JP2023151263A - Method and device for reducing discharge amount of n2o in exhaust gas - Google Patents

Method and device for reducing discharge amount of n2o in exhaust gas Download PDF

Info

Publication number
JP2023151263A
JP2023151263A JP2022060780A JP2022060780A JP2023151263A JP 2023151263 A JP2023151263 A JP 2023151263A JP 2022060780 A JP2022060780 A JP 2022060780A JP 2022060780 A JP2022060780 A JP 2022060780A JP 2023151263 A JP2023151263 A JP 2023151263A
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
furnace
air
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022060780A
Other languages
Japanese (ja)
Inventor
全信 杉原
Harunobu Sugihara
均 廣瀬
Hitoshi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2022060780A priority Critical patent/JP2023151263A/en
Publication of JP2023151263A publication Critical patent/JP2023151263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide a control method and a control device for reducing a discharge amount of N2O in adjustment of a combustion residence time in a fluidized incinerator to realize an operation index in the fluidized incinerator, without increasing a temperature in the incinerator under a condition of an in-furnace set temperature necessary for decomposition of N2O.SOLUTION: An in-furnace residence time is also applied as an index in reduction of N2O, by focusing the in-furnace residence time of an incineration exhaust gas, in addition to a temperature condition.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥等の焼却炉内で流動する流動媒体の流動状態を制御する流動焼却炉の制御に係り、特に、流動焼却炉内の燃焼ガス滞留時間調整における温室効果ガスであるN2O排出量の低減方法およびその装置に関する。 The present invention relates to the control of a fluidized incinerator that controls the flow state of a fluidized medium such as sludge flowing in the incinerator, and in particular, the present invention relates to the control of a fluidized incinerator that controls the fluidization state of a fluidized medium such as sludge, and in particular, N 2 O, which is a greenhouse gas, is used in adjusting the residence time of combustion gas in the fluidized incinerator. This invention relates to a method and device for reducing emissions.

流動焼却炉は、炉に入れた砂等の流動媒体を炉の下部から送り込まれる空気により流動させて流動層(流動床)を生成し、熱せられた流動層内に投入された下水汚泥または都市ゴミ等の焼却対象物を流動媒体と共に撹拌させて焼却する焼却炉である。流動焼却炉内の流動状態は、炉に供給する空気(単に供給空気、燃焼空気あるいは流動空気とも称す。)、焼却対象物や補助燃料等の量、および炉内の温度、圧力に依存して変化し、流動状態を安定させて燃焼状態を最適にすることは、焼却対象物の燃焼効率を上げるために重要である。 A fluidized incinerator generates a fluidized bed by fluidizing a fluidized medium such as sand placed in the furnace using air sent from the bottom of the furnace. This is an incinerator that incinerates objects to be incinerated, such as garbage, by stirring them together with a fluid medium. The fluid state in a fluidized bed incinerator depends on the air supplied to the furnace (also simply referred to as supply air, combustion air, or fluidized air), the amount of materials to be incinerated, auxiliary fuel, etc., and the temperature and pressure inside the furnace. It is important to optimize the combustion state by stabilizing the fluid state and increasing the combustion efficiency of the material to be incinerated.

また、焼却対象物に含まれる有機成分を焼却する際の排ガスから生じる温室効果ガスの1つであるN2O(亜酸化窒素)の排出を、地球温暖化防止のために低減していく必要がある。
例えば、流動焼却炉において、炉内の明るさ、焼却対象物の供給量、温度、酸素濃度、または炉内の圧力に応じて流動媒体を流動させるために炉内に供給する空気量を調節する手法が提案されている(特許文献1参照)。
また、流動焼却炉において、排ガスの酸素濃度と炉内上部の水分濃度とに基づいて下水汚泥のケーキの含水率の増減を推定し、推定結果に基づいて炉に供給する空気の量、炉内温度、炉に供給する焼却対象物の量等を調節することで、燃焼の安定化を計る手法が提案されている(特許文献2参照)。
Additionally, in order to prevent global warming, it is necessary to reduce the emissions of N 2 O (nitrous oxide), which is a greenhouse gas generated from exhaust gas when incinerating organic components contained in materials to be incinerated. There is.
For example, in a fluidized fluid incinerator, the amount of air supplied to the furnace to make the fluidized medium flow is adjusted depending on the brightness inside the furnace, the amount of material to be incinerated, the temperature, the oxygen concentration, or the pressure inside the furnace. A method has been proposed (see Patent Document 1).
In addition, in a fluidized bed incinerator, the increase or decrease in the moisture content of the sewage sludge cake is estimated based on the oxygen concentration of the exhaust gas and the moisture concentration in the upper part of the furnace, and based on the estimation results, the amount of air supplied to the furnace, A method has been proposed for stabilizing combustion by adjusting the temperature, the amount of materials to be incinerated supplied to the furnace, etc. (see Patent Document 2).

排ガス、特に、N2OやNOxの排出量の低減に関しては、アンモニア系の還元剤と多孔性流動媒体のスラリー状混合物を炉内に噴射する方法が知られている(特許文献3参照)。 Regarding the reduction of exhaust gas emissions, particularly N 2 O and NOx, a method is known in which a slurry-like mixture of an ammonia-based reducing agent and a porous fluidizing medium is injected into a furnace (see Patent Document 3).

例えば過給式流動床汚泥焼却炉では、炉床で開始する燃焼を炉頂から炉出口にかけて870~880℃の温度で燃焼させることでN2Oを分解させている(N2Oの温室効果は二酸化炭素換算量で298倍)。
焼却炉の温度調節は、脱水汚泥性状に応じて炉内温度を維持するために、補助燃料供給による燃焼(助燃状態)、または脱水汚泥の水分が少なく燃えやすい場合には補助燃料を供給せず、炉内温度が高まるときに炉内注水によって冷却する状態の燃焼(自燃状態)による温度調整を行っている。
For example, in a supercharged fluidized bed sludge incinerator, N 2 O is decomposed by combustion that starts at the hearth and continues from the top of the furnace to the furnace exit at a temperature of 870 to 880°C. is 298 times the amount of carbon dioxide equivalent).
The temperature of the incinerator is controlled by supplying auxiliary fuel for combustion (assisted combustion state), or not supplying auxiliary fuel if the dehydrated sludge has low water content and is easily combustible, in order to maintain the temperature inside the furnace depending on the properties of the dehydrated sludge. The temperature is controlled by combustion (self-combustion state), which cools down the furnace by injecting water when the temperature inside the furnace rises.

特許3108742号公報Patent No. 3108742 特開2004-125332号公報Japanese Patent Application Publication No. 2004-125332 特許第5640120号公報Patent No. 5640120 特開2020-159655号公報Japanese Patent Application Publication No. 2020-159655

この種の流動焼却炉では、焼却炉内の流動状態を示す指標の1つに空塔速度がある。例えば、流動焼却炉を設計する際には、所定の負荷での運転時に適した空塔速度が設定され、設定された空塔速度で焼却対象物が焼却されるように焼却炉の大きさや流動媒体の粒子径等が決められる。炉内の流動状態は炉内の空塔速度と相関があるため、設計値ではない運転中の空塔速度を求めることができれば流動状態を間接的に確認することが可能である。
例えば、空塔速度が適正範囲を下回り、流動媒体の流動不足が発生すると、燃焼効率が低下し、さらに、燃焼により発生した灰が炉から排出されにくくなることにより炉内の流動砂に灰分を含めた流動媒体が増加してしまう。
In this type of fluidized incinerator, superficial velocity is one of the indicators indicating the fluid state within the incinerator. For example, when designing a fluidized bed incinerator, a superficial velocity suitable for operation at a given load is set, and the size and flow rate of the incinerator are set so that the material to be incinerated is incinerated at the set superficial velocity. The particle size etc. of the medium are determined. Since the flow state within the furnace is correlated with the superficial velocity within the furnace, it is possible to indirectly confirm the flow state if the superficial velocity during operation, which is not the design value, can be determined.
For example, if the superficial velocity falls below the appropriate range and insufficient flow of the fluidized medium occurs, the combustion efficiency will decrease, and the ash generated by combustion will be difficult to discharge from the furnace, causing ash content to be added to the fluidized sand in the furnace. The fluid medium involved will increase.

一方、空塔速度が適正範囲を上回り、流動媒体が過剰に流動すると、良好に排出される灰に加えさらに流動砂である流動媒体が炉外に飛散し、炉内の流動媒体が減少してしまう。増加した流動媒体の炉からの引き抜き、および減少した流動媒体の炉への補充は、流動焼却炉の運転コストを上昇させる。したがって、空塔速度が適正範囲に収まるように流動焼却炉を運転することが望ましい。 On the other hand, when the superficial velocity exceeds the appropriate range and the fluidized medium flows excessively, in addition to the ash that is well discharged, the fluidized medium, which is fluidized sand, is scattered outside the furnace, reducing the amount of fluidized medium inside the furnace. Put it away. Withdrawing increased fluidized media from the furnace and replenishing the furnace with decreased fluidized media increases the operating costs of fluidized incinerators. Therefore, it is desirable to operate the fluidized incinerator so that the superficial velocity falls within an appropriate range.

しかしながら、焼却炉内の空塔速度は、炉に供給される空気の量だけでなく、焼却対象物、補助燃料の燃焼や炉内注水により発生するガスの量に依存して変化する。
このため、例えば、空気の供給量だけを用いて求めた空塔速度では、炉内の流動状態を正確に表すことは困難である。
However, the superficial velocity in the incinerator varies depending not only on the amount of air supplied to the incinerator, but also on the amount of gas generated by combustion of the object to be incinerated, auxiliary fuel, and water injection into the incinerator.
For this reason, for example, it is difficult to accurately represent the flow state in the furnace using the superficial velocity determined using only the air supply amount.

特許文献1では、設計時に各要素制御の結果により制御可能な空塔速度範囲を設定しているが、上述のように実際の空塔速度の計測が難しく実施されていない。 In Patent Document 1, a controllable superficial velocity range is set based on the results of each element control at the time of design, but as mentioned above, actual superficial velocity measurement is difficult and has not been implemented.

また、排出ガスのうち、特に、N2O排出量を低減するためには、高温でN2Oを分解することが行われる。後述の実施の形態では、N2Oの排出量低減を例として説明する。 Furthermore, in order to reduce the amount of N 2 O discharged from exhaust gases, N 2 O is decomposed at high temperatures. In the embodiments described below, reduction in the amount of N 2 O emissions will be explained as an example.

