JP2005347077A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2005347077A
JP2005347077A JP2004164603A JP2004164603A JP2005347077A JP 2005347077 A JP2005347077 A JP 2005347077A JP 2004164603 A JP2004164603 A JP 2004164603A JP 2004164603 A JP2004164603 A JP 2004164603A JP 2005347077 A JP2005347077 A JP 2005347077A
Authority
JP
Japan
Prior art keywords
spacer
cells
cell
assembled battery
unit cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004164603A
Other languages
Japanese (ja)
Inventor
Fumihiko Saito
文彦 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004164603A priority Critical patent/JP2005347077A/en
Publication of JP2005347077A publication Critical patent/JP2005347077A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack capable of flexibly coping with variations of swelling of each element battery. <P>SOLUTION: The battery pack comprises a plurality of element batteries 1 which generate power by electrochemical reaction of hydrogen in the fuel gas and oxygen in the oxidizer gas by being supplied with the fuel gas and oxidizer gas and which are packaged outside in lamination, and spacers 2 which are arranged between the plurality of element batteries 1 laminated in a first direction 5 and are capable of extension and shrinkage in the first direction 5. The plurality of element batteries 1 are also arranged in a row in a second direction 6 perpendicular to the first direction 5, and the main surface of the spacers 2 contacting the element batteries 1 has irregular shape extended in a third direction 7 which is nearly perpendicular to the first direction 5 and the second direction 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は組電池に関し、特に、ラミネート外装した複数の素電池を組み合わせてなる組電池に関する。   The present invention relates to an assembled battery, and in particular, to an assembled battery formed by combining a plurality of unit cells that are laminated.

従来から、複数の素電池を積層してなる組電池が知られている(例えば、特許文献1参照)。特許文献1の組電池においては、断面が三角波状の板材として形成されたスペーサが素電池と共に積層され、素電池とスペーサ間の空間は冷却媒体の流路として用いられている。スペーサの支持部で電池モジュールの変形を規制することにより十分な強度を確保すると同時に、冷却性能も向上させている。   Conventionally, an assembled battery formed by stacking a plurality of unit cells is known (see, for example, Patent Document 1). In the assembled battery of Patent Document 1, a spacer formed as a plate having a triangular wave cross section is laminated together with the unit cell, and the space between the unit cell and the spacer is used as a flow path for the cooling medium. By restricting the deformation of the battery module by the support portion of the spacer, sufficient strength is secured and at the same time the cooling performance is improved.

また、素電池としてラミネート外装した薄型ラミネート電池(LBセル)を使用した組電池が知られている(例えば、特許文献2参照)。特許文献2の組電池においては、互いに接続された複数のLBセルを1つの支持体内で樹脂封止している。
特開2001−23702号公報(特に図1及び段落[0007]参照) 特開2003−162989号公報(特に図1及び段落[0010]参照)
Further, an assembled battery using a thin laminated battery (LB cell) with a laminated exterior as a unit battery is known (see, for example, Patent Document 2). In the assembled battery of Patent Document 2, a plurality of LB cells connected to each other are resin-sealed in one support body.
JP 2001-23702 A (refer to FIG. 1 and paragraph [0007] in particular) JP 2003-162989 A (refer to FIG. 1 and paragraph [0010] in particular)

しかしながら、特許文献1のスペーサを特許文献2の組電池に適用する時、スペーサの凹凸形状が伸びている方向と複数のLBセルを並べる方向との関係を考慮しないと、以下のような問題が発生する。   However, when the spacer of Patent Document 1 is applied to the assembled battery of Patent Document 2, the following problems arise unless the relationship between the direction in which the uneven shape of the spacer extends and the direction in which a plurality of LB cells are arranged is considered. Occur.

即ち、LBセルは充放電を繰り返すことで膨らみが生じ、この膨らみは各LBセルでバラツキがある。したがって、スペーサの凹凸形状が伸びる方向と複数のLBセルを並べる方向とが略平行になるように配置してしまうと、LBセルの膨らみが小さいところで隙間が出来てしまい、総てのLBセルを十分に支持できない。   That is, the LB cell is swollen by repeating charge and discharge, and this swollenness varies among the LB cells. Accordingly, if the direction in which the concave and convex shape of the spacer extends and the direction in which the plurality of LB cells are arranged are substantially parallel, a gap is formed where the bulge of the LB cell is small, and all the LB cells are I can't support it enough.

