material LM is high, cellulose The emulsion stability of the fibers F can effectively suppress the disappearance of the bubbles B. Therefore, even when the air bubbles B of the expanded foam 5 are formed with gas CG having a higher volume ratio of carbon dioxide C than the air at the construction site, a lightweight ground LG having a large number of air bubbles B can be formed with stable quality. becomes possible.

セルロースナノファイバーFを混合して形成した軽量地盤LGでは、軽量地盤LGが有する多数の独立した気泡B(空隙)がそれぞれ、セルロースナノファイバーFで被覆された状態になるので、気泡Bを形成している気体CGに含まれる二酸化炭素Cが、気泡Bの被膜の外側により流出し難い状態になる。そのため、本発明の地盤改良方法を採用することで、地球温暖化の要因となる二酸化炭素Cを改良後の土中(軽量地盤LG)に安定して貯留することが可能になり、土木・建築工事における二酸化炭素Cの低減に寄与できる。 In the lightweight ground LG formed by mixing cellulose nanofibers F, many independent air bubbles B (voids) of the lightweight ground LG are each covered with cellulose nanofibers F, so air bubbles B are formed. The carbon dioxide C contained in the gas CG is difficult to flow out to the outside of the coating of the bubbles B. Therefore, by adopting the ground improvement method of the present invention, it becomes possible to stably store carbon dioxide C, which is a cause of global warming, in the soil after improvement (lightweight ground LG), making it possible for civil engineering and construction It can contribute to reducing carbon dioxide C during construction.

さらに、この地盤改良方法では、軽量地盤材料LMを作製する過程で、施工現場の空気よりも二酸化炭素Cの体積割合を高めた気体CG、または、二酸化炭素Cを溶解させた炭酸溶液CWを混合することで、軽量地盤材料LMに多くの二酸化炭素Cを混入することが可能である。具体的には、例えば、原料土2に加える水や、固化材4、起泡剤15を希釈する水16などに二酸化炭素Cを混合することで、軽量地盤材料LMに多くの二酸化炭素Cを混入することができる。また、例えば、原料土2に加える水や起泡剤15を希釈する水16などに炭酸溶液CWを使用することで、軽量地盤材料LMに多くの二酸化炭素Cを混入することができる。 Furthermore, in this ground improvement method, in the process of producing the lightweight ground material LM, a gas CG with a higher volume ratio of carbon dioxide C than the air at the construction site or a carbonic acid solution CW in which carbon dioxide C is dissolved is mixed. By doing so, it is possible to mix a large amount of carbon dioxide C into the lightweight ground material LM. Specifically, for example, a large amount of carbon dioxide C can be added to the lightweight ground material LM by mixing carbon dioxide C with water added to the raw material soil 2, water 16 diluting the solidification agent 4, foaming agent 15, etc. Can be mixed. Further, for example, by using the carbonic acid solution CW for the water added to the raw soil 2 or the water 16 for diluting the foaming agent 15, a large amount of carbon dioxide C can be mixed into the lightweight ground material LM.

軽量地盤材料LMに多くの二酸化炭素Cを混入することで、軽量地盤材料LMの気泡Bを形成する気体CGに含まれる二酸化炭素Cが、軽量地盤材料LMの水分により溶解し難くなる。そのため、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合が高い気体CGで形成する場合には、軽量地盤材料LMの二酸化炭素濃度を飽和状態に近づけることで、多数の気泡Bを有する品質の安定した軽量地盤LGを形成するには有利になる。 By mixing a large amount of carbon dioxide C into the lightweight ground material LM, the carbon dioxide C contained in the gas CG forming the bubbles B of the lightweight ground material LM becomes difficult to dissolve due to the moisture in the lightweight ground material LM. Therefore, when forming the bubbles B of the lightweight ground material LM with gas CG having a higher volume ratio of carbon dioxide C than air, by bringing the carbon dioxide concentration of the lightweight ground material LM close to the saturated state, a large number of bubbles B It is advantageous to form lightweight ground LG with stable quality.