図2は炉内最高温度とN2O排出係数の相関例を説明する図で、横軸に炉内最高温度[℃]を、縦軸に脱水ケーキ乾燥重量あたりのN2O排出係数[kg-N2O/t-DS]を取って相関式を近似したものである。N2Oの分解は、図2に示されるように、炉内温度と相関関係にある。 Figure 2 is a diagram illustrating an example of the correlation between the maximum temperature inside the furnace and the N 2 O emission coefficient. -N 2 O/t-DS] to approximate the correlation formula. As shown in FIG. 2, the decomposition of N 2 O is correlated with the furnace temperature.

しかし、更なるN2Oの分解をするために温度を上げると、図2の近似曲線から明らかなように、N2Oの減少量が低下する。そのため、N2Oの排出量低減の要求に対して炉内温度の高温化のみでの対応は難しくなってくる。 However, when the temperature is increased to further decompose N 2 O, the amount of N 2 O reduction decreases, as is clear from the approximate curve in FIG. 2 . Therefore, it becomes difficult to meet the demand for reducing the amount of N 2 O emissions by simply increasing the temperature inside the furnace.

炉内温度を更に上昇させることでN2Oの分解促進が可能であるとしても、より局所的に高温場の発生による弊害、空気予熱器流入排ガス温度の高温化や炉出口温度の上昇による飛灰の溶融付着による弊害を生じる可能性が高くなってしまい、焼却設備の耐熱性向上や飛灰の溶融付着対策のためのコストが増大し、N2O分解のため運転管理対策を別途施す必要がある。 Even if it is possible to accelerate the decomposition of N 2 O by further increasing the temperature inside the furnace, there will be adverse effects due to the generation of a higher temperature field locally, and the risk of flying due to the increase in the temperature of the exhaust gas flowing into the air preheater and the increase in the temperature at the furnace outlet. There is a high possibility that harmful effects will occur due to the melting and adhesion of ash, increasing the cost of improving the heat resistance of incineration equipment and taking measures to prevent the melting and adhesion of fly ash, and it is necessary to take separate operation management measures for N 2 O decomposition. There is.

本発明の目的は、N2O分解に必要な焼却温度を維持するにあたり、焼却設備の耐熱性等を向上させることでコストを増大させない流動焼却炉の運転方法およびその装置、より詳しくは流動焼却炉内ガス滞留時間調整についての運転指標を実現するN2O排出量低減方法およびその制御のための装置を提供することにある。 The purpose of the present invention is to provide a method and apparatus for operating a fluidized incinerator that does not increase costs by improving the heat resistance of incineration equipment in order to maintain the incineration temperature necessary for N 2 O decomposition, and more specifically, to provide a fluidized incinerator and its device. An object of the present invention is to provide a method for reducing N 2 O emissions and a device for controlling the same, which realizes an operational index for adjusting gas residence time in a furnace.

上記目的を達成するための本発明に係るN2O低減技術は、温度条件以外に炉内で発生するガスの炉内滞留時間に着目し、炉内滞留時間もN2O低減の指標としたことを特徴とする。 In order to achieve the above object, the N 2 O reduction technology according to the present invention focuses on the residence time of gas generated in the furnace in addition to temperature conditions, and uses the residence time in the furnace as an index for N 2 O reduction. It is characterized by

上記したように、N2Oの排出量抑制には、炉内の排出ガス最高温度に相関があると考えられていたが、本発明者等の研究により、炉内ガス滞留時間にも相関があることが判明した。すなわち、後述するように、炉内ガス滞留時間の増加に伴いN2Oの排出量が抑制されるという反比例関係を明らかにしている。なお、これは特許文献3の図3にも上述の相関性を示唆するデータが認められる。 As mentioned above, it was thought that the suppression of N 2 O emissions was correlated with the maximum temperature of the exhaust gas in the furnace, but research by the present inventors revealed that there is also a correlation with the residence time of the gas in the furnace. It turns out that there is something. That is, as will be described later, an inversely proportional relationship is revealed in which the amount of N 2 O discharged is suppressed as the gas residence time in the furnace increases. Note that data suggesting the above-mentioned correlation is also found in FIG. 3 of Patent Document 3.

上記の炉内ガス滞留時間を長くするためには、(1)炉を大きくする、(2)炉内の排ガススペースレート(空塔速度)を小さくする、といった二つの方法がある。スペースレートは、図1で示す汚泥供給装置10からの汚泥等の焼却対象物〔供給汚泥量計測器82(F3のプロセス値)〕、炉内注水を行う水供給装置15の水〔供給水量計測器83(F4のプロセス値)〕、燃料供給装置20の重油などの燃料〔供給燃料量計測器84(F5のプロセス値)〕、及び、流動焼却炉2への燃焼空気〔空気予熱器空気量計測器27(F2のプロセス値)〕の各供給量に基づき、流動焼却炉内からのガス発生量を算出して求める。流動焼却炉2からの排ガス発生量は直接測定してもよいし、排ガス中の灰の影響で測定が困難な場合には、集塵機40出口以降の下流の排ガス経路(供給路41等)で排ガス量を測定するようにしてもよい。各計測器で指示する各供給量からスペースレートを求める場合、先ず、各供給量から質量流量を算出しておき、容積流量に換算してガス発生量を求めスペースレートを算出する。焼却対象物のガス発生量の算出については、例えば、測定装置や分析作業による含水率、有機成分率および元素組成に基づいて前記焼却対象物を焼却した場合の前記ガス発生量を算出する。リアルタイムでの測定値でなく、日常的に測定装置や分析作業での値を統計的に整理した値を使用して、焼却対象物のガス発生量を算出することでよい。 There are two methods for increasing the gas residence time in the furnace: (1) enlarging the furnace; and (2) decreasing the exhaust gas space rate (superficial velocity) in the furnace. The space rate is determined by the amount of incinerated material such as sludge from the sludge supply device 10 shown in FIG. 83 (process value of F4)], fuel such as heavy oil in the fuel supply device 20 [supplied fuel amount measuring device 84 (process value of F5)], and combustion air to the fluidized incinerator 2 [air preheater air amount Based on each supply amount of the measuring device 27 (process value of F2), the amount of gas generated from inside the fluidized bed incinerator is calculated and determined. The amount of exhaust gas generated from the fluidized incinerator 2 may be measured directly, or if measurement is difficult due to the influence of ash in the exhaust gas, the amount of exhaust gas generated from the fluidized incinerator 2 may be measured by measuring the amount of exhaust gas generated in the downstream exhaust gas path (supply path 41, etc.) after the exit of the dust collector 40. The amount may also be measured. When calculating the space rate from each supply amount indicated by each measuring device, first, the mass flow rate is calculated from each supply amount, and the gas generation amount is calculated by converting it into a volumetric flow rate to calculate the space rate. Regarding the calculation of the amount of gas generated from the object to be incinerated, for example, the amount of gas generated when the object to be incinerated is incinerated is calculated based on the moisture content, organic component rate, and elemental composition determined by a measuring device and analysis work. It is sufficient to calculate the amount of gas generated from the incineration target using not the real-time measured values but the statistically arranged values obtained by measuring devices and analytical work on a daily basis.

しかしながら、上記の(1)は設備コストの増大につながることから、通常は(2)で対応する。炉内の排ガスのスペースレートを小さくするためには、質量流量が一定であるならば、炉内圧力を大きくすることが有効である。ただし、圧力を上昇させると、炉内へ燃焼空気を送り込むために圧力が高まるので、空気密度が増す分、空気予熱器での熱交換が進み、炉入口空気温度(T2)が上昇する。焼却炉として炉床温度T1を制御するのに補助燃料を用いている時は影響がないが、炉内注水で温度制御を行っている時には、炉入口空気温度T2が上昇することにより注水量が増えてしまい、排ガス流量が増大する。結果として、炉内スペースレートが上昇する。 However, since (1) above leads to an increase in equipment costs, (2) is usually used. In order to reduce the space rate of exhaust gas in the furnace, it is effective to increase the pressure in the furnace if the mass flow rate is constant. However, when the pressure is increased, the pressure increases in order to send combustion air into the furnace, so heat exchange in the air preheater progresses by the increase in air density, and the furnace inlet air temperature (T2) increases. There is no effect when auxiliary fuel is used to control the hearth temperature T1 as an incinerator, but when the temperature is controlled by injecting water into the incinerator, the amount of water injected increases due to the increase in the inlet air temperature T2. This results in an increase in the exhaust gas flow rate. As a result, the furnace space rate increases.

このため図1に示す空気予熱器において、分岐供給路56aと分岐供給路56bとからなる供給路56と調節弁47から構成される分岐ラインの供給空気の分配調節を行うにあたって、空気予熱器での排ガスと供給空気の熱交換面積を小さくして熱交換量を少なくする分岐供給路56a(並流ライン)と逆に空気予熱器での排ガスと供給空気の熱交換面積を大きくして熱交換量を多くする分岐供給路56b(向流ライン)のうち、供給空気の並流ラインを通る比率を多くし、炉入口空気温度T2を下降させることにより、炉床温度T1の上昇を抑えられるので炉内注水量の増加量が抑制され、炉内スペースレートの上昇を抑えることができる。その結果、N2O排出量の抑制につながることとなる。 For this reason, in the air preheater shown in FIG. The branch supply line 56a (parallel flow line) reduces the heat exchange area between exhaust gas and supply air to reduce the amount of heat exchange, and conversely, heat exchange is performed by increasing the heat exchange area between exhaust gas and supply air in the air preheater. By increasing the proportion of supply air that passes through the parallel flow line among the branch supply paths 56b (countercurrent lines) that increase the amount of supply air and lowering the furnace inlet air temperature T2, it is possible to suppress the rise in the hearth temperature T1. The amount of increase in the amount of water injected into the reactor is suppressed, and an increase in the space rate in the reactor can be suppressed. As a result, the amount of N 2 O emissions can be suppressed.

このように、N2Oの分解は、前記で説明した図2に示される温度相関以外に、高温度場でのガス滞留時間に比例した分解が行われる。本発明では、炉内で生ずるガスが炉内を通過する速度(スペースレート)を指標にして炉内滞留時間を十分に確保する運転手法を採用することでN2Oの低減を図った。 In this way, N 2 O is decomposed in proportion to the gas residence time in a high temperature field, in addition to the temperature correlation shown in FIG. 2 described above. In the present invention, N 2 O is reduced by adopting an operating method that ensures sufficient residence time in the furnace using the speed at which gas generated in the furnace passes through the furnace (space rate) as an index.

