JP2023152549A - Buffer material for battery - Google Patents

Buffer material for battery Download PDF

Info

Publication number
JP2023152549A
JP2023152549A JP2022062661A JP2022062661A JP2023152549A JP 2023152549 A JP2023152549 A JP 2023152549A JP 2022062661 A JP2022062661 A JP 2022062661A JP 2022062661 A JP2022062661 A JP 2022062661A JP 2023152549 A JP2023152549 A JP 2023152549A
Authority
JP
Japan
Prior art keywords
battery
cushioning material
rigid bodies
compressive force
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022062661A
Other languages
Japanese (ja)
Inventor
諒 三宅
Ryo Miyake
貴之 大山
Takayuki Oyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2022062661A priority Critical patent/JP2023152549A/en
Publication of JP2023152549A publication Critical patent/JP2023152549A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

To realize a buffer material for a battery, which is adopted to sufficiently absorb a displacement amount while maintaining a sufficient reaction force.SOLUTION: A buffer material 1 for a battery comprises: a plurality of contact parts 2 each of which has an opposite surface 2a facing a rigid body, has a U-shape concave in a state of a pre-compression, and contacts a rigid body along a surface of the rigid body when compressed; and a plurality of column parts 3 that connects a contact part 2 contacted to one rigid body and a contact part 2 contacted to the other rigid body, and is deformed in an S-curved shape when compressed. The buffer material 1 for the battery has a continuous M-shaped construction formed by alternately continuing the plurality of contact parts 2 and the plurality of column parts 3. Two adjacent column parts 3 form a hollow space S between the two column parts 3 in a state of a pre-compression. Deformation of each column part 3 in an aspect where a part compressed and curved in an S-shape is housed in the space S reduces the hollow space S and the buffer material 1 for the battery is reduced in a thickness direction.SELECTED DRAWING: Figure 4

Description

本発明は、バッテリー用緩衝材に関する。更に詳しくは、電気自動車などに用いられる
二次電池などのバッテリーに使用されるバッテリー用緩衝材に関する。
The present invention relates to a cushioning material for batteries. More specifically, the present invention relates to a battery cushioning material used in batteries such as secondary batteries used in electric vehicles and the like.

バッテリーにおいて、互いに対向する平板状の2枚の剛体の間に介在してそれら2枚の剛体間の圧縮力を弾性的に緩和するバッテリー用緩衝材が従来から知られている。たとえば、電気自動車等に用いられるバッテリー(二次電池)において、バッテリーを構成する複数の電池セルの間、あるいは、こうした複数の電池セルの積層体とそれを挟み込むようにして保持する筐体(拘束部)との間、に配置されるバッテリー用緩衝材はその典型的な例である(たとえば特許文献1参照)。このようなバッテリー用緩衝材を剛体間に介在させることで、過度な圧縮力を緩和しつつこれらの剛体を含む全体の一体性を維持するのに必要な圧縮力を確保することができる。 BACKGROUND ART In batteries, a battery cushioning material that is interposed between two plate-like rigid bodies facing each other and elastically relieves the compressive force between the two rigid bodies has been known. For example, in batteries (secondary batteries) used in electric vehicles, etc., there is a case between multiple battery cells that make up the battery, or between a stack of multiple battery cells and a casing (restricted) that holds it in a sandwiched manner. A typical example is a battery cushioning material disposed between the battery and the battery (for example, see Patent Document 1). By interposing such a battery cushioning material between the rigid bodies, it is possible to secure the compressive force necessary to maintain the integrity of the entire structure including these rigid bodies while alleviating excessive compressive force.

特開2020-4556号公報Japanese Patent Application Publication No. 2020-4556

一般にバッテリー用緩衝材は、剛体間に配置された後に最初に受ける剛体間の圧縮力に対しては、高い反力(面圧)を保持したま十分な変位量を吸収することができる。しかしながら、一旦、その圧縮力の負荷が解除されると、その後は、いわゆるヒステリシスロスにより十分な反力を発揮しにくくなる。あらかじめバッテリー用緩衝材を緻密にする等により、負荷解除後に十分な反力を発揮するようにすることも考えられるが、この場合、吸収できる変位量が小さくなってしまう。このため、十分な反力を維持しつつ、変位量を十分に吸収するためにはさらなる工夫が求められる。 In general, a battery cushioning material can absorb a sufficient amount of displacement while maintaining a high reaction force (surface pressure) against the compressive force between the rigid bodies that is initially applied after being placed between the rigid bodies. However, once the compressive force load is released, it becomes difficult to exert sufficient reaction force due to so-called hysteresis loss. It may be possible to make the battery cushioning material dense in advance so that sufficient reaction force can be exerted after the load is released, but in this case, the amount of displacement that can be absorbed becomes small. Therefore, further efforts are required to sufficiently absorb the amount of displacement while maintaining sufficient reaction force.

上記の事情を鑑み、本発明では、十分な反力を維持しつつ、変位量を十分に吸収するのに適したバッテリー用緩衝材の実現を図っている。 In view of the above circumstances, the present invention aims to realize a battery cushioning material suitable for sufficiently absorbing displacement while maintaining sufficient reaction force.

