JP2023151845A - Excavation support system of water bottom ground - Google Patents

Excavation support system of water bottom ground Download PDF

Info

Publication number
JP2023151845A
JP2023151845A JP2022061691A JP2022061691A JP2023151845A JP 2023151845 A JP2023151845 A JP 2023151845A JP 2022061691 A JP2022061691 A JP 2022061691A JP 2022061691 A JP2022061691 A JP 2022061691A JP 2023151845 A JP2023151845 A JP 2023151845A
Authority
JP
Japan
Prior art keywords
excavation
water
underwater
ground
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022061691A
Other languages
Japanese (ja)
Inventor
真之介 関原
Shinnosuke Sekihara
貴行 新開
Takayuki Shinkai
剛 小倉
Tsuyoshi Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2022061691A priority Critical patent/JP2023151845A/en
Publication of JP2023151845A publication Critical patent/JP2023151845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

To provide an excavation support system of a water bottom ground that can support efficient excavation by grasping states of a ground and a water flow of a water bottom in a planned range of excavation.SOLUTION: An excavation support system 1 comprises: an underwater sonar 4 that emits sound waves to a ground surface 12 to grasp a state of a water bottom in a predetermined range; a GPS 5 that is a positioning system that can grasp a position of a heavy excavation machine 2 on water; a machine guidance function 6 that can grasp a position of an attachment 21 of the heavy excavation machine 2; a flow velocity measurement portion 7 that can grasp a flow velocity in a construction water area; a display portion 8 that can display various information; and a control portion 9 that performs information processing. The control portion 9 can display a water depth of a measurement range 13, the position of the attachment 21 of the heavy excavation machine 2, and the flow velocity and a flow direction 16, on the display portion 8.SELECTED DRAWING: Figure 1

Description

本発明は、水底地盤の掘削支援システムに関するものである。 The present invention relates to an underwater excavation support system.

従来、水底の地盤を掘削する際の施工管理方法として、三次元ソナー等で得たデータを用いて水底とその周辺を3次元映像で表示させ、映像を常時視覚的に確認しながら作業を行う方法がある(例えば、特許文献1参照)。また、水深情報とバックホウの姿勢情報を取得して、水底地形にバックホウの作動状態を重ねて表示する方法も提案されている(例えば、特許文献2参照)。 Conventionally, as a construction management method when excavating the ground under water, data obtained from 3D sonar etc. is used to display the underwater bottom and its surroundings in 3D images, and work is carried out while visually checking the images at all times. There is a method (for example, see Patent Document 1). Furthermore, a method has been proposed in which water depth information and backhoe posture information are acquired and the operating state of the backhoe is displayed superimposed on the underwater topography (for example, see Patent Document 2).

特許第5565957号公報Patent No. 5565957 特開2003-278158号公報JP2003-278158A

従来の方法では掘削中の水底の状況をリアルタイムに把握して出来形を管理することはできるが、水の流速や流向は考慮されていない。水の流速や流向は、橋脚基礎、水門、岸壁、仮締切鋼管矢板などの構造物の設置状況、構造物からの距離、掘削の進捗状況等によって変化し、掘削中の土砂の移動に大きく関わる。 Conventional methods make it possible to monitor the bottom of the water during excavation in real time and manage the finished product, but they do not take into account the flow speed and direction of the water. The flow speed and direction of water change depending on the installation status of structures such as pier foundations, water gates, quay walls, and cofferdam steel pipe sheet piles, the distance from the structures, the progress of excavation, etc., and are greatly affected by the movement of earth and sand during excavation. .

本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、掘削予定範囲の水底の地盤や水流の状態を把握して効率的な掘削を支援できる水底地盤の掘削支援システムを提供することである。 The present invention has been made in view of the above-mentioned problems, and its purpose is to support efficient excavation by understanding the conditions of the water bottom ground and water flow in the area to be excavated. It is about providing a support system.

前述した目的を達成するために本発明は、水底地盤の掘削支援システムであって、地盤表面に音波を発して所定範囲の水底の状態を把握する水中ソナーと、水上の掘削重機の位置を把握可能な測位システムと、前記掘削重機のアタッチメント位置を把握可能なマシンガイダンス機能と、施工水域における流速を把握可能な流速測定部と、各種の情報を表示可能な表示部と、情報処理を行う制御部と、を具備し、前記制御部は、前記表示部に、測定範囲の水深と、前記掘削重機のアタッチメント位置と、流速及び流向を表示可能であることを特徴とする水底地盤の掘削支援システムである。 In order to achieve the above-mentioned object, the present invention is an underwater ground excavation support system, which includes an underwater sonar that emits sound waves on the ground surface to grasp the condition of the water bottom in a predetermined range, and an underwater sonar that grasps the position of heavy excavation equipment on the water. A possible positioning system, a machine guidance function that can determine the attachment position of the heavy excavation equipment, a flow velocity measurement unit that can determine the flow velocity in the construction water area, a display unit that can display various information, and a control that performs information processing. An excavation support system for underwater ground, characterized in that the control unit is capable of displaying the water depth of the measurement range, the attachment position of the excavation heavy equipment, the flow velocity, and the flow direction on the display unit. It is.

本発明によれば、制御部が各種情報を処理して表示部に表示するので、水底の地盤の状態、水流の流速及び流向、掘削重機のアタッチメント位置をリアルタイムで把握できる。これにより、水流の流速および流向を考慮して、掘削予定範囲の掘削順序を効率的に掘削できるように決定できる。 According to the present invention, since the control unit processes various information and displays it on the display unit, the state of the ground at the bottom of the water, the flow velocity and direction of the water flow, and the attachment position of the heavy excavation machine can be grasped in real time. As a result, the order of excavation of the planned excavation range can be determined in consideration of the flow velocity and direction of the water flow so that the excavation can be carried out efficiently.

前記制御部は、前記流速測定部で測定された流速に応じて、一度に掘削する地盤の掘削量を設定し、前記表示部に表示可能であることが望ましい。
これにより、流速に応じた適切な掘削量で掘削できるので、掘り残しやバケットからのこぼれが防止される。
It is preferable that the control unit is capable of setting an excavation amount of the ground to be excavated at one time according to the flow velocity measured by the flow velocity measurement unit, and displaying the amount on the display unit.
This allows excavation with an appropriate amount of excavation depending on the flow velocity, thereby preventing unexcavation and spillage from the bucket.