本発明の特徴は、燃料ガス及び酸化剤ガスが供給され、燃料ガス中の水素と酸化剤ガス中の酸素との電気化学的反応によって発電を行うラミネート外装した複数の素電池と、第1の方向に積層された複数の素電池の間に配置された、第1の方向に伸縮自在なスペーサとを備える組電池であって、複数の素電池は、第1の方向に垂直な第2の方向にも並べて配置され、素電池に接するスペーサの主面は、第1及び第2の方向に略垂直な第3の方向に伸びた凹凸形状を有することを要旨とする。   A feature of the present invention is that a plurality of unit cells covered with a laminate, which are supplied with a fuel gas and an oxidant gas and generate power by an electrochemical reaction between hydrogen in the fuel gas and oxygen in the oxidant gas, An assembled battery including a spacer that is disposed between a plurality of unit cells that are stacked in a direction and that is expandable and contractable in a first direction, the plurality of unit cells being a second perpendicular to the first direction. The gist is that the main surfaces of the spacers arranged side by side and in contact with the unit cells have a concavo-convex shape extending in a third direction substantially perpendicular to the first and second directions.

本発明によれば、各素電池の膨らみのバラツキに柔軟に対応可能な組電池を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the assembled battery which can respond flexibly to the variation in the swelling of each unit cell can be provided.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一あるいは類似の部分には同一あるいは類似な符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

図1に示すように、本発明の実施の形態に係わる組電池(以後、「電池モジュール」という)は、ラミネート外装した複数の素電池1(以後、「LBセル」という)と、第1の方向5に積層された複数のLBセル1の間に配置されたスペーサ2と、第1の方向5に積層された複数のLBセル1の上面及び下面を挟むエンドプレート4と、エンドプレート4に挟まれた状態の複数のLBセル1を固定するボルト3とを備える。   As shown in FIG. 1, an assembled battery (hereinafter referred to as “battery module”) according to an embodiment of the present invention includes a plurality of unit cells 1 (hereinafter referred to as “LB cells”) covered with a laminate, Spacers 2 arranged between the plurality of LB cells 1 stacked in the direction 5, the end plate 4 sandwiching the upper and lower surfaces of the plurality of LB cells 1 stacked in the first direction 5, and the end plate 4 And a bolt 3 for fixing the plurality of LB cells 1 in a sandwiched state.

LBセル1は、燃料ガス及び酸化剤ガスが供給され、燃料ガス中の水素と酸化剤ガス中の酸素との電気化学的反応によって発電を行う燃料電池である。複数(図1では8個)のLBセル1が第1の方向5に積層され、複数(図1では5個)のLBセル1が第1の方向5に垂直な第2の方向6に並べて配置されている。第1の方向5へ積層されるLBセル1の数及び第2の方向6に並べられるLBセル1の数は例示であり、これに限られない。   The LB cell 1 is a fuel cell that is supplied with a fuel gas and an oxidant gas and generates power by an electrochemical reaction between hydrogen in the fuel gas and oxygen in the oxidant gas. A plurality (eight in FIG. 1) of LB cells 1 are stacked in the first direction 5, and a plurality (five in FIG. 1) of LB cells 1 are arranged in a second direction 6 perpendicular to the first direction 5. Has been placed. The number of LB cells 1 stacked in the first direction 5 and the number of LB cells 1 arranged in the second direction 6 are examples, and are not limited thereto.

スペーサ2は、複数のLBセル1の下面とエンドプレート4との間、下から3段目のLBセル1と4段目のLBセル1の間、下から5段目のLBセル1と6段目のLBセル1の間、複数のLBセル1の上面とエンドプレート4との間にそれぞれ挿入されている。LBセル1に接するスペーサ2の主面は、第1の方向5及び第2の方向6に略垂直な第3の方向7に伸びた凹凸形状を有する。更に、スペーサ2は第1の方向5に伸縮自在である。   The spacer 2 is provided between the lower surface of the plurality of LB cells 1 and the end plate 4, between the LB cell 1 at the third stage from the bottom and the LB cell 1 at the fourth stage, and from the LB cells 1 and 6 at the fifth stage from the bottom. The LB cells 1 are inserted between the upper surfaces of the plurality of LB cells 1 and the end plate 4. The main surface of the spacer 2 in contact with the LB cell 1 has an uneven shape extending in a third direction 7 substantially perpendicular to the first direction 5 and the second direction 6. Further, the spacer 2 can be expanded and contracted in the first direction 5.