上述の課題を解決するため、本発明は、以下のバッテリー用緩衝材を提供する。 In order to solve the above problems, the present invention provides the following battery cushioning material.

[1] 互いに対向する平板状の2枚の剛体の間に介在して該2枚の剛体間の圧縮力を弾性的に緩和するバッテリー用緩衝材において、前記2枚の剛体のいずれか一方の剛体に対向する対向面であって、前記圧縮力を受ける前の状態では前記バッテリー用緩衝材の厚さ方向に沿った断面においてU字状に凹んだ形状を有し前記圧縮力を受けて前記いずれか一方の剛体の面に沿って該いずれか一方の剛体に当接する対向面をそれぞれ有する複数の当接部と、前記複数の当接部のうち、前記2枚の剛体のうちの一方の剛体に当接する当接部と、前記複数の当接部のうち、前記2枚の剛体のうちの他方の剛体に当接する当接部とを接続し、前記圧縮力を受けて前記断面においてS字状に湾曲した形状に変形する複数の支柱部とを、備え、
前記バッテリー用緩衝材は、前記断面において前記複数の当接部と前記複数の支柱部とが交互に連なることによってM字形状の連続からなる構成を有するものであり、前記複数の支柱部のうちの互いに隣接する2つの支柱部は、前記圧縮力を受ける前の状態では、前記2つの支柱部の間に中空の空間を形成するものであり、前記圧縮力を受けてS字状に湾曲した前記2つの支柱部の屈曲部分が前記中空の空間に収容される態様で前記2つの支柱部が変形することで前記中空の空間がつぶれて前記バッテリー用緩衝材の厚さが縮小するものであるバッテリー用緩衝材。
[1] In a battery cushioning material that is interposed between two plate-like rigid bodies facing each other and elastically relieves the compressive force between the two rigid bodies, one of the two rigid bodies is The opposing surface facing the rigid body has a U-shaped concave shape in a cross section along the thickness direction of the battery cushioning material before receiving the compressive force, and has a U-shaped concave shape in a cross section along the thickness direction of the battery cushioning material. a plurality of contact parts each having an opposing surface that contacts one of the rigid bodies along the surface of one of the rigid bodies; and one of the two rigid bodies among the plurality of contact parts. A contact portion that contacts a rigid body and a contact portion that contacts the other of the two rigid bodies among the plurality of contact portions are connected, and S is formed in the cross section by receiving the compressive force. It is equipped with a plurality of pillar parts that are deformed into a shape curved in a character shape,
The battery cushioning material has an M-shaped continuous structure in which the plurality of contact parts and the plurality of pillar parts are alternately connected in the cross section, and among the plurality of pillar parts, The two mutually adjacent struts form a hollow space between the two struts before receiving the compressive force, and are curved in an S-shape by receiving the compressive force. The two pillars are deformed in such a manner that the bent portions of the two pillars are accommodated in the hollow space, thereby collapsing the hollow space and reducing the thickness of the battery cushioning material. Cushioning material for batteries.

[2] 前記2つの支柱部は、前記中空の空間として前記断面において略V字状の中空の空間を形成するものである[1]に記載のバッテリー用緩衝材。 [2] The battery cushioning material according to [1], wherein the two support columns form a substantially V-shaped hollow space in the cross section as the hollow space.

[3] 前記複数の支柱部は、前記2枚の剛体からの圧縮力を受ける前の状態では、前記断面において直線で表されるような平坦な表面を有するものである[1]又は[2]に記載のバッテリー用緩衝材。 [3] The plurality of support columns have a flat surface represented by a straight line in the cross section before receiving the compressive force from the two rigid bodies [1] or [2] ] Battery cushioning material described in .

[4] 前記複数の支柱部は、前記2枚の剛体からの圧縮力を受ける前の状態では、前記断面において凹凸の繰り返しで表されるような非平坦面を有するものである[1]又は[2]に記載のバッテリー用緩衝材。 [4] The plurality of support columns have a non-flat surface represented by repeated unevenness in the cross section before receiving the compressive force from the two rigid bodies [1] or The battery cushioning material according to [2].

本発明では、2枚の剛体からの圧縮力を受けて支柱部がS字状に湾曲し、その屈曲部分が、隣接する2つの支柱部の間の中空の空間に収容されることで変位量を十分に吸収することができる。また、その圧縮力の負荷が解除された後でも屈曲部分に圧縮応力が残存しやすく十分な反力を維持することができる。この結果、本発明では、十分な反力を維持しつつ、変位量を十分に吸収するのに適したバッテリー用緩衝材が実現している。 In the present invention, the support column bends in an S-shape in response to compressive force from two rigid bodies, and the bent portion is accommodated in the hollow space between the two adjacent support columns, resulting in a displacement amount. can be absorbed sufficiently. Moreover, even after the load of the compressive force is released, the compressive stress tends to remain in the bent portion, and a sufficient reaction force can be maintained. As a result, the present invention provides a battery cushioning material suitable for sufficiently absorbing displacement while maintaining sufficient reaction force.