前記制御部は、前記水中ソナーの音波の反射強度から、水底の各位置の物体の種別を識別し、前記表示部に、物体種別を表示可能であることが望ましい。この場合、前記制御部は、物体の種別及びサイズから掘削可否を判断し、前記表示部に掘削可否情報を表示可能であってもよい。
表示部に物体種別を表示可能すれば、砂や土砂以外の物体の存在をリアルタイムで把握できる。また、表示部に物体の掘削可否情報を表示すれば、物体の撤去作業に最適なアタッチメントを選択することができる。
It is preferable that the control unit is capable of identifying the type of object at each position on the water bottom from the reflected intensity of the sound wave of the underwater sonar, and displaying the object type on the display unit. In this case, the control section may be able to determine whether excavation is possible based on the type and size of the object, and display information on whether excavation is possible on the display section.
If the type of object can be displayed on the display, the presence of objects other than sand and earth can be detected in real time. Furthermore, by displaying information on whether or not the object can be excavated on the display section, it is possible to select the most suitable attachment for the object removal work.

前記制御部は、流速、流向及び水底の状態から、予め設定された洗掘条件及び堆積条件と比較して、地盤における洗掘予測部と堆積予測部を判定し、前記表示部に表示可能であることが望ましい。
これにより、掘削予定範囲における掘削の順序を、水流による土砂の移動を考慮して適切に決定することができる。
The control unit can determine a scour prediction area and a sedimentation prediction area in the ground by comparing the flow velocity, flow direction, and water bottom condition with preset scour conditions and sedimentation conditions, and display the results on the display unit. It is desirable that there be.
Thereby, the order of excavation in the planned excavation range can be appropriately determined in consideration of the movement of earth and sand by water flow.

前記水中ソナーは、マルチビームソナーであり、施工水域の濁水の程度に応じて、計測波を切り替え可能であることが望ましい。
これにより、濁度に応じて計測の精度を上げることができる。
The underwater sonar is a multi-beam sonar, and it is desirable that the measurement waves can be switched depending on the degree of turbidity of the construction area.
This makes it possible to improve measurement accuracy depending on the turbidity.

河川における施工の際に、前記制御部は、河川の上流における降水量を取得し、予め記憶された条件と比較することで、将来の水位変化を予測可能であることが望ましい。
これにより、水深の変化を事前に把握して施工継続の可否を判断できる。
During construction on a river, it is desirable that the control unit be able to predict future water level changes by acquiring the amount of precipitation upstream of the river and comparing it with pre-stored conditions.
This makes it possible to grasp changes in water depth in advance and decide whether or not to continue construction.

本発明によれば、掘削予定範囲の水底の地盤や水流の状態を把握して効率的な掘削を支援できる水底地盤の掘削支援システムを提供できる。 According to the present invention, it is possible to provide an underwater ground excavation support system that can support efficient excavation by grasping the conditions of the underwater ground and water flow in the area to be excavated.

掘削支援システム1の構成を示す図。1 is a diagram showing the configuration of an excavation support system 1. FIG. 掘削支援システム1の機能を示すブロック図。FIG. 2 is a block diagram showing the functions of the excavation support system 1. FIG. (a)は地盤表面12の状態と水流とアタッチメント21の位置の情報を示す平面図、(b)は(a)の線A-Aによる断面図。(a) is a plan view showing information on the state of the ground surface 12, water flow, and the position of the attachment 21, and (b) is a sectional view taken along line AA in (a). 物体15の情報を示す平面図。FIG. 3 is a plan view showing information about the object 15; 各部の水流と地盤表面12の変形予測の情報を示す平面図。FIG. 3 is a plan view showing information on predicted deformation of water flow and ground surface 12 in each part. 制御部9の情報処理の例を示す図。FIG. 9 is a diagram showing an example of information processing by the control unit 9. FIG. (a)は掘削箇所14付近の平面図、(b)は(a)の線B-Bによる断面図。(a) is a plan view of the vicinity of the excavated location 14, and (b) is a sectional view taken along line BB in (a). (a)は掘削箇所14付近の平面図、(b)は(a)の線C-Cによる断面図。(a) is a plan view of the vicinity of the excavated location 14, and (b) is a sectional view taken along line CC in (a). (a)は流速測定部7a付近の立面図、(b)は表示部8の表示例を示す図。(a) is an elevational view of the vicinity of the flow velocity measuring section 7a, and (b) is a diagram showing an example of the display on the display section 8. (a)は自立潜堤23aを示す図、(b)は自立潜堤23bを示す図。(a) is a diagram showing a self-supporting submerged levee 23a, and (b) is a diagram showing a self-supporting submerged levee 23b.

以下、図面に基づいて、本発明の実施形態を詳細に説明する。
図1は掘削支援システム1の構成を示す図、図2は掘削支援システム1の機能を示すブロック図である。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 is a diagram showing the configuration of the excavation support system 1, and FIG. 2 is a block diagram showing the functions of the excavation support system 1.

図1に示すように、掘削支援システム1は、台船22上に設置された掘削重機2で川底等の水底の地盤3の浚渫工事を実施する場合などに用いられる。掘削支援システム1は、水中ソナー4、測位システムであるGPS5、マシンガイダンス機能6、流速測定部7、表示部8、制御部9等からなる。 As shown in FIG. 1, the excavation support system 1 is used, for example, when carrying out dredging work on the ground 3 at the bottom of a river or the like using heavy excavation equipment 2 installed on a barge 22. The excavation support system 1 includes an underwater sonar 4, a GPS 5 which is a positioning system, a machine guidance function 6, a flow velocity measurement section 7, a display section 8, a control section 9, and the like.