なお、スペーサ2の凹凸形状は頂点のない形状(例えば、正弦波形状)であることが望ましい。スペーサ2が第2の方向6に広がる時にLBセル1を傷つけることを防止できる。即ち、波形には頂点を持たない正弦波形状とすることで、LBセル1からうける面圧を局部的に集中させず、スペーサ2の反力とLBセル1の面圧とのバランスを保ちながら、スペーサ2と接するLBセル1の表面の材質を破損、切開させない。   The uneven shape of the spacer 2 is preferably a shape without a vertex (for example, a sine wave shape). It is possible to prevent the LB cell 1 from being damaged when the spacer 2 spreads in the second direction 6. That is, by forming a sine wave shape having no apex in the waveform, the surface pressure received from the LB cell 1 is not concentrated locally, and the balance between the reaction force of the spacer 2 and the surface pressure of the LB cell 1 is maintained. The material of the surface of the LB cell 1 that is in contact with the spacer 2 is not damaged or incised.

また、LBセル1とスペーサ2間の隙間に冷却媒体を流すことにより、スペーサ2はヒートシンクとしても機能することができる。   Further, the spacer 2 can also function as a heat sink by flowing a cooling medium through the gap between the LB cell 1 and the spacer 2.

エンドプレート4の四隅にあるボルト3がエンドプレート4を所定の押圧力で締め付けているため、電池モジュールの第1の方向5の長さが所定の寸法内に収まっている。LBセル1は充放電を繰り返すことでLBセル1の内部から膨張する特性を有する。使用を続けているうちに各LBセル1の前記特性にバラツキが生じる。すなわち、各LBセル1間で膨張する度合いに差が生じる。LBセル1の構造上、膨張によるLBセルの厚さの変化は主に積層方向(第1の方向5)である。電池モジュールの第1の方向5の長さが所定の寸法を保持するためには、第1の方向5に積層されたLBセル1の厚さの総和とスペーサ2の厚さの総和を一定にする必要がある。そこで、スペーサ2の厚さをよりフレキシブルに変化させるため、スペーサ形状を波形状としている。   Since the bolts 3 at the four corners of the end plate 4 fasten the end plate 4 with a predetermined pressing force, the length of the battery module in the first direction 5 is within a predetermined dimension. The LB cell 1 has a characteristic of expanding from the inside of the LB cell 1 by repeating charging and discharging. As the use continues, the characteristics of the LB cells 1 vary. That is, a difference occurs in the degree of expansion between the LB cells 1. Due to the structure of the LB cell 1, the change in the thickness of the LB cell due to expansion is mainly in the stacking direction (first direction 5). In order for the length of the battery module in the first direction 5 to maintain a predetermined dimension, the sum of the thicknesses of the LB cells 1 stacked in the first direction 5 and the sum of the thicknesses of the spacers 2 are made constant. There is a need to. Therefore, in order to change the thickness of the spacer 2 more flexibly, the spacer shape is a wave shape.

図2(a)は、図1に示したLBセル1の一部分を拡大して示している。スペーサ2の上下に接する複数のLBセルが膨張して増大する面圧とスペーサ2の反力とのバランスが定常状態に落ち着くまでスペーサ2は変形する。その結果、スペーサ2の厚さが薄くなる。定常状態でのLBセル1、LBセル2の面圧をそれぞれF1、F2、スペーサ2の反力をF3とすれば、F1+F2=F3を満たすようなスペーサ2の厚みとなる。   FIG. 2A shows an enlarged part of the LB cell 1 shown in FIG. The spacer 2 is deformed until the balance between the surface pressure increased by expansion of the plurality of LB cells in contact with the upper and lower sides of the spacer 2 and the reaction force of the spacer 2 settles to a steady state. As a result, the thickness of the spacer 2 is reduced. If the surface pressures of the LB cell 1 and the LB cell 2 in the steady state are F1 and F2, and the reaction force of the spacer 2 is F3, the thickness of the spacer 2 satisfies F1 + F2 = F3.