本発明の一実施形態のバッテリー用緩衝材の使用状態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing how a battery cushioning material according to an embodiment of the present invention is used. 図1のバッテリー用緩衝材の他の使用状態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another usage state of the battery cushioning material of FIG. 1; 図1および図2のバッテリー用緩衝材の斜視図である。FIG. 3 is a perspective view of the battery cushioning material of FIGS. 1 and 2. FIG. 2枚の剛体から圧縮力を受ける前の状態における図3のバッテリー用緩衝材の断面図である。FIG. 4 is a sectional view of the battery cushioning material of FIG. 3 in a state before receiving compressive force from two rigid bodies. 図4のバッテリー用緩衝材が2枚の剛体から圧縮力を受けたときの断面図である。FIG. 5 is a cross-sectional view when the battery cushioning material of FIG. 4 receives compressive force from two rigid bodies. 図4のバッテリー用緩衝材が2枚の剛体から図5の状態よりも大きな圧縮力を受けたときの断面図である。FIG. 6 is a cross-sectional view of the battery cushioning material of FIG. 4 when it receives a compressive force larger than that of FIG. 5 from two rigid bodies. 図3~図6のバッテリー用緩衝材において、圧縮力の負荷が解除された後に残存する圧縮応力の分布を表す図である。FIG. 7 is a diagram showing the distribution of compressive stress remaining after the compressive force load is released in the battery cushioning materials of FIGS. 3 to 6. FIG. 図3~図6のバッテリー用緩衝材の一具体例について、圧縮量に対する反力の変化のグラフを表した図である。FIG. 7 is a graph showing a change in reaction force with respect to the amount of compression for one specific example of the battery cushioning material shown in FIGS. 3 to 6. FIG. 複数の支柱部が非平坦面を有する本発明の別の一実施形態のバッテリー用緩衝材の一部の、厚さ方向に沿った断面図である。FIG. 7 is a cross-sectional view along the thickness direction of a part of a battery cushioning material according to another embodiment of the present invention, in which a plurality of support portions have non-flat surfaces.

以下、本発明の実施形態を、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and it is understood that changes and improvements in the design may be made as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. It should be.

本実施形態のバッテリー用緩衝材は、互いに対向する平板状の2枚の剛体の間に介在してそれら剛体間の圧縮力を弾性的に緩和するバッテリー用緩衝材であり、弾性材料(典型的にはゴムやエラストマー)で構成されている。 The battery cushioning material of this embodiment is a battery cushioning material that is interposed between two plate-shaped rigid bodies facing each other and elastically relieves the compressive force between the rigid bodies, and is made of an elastic material (typical are made of rubber or elastomer).

図1は、本発明の一実施形態のバッテリー用緩衝材1の使用状態を模式的に示す断面図、図2は、図1のバッテリー用緩衝材1の他の使用状態を模式的に示す断面図である。 FIG. 1 is a sectional view schematically showing a usage state of the battery cushioning material 1 according to an embodiment of the present invention, and FIG. 2 is a sectional view schematically showing another usage state of the battery cushioning material 1 of FIG. 1. It is a diagram.

本実施形態のバッテリー用緩衝材1は、図1に示すバッテリー200のように隣り合う電池セル210の間に配置したり、図2に示すバッテリー201のように、複数の電池セル210からなる積層体220と拘束部230との間に配置したりすることができる。なお、バッテリー用緩衝材1は、1つに限らず複数使用することもできる。この場合、複数のバッテリー用緩衝材1を積層させて使用してもよいし、平面上に複数配置するように使用してもよく、これらを組み合わせてもよい。バッテリーとしては、全固体電池に限らず液状電解質の電池であってもよい。 The battery cushioning material 1 of this embodiment can be arranged between adjacent battery cells 210 like the battery 200 shown in FIG. It can be placed between the body 220 and the restraint part 230. Note that the number of battery cushioning materials 1 is not limited to one, and a plurality of them can also be used. In this case, a plurality of battery cushioning materials 1 may be stacked and used, a plurality of them may be arranged on a plane, or a combination of these may be used. The battery is not limited to an all-solid-state battery, but may also be a liquid electrolyte battery.

図3は、図1および図2のバッテリー用緩衝材1の斜視図であり、図4は、2枚の剛体から圧縮力を受ける前の状態における図3のバッテリー用緩衝材1の断面図、図5は、図4のバッテリー用緩衝材1が2枚の剛体10,20から圧縮力を受けたときの断面図、図6は、図4のバッテリー用緩衝材1が2枚の剛体10,20から図5の状態よりも大きな圧縮力を受けたときの断面図である。 3 is a perspective view of the battery cushioning material 1 of FIGS. 1 and 2, and FIG. 4 is a cross-sectional view of the battery cushioning material 1 of FIG. 3 in a state before receiving compressive force from two rigid bodies. 5 is a sectional view when the battery cushioning material 1 of FIG. 4 receives compressive force from the two rigid bodies 10 and 20, and FIG. FIG. 6 is a cross-sectional view when a compressive force larger than that in the state shown in FIG. 5 is applied from the state shown in FIG.