この実施形態のように、軽量地盤材料LMの打設を行う打設機7に接続された圧送管24内に、施工現場の空気よりも二酸化炭素Cの体積割合を高めた圧縮気体CGを送気して、軽量地盤材料LMを打設機7に圧送する構成にすると、軽量地盤材料LMを圧送する過程で、軽量地盤材料LMに二酸化炭素Cを効果的に混入することができる。また、二酸化炭素Cの体積割合を高めた圧縮した気体CGによって軽量地盤材料LMを陽圧状態で圧送することで、軽量地盤材料LMを打設する以前に軽量地盤材料LMに含まれている二酸化炭素Cが外部に流出することを抑制するにも有利になる。 As in this embodiment, compressed gas CG with a higher volume ratio of carbon dioxide C than the air at the construction site is sent into the pressure pipe 24 connected to the pouring machine 7 for pouring the lightweight ground material LM. If the structure is such that the lightweight ground material LM is force-fed to the pouring machine 7, carbon dioxide C can be effectively mixed into the lightweight ground material LM in the process of force-fed the light-weight ground material LM. In addition, by pumping the lightweight ground material LM under positive pressure using compressed gas CG with a high volume ratio of carbon dioxide C, it is possible to eliminate the carbon dioxide contained in the lightweight ground material LM before pouring the lightweight ground material LM. It is also advantageous to suppress carbon C from flowing out.

この実施形態のように、高圧容器40などに予め貯留しておいた二酸化炭素Cを軽量地盤材料LMに混入すると、軽量地盤材料LMに二酸化炭素Cを比較的簡易に混入することができる。特に、高圧容器40を用いると、二酸化炭素Cの体積割合が高い気体CGを簡易に供給できるので、軽量地盤材料LMに多くの二酸化炭素Cを効率的に混入することができる。それ故、軽量地盤LGに貯留する二酸化炭素Cを増やすには有利になる。また、高圧容器40を用いることで、施工現場以外で排出された二酸化炭素Cを土中に貯留することも可能になる。 As in this embodiment, when carbon dioxide C previously stored in the high-pressure container 40 or the like is mixed into the lightweight ground material LM, carbon dioxide C can be mixed into the lightweight ground material LM relatively easily. In particular, when the high-pressure container 40 is used, gas CG having a high volume ratio of carbon dioxide C can be easily supplied, so that a large amount of carbon dioxide C can be efficiently mixed into the lightweight ground material LM. Therefore, it is advantageous to increase carbon dioxide C stored in the lightweight ground LG. Furthermore, by using the high-pressure container 40, it is also possible to store carbon dioxide C discharged outside the construction site in the soil.

軽量地盤材料LM(泥水3、固化材4、発泡フォーム5)に二酸化炭素Cを混入する方法は、高圧容器40や炭酸溶液CWを使用する場合に限らず、他にも様々な方法で軽量地盤材料LMに二酸化炭素Cを混入することができる。例えば、施工現場で使用される機械が排出した二酸化炭素Cを軽量地盤材料LMに混入することもできる。 The method of mixing carbon dioxide C into the lightweight ground material LM (mud water 3, solidification material 4, foam 5) is not limited to the case of using the high pressure container 40 or the carbonic acid solution CW, but there are various other methods to mix the lightweight ground material LM. Carbon dioxide C can be mixed into the material LM. For example, carbon dioxide C emitted by machines used at the construction site can be mixed into the lightweight ground material LM.

