JP2023150334A - Elongation flange crack evaluation method - Google Patents

Elongation flange crack evaluation method Download PDF

Info

Publication number
JP2023150334A
JP2023150334A JP2022059396A JP2022059396A JP2023150334A JP 2023150334 A JP2023150334 A JP 2023150334A JP 2022059396 A JP2022059396 A JP 2022059396A JP 2022059396 A JP2022059396 A JP 2022059396A JP 2023150334 A JP2023150334 A JP 2023150334A
Authority
JP
Japan
Prior art keywords
strain
plate
characteristic data
crack
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022059396A
Other languages
Japanese (ja)
Inventor
貞雄 宮澤
Sadao Miyazawa
康裕 前田
Yasuhiro Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2022059396A priority Critical patent/JP2023150334A/en
Priority to KR1020230040211A priority patent/KR20230141555A/en
Publication of JP2023150334A publication Critical patent/JP2023150334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To improve evaluation accuracy of an elongation flange crack.SOLUTION: A method includes: performing an elongation flange molding test on a plurality of plate-like members; performing a monopodium tensile deformation test on the plate-like members; determining whether a cracking condition from the elongation flange molding test is an edge crack or an inner crack; calculating a limit strain and a strain gradient from the elongation flange molding test; calculating edge crack limit strain characteristic data and inner crack limit strain characteristic data, showing the relationship between the limit strain and the strain gradient of the plate-like member in the edge crack and the inner crack, respectively; calculating ductile fracture limit strain characteristic data, in which the limit strain is the strain at ductile fracture by the monopodium tensile deformation test; and evaluating a cracking at an elongation flange part using at least the edge crack limit strain characteristic data and the ductile fracture limit strain characteristic data among edge crack limit strain characteristic data L1a, inner crack limit strain characteristic data L1b and ductile fracture limit strain characteristic data L1c.SELECTED DRAWING: Figure 3

Description

本発明は、伸びフランジ割れ評価方法に関する。 The present invention relates to a stretch flange crack evaluation method.

金属製の板状部材をプレス成形してプレス成形品を製造する場合、事前に有限要素法を用いた解析(FEM解析)を用いたプレス成形解析によって板状部材のプレス成形をシミュレーションしてプレス成形品について割れの評価を行い、プレス成形の可否を評価することが行われている。 When manufacturing a press-formed product by press-forming a metal plate-shaped member, the press-forming of the plate-shaped member is simulated in advance using a press-forming analysis using the finite element method (FEM analysis). Molded products are evaluated for cracks to determine whether or not they can be press-formed.

板状部材として、例えば引張強度が980MPa程度以上を有する高張力鋼板などの板状部材を用いる場合、プレス成形において伸びフランジ成形される伸びフランジ部では、伸びフランジ変形を伴うことから変形途中に板状部材の端部から割れが発生することがあり、この割れを事前に評価して予測するように、プレス成形解析によってプレス成形品における伸びフランジ割れを評価することが行われている。 When using a plate-shaped member such as a high-strength steel plate having a tensile strength of about 980 MPa or more, for example, the stretch flange part that is stretch-flange formed in press forming is accompanied by stretch flange deformation, so the plate is deformed during deformation. Cracks may occur from the ends of shaped members, and in order to evaluate and predict such cracks in advance, stretch flange cracks in press-formed products are evaluated using press forming analysis.

伸びフランジ割れを評価する際、板状部材の破断限界特性として、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを用いることが知られている。例えば特許文献1には、鋼板の穴広げ試験を行い、穴縁での限界ひずみと穴径方向のひずみ勾配との関係から特性データを決定し、特性データをプレス成形のシミュレーションに適用して伸びフランジ割れを評価することが開示されている。 When evaluating stretch flange cracking, it is known to use critical strain characteristic data indicating the relationship between the critical strain and strain gradient of a plate-like member as the fracture limit characteristic of the plate-like member. For example, in Patent Document 1, a hole expansion test is performed on a steel plate, characteristic data is determined from the relationship between the critical strain at the hole edge and the strain gradient in the hole diameter direction, and the characteristic data is applied to a press forming simulation to determine the elongation. Assessing flange cracking is disclosed.

特許第6852426号公報Patent No. 6852426

前記特許文献1に記載される板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データは、穴広げ試験において穴部の端部の割れに基づいて破断限界を計算し、割れ発生位置が穴部の端部である縁割れのみを考慮して限界ひずみ特性データを算出している。 The critical strain characteristic data that indicates the relationship between the critical strain and the strain gradient of a plate-shaped member described in Patent Document 1 is obtained by calculating the fracture limit based on the crack at the end of the hole in the hole expansion test, and determining the crack occurrence. The critical strain characteristic data is calculated by considering only the edge crack located at the edge of the hole.

しかしながら、縁割れのみを考慮した限界ひずみ特性データを用いてプレス成形解析によって伸びフランジ割れを評価したときに、プレス成形解析によって伸びフランジ割れが発生しないと評価された場合についても、縁割れではない破断が発生する場合など、実際にプレス成形したときに伸びフランジ割れが発生することがある。 However, when stretch flange cracking is evaluated by press forming analysis using limit strain characteristic data that takes only edge cracking into consideration, even if the press forming analysis evaluates that stretch flange cracking does not occur, it is not edge cracking. In some cases, stretch flange cracking may occur during actual press forming.

また、ひずみ勾配が大きくなるにつれて限界ひずみが大きくなる縁割れのみを考慮した限界ひずみ特性データを用いてプレス成形解析によって伸びフランジ割れを評価する場合、ひずみ勾配の大きさによっては限界ひずみが過剰に大きくなるおそれがあり、プレス成形解析によって伸びフランジ割れが発生しないと評価された場合についても、実際にプレス成形したときに伸びフランジ割れが発生するおそれがある。 Additionally, when evaluating stretch flange cracking through press forming analysis using critical strain characteristic data that takes into account only edge cracking, where the critical strain increases as the strain gradient increases, the critical strain may be excessive depending on the size of the strain gradient. Even if it is evaluated by press forming analysis that stretch flange cracking will not occur, there is a risk that stretch flange cracking will occur during actual press forming.