バッテリー用緩衝材1は、図3~図6の各図の水平方向(左右方向)に連続して延びており、図3~図6には、その一部のみが示されている。ここで、本願における「2枚の剛体から圧縮力を受ける前の状態」とは、バッテリー用緩衝材1が一度も2枚の剛体10,20の間に介在したことがなく作製時の単体のバッテリー用緩衝材1の形状がそのまま保たれている状態、すなわち、バッテリー用緩衝材として使用される前の状態を指す。また、剛体10,20としては、たとえば、電気自動車等に用いられるバッテリー(二次電池)において、バッテリーを構成する電池セル、あるいは、こうした電池セルの積層体を挟み込むようにして保持する筐体(正確には筐体の壁)を挙げることができる。この場合、バッテリー用緩衝材1は、電池セルと電池セルとの間、あるいは、電池セルの積層体と筐体との間、に配置されるバッテリー用緩衝材として機能する。 The battery cushioning material 1 extends continuously in the horizontal direction (horizontal direction) in each of FIGS. 3 to 6, and only a portion thereof is shown in FIGS. 3 to 6. Here, in the present application, "the state before receiving compressive force from the two rigid bodies" means that the battery cushioning material 1 has never been interposed between the two rigid bodies 10 and 20 and is in the state of being a single body at the time of manufacture. This refers to a state where the shape of the battery cushioning material 1 is maintained as it is, that is, a state before being used as a battery cushioning material. In addition, the rigid bodies 10 and 20 may be, for example, battery cells that constitute a battery (secondary batteries) used in electric vehicles or the like, or housings that sandwich and hold a stack of such battery cells. To be precise, the wall of the housing) can be mentioned. In this case, the battery cushioning material 1 functions as a battery cushioning material disposed between the battery cells or between the battery cell stack and the casing.

図4に示すように、バッテリー用緩衝材1は、その構成部位として、複数の当接部2と複数の支柱部3とを備えている。 As shown in FIG. 4, the battery cushioning material 1 includes a plurality of contact portions 2 and a plurality of support portions 3 as its constituent parts.

複数の当接部2は、それぞれ、図4の上側の剛体10あるいは図4の下側の剛体20に対向する対向面2aを有している部位である。対向面2aは、図4に示すように、剛体10,20から圧縮力を受ける前の状態ではバッテリー用緩衝材1の厚さ方向に沿った断面においてU字状に凹んだ形状を有している。このようにU字状に凹んだ形状のため、剛体10,20から圧縮力を受けたときには、対向面2aは、図5および図6に示すように剛体10,20の面に沿って剛体10,20にぴったりはりついて当接するようになる。この結果、バッテリー用緩衝材1の圧縮状態が安定化する。 Each of the plurality of contact portions 2 has an opposing surface 2a that faces the upper rigid body 10 in FIG. 4 or the lower rigid body 20 in FIG. As shown in FIG. 4, the opposing surface 2a has a U-shaped concave shape in a cross section along the thickness direction of the battery cushioning material 1 before receiving compressive force from the rigid bodies 10 and 20. There is. Because of the U-shaped concave shape, when receiving compressive force from the rigid bodies 10 and 20, the opposing surface 2a moves along the surfaces of the rigid bodies 10 and 20, as shown in FIGS. 5 and 6. , 20 and come into contact with each other. As a result, the compressed state of the battery cushioning material 1 is stabilized.

図4に示すように複数の支柱部3は、図4の上側の剛体10に当接する当接部2と、図4の下側の剛体20に当接する当接部2とを接続する部位である。複数の支柱部3は、図5および図6に示すように、剛体10,20からの圧縮力を受けてS字状に湾曲した形状に変形する。ここで、湾曲の程度は、剛体10,20からの圧縮力に依るものであり、圧縮力が大きいほど湾曲の程度も大きくなる。たとえば、図5では、S字状の湾曲の程度はわずかであるが、図6では、S字状の湾曲の程度は極めて大きい。 As shown in FIG. 4, the plurality of support columns 3 are portions that connect the contact portion 2 that contacts the upper rigid body 10 in FIG. 4 and the contact portion 2 that contacts the lower rigid body 20 in FIG. be. As shown in FIGS. 5 and 6, the plurality of support columns 3 are deformed into an S-shaped curved shape upon receiving the compressive force from the rigid bodies 10 and 20. Here, the degree of curvature depends on the compression force from the rigid bodies 10 and 20, and the greater the compression force, the greater the degree of curvature. For example, in FIG. 5, the degree of S-shaped curvature is slight, but in FIG. 6, the degree of S-shaped curvature is extremely large.

これら複数の当接部2と複数の支柱部3とが、図4に示すように図4の左右方向に交互に連なることによって、バッテリー用緩衝材1は、M字形状の連続からなる構成を有することとなる。 As shown in FIG. 4, the plurality of contact portions 2 and the plurality of support portions 3 are arranged alternately in the left-right direction of FIG. 4, so that the battery cushioning material 1 has a continuous M-shaped structure. It will be held.