水中ソナー4は、地盤表面12に音波を発して測定範囲13の水底の状態を把握する。水中ソナー4は、水平および垂直方向の首振り機構を有するマルチビームソナーである。水中ソナー4は、施工水域の濁水の程度に応じて計測波をCW波とFMチャープ波とで切り替え可能であることが望ましい。通常はCW波を用いるが、高濁度水塊が存在する場合はFMチャープ波を用いることによって遠方まで高い精度で計測することができる。また、水中11の流速が1ノット(約0.5m/sec)を超えずスラスターによる水中ドローンの位置制御が可能である場合、水中ソナー4として水中ドローンに搭載した水中音響カメラを用いてもよい。これにより、比較的局所的な水底地形を正確に測定できる。水中ドローンの使用の可否は、後述する流速測定部7による流速の実測値などを用いて判断される。 The underwater sonar 4 emits sound waves to the ground surface 12 to ascertain the state of the water bottom in the measurement range 13. The underwater sonar 4 is a multi-beam sonar having a horizontal and vertical oscillation mechanism. It is desirable that the underwater sonar 4 be able to switch measurement waves between CW waves and FM chirp waves depending on the degree of turbidity of the construction water area. Normally, CW waves are used, but if a highly turbid water mass exists, FM chirp waves can be used to measure distances with high accuracy. Furthermore, if the flow velocity of the underwater 11 does not exceed 1 knot (approximately 0.5 m/sec) and it is possible to control the position of the underwater drone using a thruster, an underwater acoustic camera mounted on the underwater drone may be used as the underwater sonar 4. . This makes it possible to accurately measure relatively local underwater topography. Whether or not the underwater drone can be used is determined using the actual measurement value of the flow velocity by the flow velocity measurement unit 7, which will be described later.

GPS5は、水上の掘削重機2の位置を把握可能である。なお、測位システムはGPS5に限らず、他の衛星測位システム(GNSS)やトータルステーションなどでもよい。複数のトータルステーション(測量機)を陸上の座標が分かる点に設置し、台船22側(動く物体)に自動追尾用ミラーを設置することで、掘削重機2の位置や方位を把握することができる。 The GPS 5 can determine the position of the heavy excavation machine 2 on the water. Note that the positioning system is not limited to GPS5, but may be other satellite positioning systems (GNSS), total stations, or the like. By installing multiple total stations (surveying instruments) at points on land where the coordinates are known and installing an automatic tracking mirror on the barge 22 side (moving object), it is possible to grasp the position and direction of the heavy excavation machine 2. .

マシンガイダンス機能6は、ブーム23に取り付けた複数の傾斜計61からなり、掘削重機2のアタッチメント21の位置を把握可能である。アタッチメント21はブーム23の先端に取り付けられ、用途に応じて交換可能である。通常の土砂の掘削時は、アタッチメント21として図1に示すバケットがブーム23に取り付けられるが、コンクリートの破砕時はブレーカに、沈木の処理時は把持機や掴み機に、岩盤の掘削時はロードヘッダやドラムカッタに交換される。 The machine guidance function 6 consists of a plurality of inclinometers 61 attached to the boom 23, and is capable of grasping the position of the attachment 21 of the heavy excavation machine 2. The attachment 21 is attached to the tip of the boom 23 and can be replaced depending on the application. When excavating ordinary earth and sand, the bucket shown in Fig. 1 is attached to the boom 23 as an attachment 21, but when crushing concrete, it is attached to a breaker, when processing sunken wood, it is attached to a gripping machine, and when excavating rock, it is attached to a loader. Replaced with header or drum cutter.

流速測定部7は、施工水域における流速を把握可能である。施工水域とは地盤3の掘削予定範囲の上方の水中11全体であり、流速測定部7は施工水域の少なくとも1カ所に配置される。流速測定部7は、例えば地盤表面12に達する支持部71に取り付けられ、地盤表面12近傍の流速を把握する。流速測定部7は、図示した例には限られず、台船22とは別に設置されてもよく、また、各種センサにより水の流速を直接計測するものであってもよいし、水の流量を測定して流速に換算するものであってもよい。支持部71は例えば中空のパイプ状であり、内部に流速計やセンサのコードを配置してもよい。また、支持部71の内部に超小型水中ポンプ(水底付近の濁度計測のための採水ポンプやホース)を配置して水中11の濁度を計測してもよい。流速測定部7による流速データや超小型水中ポンプによる濁度データから、上述の水中ドローンやその他の精密な流速計が使用可能かどうかを判断できる。なお、支持部71は水深の計測にも用いられる。 The flow rate measurement unit 7 is capable of determining the flow rate in the construction water area. The construction water area is the entire underwater area 11 above the planned excavation area of the ground 3, and the flow velocity measurement unit 7 is arranged at at least one location in the construction water area. The flow velocity measuring section 7 is attached to, for example, a support section 71 that reaches the ground surface 12, and measures the flow velocity near the ground surface 12. The flow rate measurement unit 7 is not limited to the illustrated example, and may be installed separately from the barge 22, or may directly measure the flow rate of water using various sensors, or may directly measure the flow rate of water. The flow rate may be measured and converted into a flow rate. The support portion 71 is, for example, in the shape of a hollow pipe, and a current meter or sensor cord may be placed inside. Further, the turbidity of the water 11 may be measured by disposing an ultra-small submersible pump (water sampling pump or hose for measuring turbidity near the bottom of the water) inside the support part 71. From the flow velocity data obtained by the flow velocity measurement unit 7 and the turbidity data obtained by the ultra-compact submersible pump, it can be determined whether the above-mentioned underwater drone or other precision current meter can be used. Note that the support portion 71 is also used for measuring water depth.

図2に示すように、制御部9は、水中ソナー4、GPS5、マシンガイダンス機能6、流速測定部7の各装置と有線または無線で接続され、各装置から情報を取得して処理を行う。制御部9は、表示部8に測定範囲13の水深と、掘削重機2のアタッチメント21位置と、流速及び流向の情報を表示させる。表示部8と制御部9は、PC10のように一体であってもよいし、別体で有線または無線で接続されてもよい。表示部8は複数箇所に設けられてもよく、掘削重機2のキャビン内で表示内容を確認できるようにしてもよい。なお各装置から取得したデータや制御部9で処理したデータは、現場Wi-Fiを経由して図示しないクラウドサーバに保存され、現場外からでも確認できる。 As shown in FIG. 2, the control unit 9 is connected by wire or wirelessly to the underwater sonar 4, GPS 5, machine guidance function 6, and current velocity measurement unit 7, and acquires information from each device and processes it. The control unit 9 causes the display unit 8 to display information on the water depth of the measurement range 13, the position of the attachment 21 of the heavy excavation machine 2, and the flow velocity and direction. The display unit 8 and the control unit 9 may be integrated like the PC 10, or may be separate units connected by wire or wirelessly. The display section 8 may be provided at a plurality of locations, and the display contents may be confirmed within the cabin of the heavy excavation machine 2. Note that the data acquired from each device and the data processed by the control unit 9 are stored in a cloud server (not shown) via on-site Wi-Fi, and can be checked even from outside the site.