本発明は、伸びフランジ割れの評価精度を向上させることができる伸びフランジ割れ評価方法を提供することを課題とする。 An object of the present invention is to provide a stretch flange crack evaluation method that can improve the evaluation accuracy of stretch flange cracks.

本発明は、プレス成形品の伸びフランジ部の割れを評価する伸びフランジ割れ評価方法であって、複数の板状部材についてそれぞれ前記板状部材の端部に割れを発生させるように成形して限界ひずみを算出する伸びフランジ成形試験を行い、前記複数の板状部材と同一材料の板状部材について単軸引張変形させて延性破壊時のひずみを算出する単軸引張変形試験を行い、前記複数の板状部材のそれぞれについて前記伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに前記伸びフランジ成形試験による限界ひずみと前記板状部材の端面から前記板状部材の内部方向におけるひずみ勾配とを算出し、前記伸びフランジ成形試験による割れ状態が縁割れであるときの各板状部材の限界ひずみとひずみ勾配とに基づいて、縁割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データを算出し、前記伸びフランジ成形試験による割れ状態が内割れであるときの各板状部材の限界ひずみとひずみ勾配とに基づいて、内割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データを算出し、前記板状部材について前記単軸引張変形試験による延性破壊時のひずみをひずみ勾配に関わらず限界ひずみとする延性破壊限界ひずみ特性データを算出し、前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データのうち少なくとも前記縁割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する、伸びフランジ割れ評価方法を提供する。 The present invention is a stretch flange crack evaluation method for evaluating cracks in the stretch flange portion of a press-formed product, in which a plurality of plate-shaped members are formed so as to generate cracks at the ends of each of the plate-shaped members to reach a limit. A stretch flange forming test was performed to calculate the strain, and a uniaxial tensile deformation test was performed to calculate the strain at ductile fracture by subjecting a plate member made of the same material as the plurality of plate members to uniaxial tensile deformation. For each of the plate-shaped members, it is determined whether the cracking state at the time of crack occurrence in the stretch-flange forming test is an edge crack or an internal crack, and the limit strain in the stretch-flange forming test and the The strain gradient in the internal direction of the plate-shaped member is calculated, and based on the limit strain and strain gradient of each plate-shaped member when the crack state in the stretch flange forming test is edge cracking, the plate-shaped member with edge cracking is calculated. Calculate the edge crack critical strain characteristic data that shows the relationship between the critical strain and strain gradient, and based on the critical strain and strain gradient of each plate member when the crack state in the stretch flange forming test is an internal crack. , Calculate internal crack limit strain characteristic data that shows the relationship between the limit strain and strain gradient of a plate-like member at internal cracking, and calculate the strain at ductile failure in the uniaxial tensile deformation test for the plate-like member regardless of the strain gradient. Calculate ductile fracture critical strain characteristic data to be the critical strain, and calculate at least the edge crack critical strain characteristic data and the A stretch flange crack evaluation method is provided that evaluates cracks in a stretch flange portion using ductile fracture limit strain characteristic data.

本発明によれば、複数の板状部材についてそれぞれ伸びフランジ成形試験を行い、伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出し、縁割れ限界ひずみ特性データと内割れ限界ひずみ特性データとを算出する。また、板状部材について単軸引張変形試験を行い、単軸引張変形試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データを算出する。そして、縁割れ限界ひずみ特性データ、内割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データのうち少なくとも縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて伸びフランジ部の割れを評価する。 According to the present invention, a stretch flange forming test is performed on each of a plurality of plate-shaped members, and it is determined whether the crack state at the time of crack occurrence in the stretch flange forming test is an edge crack or an internal crack, and the stretch flange forming test is performed. The critical strain and strain gradient are calculated, and edge crack critical strain characteristic data and internal crack critical strain characteristic data are calculated. In addition, a uniaxial tensile deformation test is performed on the plate member, and ductile fracture limit strain characteristic data is calculated, with the strain at ductile fracture in the uniaxial tensile deformation test as the limit strain. Then, cracks in the stretch flange portion are evaluated using at least the edge cracking limit strain characteristic data and the ductile fracture limit strain characteristic data among the edge cracking limit strain characteristic data, internal cracking limit strain characteristic data, and ductile fracture limit strain characteristic data.

これにより、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データとして、実際の伸びフランジ成形試験による割れの状態である縁割れ又は内割れに応じて縁割れ限界ひずみ特性データと内割れ限界ひずみ特性データとを算出し、縁割れ限界ひずみ特性データ及び内割れ限界ひずみ特性データを用いて伸びフランジ割れを評価するので、縁割れのみを考慮した限界ひずみ特性データを用いる場合に比して、伸びフランジ割れの評価精度を向上させることができる。さらに、単軸引張変形試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データを用いて伸びフランジ部の割れを評価するので、ひずみ勾配が大きい場合についても限界ひずみが過剰に大きくなることを抑制することができ、伸びフランジ割れの評価精度を向上させることができる。割れ発生時の割れ状態が縁割れのみである板状部材には、縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて、伸びフランジ割れの評価精度を向上させることができる。 As a result, the critical strain characteristic data indicating the relationship between the critical strain and the strain gradient of the plate-like member can be used as the critical strain characteristic data for edge cracking according to the cracking conditions in the actual stretch flange forming test, such as edge cracking or internal cracking. Since the internal crack limit strain characteristic data is calculated and the edge crack limit strain characteristic data and the internal crack limit strain characteristic data are used to evaluate stretch flange cracking, it is easier to evaluate stretch flange cracking than when using limit strain characteristic data that takes only edge cracks into account. As a result, the evaluation accuracy of stretch flange cracking can be improved. Furthermore, since we evaluate cracks in the stretch flange using ductile fracture critical strain characteristic data in which the critical strain is the strain at ductile fracture in a uniaxial tensile deformation test, the critical strain may be excessively large even when the strain gradient is large. Therefore, it is possible to improve the evaluation accuracy of stretch flange cracking. For a plate-shaped member in which the only cracking state at the time of cracking is edge cracking, the accuracy of evaluating stretch flange cracking can be improved by using edge cracking limit strain characteristic data and ductile fracture limit strain characteristic data.