同種の手法として、特許文献4があるが、本発明は、N2Oの分解における高温場炉内ガス滞留時間を目的としたスペースレート管理・調整を前記段落[0020]に記述の「運転圧力による予熱空気(燃焼空気)温度の調整」と前記段落[0021]に記述の「空気予熱器の熱交換(並流・向流)バイアス比の変動、温度調整」の技術を応用し、N2Oの低減を図る方法とその装置とした点に特徴を有する。 A similar method is disclosed in Patent Document 4, but the present invention utilizes the "operating pressure" described in the above paragraph [0020] to manage and adjust the space rate for the purpose of gas residence time in the high-temperature field furnace during N 2 O decomposition. By applying the techniques of "adjustment of preheated air (combustion air) temperature by" and "variation of heat exchange (cocurrent/countercurrent) bias ratio of air preheater, temperature adjustment" described in paragraph [0021] above, N 2 The present invention is characterized by a method and device for reducing O.

本発明では、(a):例えば、低含水率の汚泥を焼却する過給式流動炉において、自燃状態の場合、炉内温度が高まって注水量が増加し、炉内高温場の滞留時間が短くなってN2Oが増加するので、過給機で圧力を増加させて炉内スペースレートを抑えることで滞留時間を増やしてN2O排出量を低減するようにした。 In the present invention, (a): For example, in a supercharged fluidized bed furnace that incinerates sludge with a low moisture content, in a self-combustion state, the temperature inside the furnace increases and the amount of water injection increases, and the residence time in the high temperature field inside the furnace increases. As the length becomes shorter, N 2 O increases, so we increased the pressure with a supercharger to suppress the space rate in the furnace, increasing the residence time and reducing the amount of N 2 O discharged.

また、(b):増加した圧力を保つために、流動空気の一部を余剰空気逃し経路中にある図1で示す調節弁49で排出するようにした。余剰空気を逃さないと流動焼却炉内の流動床3で流動不良となって焼却対象物の不完全燃焼につながるほどにスペースレートが小さくなりすぎてしまうので、適切なスペースレートにするために余剰空気を逃して増加した圧力を保つのである。 Moreover, (b): In order to maintain the increased pressure, a part of the flowing air is discharged by the control valve 49 shown in FIG. 1 located in the surplus air release path. If the surplus air is not released, the space rate will become too small to the extent that fluidization will be poor in the fluidized bed 3 in the fluidized incinerator, leading to incomplete combustion of the material to be incinerated. It allows air to escape and maintains the increased pressure.

そして、(c):(a)(b)での操作により空気予熱器の伝熱量が増加して炉内空気温度が上昇し、炉内温度が高すぎると注水量が増加してしまい、炉内高温場のガス滞留時間が短くなってN2Oが増加する。この場合は、空気予熱器への供給空気を分岐している向流と並流のラインにおいて、向流ライン側の調節弁47で向流と並流のラインに流れる空気割合を調節し、空気予熱器の伝熱量を変化させ、温度を下げたいときには並流ラインの量を増やす操作とし、予熱空気温度を下げることで炉内温度を下げ、炉内への注水量を減らし、炉内スペースレートを抑えてN2O排出量を低減するようにした。 And (c): The amount of heat transferred from the air preheater increases due to the operations in (a) and (b), and the air temperature in the furnace rises. If the temperature in the furnace is too high, the amount of water injected increases, and The gas residence time in the internal high temperature field becomes shorter and N 2 O increases. In this case, in the countercurrent and parallel flow lines that branch the air supplied to the air preheater, the control valve 47 on the countercurrent line side adjusts the proportion of air flowing into the countercurrent and parallel flow lines, and the air When you want to change the heat transfer amount of the preheater and lower the temperature, you can increase the amount of parallel flow line, lower the preheating air temperature, lower the furnace temperature, reduce the amount of water injected into the furnace, and increase the space rate inside the furnace. This reduces the amount of N 2 O emissions.

本発明に係るN2O排出量低減制御手段の代表的な特徴を列挙すれば、以下のとおりである。なお、ここでは、発明の理解を容易にするため、各構成に後述する実施の形態で説明する図面で使用される符号を併記するが、本発明はこの符号で示される具体的な構成要素に限定されるものではない。 Typical features of the N 2 O emission reduction control means according to the present invention are listed below. Here, in order to facilitate understanding of the invention, the reference numerals used in the drawings described in the embodiments described later are also written for each structure. It is not limited.

汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉における排ガス中のN2O排出量低減方法ついては以下のとおりである。 A method for reducing N 2 O emissions in exhaust gas in a fluidized fluidized incinerator that incinerates sludge as the main incineration target is as follows.

(1)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する方法であって、前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出し、算出された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、前記空塔速度が目標値下限を下回った場合は、過給機から供給される圧縮空気の圧力を低下させ、前記空塔速度が目標値上限を上回った場合は、過給機から供給される圧縮空気の圧力を上昇させることを特徴とする。 (1) A method for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main material to be incinerated, the method comprising: a feed supplied to the fluidized fluidized incinerator; Calculate the amount of exhaust gas discharged from the fluidized bed incinerator based on the supply amount of multiple types of supplies consisting of the incineration target, water, fuel, and air, and based on the calculated amount of exhaust gas. The superficial velocity of the fluidized incinerator is calculated, and if the superficial velocity is below the lower limit of the target value, the pressure of the compressed air supplied from the supercharger is lowered, and the superficial velocity is lower than the upper limit of the target value. If it exceeds the limit, the pressure of the compressed air supplied from the supercharger is increased.

(2)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する方法であって、炉内注水量が目標値上限を上回った場合は、炉入口空気温度を低下させ、炉内注水量が目標値下限を下回った場合は、炉入口空気温度を上昇させることを特徴とする。 (2) A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main target for incineration, and in which the amount of water injected into the furnace exceeds the upper limit of the target value. If the amount of water injected into the furnace is below the lower limit of the target value, the furnace inlet air temperature is increased.

(3)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する方法であって、前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出し、あるいは排ガス量を直接測定(以下、両者を「検出」と称する)し、算出あるいは測定された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出することを特徴とする。 (3) A method for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main material to be incinerated, the method comprising: a feed supplied to the fluidized fluidized incinerator; Calculate the amount of exhaust gas discharged from the fluidized bed incinerator based on the amount of the incineration target, water, fuel, and air, or directly measure the amount of exhaust gas (hereinafter referred to as Both of these are referred to as "detection"), and the superficial velocity of the fluidized incinerator is calculated based on the calculated or measured amount of exhaust gas.

(4)前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させると共に余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させると共に余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする。 (4) Compare the superficial velocity with the set minimum value, and if the superficial velocity is less than the minimum value, increase the opening of the control valve in the exhaust gas bypass path of the turbocharger, and The amount of exhaust gas to be sent is reduced to lower the rotational speed of the supercharger, and the opening degree of the surplus air control valve is reduced to maintain the pressure after the supply path, and the superficial velocity is set to a set maximum value. If the superficial velocity exceeds the maximum value, reduce the opening of the control valve in the exhaust gas bypass path of the turbocharger, increase the amount of exhaust gas sent to the turbocharger, and increase the rotation speed of the turbocharger. The present invention is characterized by increasing the opening degree of the surplus air control valve and maintaining the pressure after the supply path.

(5)前記炉内注水量が目標値上限を上回るなら、過給機から前記供給路を通って送られてくる圧縮空気が分岐されるが、分岐調節弁の開度を小さくすることで、空気予熱器内の熱交換を少なくできるよう並流ラインの圧縮空気を多くして、炉入口空気温度を低下させ、前記炉内注水量が目標値下限を下回るなら、過給機から前記供給路を通って送られてくる圧縮空気が分岐されるが、分岐調節弁の開度を大きくすることで、空気予熱器内の熱交換を多くできるよう向流ラインの圧縮空気を多くして、炉入口空気温度を上昇させることを特徴とする。 (5) If the amount of water injected into the furnace exceeds the upper limit of the target value, the compressed air sent from the supercharger through the supply path is branched, but by reducing the opening degree of the branch control valve, To reduce heat exchange in the air preheater, compressed air in the parallel flow line is increased to lower the furnace inlet air temperature, and if the amount of water injected into the furnace is below the lower limit of the target value, the supply path The compressed air sent through the line is branched, but by increasing the opening of the branch control valve, more compressed air is sent through the counterflow line to increase heat exchange in the air preheater. It is characterized by increasing the inlet air temperature.

また、排ガス中のN2O排出量低減するための装置については以下に記載したとおりである。 Further, the apparatus for reducing the amount of N 2 O emissions in exhaust gas is as described below.

(6)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出する手段と、算出された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、前記空塔速度が目標値下限を下回った場合は、過給機から供給される圧縮空気の圧力を低下させ、前記空塔速度が目標値上限を上回った場合は、過給機から供給される圧縮空気の圧力を上昇させる手段を備えたことを特徴とする。 (6) A device for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main material to be incinerated, the feed being supplied to the fluidized fluidized incinerator. means for calculating the amount of exhaust gas discharged from the fluidized bed incinerator based on the supply amount of a plurality of types of supplies consisting of the object to be incinerated, water, fuel, and air; The superficial velocity of the fluidized incinerator is calculated based on the above, and if the superficial velocity is lower than the lower limit of the target value, the pressure of the compressed air supplied from the supercharger is reduced, and the superficial velocity is reduced to the target value. The present invention is characterized in that it includes means for increasing the pressure of compressed air supplied from the supercharger when the upper limit is exceeded.

(7)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、炉内注水量が目標値上限を上回った場合は、炉入口空気温度を低下させ、炉内注水量が目標値下限を下回った場合は、炉入口空気温度を上昇させる手段を備えたことを特徴とする。 (7) A device for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main incineration target, and the amount of water injected into the furnace exceeds the upper limit of the target value. In this case, the furnace inlet air temperature is lowered, and when the amount of water injected into the furnace is lower than the lower limit of the target value, the furnace inlet air temperature is increased.

(8)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を検出し、検出された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出する手段を備えたことを特徴とする。 (8) A device for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates materials to be incinerated, mainly sludge, the feed being supplied to the fluidized fluidized incinerator. Detecting the amount of exhaust gas discharged from the fluidized bed incinerator based on the supply amount of multiple types of supplies consisting of the incineration target, water, fuel, and air, and based on the detected amount of exhaust gas. The present invention is characterized by comprising means for calculating the superficial velocity of the fluidized incinerator.

(9)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させると共に余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させると共に余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにする手段を備えたことを特徴とする。 (9) A device for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates objects to be incinerated, mainly sludge, wherein the superficial velocity is set to a minimum value. If the superficial velocity is below the minimum value, increase the opening of the control valve in the exhaust gas bypass path of the turbocharger, reduce the amount of exhaust gas sent to the turbocharger, and reduce the rotation speed of the turbocharger. and reduce the opening degree of the surplus air control valve to maintain the pressure after the supply path, and compare the superficial velocity with the set maximum value, and if the superficial velocity exceeds the maximum value. If so, reduce the opening of the control valve in the middle of the exhaust gas bypass path of the turbocharger, increase the amount of exhaust gas sent to the turbocharger, increase the rotation speed of the turbocharger, and increase the opening of the excess air control valve. The apparatus is characterized by comprising means for maintaining the pressure after the supply path.