施工現場で使用する機械としては、水底や陸上の土の採取に使用される建設機械や船舶(グラブバケットを備えたクレーン船など)のディーゼル機関、振動篩9に原料土2を投入する建設機械8、軽量地盤材料LMの作製に用いられる各機械(圧縮機30A、希釈液ポンプ18、発泡機19等)が例示できる。また、軽量地盤材料LMを打設機7に圧送する圧縮機30B、施工で使用する各機械に電力を供給する発電機、打設機7などが例示できる。 Machines used at construction sites include construction machines used to collect soil from the bottom of the water or on land, diesel engines from ships (crane ships equipped with grab buckets, etc.), and construction machines that feed the raw material soil 2 into the vibrating sieve 9. 8. Machines (compressor 30A, diluent pump 18, foaming machine 19, etc.) used for producing the lightweight ground material LM can be exemplified. Further, examples include a compressor 30B that pumps the lightweight ground material LM to the pouring machine 7, a generator that supplies power to each machine used in construction, and the pouring machine 7.

施工現場の機械が排出した二酸化炭素Cを使用する場合には、例えば、二酸化炭素Cを排出する機械の排気口と二酸化炭素Cを供給する圧縮機30の給気口とを配管で接続する。また、例えば、二酸化炭素Cを排出する機械の排気口から二酸化炭素Cを混入する軽量地盤材料LMの材料が貯留されている設備(例えば、貯泥槽11や貯蔵設備14、貯水槽20、貯液槽21、貯留槽22)に二酸化炭素Cを送る配管を配設する。機械が排出した排気ガスに含まれる汚染物質を土中に封じ込めることが許容できない施工現場においては、例えば、前述した配管に、機械が排出した排気ガスから粒子状物質(PM)や窒素酸化物(例えば、NOやNO2)、揮発性有機化合物(VOC)などの汚染物質を取り除くフィルターなどを設ける。 When using carbon dioxide C discharged by a machine at a construction site, for example, the exhaust port of the machine that discharges carbon dioxide C and the air supply port of the compressor 30 that supplies carbon dioxide C are connected by piping. In addition, for example, equipment (for example, mud storage tank 11, storage equipment 14, water storage tank 20, storage tank 20, Piping for sending carbon dioxide C to the liquid tank 21 and storage tank 22) is provided. At construction sites where it is not permissible to contain pollutants contained in the exhaust gas emitted by machinery into the soil, for example, the above-mentioned piping is installed to contain particulate matter (PM) and nitrogen oxides ( For example, a filter is provided to remove pollutants such as NO, NO 2 ), and volatile organic compounds (VOC).

施工現場の機械から排出される二酸化炭素Cを軽量地盤材料LMに混入することで、この地盤改良方法の施工において大気中に排出する二酸化炭素Cを効果的に低減できる。特にこの地盤改良方法では、打設機7や圧縮機30が排出する二酸化炭素Cの排出量が比較的多いため、打設機7や圧縮機30が排出した二酸化炭素Cを回収して軽量地盤材料LMに混入する二酸化炭素Cとして使用すると、この地盤改良方法における二酸化炭素Cの排出量を効果的に低減できる。また、施工現場で使用する機械が排出した排気ガスを利用すると、排気ガスが有する熱によって、圧送管24内で軽量地盤材料LMを圧送する過程で固化前の軽量地盤材料LMを加温することができる。固化前の軽量地盤材料LMを加温できることで、打設した軽量地盤材料LMが固化するまでの養生期間を短縮するには有利になる。 By mixing carbon dioxide C emitted from machines at the construction site into the lightweight ground material LM, carbon dioxide C emitted into the atmosphere during construction using this ground improvement method can be effectively reduced. In particular, in this ground improvement method, since the amount of carbon dioxide C emitted by the pouring machine 7 and the compressor 30 is relatively large, the carbon dioxide C discharged by the pouring machine 7 and the compressor 30 is recovered to improve the lightweight soil. When used as carbon dioxide C mixed into the material LM, the amount of carbon dioxide C discharged in this ground improvement method can be effectively reduced. In addition, when exhaust gas emitted by machines used at the construction site is used, the heat of the exhaust gas can heat the lightweight ground material LM before solidification during the process of pumping the lightweight ground material LM in the pressure feeding pipe 24. I can do it. Being able to heat the lightweight ground material LM before solidification is advantageous in shortening the curing period until the cast lightweight ground material LM solidifies.