前記伸びフランジ割れ評価方法は、前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する。 The stretch flange crack evaluation method evaluates cracks in a stretch flange portion using the edge crack limit strain characteristic data, the internal crack limit strain characteristic data, and the ductile fracture limit strain characteristic data.

本構成により、縁割れ限界ひずみ特性データ、内割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れが評価されるので、割れ発生時の割れ状態が縁割れ又は内割れである板状部材について、伸びフランジ割れの評価精度を向上させることができる。 With this configuration, cracks in the stretch flange portion are evaluated using edge crack limit strain characteristic data, internal crack limit strain characteristic data, and ductile fracture limit strain characteristic data, so that the crack state at the time of crack occurrence is determined to be edge crack or internal crack. For plate-shaped members that are cracked, it is possible to improve the evaluation accuracy of stretch flange cracks.

前記伸びフランジ割れ評価方法は、板状部材から伸びフランジ部を有するプレス成形品をプレス成形するプレス成形解析時に、前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データのうち少なくとも前記縁割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する。 The stretch flange crack evaluation method includes the edge crack limit strain characteristic data, the internal crack limit strain characteristic data, and the ductile fracture limit strain during press forming analysis of press forming a press molded product having a stretch flange portion from a plate member. Cracks in the stretch flange portion are evaluated using at least the edge crack limit strain characteristic data and the ductile fracture limit strain characteristic data among the characteristic data.

本構成により、プレス成形解析時に、縁割れ限界ひずみ特性データ、内割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データのうち少なくとも縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価するので、プレス成形解析時に、伸びフランジ部の端部について有限要素分割した解析モデルの各要素における最大主ひずみと該要素に伸びフランジ部の端部から離れる方向に隣接する要素とのひずみ勾配とを算出することで、プレス成形解析における伸びフランジ部の割れを精度良く評価することができる。 With this configuration, at the time of press forming analysis, at least the edge cracking limit strain characteristic data and the ductile fracture limit strain characteristic data among the edge cracking limit strain characteristic data, internal cracking limit strain characteristic data, and ductile fracture limit strain characteristic data are used. To evaluate cracks in the flange part, during press forming analysis, the maximum principal strain in each element of the analysis model divided into finite elements for the end of the stretch flange part and the adjacent element in the direction away from the end of the stretch flange part are calculated. By calculating the strain gradient with respect to the elements, it is possible to accurately evaluate cracks in the stretch flange portion in press forming analysis.

前記伸びフランジ割れ評価方法は、前記伸びフランジ成形試験において前記板状部材の表面をカメラによって撮像し、前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出することが好ましい。 The stretch flange crack evaluation method includes capturing an image of the surface of the plate-like member using a camera in the stretch-flange forming test, and determining the above-mentioned conditions for the plate-like member based on the image of the surface of the plate-like member captured by the camera. It is preferable to calculate the critical strain and strain gradient by a stretch flange forming test.

本構成により、カメラによって撮像された板状部材の表面の画像に基づいて、板状部材について伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出するので、デジタル画像相関法(DIC:Digital Image Correlation)を用いて限界ひずみとひずみ勾配とを算出することができ、精度良く限界ひずみとひずみ勾配とを算出することが可能である。 With this configuration, the critical strain and strain gradient in the stretch flange forming test for the plate-like member are calculated based on the image of the surface of the plate-like member captured by the camera, so the digital image correlation method (DIC) ) can be used to calculate the critical strain and strain gradient, and it is possible to calculate the critical strain and strain gradient with high accuracy.

前記伸びフランジ割れ評価方法は、前記伸びフランジ成形試験において前記板状部材の表面をカメラによって撮像し、前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定することが好ましい。 The stretch flange crack evaluation method includes capturing an image of the surface of the plate-like member using a camera in the stretch-flange forming test, and determining the above-mentioned conditions for the plate-like member based on the image of the surface of the plate-like member captured by the camera. It is preferable to determine whether the crack state at the time of crack occurrence is an edge crack or an internal crack by a stretch flange forming test.

本構成により、カメラによって撮像された板状部材の表面の画像に基づいて、伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するので、板状部材の表面の画像に基づいて割れ発生時の割れ起点を見つけることで、縁割れ又は内割れの割れ状態の判定精度を向上させて伸びフランジ割れの評価精度を向上させることができる。 With this configuration, based on the image of the surface of the plate-shaped member taken by the camera, it is determined whether the crack state at the time of cracking in the stretch flange forming test is an edge crack or an internal crack. By finding the starting point of a crack when a crack occurs based on an image of the surface, it is possible to improve the accuracy of determining the crack state of edge cracks or internal cracks, and improve the evaluation accuracy of stretch flange cracks.

前記伸びフランジ割れ評価方法は、前記単軸引張変形試験において前記板状部材の表面をカメラによって撮像し、前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記単軸引張変形試験による延性破壊時のひずみを算出することが好ましい。 The stretch flange crack evaluation method includes capturing an image of the surface of the plate member in the uniaxial tensile deformation test using a camera, and evaluating the plate member based on the image of the surface of the plate member taken by the camera. It is preferable to calculate the strain at the time of ductile failure by the uniaxial tensile deformation test.