図3から図5は表示部8の表示例を示す図、図6は制御部9の情報処理の例を示す図である。掘削重機2で水底の地盤3を掘削する際、掘削支援システム1では、制御部9は、水中ソナー4からの測定範囲13の水底の地盤3の状態の情報と、流速測定部7からの水流の情報と、GPS5およびマシンガイダンス機能6からのアタッチメント21の位置の情報を得る(S101)。そして、これらの情報に基づいて、表示部8に、測定範囲13の地盤表面12の水深と、流速測定部7の位置での流速および流向16と、アタッチメント21の位置を表示する(S102、図3)。なお、支持部71によって流速測定部7の位置での水深を計測した場合、制御部9は水中ソナー4の情報から得た水深を支持部71による計測値と比較して補正してもよい。また、地盤表面12の水深の表示方法は図3に示す例に限らず、色分けにより水深を示したり、鳥瞰図等を用いて地盤表面12の形状を三次元的に示したりしてもよい。また、流向としては、平面的な流れの向きだけでなく、例えば鳥観図や、所定以上の上昇流・下降流を色等により表示して、深さ方向成分の流れの向きも合わせて表示させてもよい。 3 to 5 are diagrams showing display examples of the display unit 8, and FIG. 6 is a diagram showing an example of information processing by the control unit 9. When excavating the ground 3 on the water bottom with heavy excavation equipment 2 , in the excavation support system 1 , the control unit 9 receives information on the state of the ground 3 on the water bottom in the measurement range 13 from the underwater sonar 4 and the water flow from the flow velocity measurement unit 7 . and the position information of the attachment 21 from the GPS 5 and the machine guidance function 6 (S101). Based on this information, the display unit 8 displays the water depth of the ground surface 12 in the measurement range 13, the flow velocity and flow direction 16 at the position of the flow velocity measuring unit 7, and the position of the attachment 21 (S102, Fig. 3). In addition, when the water depth at the position of the current velocity measurement part 7 is measured by the support part 71, the control part 9 may compare the water depth obtained from the information of the underwater sonar 4 with the measurement value by the support part 71, and correct|amend it. Furthermore, the method of displaying the water depth of the ground surface 12 is not limited to the example shown in FIG. 3, but may also be color-coded to indicate the water depth, or a bird's-eye view or the like to three-dimensionally display the shape of the ground surface 12. In addition, the flow direction is not limited to the two-dimensional flow direction; for example, the direction of the flow in the depth direction can also be displayed, for example by using a bird's-eye map or by displaying upflow or downflow above a certain level using colors. It's okay.

S101の後、制御部9は、水中ソナー4の音波の反射強度の情報から地盤表面12に存在するコンクリート塊、礫、玉石、沈木、流木等の物体種別を識別し、表示部8にこれらの物体15の種類と掘削の可否を表示してもよい(S103、図4)。なお、物体15の種別の表示方法は図3等に示す例に限らず、硬質の物体(石やコンクリート塊等)と軟質の物体(土砂等)とを色で区別するような表示方法であってもよい。また物体15の大きさや比重などを表示してもよい。 After S101, the control unit 9 identifies the types of objects such as concrete lumps, gravel, cobblestones, sunken wood, and driftwood existing on the ground surface 12 from the information on the reflection intensity of the sound waves from the underwater sonar 4, and displays these on the display unit 8. The type of object 15 and whether excavation is possible may be displayed (S103, FIG. 4). Note that the method of displaying the type of object 15 is not limited to the example shown in FIG. It's okay. Further, the size, specific gravity, etc. of the object 15 may be displayed.

S101の後、制御部9は、水底の地盤3の状態や流速および流向16の情報から施工水域の各部の流速および流向16aを推定し、表示部8に表示してもよい(S102’、図5)。S102’では、例えば、水底の地盤3の状態に水流の代表値として流速測定部7の位置での流速および流向16を入力し、FEMなどで地盤表面12近傍での施工水域の各部の流速および流向16aを算出する。流速および流向16aを細かく算出して表示すれば、各部の上昇・下降流や、渦等の発生も推定できる。 After S101, the control unit 9 may estimate the flow velocity and flow direction 16a of each part of the construction water area from the state of the ground 3 at the bottom of the water and information on the flow velocity and flow direction 16, and display it on the display unit 8 (S102', Fig. 5). In S102', for example, the flow velocity and flow direction 16 at the position of the flow velocity measurement unit 7 are input as representative values of water flow into the condition of the ground 3 at the bottom of the water, and the flow velocity and flow direction 16 in each part of the construction water area near the ground surface 12 are measured using FEM or the like. Calculate the flow direction 16a. If the flow velocity and flow direction 16a are calculated and displayed in detail, it is possible to estimate upward and downward flows in each part and the occurrence of vortices and the like.

S102またはS102’の後、制御部9は、バケットで一度に掘削する地盤3の掘削量を設定し、表示部8に表示してもよい(S104)。地盤3の掘削量は、流速測定部7の位置での流速および流向16や、推定した各部の流速および流向16aに応じて設定される。流速が大きい場合は、一度に掘削する掘削量を少なく設定することでバケットからの掘削土のこぼれを防止できる。また、流向に応じてバケットの刃先の向きを設定して、バケットからのこぼれの生じにくい方向に掘削方向を設定してもよい。 After S102 or S102', the control unit 9 may set the amount of excavation of the ground 3 to be excavated at one time with the bucket, and display it on the display unit 8 (S104). The amount of excavation of the ground 3 is set according to the flow velocity and flow direction 16 at the position of the flow velocity measurement unit 7 and the estimated flow velocity and flow direction 16a at each part. When the flow velocity is high, it is possible to prevent the excavated soil from spilling from the bucket by setting a small amount of excavation at one time. Alternatively, the direction of the cutting edge of the bucket may be set according to the flow direction, and the excavation direction may be set in a direction in which spillage from the bucket is less likely to occur.