ここで、複数の支柱部のうちの互いに隣接する2つの支柱部3は、剛体10,20からの圧縮力を受ける前の状態では、図4に示すように、それら2つの支柱部3の間に中空の空間Sを形成している。そして、図5および図6(特に図6)に示すように、剛体10,20からの圧縮力を受けて、S字状に湾曲した2つの支柱部3の屈曲部分3aが中空の空間Sに収容される態様でそれら2つの支柱部3が変形する。この変形により中空の空間Sがつぶれてバッテリー用緩衝材1の厚さが縮小する。 Here, in the state before receiving the compressive force from the rigid bodies 10 and 20, two of the plurality of support pillars 3 that are adjacent to each other are between the two support pillars 3 as shown in FIG. A hollow space S is formed in the space. As shown in FIGS. 5 and 6 (particularly FIG. 6), the bent portions 3a of the two S-shaped support columns 3 are bent into the hollow space S by receiving the compressive force from the rigid bodies 10 and 20. The two support columns 3 are deformed in the manner in which they are accommodated. This deformation collapses the hollow space S and reduces the thickness of the battery cushioning material 1.

バッテリー用緩衝材1では、2枚の剛体10,20からの圧縮力を受けて支柱部3がS字状に湾曲し、その屈曲部分が、隣接する2つの支柱部3の間の中空の空間Sに収容されることで変位量を十分に吸収することができる。また、その圧縮力の負荷が解除された後でも屈曲部分に圧縮応力が残存しやすく十分な反力を維持することができる。この結果、バッテリー用緩衝材1は、十分な反力を維持しつつ、変位量を十分に吸収するのに適したバッテリー用緩衝材となっている。 In the battery cushioning material 1, the support pillars 3 are bent into an S-shape by receiving the compressive force from the two rigid bodies 10 and 20, and the bent portion is a hollow space between two adjacent support pillars 3. By being accommodated in S, the amount of displacement can be sufficiently absorbed. Moreover, even after the load of the compressive force is released, the compressive stress tends to remain in the bent portion, and a sufficient reaction force can be maintained. As a result, the battery cushioning material 1 is a battery cushioning material suitable for sufficiently absorbing displacement while maintaining sufficient reaction force.

図7は、図3~図6のバッテリー用緩衝材1において、圧縮力の負荷が解除された後に残存する圧縮応力の分布を表す図である。 FIG. 7 is a diagram showing the distribution of compressive stress remaining after the compressive force load is released in the battery cushioning material 1 of FIGS. 3 to 6.

図7に示すように、圧縮応力は、支柱部3のS字状に湾曲した支柱部3の屈曲部分、特に、その折れ曲がった内側表面3b付近に残存しやすい。このような内側表面3bを実現するような形状を図4のバッテリー用緩衝材1が有することで、圧縮力の負荷が解除された後でも十分な反力を維持することができる。 As shown in FIG. 7, the compressive stress tends to remain in the S-shaped bent portion of the support portion 3, particularly in the vicinity of the bent inner surface 3b. Since the battery cushioning material 1 of FIG. 4 has a shape that realizes such an inner surface 3b, a sufficient reaction force can be maintained even after the compressive force load is released.

図8は、図3~図6のバッテリー用緩衝材1の一具体例について、圧縮量に対する反力の変化のグラフを表した図である。なお、図8には、参考のために、平板状の発泡体からなる従来のバッテリー用緩衝材についても、圧縮量に対する反力の変化のグラフが記載されている。 FIG. 8 is a diagram showing a graph of the change in reaction force with respect to the amount of compression for one specific example of the battery cushioning material 1 shown in FIGS. 3 to 6. For reference, FIG. 8 also shows a graph of the change in reaction force with respect to the amount of compression for a conventional battery cushioning material made of a flat foam.

図8には、バッテリー用緩衝材1の一具体例について、初めて圧縮力の負荷がかけられたときの、圧縮量に対する反力の変化のグラフA1、および、その負荷の解除後の第2回目の圧縮力の負荷がかけられたときの、圧縮量に対する反力の変化のグラフA2が示されている。また、従来のバッテリー用緩衝材について、初めて圧縮力の負荷がかけられたときの、圧縮量に対する反力の変化のグラフB1、および、その負荷の解除後の第2回目の圧縮力の負荷がかけられたときの、圧縮量に対する反力の変化のグラフB2も示されている。 FIG. 8 shows a graph A1 of the change in reaction force with respect to the amount of compression when a compressive force load is applied for the first time for a specific example of the battery cushioning material 1, and a graph A1 showing the change in reaction force with respect to the amount of compression when a compressive force load is applied for the first time, and a graph A1 showing a change in reaction force against the amount of compression when a compressive force load is applied for the first time, and a graph A1 for a specific example of the battery cushioning material 1. Graph A2 shows a change in reaction force with respect to the amount of compression when a load of compressive force is applied. In addition, for conventional battery cushioning materials, graph B1 shows the change in reaction force against the amount of compression when a compressive force is applied for the first time, and the second compressive force after the load is released. A graph B2 of the change in reaction force with respect to the amount of compression when applied is also shown.

従来のバッテリー用緩衝材では、初めて圧縮力の負荷がかけられたときには、図8のグラフB1に示すように、ある程度、高い反力(面圧)を保持したまま十分な圧縮量(変位量)を吸収することができる。しかしながら、その圧縮力の負荷が解除された後の第2回目の圧縮力の負荷に対しては、図8のグラフB2に示すように、かなり圧縮されないと十分な反力を発揮しにくくなっている(いわゆるヒステリシスロス)。 With conventional battery cushioning materials, when compressive force is applied for the first time, as shown in graph B1 in Figure 8, a sufficient amount of compression (displacement) is achieved while maintaining a somewhat high reaction force (surface pressure). can be absorbed. However, in response to the second compression force load after the compression force load is released, as shown in graph B2 of Figure 8, it becomes difficult to exert sufficient reaction force unless the compression force is considerably compressed. (so-called hysteresis loss).