本構成により、カメラによって撮像された板状部材の表面の画像に基づいて、板状部材について単軸引張変形試験による延性破壊時のひずみを算出するので、デジタル画像相関法を用いて延性破壊時のひずみを算出することができ、精度良く延性破壊限界ひずみを算出することが可能である。カメラによって撮像された画像に基づいて、板状部材について伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出するとともに、板状部材について単軸引張変形試験による延性破壊時のひずみを算出することで、デジタル画像相関法を用いて限界ひずみとひずみ勾配とを算出するとともに延性破壊限界ひずみを算出することができ、伸びフランジ割れの評価精度を向上させることができる。 With this configuration, the strain at the time of ductile failure in the uniaxial tensile deformation test is calculated for the plate-like member based on the image of the surface of the plate-like member taken by the camera, so the strain at the time of ductile failure in the uniaxial tensile deformation test is calculated using the digital image correlation method. It is possible to calculate the strain at the ductile fracture limit with high accuracy. Based on the images captured by the camera, we calculated the critical strain and strain gradient of the plate-shaped member in the stretch flange forming test, and also calculated the strain at the time of ductile failure in the uniaxial tensile deformation test of the plate-shaped member. By using the digital image correlation method, it is possible to calculate the critical strain and the strain gradient as well as the critical strain for ductile fracture, and it is possible to improve the evaluation accuracy of stretch flange cracking.

伸びフランジ部を有するプレス成形品を示す図である。It is a figure which shows the press molded product which has a stretch flange part. 伸びフランジ部の縁割れ及び内割れを説明するための説明図である。It is an explanatory view for explaining edge cracking and internal cracking of a stretch flange part. 本発明の実施形態に係る伸びフランジ割れの評価に用いる板状部材の限界ひずみとひずみ勾配との関係を示すグラフである。It is a graph showing the relationship between the critical strain and strain gradient of a plate member used for evaluation of stretch flange cracking according to an embodiment of the present invention. 円筒穴広げ試験の概略構成図である。FIG. 2 is a schematic configuration diagram of a cylindrical hole expansion test. 円筒穴広げ試験後の板状部材及びパンチを示す斜視図である。It is a perspective view which shows the plate-shaped member and punch after a cylindrical hole expansion test. 板状部材の穴部近傍の最大主ひずみを示す図である。It is a figure which shows the maximum principal strain in the vicinity of the hole part of a plate-shaped member. 板状部材の穴部中心からの距離と最大主ひずみとの関係を示すグラフである。It is a graph showing the relationship between the distance from the hole center of the plate-shaped member and the maximum principal strain. 板状部材の端面からの距離と最大主ひずみとの関係を示すグラフである。It is a graph which shows the relationship between the distance from the end surface of a plate-shaped member, and the maximum principal strain. 円錐穴広げ試験の概略構成図である。It is a schematic block diagram of a conical hole expansion test. 円錐穴広げ試験後の板状部材及びパンチを示す斜視図である。It is a perspective view which shows the plate-shaped member and punch after a conical hole expansion test. 単軸引張試験の概略構成図である。It is a schematic block diagram of a uniaxial tensile test. 板状部材の長手方向中央部の最大主ひずみを示す図である。It is a figure which shows the maximum principal strain of the longitudinal direction central part of a plate-shaped member. 板状部材の板幅方向位置と最大主ひずみとの関係を示すグラフである。It is a graph which shows the relationship between the board width direction position of a plate-like member, and the maximum principal strain. 伸びフランジ割れの評価方法を示すフローチャートである。2 is a flowchart showing a method for evaluating stretch flange cracking.

以下、本発明の実施形態について添付図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、伸びフランジ部を有するプレス成形品を示す図である。図1に示すプレス成形品1は、例えば引張強度が980MPa程度以上を有する高張力鋼板などの金属製の板状部材をプレス成形して成形されるプレス成形品1である。プレス成形品1として、車両の車体側面部を構成して前後のドア開口部の間に配設されるセンターピラーアウタ1を示している。 FIG. 1 is a diagram showing a press-formed product having a stretch flange portion. The press-formed product 1 shown in FIG. 1 is a press-formed product 1 that is formed by press-forming a metal plate-like member such as a high-tensile steel plate having a tensile strength of about 980 MPa or more, for example. A center pillar outer 1 is shown as a press-formed product 1, which constitutes a side surface of a vehicle body and is disposed between front and rear door openings.

センターピラーアウタ1は、車体上下方向に延びる中央部2と、車体前後方向に延びてルーフサイドレールに取り付けられる上端部3と、車体前後方向に延びてサイドシルに取り付けられる下端部4とを有している。センターピラーアウタ1の中央部2は、底面部5と、両側の側面部6と、両側のフランジ部7とを備えて断面略ハット状に形成されている。 The center pillar outer 1 has a central portion 2 extending in the vertical direction of the vehicle body, an upper end portion 3 extending in the longitudinal direction of the vehicle body and attached to the roof side rail, and a lower end portion 4 extending in the longitudinal direction of the vehicle body and attached to the side sill. ing. The center portion 2 of the center pillar outer 1 has a bottom portion 5, side portions 6 on both sides, and flange portions 7 on both sides, and has a substantially hat-shaped cross section.