また、図2(a)に示すように、複数のLBセルのうちLBセル2のみが他のLBセルに比して膨張する度合いが高い。この場合、LBセル2の部分でのスペーサ2の反力F3は、LBセル3の部分でのスペーサ2の反力F3よりも大きいため、LBセル2の部分でのスペーサ2の厚さは、LBセル3の部分でのスペーサ2の厚さよりも薄くなる。このように、スペーサ2の凹凸形状は複数のLBセル1が並べられた第2の方向6に略垂直な第3の方向7に伸びているため、各LBセル1間の第1の方向5の厚さのバラツキに対して柔軟に対応して、総てのLBセル1を十分に支持することが出来る。   Further, as shown in FIG. 2A, only the LB cell 2 among the plurality of LB cells expands more than other LB cells. In this case, since the reaction force F3 of the spacer 2 in the LB cell 2 portion is larger than the reaction force F3 of the spacer 2 in the LB cell 3 portion, the thickness of the spacer 2 in the LB cell 2 portion is It becomes thinner than the thickness of the spacer 2 in the LB cell 3 part. As described above, the uneven shape of the spacer 2 extends in the third direction 7 substantially perpendicular to the second direction 6 in which the plurality of LB cells 1 are arranged, and therefore the first direction 5 between the LB cells 1. All the LB cells 1 can be fully supported in a flexible manner with respect to the thickness variation.

図3(a)に示すように、LBセル1が膨張する前のスペーサ2は、第2の方向6に所定の長さに収まっている。一方、図3(b)に示すように、図3(a)の状態からLBセル1が第1の方向5へ膨張した時、スペーサ2の反力が増大してスペーサ2の厚さが第1の方向5に縮む。縮んだ分のスペーサ2が第2の方向に伸びる。実施の形態に係わる組電池には、スペーサ2が第2の方向に伸びるための逃げ領域8が設けられていることが望ましい。LBセル1の厚さが変化したことによるLBセル1の面圧とスペーサ2の応力のバランスを保つために、スペーサ2の長さが積層方向(第1の方向5)とは垂直の方向(第2の方向6)に伸縮する。スペーサ2の最大長はLBセル1によってスペーサ2が直平面になった時である。この時の逃げ領域8を確保してLBセル1及びスペーサ2の配置を設計すれば、スペーサ2の反力がある任意のLBセル1に不均一にかかることを回避でき、他のLBセル1に不要な圧力がかかることがない。   As shown in FIG. 3A, the spacer 2 before the LB cell 1 expands is within a predetermined length in the second direction 6. On the other hand, as shown in FIG. 3B, when the LB cell 1 expands in the first direction 5 from the state of FIG. 3A, the reaction force of the spacer 2 increases and the thickness of the spacer 2 becomes the first. Shrink in direction 5 of 1. The contracted spacer 2 extends in the second direction. In the assembled battery according to the embodiment, it is desirable that a relief region 8 for the spacer 2 to extend in the second direction is provided. In order to maintain the balance between the surface pressure of the LB cell 1 and the stress of the spacer 2 due to the change in the thickness of the LB cell 1, the length of the spacer 2 is perpendicular to the stacking direction (first direction 5) ( Stretch in the second direction 6). The maximum length of the spacer 2 is when the spacer 2 becomes a plane by the LB cell 1. If the arrangement of the LB cell 1 and the spacer 2 is designed while securing the escape region 8 at this time, it is possible to avoid non-uniformly applying to any LB cell 1 with the reaction force of the spacer 2, and other LB cells 1 No unnecessary pressure is applied.

図4(a)に示すように、比較例に係わる組電池では、LBセルを並べる方向とスペーサの凹凸形状が伸びる方向とが略平行になるようにスペーサ2をLBセル1の間に挿入する。 図4(b)に示すように、LBセル1間で膨張のばらつきが生じた場合、LBセルとスペーサ2の間に隙間が生じてしまい、LBセル1〜3の支持固定が困難となる。また、スペーサ2とLBセルの積層の平行維持が困難となる。また、スペーサ2の隙間に冷却風を通す場合、スペーサ2を通過する冷却風が隙間から洩れてしまい冷却効果がLBセル間で不均一となる。   As shown in FIG. 4A, in the assembled battery according to the comparative example, the spacer 2 is inserted between the LB cells 1 so that the direction in which the LB cells are arranged and the direction in which the uneven shape of the spacer extends are substantially parallel. . As shown in FIG. 4B, when expansion variation occurs between the LB cells 1, a gap is generated between the LB cell and the spacer 2, and it becomes difficult to support and fix the LB cells 1 to 3. Further, it becomes difficult to maintain the parallel stack of the spacer 2 and the LB cell. Further, when cooling air is passed through the gap between the spacers 2, the cooling air passing through the spacer 2 leaks from the gap and the cooling effect becomes non-uniform between the LB cells.