なお、上述した実施形態では、軽量地盤材料LMの気泡Bを空気よりも二酸化炭素Cの体積割合の高い気体CGで形成する場合を例示したが、空気で気泡Bを形成する場合にも、軽量地盤材料LMにセルロースナノファイバーFを混合した状態にすることで、軽量地盤材料LMに含まれるそれぞれの気泡Bの被膜の安定性をより向上させることができる。それ故、セルロースナノファイバーFを混合しない従来方法よりも、軽量地盤材料LMに含まれる気泡Bが消失する割合を低減するには有利になり、より品質の安定した軽量地盤LGを形成することが可能になる。 In addition, in the embodiment described above, the case where the bubbles B of the lightweight ground material LM are formed with the gas CG having a higher volume ratio of carbon dioxide C than air is exemplified, but even when the bubbles B are formed with air, the lightweight By mixing cellulose nanofibers F with the ground material LM, it is possible to further improve the stability of the film of each bubble B contained in the lightweight ground material LM. Therefore, compared to the conventional method in which cellulose nanofibers F are not mixed, it is more advantageous in reducing the rate of disappearance of air bubbles B contained in the lightweight ground material LM, and it is possible to form a lightweight ground LG with more stable quality. It becomes possible.

1 地盤改良システム
2 原料土
3 泥水
4 固化材
5 発泡フォーム
6 軽量土混練機
7 打設機
8 建設機械
9 振動篩
10 解泥機
11 貯泥槽
12 送泥ポンプ
13 軽量土調泥機
14 貯蔵設備
15 起泡剤
16 水
17 希釈液
18 希釈液ポンプ
19 発泡機
20 貯水槽
21 貯液槽
22 貯留槽
23 圧送ポンプ
24 圧送管
30、30A、30B 圧縮機
40、40A~40C 高圧容器
F セルロースナノファイバー
LM 軽量地盤材料
B 気泡
LG 軽量地盤
C 二酸化炭素
CG (空気よりも二酸化炭素の体積割合を高めた)気体
CW 炭酸溶液
1 Ground improvement system 2 Raw material soil 3 Mud water 4 Solidifying material 5 Foam foam 6 Light-weight soil kneading machine 7 Casting machine 8 Construction machinery 9 Vibrating sieve 10 De-sludge machine 11 Sludge storage tank 12 Sludge pump 13 Light-weight soil conditioning machine 14 Storage Equipment 15 Foaming agent 16 Water 17 Diluent 18 Diluent pump 19 Foaming machine 20 Water tank 21 Liquid storage tank 22 Storage tank 23 Pressure pump 24 Pressure pipes 30, 30A, 30B Compressor 40, 40A to 40C High pressure container F Cellulose nano Fiber LM Lightweight ground material B Bubbles LG Lightweight ground C Carbon dioxide CG (with a higher volume ratio of carbon dioxide than air) Gas CW Carbonic acid solution

Claims (5)