(10)汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、前記炉内注水量が目標値上限を上回るなら、過給機から前記供給路を通って送られてくる圧縮空気が分岐されるが、分岐調節弁の開度を小さくすることで、空気予熱器内の熱交換を少なくできるよう並流ラインの圧縮空気を多くして、炉入口空気温度を低下させ、前記炉内注水量が目標値下限を下回るなら、過給機から前記供給路を通って送られてくる圧縮空気が分岐されるが、分岐調節弁の開度を大きくすることで、空気予熱器内の熱交換を多くできるよう向流ラインの圧縮空気を多くして、炉入口空気温度を上昇させる手段を備えたことを特徴とする。 (10) A device for reducing the amount of N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates materials to be incinerated, mainly sludge, wherein the amount of water injected into the furnace is below the upper limit of the target value. If it exceeds the limit, the compressed air sent from the turbocharger through the supply path is branched, but by reducing the opening degree of the branch control valve, it is possible to reduce the heat exchange in the air preheater so that the compressed air flows in parallel. The compressed air in the line is increased to lower the furnace inlet air temperature, and if the amount of water injected into the furnace is below the lower limit of the target value, the compressed air sent from the supercharger through the supply path is branched. However, by increasing the opening degree of the branch control valve, the amount of compressed air in the countercurrent line is increased to increase heat exchange in the air preheater, and the furnace inlet air temperature is increased. shall be.

本発明は上記の構成および後述する実施の態様で説明される構成に限定されるものではなく、本発明の技術思想を逸脱することなく、種々の変更が可能であることは言うまでもない。 It goes without saying that the present invention is not limited to the configurations described above and the configurations described in the embodiments described below, and that various changes can be made without departing from the technical idea of the present invention.

本発明によれば、N2O分解に必要な焼却温度を維持するにあたり、流動焼却設備の耐熱性等を向上させることでコストを増大させることなく、N2Oの排出量を確実にすることができると共に、下記の諸効果を得ることができる。 According to the present invention, in maintaining the incineration temperature necessary for N 2 O decomposition, it is possible to ensure the amount of N 2 O discharged without increasing costs by improving the heat resistance etc. of the fluidized incineration equipment. At the same time, the following effects can be obtained.

(1)低含水で固形物の量が多い脱水汚泥(ケーキ)を焼却するとき、N2O発生量は固形物量に相関する。低含水で固形物量が多い脱水汚泥は発熱量が高いため、自燃状態となりやすい。自燃時には炉内温度が上昇しやすいことから炉内注水量が増加する。炉内注水により炉内温度が抑えられるが、排ガス量が増加するので、炉内スペースレートが速くなり、炉内高温場のガス滞留時間が短くなる。そして後述するようにN2Oの分解が減じてしまう。そこで、運転圧力を上昇させ、スペースレートを遅くして排ガス滞留時間を増やすことで、N2Oの分解反応が保持されN2O排出量を増加させない。 (1) When dehydrated sludge (cake) with low water content and a large amount of solid matter is incinerated, the amount of N 2 O generated correlates with the amount of solid matter. Dehydrated sludge with low moisture content and high solid content has a high calorific value, so it tends to become self-combustible. During self-combustion, the temperature inside the furnace tends to rise, so the amount of water injected into the furnace increases. Although the temperature inside the furnace is suppressed by injecting water into the furnace, the amount of exhaust gas increases, so the space rate inside the furnace becomes faster and the gas residence time in the high temperature field inside the furnace becomes shorter. As will be described later, the decomposition of N 2 O is reduced. Therefore, by increasing the operating pressure and slowing down the space rate to increase the residence time of the exhaust gas, the decomposition reaction of N 2 O is maintained and the amount of N 2 O emissions is not increased.

(2)しかし、段落[0020]に記述したように空気予熱器の熱交換効率が上がり、炉入口空気温度が上昇して炉内温度が再び炉内注水するまでに達すると、炉内注水の影響により炉内でのガス発生量が増加するので、ガス滞留時間は短くなる。炉入口空気温度の上昇を抑えるために、大気をファンで取り入れて供給空気と熱交換できる空気冷却器を別途設けることが考えられるが、設備数が増加してしまうことになる。そこで、現状設備を大きく変更することなく、[0021]に記述のように、ダンパによる空気予熱器の熱交換(並流・向流)バイアス比を変化できるようにし、熱交換効率を下げ、燃焼空気温度を下げることで、炉内温度が下がり、注水量が減少してガス発生量が減少し、スペースレートを維持して、炉内高温場でのガス滞留時間を確保することにより、N2Oの分解が維持される。 (2) However, as described in paragraph [0020], when the heat exchange efficiency of the air preheater increases and the furnace inlet air temperature rises to the point where the furnace temperature reaches the point where water is injected into the furnace again, As a result, the amount of gas generated in the furnace increases, so the gas residence time becomes shorter. In order to suppress the rise in the furnace inlet air temperature, it is conceivable to separately install an air cooler that can take in atmospheric air with a fan and exchange heat with the supply air, but this would increase the number of equipment. Therefore, without making major changes to the current equipment, as described in [0021], it is possible to change the heat exchange (parallel current/countercurrent) bias ratio of the air preheater using a damper, lowering the heat exchange efficiency, and reducing the combustion By lowering the air temperature, the temperature inside the furnace decreases, the amount of water injection decreases, the amount of gas generated decreases, and by maintaining the space rate and ensuring the gas residence time in the high temperature field inside the furnace, N2 O decomposition is maintained.

本発明に係る流動焼却炉内燃焼滞留時間調整におけるN2O排出量低減制御装置の一例を説明するシステム構成図A system configuration diagram illustrating an example of an N 2 O emission reduction control device for adjusting combustion residence time in a fluidized incinerator according to the present invention. 炉内最高温度とN2O排出係数の相関例を説明する図Diagram explaining an example of the correlation between the maximum temperature inside the furnace and the N 2 O emission coefficient 炉内スペースレートと相関式算出N2OとN2O測定値の乖離の説明図Diagram explaining the discrepancy between the in-furnace space rate and the correlation formula calculated N 2 O and measured N 2 O values 排ガス熱量と空気予熱器の交換熱量の関係の説明図Explanatory diagram of the relationship between exhaust gas heat amount and exchange heat amount of air preheater 制御装置が実行するN2O排出低減処理手順を説明するフローチャートFlowchart explaining the N 2 O emission reduction processing procedure executed by the control device

以下、本発明が適用される焼却炉システムの1実施形態について、図1を参照して詳細に説明する。 Hereinafter, one embodiment of an incinerator system to which the present invention is applied will be described in detail with reference to FIG. 1.

図1は本発明に係る流動焼却炉内ガス滞留時間調整におけるN2O排出量低減制御装置の一例を説明するシステム構成図である。図1において、このシステムは、流動焼却炉2、汚泥(ケーキ)供給装置10、水供給装置15、燃料供給装置20、空気予熱器30、集塵機40、過給機50、起動用ブロワ60、白煙防止ファン70、制御装置90からなる。なお、過給機50の後段には白煙防止器、排煙処理塔が設置されるが、図示は省略した。 FIG. 1 is a system configuration diagram illustrating an example of an N 2 O emission reduction control device for adjusting gas residence time in a fluidized incinerator according to the present invention. In FIG. 1, this system includes a fluidized incinerator 2, a sludge (cake) supply device 10, a water supply device 15, a fuel supply device 20, an air preheater 30, a dust collector 40, a supercharger 50, a starting blower 60, a white It consists of a smoke prevention fan 70 and a control device 90. Note that a white smoke preventer and a flue gas treatment tower are installed downstream of the supercharger 50, but their illustrations are omitted.

また、焼却システム1は、温度計(T)23、温度計(T)24、圧力計(P)25、空気予熱機冷却空気量計測器(F)26、空気予熱機冷却空気量計測器(F)27、過給機回転数計測機器(R)28を有する。また、この焼却システム1には、温度計(T)81、供給汚泥量計測器(F)82、供給水量計測器(F)83、供給燃料量計測器(F)84が設けられている。 The incineration system 1 also includes a thermometer (T) 23, a thermometer (T) 24, a pressure gauge (P) 25, an air preheater cooling air amount meter (F) 26, an air preheater cooling air amount meter ( F) 27, and a supercharger rotation speed measuring device (R) 28. The incineration system 1 is also provided with a thermometer (T) 81, a supplied sludge amount meter (F) 82, a supplied water amount meter (F) 83, and a supplied fuel amount meter (F) 84.

本発明の一実施態様で説明する流動焼却炉2は、過給式の流動焼却炉である。流動焼却炉2は、昇温された圧縮空気を焼却炉2に供給し、高温・高圧の状態で焼却炉2内の焼却対象物を燃焼することで、燃焼速度を高くすることができ、N2Oの有害物質の排出量を減らすことができる。なお、以下の説明では、流動焼却炉2は、単に焼却炉2とも称する。 The fluidized incinerator 2 described in one embodiment of the present invention is a supercharged fluidized incinerator. The fluidized fluid incinerator 2 can increase the combustion rate by supplying heated compressed air to the incinerator 2 and burning the objects to be incinerated in the incinerator 2 at high temperature and high pressure. 2 It is possible to reduce the emission of harmful substances such as O. In addition, in the following description, the fluidized incinerator 2 is also simply called the incinerator 2.

図1中、矢印の付いた太い実線は、汚泥(ケーキ)、補助燃料、空気、水又は排ガスの供給路(供給管)を示し、矢印の付いた破線は、バイパス路を示す。
矢印の付いた細い実線((1)圧力計25から調節弁48(CV4)に接続されている線、(2)調節弁48(CV4)から過給機回転数計測機器28に、(3)過給機回転数計測機器28から空気予熱機冷却空気量計測器27に、(4)空気予熱機冷却空気量計測器27から調節弁49(CV5)に接続されている線、(5)温度計23から調節弁17(CV2)、調節弁22(CV1)に接続されている線、(6)調節弁17(CV2)から温度計24に接続されている線、(7)温度計24から調節弁47(CV3)に接続されている線、(8)空気予熱機冷却空気量計測器26から調節弁47(CV3)に接続されている線))は、例えば、制御装置9からこれらの機器に制御信号等を送る信号線である。
In FIG. 1, a thick solid line with an arrow indicates a supply path (supply pipe) for sludge (cake), auxiliary fuel, air, water, or exhaust gas, and a broken line with an arrow indicates a bypass path.
A thin solid line with an arrow ((1) a line connected from the pressure gauge 25 to the control valve 48 (CV4), (2) a line from the control valve 48 (CV4) to the supercharger rotation speed measuring device 28, (3) A line connected from the supercharger rotational speed measurement device 28 to the air preheater cooling air amount measurement device 27, (4) a line connected from the air preheater cooling air amount measurement device 27 to the control valve 49 (CV5), and (5) temperature. A line connected from total 23 to control valve 17 (CV2) and control valve 22 (CV1), (6) a line connected from control valve 17 (CV2) to thermometer 24, (7) from thermometer 24 The line connected to the control valve 47 (CV3) and (8) the line connected from the air preheater cooling air amount measuring device 26 to the control valve 47 (CV3)) are, for example, This is a signal line that sends control signals, etc. to equipment.