センターピラーアウタ1のフランジ部7は、中央部2から上端部3及び下端部4までそれぞれ延びるように設けられ、中央部2と上端部3及び下端部4との接続部分にそれぞれ、プレス成形時に延びフランジ成形される伸びフランジ部8を有している。伸びフランジ部8は、伸びフランジ成形されるときにひずみが大きくなって割れが発生し易くなる。 The flange portion 7 of the center pillar outer 1 is provided so as to extend from the center portion 2 to the upper end portion 3 and the lower end portion 4, and is provided at the connection portion between the center portion 2, the upper end portion 3, and the lower end portion 4 during press molding. It has a stretch flange portion 8 which is stretch flange formed. When the stretch flange portion 8 is subjected to stretch flange forming, the strain becomes large and cracks are likely to occur.

図2は、伸びフランジ部の縁割れ及び内割れを説明するための説明図である。図2は、図1に示すプレス成形品の一部を拡大して示すと共に伸びフランジ部8の端部に発生し得る割れを示している。図2(a)では、白矢印で示す割れ発生位置が伸びフランジ部8の端面である縁割れを示し、図2(b)では、白矢印で示す割れ発生位置が伸びフランジ部8の端面より内部である内割れを示している。図2(a)及び図2(b)に示すように、伸びフランジ部8には、縁割れ又は内割れである割れが発生し得る。 FIG. 2 is an explanatory diagram for explaining edge cracks and internal cracks of the stretch flange portion. FIG. 2 shows an enlarged view of a part of the press-formed product shown in FIG. 1, and also shows cracks that may occur at the end of the stretch flange portion 8. In FIG. 2(a), the crack occurrence position indicated by the white arrow indicates an edge crack, which is the end face of the stretch flange part 8. In FIG. 2(b), the crack occurrence position indicated by the white arrow indicates an edge crack from the end face of the stretch flange part 8. It shows an internal crack. As shown in FIGS. 2(a) and 2(b), cracks such as edge cracks or internal cracks may occur in the stretch flange portion 8.

本実施形態では、板状部材からプレス成形品をプレス成形する際に、プレス成形解析に用いる板状部材の破断限界特性として、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを、伸びフランジ成形試験による実際の割れの状態に応じて算出するとともに、単軸引張変形試験による延性破壊限界ひずみを算出して用いることで、プレス成形解析によってプレス成形品の伸びフランジ割れの評価精度を向上させる。伸びフランジ成形試験は、板状部材の端部に割れを発生させるように板状部材を成形して限界ひずみを算出する伸びフランジ成形試験である。単軸引張変形試験は、板状部材を単軸引張変形させて延性破壊時のひずみを算出する単軸引張変形試験である。 In this embodiment, when a press-formed product is press-formed from a plate-shaped member, the limit strain characteristic indicating the relationship between the limit strain and strain gradient of the plate-shaped member is used as the fracture limit characteristic of the plate-shaped member used for press forming analysis. By calculating the data according to the actual cracking state from the stretch flange forming test and calculating the ductile fracture limit strain from the uniaxial tensile deformation test, press forming analysis can be used to prevent stretch flange cracking of press-formed products. Improve evaluation accuracy. The stretch flange forming test is a stretch flange forming test in which a plate member is formed so as to generate a crack at the end of the plate member and the critical strain is calculated. The uniaxial tensile deformation test is a uniaxial tensile deformation test in which a plate member is uniaxially tensile deformed and the strain at the time of ductile failure is calculated.

図3は、本発明の実施形態に係る伸びフランジ割れの評価に用いる板状部材の限界ひずみとひずみ勾配との関係を示すグラフである。本実施形態では、伸びフランジ成形試験に基づいて縁割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データを算出し、伸びフランジ成形試験に基づいて内割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データを算出し、単軸引張変形試験に基づいて延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データを算出し、図3に示すように、板状部材の破断限界特性として、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cとを用いて、伸びフランジ部の割れを評価する。 FIG. 3 is a graph showing the relationship between the critical strain and strain gradient of a plate member used for evaluating stretch flange cracking according to the embodiment of the present invention. In this embodiment, edge crack limit strain characteristic data indicating the relationship between the limit strain and strain gradient of a plate-like member at edge cracking is calculated based on a stretch flange forming test, and The internal cracking critical strain characteristic data, which shows the relationship between the critical strain and strain gradient of a shaped member, is calculated, and the ductile fracture critical strain characteristic data is calculated based on the uniaxial tensile deformation test, with the strain at ductile failure as the critical strain. As shown in FIG. 3, edge cracking limit strain characteristic data L1a, internal cracking limit strain characteristic data L1b, and ductile fracture limit strain characteristic data L1c are used as the fracture limit characteristics of the plate-shaped member to determine the cracking of the stretch flange portion. Evaluate.

本実施形態では、伸びフランジ成形試験として、これに限定されるものではないが、穴広げ試験を用い、単軸引張変形試験として、これに限定されるものではないが、単軸引張試験を用いた。穴広げ試験は、穴部を有する板状部材を用い、穴部にパンチを、穴部の端部に発生する割れが厚さ方向に貫通するまで押し込むことにより行った。単軸引張試験は、穴広げ試験に用いた板状部材と同一材料の引張試験片である板状部材を用い、板状部材が破断するまで板状部材の両端部に引張荷重を加えることにより行った。板状部材としては、材料Aからなる引張強度が980MPa程度以上を有する高張力鋼板を用いた。 In this embodiment, a hole expansion test is used as a stretch flange forming test, although it is not limited to this, and a uniaxial tensile test is used as a uniaxial tensile deformation test, although it is not limited to this. there was. The hole expansion test was conducted by using a plate-shaped member having a hole and pushing a punch into the hole until a crack generated at the end of the hole penetrated in the thickness direction. The uniaxial tensile test uses a plate member that is a tensile test piece made of the same material as the plate member used for the hole expansion test, and applies a tensile load to both ends of the plate member until it breaks. went. As the plate member, a high tensile strength steel plate made of material A and having a tensile strength of about 980 MPa or more was used.