S102またはS102’の後、制御部9は、水底の地盤3の状態、流速測定部7の位置での流速および流向16、推定した各部の流速および流向16a等の情報から、予め設定された洗掘条件および堆積条件と比較して、地盤3における洗掘予測部17と堆積予測部18を判定し、表示部8に表示してもよい(S105、図5)。S105では、例えば、事前にいくつかの水流によるシミュレーションを実施して洗掘や堆積の発生が予測される条件(流速・流向)を洗掘条件および堆積条件として設定しておき、上記の各種の情報から計算した洗掘や堆積の発生部位の流速・流向と比較して洗掘予測部17と堆積予測部18を判定する。あるいは、洗掘が生じやすい渦流発生部や堆積が生じやすい淀み発生部における水流の状況などを洗掘条件および堆積条件として設定しておき、上記の各種の情報と比較して洗掘予測部17と堆積予測部18を判定してもよい。さらに、物体15の形状や大きさに応じて、各種水流に対する洗掘や堆積の発生可能性をマトリクス化しておき、条件に合う部分を洗掘予測部17や堆積予測部18と判定してもよい。 After S102 or S102', the control unit 9 performs preset washing based on information such as the condition of the ground 3 at the bottom of the water, the flow velocity and flow direction 16 at the position of the flow velocity measurement unit 7, and the estimated flow velocity and flow direction 16a at each part. The scour prediction unit 17 and the accumulation prediction unit 18 in the ground 3 may be determined by comparing with the excavation conditions and the deposition conditions and displayed on the display unit 8 (S105, FIG. 5). In S105, for example, simulations using several water flows are performed in advance to set conditions (flow velocity and flow direction) under which the occurrence of scouring and sedimentation is predicted as scouring conditions and deposition conditions, and the various conditions described above are set. The scour prediction unit 17 and the accumulation prediction unit 18 compare the flow velocity and flow direction at the location where scour and accumulation occur, which are calculated from the information. Alternatively, water flow conditions in eddy current generating areas where scour is likely to occur or stagnation generating areas where sedimentation is likely to occur are set as scour conditions and deposition conditions, and compared with the above various information, the scour prediction unit 17 The deposition prediction unit 18 may determine that. Furthermore, depending on the shape and size of the object 15, the possibility of occurrence of scour or accumulation in response to various water flows is made into a matrix, and parts that meet the conditions are determined as the scour prediction unit 17 or the accumulation prediction unit 18. good.

掘削支援システム1を用いて地盤3を掘削する時には、S101、S102で水底の地盤3の状態や流速および流向16の情報をリアルタイムで把握して、掘削予定範囲における掘削順序を決定する。S102’、S105を実施した場合は、図5に示す各部の流速および流向16aや洗掘予測部17および堆積予測部18の位置も考慮する。掘削時には、物体15の掘削可否情報(S103)や一度に掘削する掘削量(S104)も参考にする。例えば地盤表面12に砂と玉石が混在する場合は、水底で掘削後に攪拌することで、比重の軽い砂が下流側に流れて比重が重い玉石のみが残るので揚土量を削減できる。 When excavating the ground 3 using the excavation support system 1, in S101 and S102, information on the state of the ground 3 at the bottom of the water, the flow velocity, and the flow direction 16 is grasped in real time, and the order of excavation in the planned excavation range is determined. When S102' and S105 are performed, the flow velocity and direction 16a of each part shown in FIG. 5 and the positions of the scour prediction section 17 and the deposition prediction section 18 are also taken into consideration. At the time of excavation, information on whether or not the object 15 can be excavated (S103) and the amount of excavation to be excavated at one time (S104) are also referred to. For example, if sand and cobbles coexist on the ground surface 12, by stirring at the bottom of the water after excavation, the sand with light specific gravity flows downstream and only the cobblestones with heavy specific gravity remain, so the amount of soil to be lifted can be reduced.

図7、図8は、水流と水底の変化について示す図である。図7(a)に示すように掘削箇所14が水流に対して平行に設定されている場合、図7(b)に示すように掘削箇所14を溝状に掘削すると、浅い部分は深い部分より流速が速いために溝の両側部に洗掘部17aが発生して溝の底部に堆積部18aが発生する。また図8(a)に示すように掘削箇所14が水流に対して垂直に設定されている場合、図8(b)に示すように掘削箇所14を溝状に掘削すると、溝の上流側に洗掘部17aが発生して溝の底部の下流側に堆積部18aが発生し、溝の下流側には上流側よりも小規模の洗掘部17aが発生してその土砂は下流側に流される。 FIGS. 7 and 8 are diagrams showing changes in water flow and the bottom of the water. When the excavation point 14 is set parallel to the water flow as shown in FIG. 7(a), if the excavation point 14 is excavated in a groove shape as shown in FIG. Because of the high flow rate, scour portions 17a are generated on both sides of the groove, and deposited portions 18a are generated at the bottom of the groove. In addition, when the excavation point 14 is set perpendicular to the water flow as shown in FIG. 8(a), if the excavation point 14 is excavated in a groove shape as shown in FIG. 8(b), the upstream side of the groove A scour section 17a is generated, and an accumulation section 18a is generated on the downstream side of the bottom of the groove, and a scour section 17a, which is smaller than the upstream side, is generated on the downstream side of the groove, and the soil is washed downstream. It will be done.

掘削予定範囲における掘削順序を決定する時には、図7、図8に示すような水流と水底変化に関する知見も考慮する。これにより、洗掘させながら掘削する、埋め戻らないように掘削する、堆積させながら掘削するなど、水流を利用した効率的な掘削が実現できる。例えば、通常は掘削土を水面上へ揚土するが、図8のように掘削箇所14が水流に対して垂直である場合は、上流側から下流側に向けて掘削して下流側の洗掘部17aの土砂を流すことで、揚土量を削減できる。 When determining the order of excavation in the planned excavation range, knowledge regarding water flow and water bottom changes as shown in FIGS. 7 and 8 is also taken into consideration. This enables efficient excavation using water flow, such as excavating while scouring, excavating without backfilling, and excavating while accumulating. For example, excavated soil is usually lifted above the water surface, but if the excavated area 14 is perpendicular to the water flow as shown in Figure 8, excavation should be done from upstream to downstream to scour the downstream side. By flushing away the earth and sand in the portion 17a, the amount of soil to be lifted can be reduced.

S101、S102で把握した水底の地盤3の状態や流速および流向16は、シミュレーションへフィードバックして、掘削を続行した際の将来の水流や水底の地盤3の状態を予測する計算に用いてもよい。この場合、掘削作業は、予測した地盤3の状態と実際の地盤3の状態の双方を把握しながら実施される。すなわち、実際の地盤状況は常に水中ソナーによって更新され、将来の地盤変化の予測や、最適掘削条件も、それに合わせて更新される。 The state of the water bottom ground 3, the flow velocity, and the flow direction 16 grasped in S101 and S102 may be fed back to the simulation and used for calculations to predict the future water flow and the state of the water bottom ground 3 when excavation continues. . In this case, the excavation work is performed while understanding both the predicted state of the ground 3 and the actual state of the ground 3. In other words, the actual ground conditions are constantly updated using underwater sonar, and predictions of future ground changes and optimal excavation conditions are updated accordingly.