以上説明したように、本発明の実施の形態によれば、図2(a)及び図2(b)に示したように、スペーサ2の凹凸形状は複数のLBセル1が並べられた第2の方向6に略垂直な第3の方向7に伸びているため、各LBセル1間の第1の方向5の厚さのバラツキに対して柔軟に対応して、総てのLBセル1を十分に支持することが出来る。   As described above, according to the embodiment of the present invention, as shown in FIGS. 2A and 2B, the uneven shape of the spacer 2 is the second in which a plurality of LB cells 1 are arranged. The LB cells 1 extend in a third direction 7 substantially perpendicular to the first direction 6, so that all the LB cells 1 can be flexibly accommodated to variations in thickness in the first direction 5 between the LB cells 1. It can be fully supported.

上記のように、本発明は、1つの実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As described above, the present invention has been described by way of one embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

本発明の実施の形態に係わる組電池(電池モジュール)を示す斜視図である。It is a perspective view which shows the assembled battery (battery module) concerning embodiment of this invention. 図2(a)は、LBセルが膨張した時のスペーサの厚みの変化を示す断面図である。図2(b)は、図2(a)に示したLBセルの厚さが元に戻った状態を示す断面図である。FIG. 2A is a cross-sectional view showing a change in the thickness of the spacer when the LB cell expands. FIG. 2B is a cross-sectional view showing a state in which the thickness of the LB cell shown in FIG. 図3(a)は、LBセルが膨張する前のスペーサの状態を示す断面図である。図3(b)は、図3(a)の状態からLBセルが膨張してスペーサが第2の方向へ広がった状態を示す断面図である。FIG. 3A is a cross-sectional view showing the state of the spacer before the LB cell expands. FIG. 3B is a cross-sectional view showing a state in which the LB cell has expanded from the state of FIG. 3A and the spacer has spread in the second direction. 図4(a)は、比較例に係わる組電池におけるLBセルを並べる方向とスペーサの凹凸形状が伸びる方向との関係を示す斜視図である。図4(b)は、LBセル間で膨張のばらつきが生じた場合のスペーサの状態を示す断面図である。FIG. 4A is a perspective view showing a relationship between the direction in which the LB cells are arranged in the assembled battery according to the comparative example and the direction in which the uneven shape of the spacer extends. FIG. 4B is a cross-sectional view showing the state of the spacer when there is variation in expansion between LB cells.

符号の説明Explanation of symbols

1…素電池(LBセル)
2…スペーサ
3…ボルト
4…エンドプレート
5…第1の方向
6…第2の方向
7…第3の方向
8…逃げ領域
1. Unit cell (LB cell)
2 ... Spacer 3 ... Bolt 4 ... End plate 5 ... First direction 6 ... Second direction 7 ... Third direction 8 ... Escape area

Claims (3)

燃料ガス及び酸化剤ガスが供給され、前記燃料ガス中の水素と酸化剤ガス中の酸素との電気化学的反応によって発電を行う、ラミネート外装した複数の素電池と、
第1の方向に積層された前記複数の素電池の間に配置された、前記第1の方向に伸縮自在なスペーサとを備え、
前記複数の素電池は、前記第1の方向に垂直な第2の方向にも並べて配置され、前記素電池に接する前記スペーサの主面は、前記第1及び第2の方向に略垂直な第3の方向に伸びた凹凸形状を有することを特徴とする組電池。
A plurality of unit cells covered with a laminate, which are supplied with a fuel gas and an oxidant gas, and generate electricity by an electrochemical reaction between hydrogen in the fuel gas and oxygen in the oxidant gas;
A spacer that is disposed between the plurality of unit cells stacked in a first direction and that can expand and contract in the first direction;
The plurality of unit cells are also arranged side by side in a second direction perpendicular to the first direction, and a main surface of the spacer in contact with the unit cells is a first layer substantially perpendicular to the first and second directions. 3. An assembled battery having an uneven shape extending in the direction of 3.
前記凹凸形状は正弦波形状であることを特徴とする請求項1記載の組電池。   The assembled battery according to claim 1, wherein the uneven shape is a sinusoidal shape. 前記素電池が前記第1の方向に膨張した時に、前記第1の方向に前記スペーサが縮み、縮んだ分の前記スペーサが前記第2の方向に伸びるための逃げ領域が設けられていることを特徴とする請求項1又は2記載の組電池。   When the unit cell expands in the first direction, the spacer contracts in the first direction, and a clearance area is provided for the contracted portion of the spacer to extend in the second direction. The assembled battery according to claim 1 or 2, characterized in that:
JP2004164603A 2004-06-02 2004-06-02 Battery pack Withdrawn JP2005347077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164603A JP2005347077A (en) 2004-06-02 2004-06-02 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164603A JP2005347077A (en) 2004-06-02 2004-06-02 Battery pack