スラリー状の泥水と多数の気泡を有する発泡フォームと固化材とを混合して軽量地盤材料を作製し、その軽量地盤材料を打設して固化させることにより多数の気泡を有する軽量地盤を形成する地盤改良方法において、
前記軽量地盤材料にセルロースナノファイバーを混合した状態にすることを特徴とする地盤改良方法。
A lightweight ground material is prepared by mixing slurry-like muddy water, foamed foam having a large number of cells, and a solidifying material, and by pouring and solidifying the lightweight ground material, a lightweight ground having a large number of cells is formed. In the ground improvement method,
A ground improvement method characterized in that the lightweight ground material is mixed with cellulose nanofibers.
前記軽量地盤材料を打設する以前の前記軽量地盤材料を作製する過程で前記セルロースナノファイバーを添加する請求項1に記載の地盤改良方法。 The soil improvement method according to claim 1, wherein the cellulose nanofibers are added in the process of producing the lightweight soil material before the lightweight soil material is cast. 施工現場の空気よりも二酸化炭素の体積割合を高めた気体によって、前記発泡フォームの前記気泡を形成する請求項1または2に記載の地盤改良方法。 The ground improvement method according to claim 1 or 2, wherein the cells of the expanded foam are formed with gas having a higher volume ratio of carbon dioxide than air at the construction site. 前記軽量地盤材料を作製する過程で、施工現場の空気よりも二酸化炭素の体積割合を高めた気体、または、二酸化炭素を溶解させた炭酸溶液を混合する請求項1または2に記載の地盤改良方法。 The ground improvement method according to claim 1 or 2, wherein in the process of producing the lightweight ground material, a gas with a higher volume ratio of carbon dioxide than air at the construction site or a carbonic acid solution in which carbon dioxide is dissolved is mixed. . 前記軽量地盤材料の打設を行う打設機に接続されていて前記軽量地盤材料が通過する配管内に、施工現場の空気よりも二酸化炭素の体積割合を高めた圧縮気体を送気して、前記軽量地盤材料を前記打設機に圧送する請求項1または2に記載の地盤改良方法。 Supplying compressed gas with a higher volume ratio of carbon dioxide than the air at the construction site into a pipe connected to a casting machine that performs pouring of the lightweight ground material and through which the lightweight ground material passes, The ground improvement method according to claim 1 or 2, wherein the lightweight ground material is pumped to the pouring machine.
JP2022063396A 2022-04-06 2022-04-06 Ground improvement method Pending JP2023154217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022063396A JP2023154217A (en) 2022-04-06 2022-04-06 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022063396A JP2023154217A (en) 2022-04-06 2022-04-06 Ground improvement method

Publications (1)

Publication Number Publication Date
JP2023154217A true JP2023154217A (en) 2023-10-19

Family

ID=88372598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022063396A Pending JP2023154217A (en) 2022-04-06 2022-04-06 Ground improvement method

Country Status (1)

Country Link
JP (1) JP2023154217A (en)

Similar Documents

Publication Publication Date Title
JPWO2006051865A1 (en) Jet stirring method and jet stirring device
KR100901107B1 (en) A method and apparatus for manufacturing lightweight foamed soils
JP6984834B1 (en) Ground injection method
JP2023154217A (en) Ground improvement method
JP4052970B2 (en) Fine grain pressure feeding method
JP5598886B1 (en) Ground injection method and injection material manufacturing equipment
JP2009221764A (en) Soil-cement wall construction method and excavator
JP2023140553A (en) Pressure-feeding method and pressure-feeding system
JP2001193048A (en) Ground and/or water quality improvement method by injection of gaseous dissolution water
JP2023140554A (en) Method for storing carbon dioxide in soil
JP6933332B2 (en) Ground improvement method, ultra fine bubble water production plant
JPH1018345A (en) Reclamation construction method by soft earth and dredging reclamation-through execution work system
JP5317938B2 (en) Construction method of soil cement pillar and soil cement continuous wall
JP2022136725A (en) Carbon dioxide fixing method at sea area waste disposal site and carbon dioxide fixing equipment
JP2007126817A (en) Improved ground preparation method
JPH10338931A (en) Sludge withdrawal treatment method of high-pressure jet mixing method
JP3784822B1 (en) Method for constructing bubble mixed lightweight soil and its construction equipment
JP2000170152A (en) Liquefaction prevention method for sand ground and equipment therefor
JP4697636B2 (en) Light soil placement method
JP6529786B2 (en) Ground improvement method
JP4262438B2 (en) Processing method of granulated blast furnace slag
CN1346000A (en) High-pressure side-spraying reinforcing method for defect in foundation pile
WO2024090269A1 (en) Method and device for fixing carbon dioxide
JP6584354B2 (en) Jet grout method for liquefaction countermeasures
JP4052987B2 (en) Construction method for lightweight solidified soil