なお、各計測計の計測信号、各調節弁への制御信号は制御装置に入力して、所定の演算処理後に対応する調節弁49などに送出されるが、図1では、理解を容易にするため、制御装置90との信号接続線の大部分は省略してある。
また、(1)圧力計25から調節弁48(CV4)に接続されている線は、圧力値信号を調節弁48(CV4)に接続され、その開度を調節する制御信号線を示す。
Note that the measurement signal from each measuring meter and the control signal to each control valve are input to the control device and sent to the corresponding control valve 49 etc. after predetermined arithmetic processing. Therefore, most of the signal connection lines with the control device 90 are omitted.
Further, (1) a line connected from the pressure gauge 25 to the control valve 48 (CV4) indicates a control signal line that connects a pressure value signal to the control valve 48 (CV4) and adjusts its opening degree.

流動焼却炉2は、炉内に流動床3、予熱空気取り入れ口4、始動用バーナ5を備えている。また、汚泥(ケーキ)供給装置10に接続された供給路(汚泥供給管)11からバルブ19を介して供給される汚泥を取り込む汚泥込み口(図示しない)、水供給装置15に接続された供給路(水供給管)16から供給される水(注水)を取り込む水(注水)取り込み口(図示しない)、燃料供給装置20に接続された供給路(燃料供給管)21から供給される補助燃料を取り込む燃料取り込み口(図示しない)が設けられている。 The fluidized incinerator 2 includes a fluidized bed 3, a preheated air intake 4, and a starting burner 5 inside the furnace. Additionally, a sludge inlet (not shown) that takes in sludge supplied via a valve 19 from a supply path (sludge supply pipe) 11 connected to the sludge (cake) supply device 10 , and a supply connected to the water supply device 15 . A water (water injection) inlet (not shown) that takes in water (water injection) supplied from a channel (water supply pipe) 16, and auxiliary fuel supplied from a supply channel (fuel supply pipe) 21 connected to a fuel supply device 20. A fuel intake port (not shown) is provided to take in the fuel.

汚泥(ケーキ)供給装置10は、図示しない下水処理設備から送られてホッパ(図示しない)に貯められた下水汚泥のケーキを供給管11から焼却炉2に順次供給する。 The sludge (cake) supply device 10 sequentially supplies cakes of sewage sludge sent from a sewage treatment facility (not shown) and stored in a hopper (not shown) to the incinerator 2 through a supply pipe 11.

水供給装置15は、接続された供給管16から水(注水)を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調節する。燃料供給装置20は、接続された供給管から21から補助燃料を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調節する。 The water supply device 15 adjusts the combustion temperature in the incinerator 2 by feeding water (water injection) into the incinerator 2 from the connected supply pipe 16 . The fuel supply device 20 adjusts the combustion temperature in the incinerator 2 by feeding auxiliary fuel into the incinerator 2 from a connected supply pipe 21.

水供給管16には調節弁17(CV2)が、燃料供給管21には調節弁22(CV1)が設けられている。調節弁17(CV2)及び調節弁22(CV1)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。 The water supply pipe 16 is provided with a control valve 17 (CV2), and the fuel supply pipe 21 is provided with a control valve 22 (CV1). The control valve 17 (CV2) and the control valve 22 (CV1) are connected to a control device 90, and the opening degrees are adjusted according to a control signal output from the control device 90.

温度計(T)23は、流動焼却炉2内に備えている流動床3の温度を計測する。温度計23は、制御装置90に接続されていて、計測された温度値を該制御装置90に出力する。 The thermometer (T) 23 measures the temperature of the fluidized bed 3 provided in the fluidized incinerator 2. The thermometer 23 is connected to the control device 90 and outputs the measured temperature value to the control device 90.

温度計(T)24は、空気予熱機30から流動焼却炉2内に供給される余熱空気の温度を計測する。温度計24は、制御装置90に接続されていて計測された温度値を該制御装置90に出力する。 The thermometer (T) 24 measures the temperature of residual heated air supplied into the fluidized incinerator 2 from the air preheater 30. The thermometer 24 is connected to the control device 90 and outputs the measured temperature value to the control device 90.

圧力計(P)25は、流動焼却炉2内の圧力を計測する。圧力計25は、制御装置90に接続されていて計測された圧力値を該制御装置90に出力する。 The pressure gauge (P) 25 measures the pressure inside the fluidized incinerator 2. The pressure gauge 25 is connected to the control device 90 and outputs the measured pressure value to the control device 90.

空気予熱機冷却空気量計測器(F)26は、過給機50から空気予熱器30に供給される圧縮空気量を計測する。空気予熱機冷却空気量計測器26は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。 The air preheater cooling air amount measuring device (F) 26 measures the amount of compressed air supplied from the supercharger 50 to the air preheater 30. The air preheater cooling air amount measuring device 26 is connected to the control device 90 and outputs the measured compressed air amount value to the control device 90.

空気予熱機空気量計測器(F)27は、過給機50から供給される圧縮空気量を計測する。空気予熱機空気量計測器27は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。 The air preheater air amount measuring device (F) 27 measures the amount of compressed air supplied from the supercharger 50. The air preheater air amount measuring device 27 is connected to the control device 90 and outputs the measured compressed air amount value to the control device 90.

回転数計測器(R)28は、過給機50の回転数を計測する。回転数計測器28は、制御装置90に接続されていて計測された回転数値を該制御装置90に出力する。 The rotation speed measuring device (R) 28 measures the rotation speed of the supercharger 50. The rotation speed measuring device 28 is connected to the control device 90 and outputs the measured rotation value to the control device 90.

空気予熱器30は、流動焼却炉2から供給路58を介して送り込まれた排ガスと、過給機50から供給路56、分岐供給路56aと分岐供給路56bを介して送り込まれた圧縮空気とが熱交換される。そして熱交換された空気は、供給路29を介して予熱空気取り入れ口4から焼却炉2内へ供給される。 The air preheater 30 receives exhaust gas sent from the fluidized fluidized incinerator 2 through the supply path 58, and compressed air sent from the supercharger 50 through the supply path 56, the branch supply path 56a, and the branch supply path 56b. is heat exchanged. The heat-exchanged air is then supplied into the incinerator 2 from the preheated air intake 4 via the supply path 29.

集塵機40は、供給路31から送り込まれた空気予熱器30から排出される排ガスから、該排ガスに含まれる灰等の固形成分を分離して回収し、灰等の固形成分が取り除かれた排ガスを、供給路41を介して過給機50へ送り込み、該送られた排ガスは過給機50から供給路42を介して白煙防止予熱器に送り込まれる。 The dust collector 40 separates and collects solid components such as ash contained in the exhaust gas from the exhaust gas discharged from the air preheater 30 sent from the supply path 31, and collects the exhaust gas from which the solid components such as ash have been removed. , to the supercharger 50 via the supply path 41, and the sent exhaust gas is sent from the supercharger 50 to the white smoke prevention preheater via the supply path 42.

過給機50は、共通の回転軸51に接続されたタービン52およびコンプレッサ53を有する。タービン52は、集塵機40から供給路41を介して過給機50に送られる排ガスを受けて高速回転することで、コンプレッサ53を高速回転させる。コンプレッサ53は、過給機50に取り込まれた空気を圧縮し、圧縮した空気を供給路56、分岐供給路56aと分岐供給路56bを介して空気予熱器30に送り込む。空気予熱器30では、排ガスと圧縮空気とが熱交換され、昇温された圧縮空気が供給路29を介して焼却炉2の予熱空気取り入れ口4に送られる。 The supercharger 50 has a turbine 52 and a compressor 53 connected to a common rotating shaft 51. The turbine 52 receives exhaust gas sent from the dust collector 40 to the supercharger 50 via the supply path 41 and rotates at a high speed, thereby causing the compressor 53 to rotate at a high speed. The compressor 53 compresses the air taken into the supercharger 50, and sends the compressed air to the air preheater 30 via a supply path 56, a branch supply path 56a, and a branch supply path 56b. In the air preheater 30 , exhaust gas and compressed air exchange heat, and the heated compressed air is sent to the preheated air intake 4 of the incinerator 2 via the supply path 29 .

供給路56には、分岐供給路56aと分岐供給路56bの間に調節弁47(CV3)が設けられている。調節弁47(CV3)は制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により空気予熱器30の上側に供給する分岐供給路56aと空気予熱器30の下側に供給する分岐供給路56bに供給する圧縮空気量が調節される。
The supply path 56 is provided with a control valve 47 (CV3) between the branch supply path 56a and the branch supply path 56b. The control valve 47 (CV3) is connected to a control device 90, and its opening degree is adjusted in accordance with a control signal output from the control device 90.
By adjusting the opening degree, the amount of compressed air supplied to the branch supply passage 56a supplied to the upper side of the air preheater 30 and the branch supply passage 56b supplied to the lower side of the air preheater 30 is adjusted.

起動用ブロワ60は、焼却システム1の起動時に、取り込んだ空気を供給路61から前記空気供給路56に、供給路62から前記過給機50に供給する。符号63は前記供給路62に設けられた逆止弁である。 The starting blower 60 supplies the air taken in from the supply path 61 to the air supply path 56 and from the supply path 62 to the supercharger 50 when the incineration system 1 is started. Reference numeral 63 is a check valve provided in the supply path 62.

起動後に流動焼却炉2からの排ガスで過給機50のコンプレッサ53からの流動空気を確保できる段階になったときには、起動用ブロワ60からの大気(空気)供給を停止し、大気を供給路65から前記過給機50に供給するよう切り替える。符号66は、前記供給路65に設けられた調節弁であり制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。 After startup, when fluidized air from the compressor 53 of the supercharger 50 can be secured using exhaust gas from the fluidized incinerator 2, the supply of atmosphere (air) from the startup blower 60 is stopped and the atmosphere is transferred to the supply path 65. The fuel is then switched to be supplied to the supercharger 50 from there. Reference numeral 66 denotes a control valve provided in the supply path 65, which is connected to a control device 90 and whose opening degree is adjusted in accordance with a control signal output from the control device 90.