一方、バッテリー用緩衝材1の一具体例では、初めて圧縮力の負荷がかけられたときには、図8のグラフA1に示すように、従来のバッテリー用緩衝材に比べ比較的高い反力(面圧)を保持したまま、十分な圧縮量(変位量)を吸収することができる。また、その圧縮力の負荷が解除された後の第2回目の圧縮力の負荷に対しては、図8のグラフA2に示すように、従来のバッテリー用緩衝材に比べ、それほど大きく圧縮されなくても十分な反力を発揮できるようになっている。 On the other hand, in one specific example of the battery cushioning material 1, when compressive force is applied for the first time, as shown in graph A1 of FIG. ) can absorb a sufficient amount of compression (displacement). In addition, when the compressive force is applied for the second time after the compressive force is released, as shown in graph A2 in Figure 8, the compression is not as great as compared to conventional battery cushioning materials. It is designed to be able to exert sufficient reaction force.

このようにこのバッテリー用緩衝材1の一具体例は、平板状の発泡体からなる従来のバッテリー用緩衝材に比べて、十分な反力を維持しつつ変位量を十分に吸収するのに適したバッテリー用緩衝材となっている。 As described above, this specific example of the battery cushioning material 1 is more suitable for sufficiently absorbing displacement while maintaining sufficient reaction force than conventional battery cushioning materials made of flat foam. It is used as a cushioning material for batteries.

ここで、図8のグラフA2には、圧縮量が増加しても反力がほぼ一定となるプラトー領域Pが存在する。これは、図6に示すように、S字状に湾曲した2つの支柱部3の屈曲部分3aが中空の空間Sを占めかけている状態に対応しており、この状態では、圧縮量が増加しても高い反力が保持されたまま、中空の空間Sが完全に消滅するまで反力はあまり変化しない。このようなプラトー領域Pが存在することで、バッテリー用緩衝材1の体積圧縮(厚さ縮小)に対する急激な反力の増加が防止される。ここで、プラトー領域Pにおける反力は、圧縮前の初期状態におけるバッテリー用緩衝材1の厚さや形状(たとえば支柱部3と当接部2のなす角度等)や材質のヤング率等を調整することで、所望の大きさに調整することができる。 Here, in the graph A2 of FIG. 8, there is a plateau region P in which the reaction force remains approximately constant even if the amount of compression increases. As shown in FIG. 6, this corresponds to a state in which the bent portions 3a of the two S-shaped support columns 3 are about to occupy the hollow space S, and in this state, the amount of compression increases. Even if the hollow space S completely disappears, the reaction force remains high and does not change much. The existence of such a plateau region P prevents a sudden increase in reaction force against volume compression (thickness reduction) of the battery cushioning material 1. Here, the reaction force in the plateau region P adjusts the thickness and shape of the battery cushioning material 1 in the initial state before compression (for example, the angle formed between the support portion 3 and the contact portion 2), the Young's modulus of the material, etc. This allows adjustment to the desired size.

図3~図6に戻って説明を続ける。 The explanation will be continued by returning to FIGS. 3 to 6.

本発明では、図4に示すように、2つの支柱部3が、略V字状の中空の空間Sを形成する形態が好ましい。ここで、「略V字状」とは、V字に近い形状のことであり、V字状そのものに加え、底部が丸みを帯びてU字状に近くなった形状等、底部に近づくにつれて幅が狭くなっていく形状を意味している。 In the present invention, as shown in FIG. 4, it is preferable that the two support columns 3 form a substantially V-shaped hollow space S. Here, the term "substantially V-shaped" refers to a shape close to a V-shape, and in addition to the V-shape itself, it also has a shape with a rounded bottom that approaches a U-shape, and the width increases as it approaches the bottom. means a shape that becomes narrower.

2つの支柱部3がこのように略V字状の中空の空間Sを形成することで、S字状に湾曲した2つの支柱部3の屈曲部分3aが中空の空間Sにスムーズに収容されやすく、圧縮量の変化に対して反力が急激に変化することが回避される。 Since the two support columns 3 form the substantially V-shaped hollow space S in this way, the bent portions 3a of the two support columns 3 curved in an S-shape can be easily accommodated in the hollow space S. , it is possible to avoid a sudden change in the reaction force with respect to a change in the amount of compression.

また、本発明では、図4に示すように、バッテリー用緩衝材1が2枚の剛体10,20からの圧縮力を受ける前の状態では、複数の支柱部3が、この断面図において直線で表されるような平坦な表面を有する形態が好ましい。 Further, in the present invention, as shown in FIG. 4, before the battery cushioning material 1 receives compressive force from the two rigid bodies 10 and 20, the plurality of support columns 3 are straight in this cross-sectional view. A configuration with a flat surface as depicted is preferred.

このような形態によれば、複数の支柱部3の形状が単純であるため、バッテリー用緩衝材1の作製が容易である。 According to such a form, since the shapes of the plurality of support columns 3 are simple, it is easy to manufacture the battery cushioning material 1.