Publications (1)

Publication Number Publication Date
JP2005347077A true JP2005347077A (en) 2005-12-15

Family

ID=35499264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164603A Withdrawn JP2005347077A (en) 2004-06-02 2004-06-02 Battery pack

Country Status (1)

Country Link
JP (1) JP2005347077A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099445A (en) * 2007-10-18 2009-05-07 Toshiba Corp Battery module and battery pack
JP2011054368A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Battery pack
JP2012119232A (en) * 2010-12-02 2012-06-21 Nissan Motor Co Ltd Battery pack
JP2012174408A (en) * 2011-02-18 2012-09-10 Ihi Corp Battery pack
US8994300B2 (en) 2010-01-20 2015-03-31 Sanyo Electric Co., Ltd. Battery module, and electric vehicle, movable body, battery system, power storage device, and power supply device including the same
JP2017183071A (en) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 Battery pack
US10804504B2 (en) 2015-08-13 2020-10-13 Samsung Electronics Co., Ltd. Exterior package for flexible electrochemical device and electrochemical device including the exterior package
CN113924683A (en) * 2019-05-31 2022-01-11 住友精密工业株式会社 Cooler-integrated battery tray for mobile body and battery device for mobile body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099445A (en) * 2007-10-18 2009-05-07 Toshiba Corp Battery module and battery pack
JP2011054368A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd Battery pack
US8994300B2 (en) 2010-01-20 2015-03-31 Sanyo Electric Co., Ltd. Battery module, and electric vehicle, movable body, battery system, power storage device, and power supply device including the same
JP2012119232A (en) * 2010-12-02 2012-06-21 Nissan Motor Co Ltd Battery pack
JP2012174408A (en) * 2011-02-18 2012-09-10 Ihi Corp Battery pack
US10804504B2 (en) 2015-08-13 2020-10-13 Samsung Electronics Co., Ltd. Exterior package for flexible electrochemical device and electrochemical device including the exterior package
JP2017183071A (en) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 Battery pack
CN113924683A (en) * 2019-05-31 2022-01-11 住友精密工业株式会社 Cooler-integrated battery tray for mobile body and battery device for mobile body

Similar Documents

Publication Publication Date Title
JP6496377B1 (en) Metal separator for fuel cell and power generation cell
JP2019079736A (en) Power generation cell
JP2007294248A (en) Fuel cell and its separator
JP2005347077A (en) Battery pack
JP2005353421A (en) Fuel cell
JP2007165156A (en) Fuel cell and gasket
JP2005317505A (en) Fuel cell and its separator
JP4645092B2 (en) Fuel cell device
JP5688682B2 (en) Fuel cell stack
JP2009252614A (en) Fuel cell
JP2006179402A (en) Fuel cell
US20100173226A1 (en) Fuel cell
JP5877506B2 (en) Fuel cell stack and load sharing method using the same
JP7342268B2 (en) Fuel cell
JP5082331B2 (en) Fuel cell stack
JP2006302640A (en) Supporting structure of fuel cell stack
JP7130610B2 (en) Metal separators for fuel cells, junction separators and power generation cells
JP2007179789A (en) Fuel cell
JP7469085B2 (en) Metal separator for fuel cell and power generating cell
JP4711382B2 (en) Fuel cell stack
JP2009224042A (en) Fuel cell
JP2007317430A (en) Fuel cell
JP6140288B2 (en) Deformation absorbing member mounting structure and mounting method
JP6104105B2 (en) Fuel cell stack
JP7506024B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090904