白煙防止ファン70は、取り込んだ空気を図示しない白煙防止器に送り込む。
白煙防止器は、大気を取り込む白煙防止ファン70から送り込まれる空気を、供給路42を介して供給される過給機50から排出される排ガスと熱交換して昇温させる。昇温された空気は図示しない排煙処理塔に送られる。排煙処理塔では、排ガスに含まれる硫黄酸化物および煤塵などの大気汚染物質を排ガスから除去する。
The white smoke prevention fan 70 sends the air taken in to a white smoke prevention device (not shown).
The white smoke preventer exchanges heat with the exhaust gas discharged from the supercharger 50 supplied via the supply path 42 to raise the temperature of the air sent from the white smoke preventive fan 70 that takes in the atmosphere. The heated air is sent to a flue gas treatment tower (not shown). The flue gas treatment tower removes air pollutants such as sulfur oxides and soot contained in the flue gas from the flue gas.

供給路41と供給路42との間に設けられたバイパス路43には、過給機排ガスバイパス調節弁48(CV4)が設けられている。この過給気排ガスバイパ調節弁48(CV4)は、制御装置90に接続されていて、制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により供給路41から過給機50に送られる排ガス量が調節される。過給気排ガスバイパス調節弁48(CV4)の開度を大きくすると、過給機50に送られる排ガス量が減少する。
A bypass passage 43 provided between the supply passage 41 and the supply passage 42 is provided with a supercharger exhaust gas bypass control valve 48 (CV4). This supercharged exhaust gas bypass control valve 48 (CV4) is connected to a control device 90, and its opening degree is adjusted in accordance with a control signal output from the control device 90.
By adjusting the opening degree, the amount of exhaust gas sent from the supply path 41 to the supercharger 50 is adjusted. When the opening degree of the supercharged exhaust gas bypass control valve 48 (CV4) is increased, the amount of exhaust gas sent to the supercharger 50 is reduced.

そして供給路41から過給機50に送られる排ガス量に応じて、コンプレッサ53以降の圧縮空気の供給路、空気予熱器30及び焼却炉2内の圧力が調整される。また、空気供給路56と供給路71との間に設けられたバイパス路57には、余剰空気調節弁49(CV5)が設けられている。 Then, the pressure in the compressed air supply path after the compressor 53, the air preheater 30, and the incinerator 2 is adjusted according to the amount of exhaust gas sent from the supply path 41 to the supercharger 50. Further, a bypass passage 57 provided between the air supply passage 56 and the supply passage 71 is provided with an excess air control valve 49 (CV5).

余剰空気調節弁49(CV5)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。この開度の調節により過給機50から供給路56へ送られる圧縮空気量が調節される。
例えば、余剰空気調節弁49(CV5)の開度を上げれば、バイパス路57から供給路71へ送られる排ガス量が増えるので、供給路56から空気予熱機30に送られる圧縮空気量が減少される。
そして、供給路56から空気予熱機30に送られる圧縮空気量が調整される。
The surplus air control valve 49 (CV5) is connected to a control device 90, and its opening degree is adjusted in accordance with a control signal output from the control device 90. By adjusting this opening degree, the amount of compressed air sent from the supercharger 50 to the supply path 56 is adjusted.
For example, if the opening degree of the surplus air control valve 49 (CV5) is increased, the amount of exhaust gas sent from the bypass path 57 to the supply path 71 will increase, so the amount of compressed air sent from the supply path 56 to the air preheater 30 will be reduced. Ru.
Then, the amount of compressed air sent from the supply path 56 to the air preheater 30 is adjusted.

制御装置90は、例えば、PLC(Programmable Logic Controller)を含み、PLCが実行する制御プログラムに基づいて動作する。制御装置90は、ROM,RAMメモリ、データ格納部、入出力部、等のデータ処理のための機能の他に、本発明を特徴づける第1演算部(ガス量算出部)91、第2演算部(スペースレート算出部)92を有している。 The control device 90 includes, for example, a PLC (Programmable Logic Controller), and operates based on a control program executed by the PLC. The control device 90 has functions for data processing such as ROM, RAM memory, data storage section, input/output section, etc., as well as a first calculation section (gas amount calculation section) 91 and a second calculation section that characterize the present invention. section (space rate calculation section) 92.

第1演算部91は流動焼却炉2に供給される供給物である前記焼却対象物の供給装置10、水供給装置15、燃料供給装置20および過給機50等の空気供給元の、これら複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出する。第2演算部92は算出された前記排ガス量に基づいて前記流動焼却炉のスペースレートを算出する。 The first calculation unit 91 operates on a plurality of air supply sources such as the supply device 10 for the incineration object, the water supply device 15, the fuel supply device 20, and the supercharger 50, which are the supplies to be supplied to the fluidized incinerator 2. The amount of exhaust gas discharged from the fluidized bed incinerator is calculated based on the amount of seed feed. The second calculation unit 92 calculates the space rate of the fluidized incinerator based on the calculated amount of exhaust gas.

図3は炉内スペ-スレート[m/sec]に対する図2における相関式から求めた算出N2Oと分析装置で測定した排ガスのN2O測定値の乖離[%]を説明する図である。図3に示すように、炉内スペ-スレート[m/sec]の増減に対する相関式算出N2OとN2O測定値の乖離[%]は、略一次直線で近似できる。
炉内スペースレート0.73m/sec付近で乖離がなくなり、相関式からの算出N20とN2O測定値が一致する。これより大きい範囲では乖離がプラス方向に大きくなって、算出N2OよりもN2O測定値が大きくなり、スペースレートが大きい範囲では炉内ガス滞留時間が小さくなることで実際の排出N2O量が増加してしまうことを意味する。一方、炉内スペースレート0.73m/sec付近より小さい範囲では乖離がマイナス方向に大きくなって、算出N2OよりもN2O測定値が小さくなり、スペースレートが小さい範囲では炉内ガス滞留時間が大きくなることで実際の排出N2O量が減少していることを意味する。このことから、炉内スペ-スレート[m/sec]を可能な範囲で小さくすることで、N2O排出量を抑制することができる。
FIG. 3 is a diagram illustrating the deviation [%] between the calculated N 2 O obtained from the correlation equation in FIG. 2 and the N 2 O measurement value of the exhaust gas measured by the analyzer with respect to the space rate in the furnace [m/sec]. . As shown in FIG. 3, the deviation [%] between the correlation formula calculated N 2 O and the measured N 2 O value with respect to an increase or decrease in the in-furnace space rate [m/sec] can be approximated by a substantially linear straight line.
There is no deviation near the in-furnace space rate of 0.73 m/sec, and the calculated N 2 0 from the correlation formula and the measured N 2 O value match. In a range larger than this, the deviation increases in the positive direction, and the measured N 2 O value becomes larger than the calculated N 2 O. In a range where the space rate is large, the residence time of gas in the furnace decreases, resulting in a decrease in the actual discharged N 2 O. This means that the amount of O will increase. On the other hand, in a range where the space rate in the furnace is smaller than around 0.73 m/sec, the deviation increases in the negative direction, and the measured N 2 O value becomes smaller than the calculated N 2 O. As the time increases, it means that the actual amount of discharged N 2 O decreases. From this, by reducing the in-furnace space rate [m/sec] as much as possible, the amount of N 2 O emissions can be suppressed.

図4は前記した発明の効果の項(2)で説明した排ガス熱量と空気予熱器の交換熱量の関係の説明図で、上側の曲線は並流ラインでの冷却空気割合が20%の場合の空気予熱器交換熱量を示し、下側の曲線は並流ラインでの冷却空気割合が40%の場合の空気予熱器交換熱量を示す。横軸の排ガス熱量は流動床焼却炉内への供給空気量あたりに換算して示している。炉内への供給空気量の割合を並流ラインと向流ラインとで変えるバイアス比調整を行い、例えば炉内温度が高まって炉内注水が行われていても炉内温度を低下させ難い場合に、並流ラインでの空気割合を増加させると空気予熱器での交換熱量が低下し、供給空気の温度を低下させ、炉内温度を低下させて適切な燃焼温度に維持することができる。注水手段に加え、更に炉内への供給空気の温度を低下させる手段を備えておくことで、炉内温度を適切な燃焼温度に維持することを確実にして、炉内注水などによる排ガス増大を抑え、炉内スペースレートを適切にし、炉内で生ずるガスの滞留時間を確保してN2O分解を適切に維持できるようにすることができる。 Figure 4 is an explanatory diagram of the relationship between the amount of heat exchanged by the air preheater and the amount of heat exchanged between the exhaust gas and the air preheater, which was explained in section (2) of the effects of the invention. The lower curve shows the amount of heat exchanged by the air preheater when the proportion of cooling air in the parallel flow line is 40%. The exhaust gas calorific value on the horizontal axis is shown in terms of the amount of air supplied to the fluidized bed incinerator. Bias ratio adjustment is performed to change the ratio of the amount of air supplied to the furnace between the parallel flow line and the countercurrent line.For example, when the temperature inside the furnace has risen and it is difficult to lower the temperature inside the furnace even if water is being injected into the furnace. In addition, increasing the proportion of air in the cocurrent line reduces the amount of heat exchanged in the air preheater, lowering the temperature of the supply air, and lowering the furnace temperature to maintain the appropriate combustion temperature. In addition to the water injection means, by providing a means for lowering the temperature of the air supplied to the furnace, it is possible to maintain the furnace temperature at an appropriate combustion temperature and prevent an increase in exhaust gas due to water injection into the furnace. N 2 O decomposition can be maintained appropriately by controlling the space rate in the furnace and ensuring the residence time of the gas generated in the furnace.

図5は、図1に示す制御装置90の排出N2O抑制の一例を説明するフローチャートである。制御装置90は、この処理を所定の周期で繰り返し実行する所定の周期の一般例としては数秒毎である。 FIG. 5 is a flowchart illustrating an example of suppressing exhaust N 2 O by the control device 90 shown in FIG. The control device 90 repeatedly executes this process at a predetermined period, typically every few seconds.

焼却炉が稼働し、上記所定の周期の開始時間になると、この制御がスタートする(START)。スタートすると先ず、排ガス質量流量を測定又は算出する(ステップ1、以下S―1のように記す)。 When the incinerator starts operating and the start time of the predetermined cycle has arrived, this control starts (START). When starting, first, the exhaust gas mass flow rate is measured or calculated (step 1, hereinafter referred to as S-1).