ただし、本発明では、バッテリー用緩衝材が圧縮力を受ける前の状態では、複数の支柱部が、断面図において凹凸の繰り返しで表されるような非平坦面を有する形態が採用されてもよい。以下、このような形態を持つ、図3~図6のバッテリー用緩衝材1とは別の実施形態について説明する。 However, in the present invention, in a state before the battery cushioning material is subjected to compressive force, a configuration may be adopted in which the plurality of support portions have non-flat surfaces represented by repeated unevenness in the cross-sectional view. . Hereinafter, an embodiment different from the battery cushioning material 1 shown in FIGS. 3 to 6, which has such a configuration, will be described.

図9は、複数の支柱部3’が非平坦面を有する本発明の別の一実施形態のバッテリー用緩衝材1’の一部の、厚さ方向に沿った断面図である。 FIG. 9 is a sectional view along the thickness direction of a part of a battery cushioning material 1' according to another embodiment of the present invention, in which a plurality of support portions 3' have non-flat surfaces.

図9では、図3~図6のバッテリー用緩衝材1と同一の構成要素については同一の符号が付されており、その重複説明は省略する。図9のバッテリー用緩衝材1’は、図3~図6のバッテリー用緩衝材1とは異なり、圧縮力を受ける前の状態では、図9の断面図において凹凸の繰り返しで表されるような非平坦面を有する複数の支柱部3’を備えており、この点以外は、図3~図6のバッテリー用緩衝材1と同じである。 In FIG. 9, the same components as those of the battery cushioning material 1 of FIGS. 3 to 6 are denoted by the same reference numerals, and redundant explanation thereof will be omitted. Unlike the battery cushioning material 1 of FIGS. 3 to 6, the battery cushioning material 1' in FIG. It includes a plurality of support columns 3' having non-flat surfaces, and is the same as the battery cushioning material 1 shown in FIGS. 3 to 6 except for this point.

このようなバッテリー用緩衝材1’は、図3~図6のバッテリー用緩衝材1と比べると、複数の支柱部3の形状が複雑であるためバッテリー用緩衝材1の作製の容易さの点では不利である。しかしながら、図3~図6のバッテリー用緩衝材1の支柱部3と比べると、バッテリー用緩衝材1’の支柱部3’の方が折れ曲がり変形しやすく、バッテリー用緩衝材1’に内部ひずみが発生しにくい。このため、内部ひずみ防止の点では有利である。 Compared to the battery cushioning material 1 shown in FIGS. 3 to 6, such a battery cushioning material 1' has a complicated shape of the plurality of support columns 3, so that it is difficult to manufacture the battery cushioning material 1. That's a disadvantage. However, compared to the struts 3 of the battery cushioning material 1 shown in FIGS. 3 to 6, the struts 3' of the battery cushioning material 1' are more likely to bend and deform, causing internal strain in the battery cushioning material 1'. Hard to occur. Therefore, it is advantageous in terms of preventing internal strain.

以上が本発明の実施形態の説明である。 The above is the description of the embodiment of the present invention.

以上の説明では、2枚の剛体の間に介在する1枚のバッテリー用緩衝材について説明したが、本発明は、こうした2枚の剛体と1枚のバッテリー用緩衝材の組が複数組積み重なってなる積層体に適用されてもよい。 In the above explanation, one sheet of battery cushioning material interposed between two rigid bodies has been described, but the present invention provides a structure in which a plurality of sets of two rigid bodies and one battery cushioning material are stacked one on top of the other. It may be applied to a laminate.

本発明は、十分な反力を維持しつつ、変位量を十分に吸収するのに適したバッテリー用緩衝材を実現するのに有用である。 INDUSTRIAL APPLICABILITY The present invention is useful for realizing a battery cushioning material suitable for sufficiently absorbing displacement while maintaining sufficient reaction force.

1,1’:バッテリー用緩衝材、
2:当接部、
2a:対向面、
3,3’:支柱部、
3a:屈曲部分、
3b:内側表面、
10,20:剛体、
200,201:バッテリー、
210:電池セル、
220:積層体、
230:拘束部、
A1,A2,B1,B2:グラフ、
P:プラトー領域、
S:中空の空間。
1,1': Battery cushioning material,
2: Contact part,
2a: Opposing surface,
3, 3': Support part,
3a: bent part,
3b: inner surface,
10, 20: rigid body,
200, 201: battery,
210: battery cell,
220: laminate,
230: Restraint part,
A1, A2, B1, B2: graph,
P: plateau region,
S: Hollow space.