図4は、円筒穴広げ試験の概略構成図である。伸びフランジ割れの評価では、複数の板状部材についてそれぞれ、穴部を有する板状部材を用いて穴広げ試験を行い、穴広げ試験による割れの状態を判定するとともに板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを取得する。 FIG. 4 is a schematic diagram of the cylindrical hole expansion test. In the evaluation of stretch flange cracking, a hole expansion test is performed on each of multiple plate members using a plate member with a hole, and the state of cracking is determined by the hole expansion test, and the limit strain and strain of the plate member are determined. Obtain critical strain characteristic data that shows the relationship with the slope.

図4に示すように、穴広げ試験装置としての円筒穴広げ試験装置10は、穴部21を有する板状部材20をプレス成形して穴部近傍に割れを発生させるプレス工具11を備えている。プレス工具11は、板状部材20を挟持するダイ12及びブランクホルダ13と、板状部材20をプレス成形するパンチ14とを備えている。 As shown in FIG. 4, a cylindrical hole expansion test device 10 as a hole expansion test device includes a press tool 11 that press-forms a plate member 20 having a hole 21 to generate a crack near the hole. . The press tool 11 includes a die 12 and a blank holder 13 that hold the plate-shaped member 20, and a punch 14 that press-forms the plate-shaped member 20.

穴広げ試験では、円形状に形成された穴部21を有する板状部材20を所定押付力でダイ12及びブランクホルダ13に挟持した状態で、穴部近傍に割れが発生するまでパンチ14を移動させる。円筒穴広げ試験では、先端部が円形状に形成された円筒パンチ14が用いられ、円筒パンチ14は、板状部材20の穴部21と中心軸が一致するように配置されている。 In the hole expansion test, a plate member 20 having a circular hole 21 is held between the die 12 and the blank holder 13 with a predetermined pressing force, and the punch 14 is moved until a crack occurs near the hole. let In the cylindrical hole expansion test, a cylindrical punch 14 having a circular tip is used, and the cylindrical punch 14 is arranged so that its central axis coincides with the hole 21 of the plate-shaped member 20.

穴広げ試験装置10は、ブランクホルダ13及びパンチ14を移動させる移動機構(不図示)を備えている。穴広げ試験装置10には、制御ユニット30が備えられ、制御ユニット30は、前記移動機構の作動を制御するようになっている。 The hole expanding test device 10 includes a moving mechanism (not shown) that moves the blank holder 13 and the punch 14. The hole expansion test device 10 is equipped with a control unit 30, and the control unit 30 controls the operation of the moving mechanism.

穴広げ試験装置10にはまた、板状部材20の穴部近傍の表面を撮像する撮像装置としてのカメラ35が設けられ、板状部材20の表面を撮像するようにパンチ14とは反対側に板状部材20の上方に2つのカメラ35が配置されている。2つのカメラ35は、例えばパンチ14と中心軸が一致する穴部21の中心軸に対して対称位置に配置されている。 The hole expansion test device 10 is also provided with a camera 35 as an imaging device that images the surface near the hole of the plate member 20, and a camera 35 is provided on the opposite side of the punch 14 so as to image the surface of the plate member 20. Two cameras 35 are arranged above the plate member 20. The two cameras 35 are arranged at symmetrical positions with respect to the central axis of the hole 21, which coincides with the central axis of the punch 14, for example.

2つのカメラ35によって撮像された板状部材20の表面の画像は、制御ユニット30に入力されるようになっている。制御ユニット30は、カメラ35によって撮像された画像をメモリなどの記憶装置に記憶させるとともに、デジタル画像相関法を用いた解析によって、板状部材20の穴部近傍における表面全体について最大主ひずみを算出するようになっている。 Images of the surface of the plate member 20 captured by the two cameras 35 are input to the control unit 30. The control unit 30 stores the image captured by the camera 35 in a storage device such as a memory, and calculates the maximum principal strain for the entire surface of the plate member 20 in the vicinity of the hole by analysis using the digital image correlation method. It is supposed to be done.

制御ユニット30は、穴広げ試験前に板状部材20の表面にスプレーによって塗布された塗料ドットパターンを2つのカメラ35によって撮像し、撮像された前後の画像に基づいてドットパターンの位置関係の変化から板状部材20の表面の最大主ひずみを算出するようになっている。制御ユニット30はまた、カメラ35によって撮像された画像及び板状部材20の穴部近傍の最大主ひずみをディスプレイなどの表示装置(不図示)に表示するようになっている。 The control unit 30 uses two cameras 35 to image the paint dot pattern sprayed onto the surface of the plate member 20 before the hole expansion test, and detects changes in the positional relationship of the dot patterns based on the before and after images taken. The maximum principal strain on the surface of the plate member 20 is calculated from. The control unit 30 also displays the image captured by the camera 35 and the maximum principal strain near the hole of the plate member 20 on a display device (not shown) such as a display.

円筒穴広げ試験では、これに限定されるものではないが、ダイ内径D1を53.8mmとし、ダイ肩半径R1を5mmとしたダイ12を用い、パンチ外径D2を50mmとし、パンチ肩半径R2を10mmとしたパンチ14を用いた。板状部材20の厚さtは、1.6mmとし、穴部21の初期穴径D3は、20mmなどの種々の穴径を用いた。板状部材20の穴部21は、ダイ及びブランクホルダと打ち抜きパンチとを用いてクリアランスを板厚の12%として打ち抜き加工した。 In the cylindrical hole expansion test, although not limited thereto, a die 12 with a die inner diameter D1 of 53.8 mm and a die shoulder radius R1 of 5 mm was used, a punch outer diameter D2 was 50 mm, and a punch shoulder radius R2 was used. A punch 14 with a diameter of 10 mm was used. The thickness t of the plate member 20 was 1.6 mm, and the initial hole diameter D3 of the hole portion 21 was various hole diameters such as 20 mm. The hole 21 of the plate member 20 was punched out using a die, a blank holder, and a punch with a clearance of 12% of the plate thickness.