掘削支援システム1を用いた地盤3の掘削中、制御部9は河川の上流における降水量を取得可能であってもよい。制御部9は、河川の上流における降水量を予め記憶された条件と比較して、施工範囲での将来の水位の変化を予測する。これにより、数時間後に危険な水位変化の兆候がみられる場合に、事前に掘削中止などの判断を行うことができる。 During excavation of the ground 3 using the excavation support system 1, the control unit 9 may be able to obtain the amount of precipitation upstream of the river. The control unit 9 compares the amount of precipitation upstream of the river with pre-stored conditions to predict future changes in water level in the construction area. This makes it possible to make decisions such as stopping excavation in advance if signs of dangerous water level changes are seen several hours later.

このように、第1の実施形態の掘削支援システム1では、水中ソナー4、GPS5およびマシンガイダンス機能6からの情報を用いることにより、地盤3の掘削中に、実際の水底の地盤3の状態(水深や砂以外の物体15の存在)やアタッチメント21の位置を表示部8にリアルタイムで表示できるので、作業者が掘削を進めながらこれらの情報を確認することができる。また、物体15の存在が認識された場合に種別や掘削可否情報を表示することにより、各物体15の撤去に最適なアタッチメント21を選択できる。 In this way, in the excavation support system 1 of the first embodiment, by using information from the underwater sonar 4, GPS 5, and machine guidance function 6, it is possible to determine the actual state of the ground 3 at the bottom of the water ( Since the water depth, the presence of objects 15 other than sand) and the position of the attachment 21 can be displayed on the display unit 8 in real time, the operator can check these information while excavating. Furthermore, by displaying the type and excavation availability information when the presence of the object 15 is recognized, the attachment 21 most suitable for removing each object 15 can be selected.

掘削支援システム1では、流速測定部7からの情報を用いることにより、地盤の掘削中に水流の流速および流向16を表示部8にリアルタイムで表示できる。そのため、各種構造物の設置状況や構造物までの距離、掘削の進捗に伴う地盤表面12の変形等による流速および流向16の変化を掘削中に地盤3の状態と合わせて把握し、効率的に掘削できるように掘削予定範囲の掘削順序を決定できる。また、水流の状態に応じて一度に掘削する地盤3の掘削量を設定することにより、適切な掘削量を設定し、掘り残しやバケットからのこぼれを防止できる。 In the excavation support system 1, by using the information from the flow velocity measuring section 7, the flow velocity and flow direction 16 of the water flow can be displayed on the display section 8 in real time while excavating the ground. Therefore, changes in the flow velocity and flow direction 16 due to the installation status of various structures, the distance to the structures, deformation of the ground surface 12 due to the progress of excavation, etc., along with the state of the ground 3 during excavation can be grasped and efficiently The excavation order of the planned excavation area can be determined so that the excavation can be carried out. Further, by setting the amount of excavation of the ground 3 to be excavated at one time according to the state of water flow, it is possible to set an appropriate amount of excavation and prevent unexcavation and spillage from the bucket.

掘削支援システム1では、流速および流向16及び水底の地盤3の状態から、地盤3における洗掘予測部17と堆積予測部18を判定し、表示部に表示できる。これにより、掘削の順序を土砂の移動を考慮して適切に決定することができる。 In the excavation support system 1, the scour prediction unit 17 and the deposition prediction unit 18 in the ground 3 can be determined from the flow velocity and direction 16 and the state of the ground 3 at the bottom of the water, and can be displayed on the display unit. Thereby, the order of excavation can be appropriately determined in consideration of the movement of earth and sand.

なお、図1に示す例では流速測定部7を地盤表面12近傍のみに設置したが、流速測定部7の配置はこれに限らない。図9は、流速測定部7aを複数配置した例を示す図である。図9に示す施工水域は、水に濁り19があり沖側から上流側にうねり等による逆流がある過酷な条件である。このような条件下では複数の流速測定部7aを配置し、表示部8に複数の流速および流向16を表示してもよい。図9に示す例では、3つの流速測定部7a-1、7a-2、7a-3がそれぞれ地盤表面12の近傍、水深の中央付近、水面付近に配置される。そして、制御部9は深さ方向の3カ所で水流の情報を取得し、流速および流向16-1、16-2、16-3を表示部8に表示する。制御部9は、流速分布を算出して表示部8に表示してもよい。 In addition, in the example shown in FIG. 1, the flow velocity measurement part 7 was installed only in the vicinity of the ground surface 12, but the arrangement of the flow velocity measurement part 7 is not limited to this. FIG. 9 is a diagram showing an example in which a plurality of flow velocity measurement units 7a are arranged. The construction water area shown in FIG. 9 has severe conditions in which the water is turbid 19 and there is backflow from the offshore side to the upstream side due to swells and the like. Under such conditions, a plurality of flow velocity measurement units 7a may be arranged and a plurality of flow velocity and flow directions 16 may be displayed on the display unit 8. In the example shown in FIG. 9, three flow velocity measuring units 7a-1, 7a-2, and 7a-3 are arranged near the ground surface 12, near the center of the water depth, and near the water surface, respectively. Then, the control unit 9 acquires information on the water flow at three locations in the depth direction, and displays the flow velocity and flow directions 16-1, 16-2, and 16-3 on the display unit 8. The control unit 9 may calculate the flow velocity distribution and display it on the display unit 8.

流速測定部7aは、例えば支持部71に連結された伸縮部73と、伸縮部73の先端に連結された球体72とで構成される。支持部71は吊り部材76で吊り下げられ、下端部に重量のあるかんじき74を設けることにより、水流による移動が防止される。かんじき74と支持部71の結合部は水底地形の傾きにある程度追随できる構造とする。かんじき74の代替として、スキーのストックのように支持部71の下端部付近に円盤状部材を設け、円盤状部材の下側を水底の地盤3に貫入させて水流による移動を防止してもよい。また、上端部にGPS75を設けることにより、水位変動が大きい場合にも、支持部71の長さとGPS75の位置情報とから地盤表面12の絶対座標を計測して水深を随時把握し、水中ソナー4での計測値と比較できる。 The flow rate measurement section 7a is configured, for example, with an extensible section 73 connected to a support section 71, and a sphere 72 connected to the tip of the extensible section 73. The support portion 71 is suspended by a hanging member 76, and heavy snowshoes 74 are provided at the lower end to prevent movement due to water flow. The connecting portion between the snowshoes 74 and the support portion 71 has a structure that can follow the inclination of the underwater topography to some extent. As an alternative to the snowshoes 74, a disc-shaped member may be provided near the lower end of the support part 71 like a ski pole, and the lower side of the disc-shaped member may penetrate into the ground 3 at the bottom of the water to prevent movement due to water flow. . In addition, by providing the GPS 75 at the top end, even when water level fluctuations are large, the absolute coordinates of the ground surface 12 are measured from the length of the support 71 and the position information of the GPS 75, and the water depth can be grasped at any time. It can be compared with the measured value.