Claims (4)

互いに対向する平板状の2枚の剛体の間に介在して該2枚の剛体間の圧縮力を弾性的に緩和するバッテリー用緩衝材において、
前記2枚の剛体のいずれか一方の剛体に対向する対向面であって、前記圧縮力を受ける前の状態では前記バッテリー用緩衝材の厚さ方向に沿った断面においてU字状に凹んだ形状を有し前記圧縮力を受けて前記いずれか一方の剛体の面に沿って該いずれか一方の剛体に当接する対向面をそれぞれ有する複数の当接部と、
前記複数の当接部のうち、前記2枚の剛体のうちの一方の剛体に当接する当接部と、前記複数の当接部のうち、前記2枚の剛体のうちの他方の剛体に当接する当接部とを接続し、前記圧縮力を受けて前記断面においてS字状に湾曲した形状に変形する複数の支柱部とを、備え、
前記バッテリー用緩衝材は、前記断面において前記複数の当接部と前記複数の支柱部とが交互に連なることによってM字形状の連続からなる構成を有するものであり、
前記複数の支柱部のうちの互いに隣接する2つの支柱部は、前記圧縮力を受ける前の状態では、前記2つの支柱部の間に中空の空間を形成するものであり、前記圧縮力を受けてS字状に湾曲した前記2つの支柱部の屈曲部分が前記中空の空間に収容される態様で前記2つの支柱部が変形することで前記中空の空間がつぶれて前記バッテリー用緩衝材の厚さが縮小するものであるバッテリー用緩衝材。
A battery cushioning material that is interposed between two plate-shaped rigid bodies facing each other and elastically relieves the compressive force between the two rigid bodies,
an opposing surface facing one of the two rigid bodies, which is recessed in a U-shape in a cross section along the thickness direction of the battery cushioning material in a state before receiving the compressive force; a plurality of abutting portions each having an opposing surface that receives the compressive force and abuts the one of the rigid bodies along the surface of the one of the rigid bodies;
A contact portion that contacts one of the two rigid bodies among the plurality of contact portions, and a contact portion that contacts the other of the two rigid bodies among the plurality of contact portions. a plurality of support portions connected to the abutment portions that are in contact with each other and deformed into an S-shaped curved shape in the cross section in response to the compressive force;
The battery cushioning material has a configuration in which the plurality of abutting portions and the plurality of support portions are alternately connected in the cross section to form a continuous M-shape;
Two of the plurality of support pillars that are adjacent to each other form a hollow space between the two support pillars before receiving the compressive force, and By deforming the two pillars in such a manner that the bent portions of the two pillars curved in an S-shape are accommodated in the hollow space, the hollow space is collapsed and the thickness of the battery cushioning material is reduced. Cushioning material for batteries that shrinks in size.
前記2つの支柱部は、前記中空の空間として前記断面において略V字状の中空の空間を形成するものである請求項1に記載のバッテリー用緩衝材。 The battery cushioning material according to claim 1, wherein the two support columns form a hollow space having a substantially V-shape in the cross section as the hollow space. 前記複数の支柱部は、前記2枚の剛体からの圧縮力を受ける前の状態では、前記断面において直線で表されるような平坦な表面を有するものである請求項1又は2に記載のバッテリー用緩衝材。 The battery according to claim 1 or 2, wherein the plurality of support portions have a flat surface represented by a straight line in the cross section before receiving the compressive force from the two rigid bodies. Cushioning material. 前記複数の支柱部は、前記2枚の剛体からの圧縮力を受ける前の状態では、前記断面において凹凸の繰り返しで表されるような非平坦面を有するものである請求項1又は2に記載のバッテリー用緩衝材。 3. The plurality of support columns have a non-flat surface represented by repeated unevenness in the cross section before receiving the compressive force from the two rigid bodies. Cushioning material for batteries.
JP2022062661A 2022-04-04 2022-04-04 Buffer material for battery Pending JP2023152549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022062661A JP2023152549A (en) 2022-04-04 2022-04-04 Buffer material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022062661A JP2023152549A (en) 2022-04-04 2022-04-04 Buffer material for battery

Publications (1)

Publication Number Publication Date
JP2023152549A true JP2023152549A (en) 2023-10-17

Family

ID=88349221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022062661A Pending JP2023152549A (en) 2022-04-04 2022-04-04 Buffer material for battery

Country Status (1)

Country Link
JP (1) JP2023152549A (en)

Similar Documents

Publication Publication Date Title
JP2008535175A (en) Sealed battery casing
JP6028231B2 (en) Assembled battery
JP6606896B2 (en) Battery module
JP2022180378A5 (en) Buffer rubber and pedestal
EP1693915A1 (en) Seal structure for fuel cell
JP2023152549A (en) Buffer material for battery
US20220082146A1 (en) Cushioning rubber, reaction force adjusting method thereof, and pedestal
KR102493226B1 (en) Gasket for fuel battery
JP5417813B2 (en) Fuel cell stack
JP2018026244A (en) Battery module
JP2009059535A (en) Fuel cell
CN109478659B (en) Fuel cell stack
JP2019164968A (en) Binding member and all solid battery assembly
JP5278158B2 (en) Vehicle fuel cell
JP2005347077A (en) Battery pack
JP2023044885A (en) Battery cushioning material
JP5645073B2 (en) Fuel cell stack
JP4470685B2 (en) Fuel tank support structure
WO2024172064A1 (en) Battery cushioning structure
CN214043851U (en) Lithium battery side supporting mechanism
CN214153070U (en) Lithium battery side damping mechanism
JP7130528B2 (en) Support structure and method of installation
JP2023068872A (en) buffer rubber material
JP2002198071A (en) Fuel cell gasket
JP2023019972A (en) Cushioning material for batteries

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240815