図5は、円筒穴広げ試験後の板状部材及びパンチを示す斜視図である。図5では、板状部材20を板厚方向に貫通する割れが発生するまでパンチ14を移動させた穴広げ試験後の板状部材20及びパンチ14を示している。図5に示すように、穴広げ試験後にはパンチ14によって板状部材20の穴部近傍が変形され、板状部材20の穴部近傍に割れ22が発生する。 FIG. 5 is a perspective view showing the plate member and punch after the cylindrical hole expansion test. FIG. 5 shows the plate member 20 and punch 14 after a hole expansion test in which the punch 14 was moved until a crack that penetrated the plate member 20 in the thickness direction occurred. As shown in FIG. 5, after the hole expansion test, the vicinity of the hole in the plate member 20 is deformed by the punch 14, and a crack 22 is generated in the vicinity of the hole in the plate member 20.

本実施形態では、穴広げ試験時にカメラ35によって板状部材20の穴部近傍の表面の画像を撮像し、撮像された板状部材20の穴部近傍の表面の画像に基づいて、作業者などが板状部材20の端部に発生する割れ22の割れ状態を判定する。割れ状態として、割れの起点である割れ発生位置が穴部21の端面である割れ発生位置C1である場合には縁割れであると判定し、割れの起点である割れ発生位置が穴部21の端面から離れた板状部材20の内部である割れ発生位置C2である場合には内割れであると判定する。 In this embodiment, an image of the surface near the hole of the plate-like member 20 is captured by the camera 35 during the hole expansion test, and based on the image of the surface near the hole of the plate-like member 20, an operator, etc. The crack state of the crack 22 occurring at the end of the plate member 20 is determined. As for the crack state, if the crack occurrence position, which is the starting point of the crack, is the crack occurrence position C1, which is the end face of the hole 21, it is determined that it is an edge crack, and the crack occurrence position, which is the starting point of the crack, is determined to be an edge crack. If the crack occurrence position C2 is inside the plate member 20 away from the end face, it is determined that the crack is an internal crack.

図6は、板状部材の穴部近傍の最大主ひずみを示す図である。図6では、穴広げ試験後における板状部材20の穴部近傍の最大主ひずみを表示している。本実施形態では、穴広げ試験時にカメラ35によって板状部材20の穴部近傍の表面の画像を撮像し、撮像された板状部材20の穴部近傍の表面の画像に基づいて、デジタル画像相関法を用いて板状部材20の穴部近傍の最大主ひずみを算出する。 FIG. 6 is a diagram showing the maximum principal strain near the hole in the plate member. FIG. 6 shows the maximum principal strain in the vicinity of the hole of the plate member 20 after the hole expansion test. In this embodiment, an image of the surface of the plate-like member 20 near the hole is captured by the camera 35 during the hole expansion test, and a digital image correlation is performed based on the image of the surface of the plate-like member 20 near the hole. The maximum principal strain near the hole in the plate member 20 is calculated using the method.

穴広げ試験では、板状部材20の穴部近傍において穴部21の周方向に最大主ひずみが発生する。図6に示すように、板状部材20の穴部近傍の最大主ひずみは、板状部材20の端面である穴部21の端面から板状部材20の内部である穴部21の径方向外側に離れるにつれて最大主ひずみが小さくなっている。穴部21の端部における周方向2ヵ所に割れが発生した板状部材20では、図6に示すように、穴部21の端部4ヵ所に最大主ひずみが大きい部分が存在し、穴部21から径方向に離れるにつれて最大主ひずみが小さくなっていることが分かる。 In the hole expansion test, the maximum principal strain occurs in the circumferential direction of the hole 21 in the vicinity of the hole of the plate member 20 . As shown in FIG. 6, the maximum principal strain near the hole of the plate-like member 20 is from the end face of the hole 21, which is the end face of the plate-like member 20, to the radially outer side of the hole 21, which is the inside of the plate-like member 20. The maximum principal strain becomes smaller as the distance increases. In the plate-shaped member 20 in which cracks have occurred at two locations in the circumferential direction at the end of the hole 21, as shown in FIG. It can be seen that the maximum principal strain becomes smaller as the distance from No. 21 increases in the radial direction.

図7は、板状部材の穴部中心からの距離と最大主ひずみとの関係を示すグラフである。図7では、板状部材20の穴部近傍の表面全体について算出した最大主ひずみが、穴部21の中心からの距離に応じて黒丸印を用いてプロットされている。図7に示すように、穴部21近傍の端部の周方向において算出された最大主ひずみは比較的大きく、穴部21の端面から離れた板状部材20の内部では周方向において算出された最大主ひずみは全体として穴部21から径方向に離れるにつれて小さくなる最大主ひずみ分布を有している。 FIG. 7 is a graph showing the relationship between the distance from the center of the hole in the plate member and the maximum principal strain. In FIG. 7, the maximum principal strain calculated for the entire surface near the hole of the plate member 20 is plotted using black circles according to the distance from the center of the hole 21. As shown in FIG. 7, the maximum principal strain calculated in the circumferential direction at the end near the hole 21 is relatively large, and the maximum principal strain calculated in the circumferential direction inside the plate member 20 away from the end surface of the hole 21 is relatively large. The maximum principal strain as a whole has a maximum principal strain distribution that decreases as the distance from the hole 21 increases in the radial direction.