球体72の比重は、施工水域の濁水と略同等となるように調整される。伸縮部73は、予め流速と伸び量の関係を較正したゴムやバネ等であり、耐久性と復元性を有する。流速測定部7aは、水流により球体72が移動した時の伸縮部73の伸び量と伸びの向きから水流の流速および流向16を計測する。流速測定部7aは、安価で故障時の交換が容易である。なお、流速測定部7aは、球体72の比重を施工水域の水に合わせて調整することにより、淡水域でも海水域でも使用できる。なお、水深ごとの流速及び流向の測定方法は特に限定されない。 The specific gravity of the sphere 72 is adjusted to be approximately equal to the turbid water in the construction area. The extensible portion 73 is made of rubber, a spring, or the like whose relationship between flow velocity and elongation amount has been calibrated in advance, and has durability and restorability. The flow velocity measurement unit 7a measures the flow velocity and flow direction 16 of the water flow from the amount and direction of elongation of the expandable portion 73 when the sphere 72 moves due to the water flow. The flow rate measuring section 7a is inexpensive and easy to replace in case of failure. Note that the flow rate measurement unit 7a can be used in both freshwater and seawater by adjusting the specific gravity of the sphere 72 to match the water in the construction area. Note that the method for measuring the flow velocity and flow direction for each water depth is not particularly limited.

また、施工水域での流速条件が長期的に厳しく、水中掘削作業の稼働率が大幅に低下すると予想される際には、地盤3上に一時的に自立潜堤構造体を設置してもよい。図10は自立潜堤の例を示す図である。図10(a)に示す自立潜堤23aは、浮体パイプ24とH鋼26との間にシルトフェンスのような穴開き膜25を設けたものであり、図10(b)に示す自立潜堤23bは、枠体29に穴開き板28を設けたものである。自立潜堤23a、23bを施工水域の地盤表面12付近の水流の上流側に設置することにより、水流が穴開き膜25や穴開き板28を通って減速した状態で施工水域に流れ込むため、掘削作業が容易になる。自立潜堤23a、23bは吊りロープ27および吊りフック30を有し、図示しない揚重装置によって設置や撤去がされる。吊りフック30を浮体付きにするなどして水面上に出しておけば、掘削作業完了後に自立潜堤23a、23bを容易に撤去できる。 In addition, if the flow velocity conditions in the construction area are expected to be severe over the long term and the operating rate of underwater excavation work is expected to decrease significantly, a self-supporting submerged embankment structure may be temporarily installed on the ground 3. . FIG. 10 is a diagram showing an example of a self-supporting submerged embankment. The self-supporting submersible 23a shown in FIG. 10(a) has a perforated membrane 25 like a silt fence between the floating pipe 24 and the H steel 26, and is similar to the self-supporting submersible 23a shown in FIG. 10(b). 23b is a frame body 29 provided with a perforated plate 28. By installing the self-supporting submerged embankments 23a and 23b on the upstream side of the water flow near the ground surface 12 of the construction water area, the water flow passes through the perforated membrane 25 and perforated plate 28 and flows into the construction water area in a decelerated state. Work becomes easier. The self-supporting submersible banks 23a and 23b have a hanging rope 27 and a hanging hook 30, and are installed or removed by a lifting device (not shown). If the hanging hook 30 is attached to a floating body and is placed above the water surface, the self-supporting submerged banks 23a and 23b can be easily removed after the excavation work is completed.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the technical idea disclosed in this application, and these naturally fall within the technical scope of the present invention. Understood.

例えば、実施形態では水底として川底の地盤3の浚渫工事を例としたが、掘削支援システム1は川底以外の水底の地盤の掘削の支援にも用いることができる。掘削重機2の設置場所は台船22上に限らない。 For example, in the embodiment, the dredging work of the riverbed ground 3 is used as an example of the waterbed, but the excavation support system 1 can also be used to support excavation of waterbed ground other than the riverbed. The installation location of the heavy excavation machine 2 is not limited to the barge 22.

1………掘削支援システム
2………掘削重機
3………地盤
4………水中ソナー
5、75………GPS
6………マシンガイダンス機能
7、7a、7a-1、7a-2、7a-3………流速測定部
8………表示部
9………制御部
10………PC
11………水中
12………地盤表面
13………測定範囲
14………掘削箇所
15………物体
16、16-1、16-2、16-3、16a………流速および流向
17………洗掘予測部
17a………洗掘部
18………堆積予測部
18a………堆積部
19………濁り
21………アタッチメント
22………台船
23………自立潜堤
24………浮体パイプ
25………穴開き膜
26………H鋼
27………吊りロープ
28………穴開き板
29………枠体
30………吊りフック
61………傾斜計
71………支持部
72………球体
73………伸縮部
74………かんじき
76………吊り部材
1...Drilling support system 2...Drilling heavy equipment 3...Ground 4...Underwater sonar 5, 75...GPS
6...Machine guidance function 7, 7a, 7a-1, 7a-2, 7a-3...Flow velocity measuring section 8...Display section 9...Control section 10...PC
11...Underwater 12...Ground surface 13...Measurement range 14...Excavation location 15...Object 16, 16-1, 16-2, 16-3, 16a...Flow velocity and flow direction 17 ......Scouring prediction part 17a...Scouring part 18...Deposition prediction part 18a...Deposition part 19......Turbidity 21......Attachment 22......Barge 23......Self-supporting submerged embankment 24... Floating pipe 25... Perforated membrane 26... H steel 27... Hanging rope 28... Perforated plate 29... Frame body 30... Hanging hook 61...... Inclinometer 71... Supporting part 72... Sphere 73... Expandable part 74... Snowshoes 76... Hanging member