次に、炉内温度T3、炉内圧力P1から排ガス容積流量を算出し(S-2)、続いて炉内スペースレートS1を算出する(S-3)。 Next, the exhaust gas volumetric flow rate is calculated from the furnace temperature T3 and the furnace pressure P1 (S-2), and then the furnace space rate S1 is calculated (S-3).

炉内スペースレートS1を設定された最小値S1minと比較し(S-4)、S1<S1minならばP1を低下させる操作を実行する(S-5)。P1を低下させる操作とは、バイパス路43途中の調節弁48の開度を大きくし、過給機50へ送る排ガス量を少なくして過給機50の回転数を低下させるが、炉内スペースレートがN2Oを分解する適切な範囲よりも大きくなりすぎてしまうおそれがあるので、さらに供給路56で空気予熱器30へ送る圧縮空気を、余剰空気調節弁49の開度を小さくして、供給路56以降の圧力を保つようにする例がある。 The in-furnace space rate S1 is compared with the set minimum value S1min (S-4), and if S1<S1min, an operation to lower P1 is executed (S-5). The operation to lower P1 is to increase the opening degree of the control valve 48 in the middle of the bypass passage 43, reduce the amount of exhaust gas sent to the supercharger 50, and lower the rotation speed of the supercharger 50. Since there is a risk that the rate may become too large than the appropriate range for decomposing N 2 O, the compressed air sent to the air preheater 30 via the supply path 56 is further reduced by reducing the opening degree of the surplus air control valve 49. There is an example in which the pressure after the supply path 56 is maintained.

(S-4)でS1<S1minでないとき(S1≧S1minのとき)は、S1max<S1であるか否かを判断する(S-6)。S1max<S1である場合はP1を上昇させる操作を実施する(S-7)。P1を上昇させる操作とは、バイパス路43途中の調節弁48の開度を小さくし、過給機50へ送る排ガス量を多くして過給機50の回転数を増加させるが、炉内スペースレートがN2Oを分解するに十分に低い一方で、流動焼却炉内の流動床3が十分に流動できずに焼却対象物の不完全燃焼につながってしまうおそれがあるので、さらに供給路56で空気予熱器30へ送る圧縮空気を、余剰空気調節弁49の開度を大きくして、供給路56以降の圧力を保つようにする例がある。S1max<S1でないとき(S1min≦S1≦S1maxのとき)はそのまま処理を終了する(END)。 If S1<S1min is not satisfied (S1≧S1min) in (S-4), it is determined whether S1max<S1 (S-6). If S1max<S1, an operation is performed to increase P1 (S-7). The operation of increasing P1 is to reduce the opening degree of the control valve 48 in the middle of the bypass passage 43, increase the amount of exhaust gas sent to the supercharger 50, and increase the rotation speed of the supercharger 50, but this reduces the space inside the furnace. While the rate is low enough to decompose N 2 O, the fluidized bed 3 in the fluidized incinerator may not be able to flow sufficiently, leading to incomplete combustion of the material to be incinerated. There is an example in which the pressure of the compressed air sent to the air preheater 30 is maintained at the pressure after the supply path 56 by increasing the opening degree of the surplus air control valve 49. When S1max<S1 is not satisfied (when S1min≦S1≦S1max), the process ends (END).

一方、処理の開始(START)に応じて、F4max<F4であるか否かを判断し(S-8)、F4max<F4であるならT2を低下させる操作を実行する(S-9)。T2を低下させる操作とは、過給機50から供給路56を通って送られてくる圧縮空気が供給路56aと供給路56bに分岐されるが、調節弁47の開度を小さくすることで、供給路56aへ通す圧縮空気量を多くして、即ち、空気予熱器30内の熱交換を少なくできるよう並流ラインの圧縮空気を多くして、流動焼却炉2への供給空気の炉入口空気温度T2を低下させる例がある。(S-8)でF4max<F4でないと判断した場合は、F4min<F4であるか判断し(S-10)、F4min<F4であるならT2を上昇させる操作を実行する(S-11)。T2を上昇させる操作とは、過給機50から供給路56を通って送られてくる圧縮空気が供給路56aと供給路56bに分岐されるが、調節弁47の開度を大きくすることで、供給路56bへ通す圧縮空気量を多くして、即ち、空気予熱器30内の熱交換を多くできるよう向流ラインの圧縮空気を多くして、流動焼却炉2への供給空気の炉入口空気温度T2を上昇させる例がある。F4min<F4でない場合には操作を終了する(END)。 On the other hand, in response to the start of the process (START), it is determined whether F4max<F4 or not (S-8), and if F4max<F4, an operation to lower T2 is executed (S-9). The operation of reducing T2 means that the compressed air sent from the supercharger 50 through the supply path 56 is branched into the supply path 56a and the supply path 56b, but by reducing the opening degree of the control valve 47. , the amount of compressed air passed to the supply path 56a is increased, that is, the amount of compressed air in the parallel flow line is increased so that heat exchange within the air preheater 30 can be reduced, and the supply air to the fluidized fluid incinerator 2 is supplied to the furnace inlet. There is an example of lowering the air temperature T2. If it is determined in (S-8) that F4max<F4 is not true, it is determined whether F4min<F4 (S-10), and if F4min<F4, an operation to increase T2 is executed (S-11). The operation of increasing T2 means that the compressed air sent from the supercharger 50 through the supply path 56 is branched into the supply path 56a and the supply path 56b, but by increasing the opening degree of the control valve 47. , the amount of compressed air passed to the supply path 56b is increased, that is, the amount of compressed air in the countercurrent line is increased so that heat exchange within the air preheater 30 can be increased, and the supply air to the fluidized fluid incinerator 2 is supplied to the furnace inlet. There is an example of increasing the air temperature T2. If F4min<F4, the operation ends (END).

上記の操作を所定の周期で繰り返し実行することで、排出ガス中のN2Oの量を低減することができる。 By repeatedly performing the above operation at a predetermined period, the amount of N 2 O in the exhaust gas can be reduced.

1:焼却システム
2:流動焼却炉
3:流動床
4:予熱空気取り入れ口
5:始動用バーナ
10:汚泥供給装置
11:汚泥供給路
15:水供給装置
16:水供給路
17:調節弁(CV2:供給水量)
19:バルブ
20:燃料供給装置
21:燃料供給路
22:調節弁(CV1:燃料供給量)
23:温度計(T:T1計測)
24:温度計(T:T2計測)
25:圧力計(P:P1計測)
26:空気予熱機冷却空気量計測器(F:F1計測)
27:空気予熱機冷却空気量計測器(F:F2計測)
28:回転数計測器(R:R1計測)
30:空気予熱機
40:集塵機
47:調節弁(CV3)
48:調節弁(CV4)
49:調節弁(CV5)
50:過給機
60:起動用ブロワ
70:白煙防止ファン
81:温度計(T:T3計測)
82:供給汚泥量計測器(F:F3計測)
83:供給水量計測器(F:F4計測)
84:供給燃料量計測器(F:F5計測)
90:制御装置(各計測値と設定値/閾値を比較し、適正な制御値を演算)
91:ガス量算出部
92:空塔速度算出部
1: Incineration system 2: Fluidized incinerator 3: Fluidized bed 4: Preheating air intake 5: Starting burner 10: Sludge supply device 11: Sludge supply path 15: Water supply device 16: Water supply path 17: Control valve (CV2 : Supply water amount)
19: Valve 20: Fuel supply device 21: Fuel supply path 22: Control valve (CV1: fuel supply amount)
23: Thermometer (T: T1 measurement)
24: Thermometer (T: T2 measurement)
25: Pressure gauge (P: P1 measurement)
26: Air preheater cooling air amount measuring device (F: F1 measurement)
27: Air preheater cooling air amount measuring device (F: F2 measurement)
28: Rotation speed measuring device (R: R1 measurement)
30: Air preheater 40: Dust collector 47: Control valve (CV3)
48: Control valve (CV4)
49: Control valve (CV5)
50: Supercharger 60: Start-up blower 70: White smoke prevention fan 81: Thermometer (T: T3 measurement)
82: Supply sludge amount measuring device (F: F3 measurement)
83: Supply water amount measuring device (F: F4 measurement)
84: Supply fuel amount measuring device (F: F5 measurement)
90: Control device (compares each measured value with set value/threshold value and calculates appropriate control value)
91: Gas amount calculation unit 92: Superficial velocity calculation unit

Claims (10)

汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量低減方法であって、
前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量を計量し、
前記計量結果に基づいて、前記流動焼却炉から排出される排ガス量を算出し、
算出された排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、
前記空塔速度が目標値下限を下回った場合は過給機から供給される圧縮空気の圧力を低下させ、前記空塔速度が目標値上限を上回った場合は過給機から供給される圧縮空気の圧力を上昇させることを特徴とする排ガス中のN2O排出量低減方法。
A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main incineration target, the method comprising:
Measuring the supply amount of a plurality of types of supplies, which are the supplies to be supplied to the fluidized incinerator, consisting of the material to be incinerated, water, fuel, and air,
Based on the measurement results, calculate the amount of exhaust gas discharged from the fluidized incinerator,
Calculating the superficial velocity of the fluidized incinerator based on the calculated exhaust gas amount,
If the superficial velocity is below the lower limit of the target value, the pressure of the compressed air supplied from the supercharger is reduced, and if the superficial velocity exceeds the upper limit of the target value, the compressed air supplied from the supercharger is reduced. A method for reducing N 2 O emissions in exhaust gas, the method comprising increasing the pressure of N 2 O in exhaust gas.
炉内注水量が目標値上限を上回った場合は炉入口空気温度を低下させ、
炉内注水量が目標値下限を下回った場合は、炉入口空気温度を上昇させることを特徴とする請求項1に記載の排ガス中のN2O排出量低減方法。
If the amount of water injected into the furnace exceeds the upper limit of the target value, the furnace inlet air temperature will be lowered,
2. The method for reducing N 2 O emissions in exhaust gas according to claim 1, further comprising increasing the furnace inlet air temperature when the amount of water injected into the furnace is less than the lower limit of the target value.
前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を検出し、
検出された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出することを特徴とする請求項1又は2に記載の排ガス中のN2O排出量低減方法。
Detecting the amount of exhaust gas discharged from the fluidized fluidized incinerator based on the supply amount of multiple types of supplies, which are the materials to be incinerated, water, fuel, and air, which are supplied to the fluidized fluidized incinerator. ,
The method for reducing N 2 O emissions in exhaust gas according to claim 1 or 2, further comprising calculating the superficial velocity of the fluidized incinerator based on the detected amount of exhaust gas.
前記空塔速度を設定された最小値と比較し、当該空塔速度が最小値を下回った場合は過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして前記過給機の回転数を低下させると共に余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、
前記空塔速度を設定された最大値と比較し、当該空塔速度が最大値を上回った場合は過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させると共に余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする請求項1乃至3の何れかに記載の排ガス中のN2O排出量低減方法。
The superficial velocity is compared with the set minimum value, and if the superficial velocity is lower than the minimum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is increased to reduce the exhaust gas sent to the turbocharger. reducing the amount of excess air to lower the rotational speed of the supercharger and reducing the opening degree of the surplus air control valve to maintain the pressure after the supply path;
The superficial velocity is compared with the set maximum value, and if the superficial velocity exceeds the maximum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is reduced to reduce the exhaust gas sent to the turbocharger. Any one of claims 1 to 3, characterized in that the amount is increased to increase the rotational speed of the supercharger and the opening degree of the surplus air control valve is increased to maintain the pressure after the supply path. The method for reducing N 2 O emissions in exhaust gas according to claim 1.
前記炉内注水量が目標値上限を上回る場合には前記過給機から前記供給路を通って送られてくる圧縮空気を分岐する分岐調節弁の開度を小さくすることで空気予熱器内の熱交換を少なくするように並流ラインの圧縮空気を多くして炉入口空気温度を低下させ、
前記炉内注水量が目標値下限を下回る場合には前記過給機から前記供給路を通って送られてくる圧縮空気を分岐する前記分岐調節弁の開度を大きくすることで、空気予熱器内の熱交換を多くするように向流ラインの圧縮空気を多くして炉入口空気温度を上昇させることを特徴とする請求項1乃至4の何れかに記載の排ガス中のN2O排出量低減方法。
When the amount of water injected into the furnace exceeds the upper limit of the target value, the amount of water in the air preheater is reduced by reducing the opening degree of the branch control valve that branches the compressed air sent from the supercharger through the supply path. To reduce heat exchange, increase the compressed air in the parallel flow line and lower the furnace inlet air temperature.
When the amount of water injected into the furnace is less than the lower limit of the target value, by increasing the opening degree of the branching control valve that branches the compressed air sent from the supercharger through the supply path, the air preheater N 2 O emissions in exhaust gas according to any one of claims 1 to 4, characterized in that the compressed air in the countercurrent line is increased to increase the furnace inlet air temperature so as to increase heat exchange within the furnace. Reduction method.
汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のN2O排出量を低減する装置であって、
前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量を計量する供給物計量手段と、
前記供給物計量手段との計量結果に基づいて、前記流動焼却炉から排出される排ガス量を算出する排ガス量算出手段と、
前記排ガス量算出手段で算出された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出する空塔速度算出手段と、
前記空塔速度が目標値下限を下回った場合は過給機から供給される圧縮空気の圧力を低下させ、当該前記空塔速度が目標値上限を上回った場合は前記過給機から供給される圧縮空気の圧力を上昇させる圧縮空気圧力調整手段を備えたことを特徴とする排ガス中のN2O排出量を低減する装置。
A device for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main incineration target, comprising:
a feed measuring means for measuring the amount of a plurality of feeds to be supplied to the fluidized incinerator, which are the objects to be incinerated, water, fuel, and air;
Exhaust gas amount calculation means for calculating the amount of exhaust gas discharged from the fluidized incinerator based on the measurement result with the feed measurement means;
superficial velocity calculation means for calculating the superficial velocity of the fluidized bed incinerator based on the exhaust gas amount calculated by the exhaust gas amount calculation means;
If the superficial velocity is below the lower limit of the target value, the pressure of the compressed air supplied from the supercharger is reduced, and if the superficial velocity is above the upper limit of the target value, the pressure of the compressed air is supplied from the supercharger. A device for reducing the amount of N 2 O emissions in exhaust gas, comprising a compressed air pressure adjusting means for increasing the pressure of compressed air.
前記炉内注水量が目標値上限を上回った場合は炉入口空気温度を低下させ、
前記炉内注水量が目標値下限を下回った場合は炉入口空気温度を上昇させる炉入口空気温度調整手段を備えたことを特徴とする請求項6に記載の排ガス中のN2O排出量を低減する装置。
If the amount of water injected into the furnace exceeds the upper limit of the target value, reduce the furnace inlet air temperature,
7. The method according to claim 6 , further comprising a furnace inlet air temperature adjusting means for increasing the furnace inlet air temperature when the amount of water injected into the furnace is less than the lower limit of the target value. Equipment to reduce.
前記流動焼却炉に供給される供給物である前記焼却対象物、水、燃料および空気とからなる複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を検出する排ガス量検出手段と、
前記排ガス量検出手段で検出された排ガス量に基づいて前記流動焼却炉の空塔速度を算出する空塔速度算出手段と
を備えたことを特徴とする請求項6又は7に記載の排ガス中のN2O排出量を低減する装置。
Detecting the amount of exhaust gas discharged from the fluidized fluidized incinerator based on the supply amount of a plurality of types of supplies, which are the materials to be incinerated, water, fuel, and air, which are supplied to the fluidized fluidized incinerator. Exhaust gas amount detection means;
and a superficial velocity calculation means for calculating the superficial velocity of the fluidized incinerator based on the amount of exhaust gas detected by the exhaust gas amount detection means. A device that reduces N 2 O emissions.
前記空塔速度と設定された最小値とを比較し、当該空塔速度が最小値を下回った場合は前記過給機の排ガスバイパス路途中の弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させると共に弁の開度を小さくして前記供給路以降の圧力を保つ余剰空気調節弁と
前記空塔速度と設定された最大値とを比較し、当該空塔速度が最大値を上回った場合は前記過給機の排ガスバイパス路途中の弁の開度を小さくする如く動作する排ガスバイパス路途中に備えた開度調整弁を備え、
前記過給機へ送る排ガス量を多くして過給機の回転数を増加させると共に前記余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする請求項6乃至8の何れかに記載の排ガス中のN2O排出量を低減する装置。
The superficial velocity is compared with a set minimum value, and if the superficial velocity is less than the minimum value, the opening degree of a valve in the middle of the exhaust gas bypass path of the turbocharger is increased and the exhaust gas is sent to the turbocharger. Compare the superficial velocity and the set maximum value with an excess air control valve that reduces the amount of exhaust gas, lowers the rotation speed of the supercharger, and reduces the opening of the valve to maintain the pressure after the supply path. and an opening adjustment valve provided in the middle of the exhaust gas bypass passage that operates to reduce the opening degree of the valve in the exhaust gas bypass passage of the supercharger when the superficial velocity exceeds the maximum value,
The amount of exhaust gas sent to the supercharger is increased to increase the number of rotations of the supercharger, and the opening degree of the surplus air control valve is increased to maintain the pressure after the supply path. An apparatus for reducing the amount of N 2 O emissions in exhaust gas according to any one of claims 6 to 8.
前記過給機から前記供給路を通る圧縮空気を分岐する分岐調整弁を備え、
前記炉内注水量が目標値上限を上回る場合は前記過給機から前記供給路を通って前記分岐調整弁で分岐されて送られてくる圧縮空気を前記分岐調節弁の開度を小さくすることで、空気予熱器内の熱交換が少なくなるよう並流ラインの圧縮空気を多くして炉入口空気温度を低下させ、
前記炉内注水量が目標値下限を下回る場合は前記過給機から前記供給路を通って送られてくる分岐された圧縮空気を前記分岐調節弁の開度を大きくすることで、空気予熱器内の熱交換が多くなるよう向流ラインの圧縮空気を多くして炉入口空気温度を上昇させることを特徴とする請求項6乃至9の何れかに記載の排ガス中のN2O排出量を低減する装置。
comprising a branch adjustment valve that branches compressed air passing through the supply path from the supercharger,
If the amount of water injected into the furnace exceeds the upper limit of the target value, reduce the opening degree of the branch control valve to reduce the opening degree of the branch control valve to send compressed air from the supercharger through the supply path and branched by the branch control valve. In order to reduce heat exchange in the air preheater, compressed air in the parallel flow line is increased to lower the furnace inlet air temperature.
When the amount of water injected into the furnace is less than the lower limit of the target value, the branched compressed air sent from the supercharger through the supply path is increased to an air preheater by increasing the opening degree of the branch control valve. The amount of N 2 O emissions in the exhaust gas according to any one of claims 6 to 9 is increased by increasing the amount of compressed air in the countercurrent line to increase the heat exchange within the furnace to increase the temperature of the furnace inlet air. Equipment to reduce.
JP2022060780A 2022-03-31 2022-03-31 Method and device for reducing discharge amount of n2o in exhaust gas Pending JP2023151263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022060780A JP2023151263A (en) 2022-03-31 2022-03-31 Method and device for reducing discharge amount of n2o in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022060780A JP2023151263A (en) 2022-03-31 2022-03-31 Method and device for reducing discharge amount of n2o in exhaust gas

Publications (1)

Publication Number Publication Date
JP2023151263A true JP2023151263A (en) 2023-10-16

Family

ID=88326856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022060780A Pending JP2023151263A (en) 2022-03-31 2022-03-31 Method and device for reducing discharge amount of n2o in exhaust gas

Country Status (1)

Country Link
JP (1) JP2023151263A (en)

Similar Documents

Publication Publication Date Title
JP5461873B2 (en) Oxyfuel coal-fired boiler and transition method between air combustion and oxyfuel combustion
JP5270661B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
JP5482792B2 (en) Organic waste treatment system and method
CN102084184B (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
CN102047040B (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
JP2015152238A (en) Ship boiler and ship boiler operation method
JP2012211727A (en) Sludge incineration disposal system and sludge incineration disposal method
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP2023151263A (en) Method and device for reducing discharge amount of n2o in exhaust gas
JP2008096045A (en) Combustion controller for stoker type incinerator
JP6071687B2 (en) Pressurized flow furnace equipment
JP2000510228A (en) Control of heat exchanger efficiency by differential temperature
JP2023151255A (en) Method of reducing emission of n2o in exhaust gas, and control device
US20130323657A1 (en) Method and apparatus for controlling combustion in a combustion boiler
JP2023168095A (en) Method of reducing discharge amount of n2o in exhaust gas and control device
KR102086185B1 (en) Operating method for pressurized fluidized furnace system
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP7313171B2 (en) Fluidized bed incinerator control device and fluidized bed incinerator control method
JP2023163723A (en) Control method and control device for flow combustion furnace
JP3869669B2 (en) Coke dry fire extinguishing method and apparatus
JP2023151252A (en) In-furnace temperature control method and control device of supercharged fluidized incinerator
JP2013200087A5 (en)
JP3041263B2 (en) Method of controlling nitrogen oxides in flue gas from pressurized fluidized-bed boiler
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JP2005221225A (en) Waste disposal plant, and its control method