Claims (7)

水底地盤の掘削支援システムであって、
地盤表面に音波を発して所定範囲の水底の状態を把握する水中ソナーと、
水上の掘削重機の位置を把握可能な測位システムと、
前記掘削重機のアタッチメント位置を把握可能なマシンガイダンス機能と、
施工水域における流速を把握可能な流速測定部と、
各種の情報を表示可能な表示部と、
情報処理を行う制御部と、
を具備し、
前記制御部は、前記表示部に、測定範囲の水深と、前記掘削重機のアタッチメント位置と、流速及び流向を表示可能であることを特徴とする水底地盤の掘削支援システム。
An underwater ground excavation support system,
Underwater sonar, which emit sound waves on the ground surface to determine the condition of the water bottom in a predetermined range;
A positioning system that can determine the location of heavy excavation equipment on water,
a machine guidance function that can grasp the attachment position of the heavy excavation machine;
A flow velocity measurement unit that can determine the flow velocity in the construction water area;
A display section that can display various information;
A control unit that performs information processing;
Equipped with
The underwater excavation support system, wherein the control unit is capable of displaying the water depth of the measurement range, the attachment position of the excavation heavy equipment, the flow velocity, and the flow direction on the display unit.
前記制御部は、前記流速測定部で測定された流速に応じて、一度に掘削する地盤の掘削量を設定し、前記表示部に表示可能であることを特徴とする請求項1記載の水底地盤の掘削支援システム。 The underwater ground according to claim 1, wherein the control unit is capable of setting an excavation amount of the ground to be excavated at one time according to the flow velocity measured by the flow velocity measurement unit, and displaying the amount on the display unit. excavation support system. 前記制御部は、前記水中ソナーの音波の反射強度から、水底の各位置の物体の種別を識別し、前記表示部に、物体種別を表示可能であることを特徴とする請求項1記載の水底地盤の掘削支援システム。 The underwater bottom according to claim 1, wherein the control unit is capable of identifying the type of object at each position on the underwater bottom from the reflected intensity of the sound wave of the underwater sonar, and displaying the object type on the display unit. Ground excavation support system. 前記制御部は、物体の種別及びサイズから掘削可否を判断し、前記表示部に掘削可否情報を表示可能であることを特徴とする請求項3に記載の水底地盤の掘削支援システム。 4. The underwater ground excavation support system according to claim 3, wherein the control unit is capable of determining whether excavation is possible based on the type and size of the object, and displaying information on whether excavation is possible on the display unit. 前記制御部は、流速、流向及び水底の状態から、予め設定された洗掘条件及び堆積条件と比較して、地盤における洗掘予測部と堆積予測部を判定し、前記表示部に表示可能であることを特徴とする請求項1記載の水底地盤の掘削支援システム。 The control unit can determine a scour prediction area and a sedimentation prediction area in the ground by comparing the flow velocity, flow direction, and water bottom condition with preset scour conditions and sedimentation conditions, and display the results on the display unit. 2. The underwater ground excavation support system according to claim 1. 前記水中ソナーは、マルチビームソナーであり、施工水域の濁水の程度に応じて、計測波を切り替え可能であることを特徴とする請求項1記載の水底地盤の掘削支援システム。 2. The underwater ground excavation support system according to claim 1, wherein the underwater sonar is a multi-beam sonar, and measurement waves can be switched depending on the degree of turbidity of the construction area. 河川における施工の際に、前記制御部は、河川の上流における降水量を取得し、予め記憶された条件と比較することで、将来の水位変化を予測可能であることを特徴とする請求項1記載の水底地盤の掘削支援システム。 Claim 1: During construction in a river, the control unit is capable of predicting future changes in water level by acquiring the amount of precipitation upstream of the river and comparing it with pre-stored conditions. The underwater underground excavation support system described above.
JP2022061691A 2022-04-01 2022-04-01 Excavation support system of water bottom ground Pending JP2023151845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022061691A JP2023151845A (en) 2022-04-01 2022-04-01 Excavation support system of water bottom ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022061691A JP2023151845A (en) 2022-04-01 2022-04-01 Excavation support system of water bottom ground

Publications (1)

Publication Number Publication Date
JP2023151845A true JP2023151845A (en) 2023-10-16

Family

ID=88326798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022061691A Pending JP2023151845A (en) 2022-04-01 2022-04-01 Excavation support system of water bottom ground

Country Status (1)

Country Link
JP (1) JP2023151845A (en)

Similar Documents

Publication Publication Date Title
EP2322728B1 (en) Backhoe dredger for dredging soil material under water
JP5554366B2 (en) Top end surface leveling method, submarine foundation construction method, and top end surface leveling system
JP5565957B2 (en) Construction management method and construction management device using 3D sonar
CN103924597A (en) Platform type riprap leveling barge and construction method thereof
JP4960402B2 (en) Dredging method by grab dredger
CN101315139A (en) Immersed pipe construction technique of river crossing pipe
JP2019151973A (en) Construction management device, display device, and construction management method
CN107419698A (en) A kind of visualization slope control system and its application technology for deep water breakwater
Reddy An Empirical Study On The Methods And Instruments For Automated Geotechnical Monitoring
CN207176615U (en) A kind of visualization slope control system for deep water breakwater
JP2023151845A (en) Excavation support system of water bottom ground
JP4261610B1 (en) Dredger and dredging method
Allen et al. Construction methodologies and challenges for marine concrete structures
JP2007070988A (en) Pump-dredging method
CN1233903C (en) Construction method for structure of reinforced concrete underwater
CN109989386A (en) Open type is without cofferdam coral sand islands and reefs hydraulic reclamation system and its construction method
JP7103907B2 (en) Dredging construction management system and dredging construction management method
CN103628485A (en) Foundation-pit support structure construction process
CN113722663A (en) Confined space underwater dredging and mud throwing evaluation method
Lin et al. Design for the Reliability of the Deepwater Immersed Tunnel of Hongkong-Zhuhai-Macau Bridge Project
Lawrence Guidelines on field measurement procedures for quantifying catchment sediment yields.
D'Urso et al. a Multidisciplinary Approach to the Coastal Protection of Two Archaeological Sites in Lybia
KR102180234B1 (en) Underwater Construction System
CN108842785A (en) A kind of method of architectural engineering pit supporting
KR101755383B1 (en) Apparatus and method for recognizing topography using bucket of underwater construction equipment for rubble mound leveling work