図8は、板状部材の端面からの距離と最大主ひずみとの関係を示すグラフである。図8では、板状部材20の端面として穴部21の端面からの距離を横軸にとり、最大主ひずみを縦軸にとって表示し、最大主ひずみを黒四角として示している。板状部材20の端面である穴部21の端面から板状部材20の内部方向である径方向(前記端面の接線直交方向)に所定距離における最大主ひずみとして、板状部材20の穴部21の端面から径方向外側に所定距離にある周方向全ての最大主ひずみの平均値を最大主ひずみとして算出する。 FIG. 8 is a graph showing the relationship between the distance from the end surface of the plate member and the maximum principal strain. In FIG. 8, the horizontal axis represents the distance from the end surface of the hole 21 as the end surface of the plate member 20, and the maximum principal strain is represented on the vertical axis, and the maximum principal strain is shown as a black square. The maximum principal strain in the hole 21 of the plate-like member 20 at a predetermined distance from the end face of the hole 21, which is the end face of the plate-like member 20, in the radial direction (the direction perpendicular to the tangent to the end face), which is the inside direction of the plate-like member 20, is The average value of all the maximum principal strains in the circumferential direction at a predetermined distance radially outward from the end face of is calculated as the maximum principal strain.

図8に示すように、穴広げ試験による板状部材20の最大主ひずみは、板状部材20の端面から離れるにつれて小さくなっている。本実施形態では、板状部材20の端面における最大主ひずみε0を算出すると共に、板状部材20の穴部近傍のひずみ勾配αとして板状部材20の端面から離れた位置における最大主ひずみのひずみ勾配αを算出する。 As shown in FIG. 8, the maximum principal strain of the plate member 20 in the hole expansion test becomes smaller as the distance from the end surface of the plate member 20 increases. In this embodiment, the maximum principal strain ε0 at the end face of the plate member 20 is calculated, and the maximum principal strain at a position away from the end face of the plate member 20 is calculated as the strain gradient α near the hole of the plate member 20. Calculate the slope α.

ひずみ勾配αとして、板状部材20の端面からの距離がd1とd2の間における最大主ひずみの傾きの絶対値をひずみ勾配として算出した。図8に示すように、板状部材20の端面からの距離がd1及びd2における最大主ひずみε1及びε2を結ぶ直線の傾き[(ε2-ε1)/(d2-d1)]を算出し、直線の傾きの絶対値をひずみ勾配αとして算出した。なお、ひずみ勾配αは、板状部材20の端面から離れた他の所定範囲における最大主ひずみの傾きから算出するようにしてもよい。 As the strain gradient α, the absolute value of the slope of the maximum principal strain between the distances d1 and d2 from the end surface of the plate-shaped member 20 was calculated as the strain gradient. As shown in FIG. 8, the slope [(ε2-ε1)/(d2-d1)] of the straight line connecting the maximum principal strains ε1 and ε2 at distances d1 and d2 from the end surface of the plate-shaped member 20 is calculated, and the straight line The absolute value of the slope was calculated as the strain gradient α. Note that the strain gradient α may be calculated from the slope of the maximum principal strain in another predetermined range apart from the end surface of the plate-like member 20.

このように、円筒穴広げ試験を行い、割れ発生時の割れの状態として縁割れ又は内割れを判定するとともに、割れ発生時における板状部材20の穴部21の端面における最大主ひずみε0を板状部材20の限界ひずみε0として算出し、且つ板状部材20の穴部近傍のひずみ勾配αを算出する。 In this way, a cylindrical hole expansion test is carried out, and the state of the crack at the time of crack occurrence is determined as edge cracking or internal cracking. The critical strain ε0 of the plate-shaped member 20 is calculated, and the strain gradient α near the hole of the plate-shaped member 20 is calculated.

複数の板状部材20について、穴径などを変更して円筒穴広げ試験を行い、割れ発生時の割れの状態として縁割れ又は内割れを判定するとともに、割れ発生時における板状部材20の穴部21の端面における最大主ひずみを板状部材20の限界ひずみε0として算出し、且つ板状部材20の穴部近傍のひずみ勾配αを算出する。 A cylindrical hole expansion test is performed on a plurality of plate-shaped members 20 by changing the hole diameter, etc., and edge cracking or internal cracking is determined as the state of cracking at the time of cracking. The maximum principal strain at the end face of the portion 21 is calculated as the critical strain ε0 of the plate-like member 20, and the strain gradient α near the hole of the plate-like member 20 is calculated.

図9は、円錐穴広げ試験の概略構成図である。本実施形態では、前述した穴広げ試験装置10において円筒パンチに代えて円錐パンチを用い、穴広げ試験として、円筒穴広げ試験に加えて円錐穴広げ試験を行い、円錐穴広げ試験についても、複数の板状部材20についてそれぞれ、穴広げ試験による割れの状態を判定するとともに、割れ発生時における板状部材の穴部の端面における最大主ひずみを板状部材の限界ひずみとして算出し、且つ板状部材の穴部近傍のひずみ勾配を算出する。 FIG. 9 is a schematic diagram of the conical hole expansion test. In this embodiment, a conical punch is used instead of a cylindrical punch in the hole expansion test device 10 described above, and a conical hole expansion test is performed in addition to a cylindrical hole expansion test. For each of the plate-shaped members 20, the state of cracking was determined by the hole expansion test, and the maximum principal strain at the end face of the hole in the plate-shaped member at the time of cracking was calculated as the limit strain of the plate-shaped member. Calculate the strain gradient near the hole in the member.

穴広げ試験装置としての円錐穴広げ試験装置は、パンチを除いて、円筒穴広げ試験装置10と同様に構成されている。円錐穴広げ試験装置10は、図9に示すように、穴部21を有する板状部材20をプレス成形して穴部近傍に割れを発生させるプレス工具11を備えている。プレス工具11は、板状部材20を挟持するダイ12及びブランクホルダ13と、板状部材20をプレス成形するパンチ15とを備えている。円錐穴広げ試験では、先端部が円錐状に形成された円錐パンチ15が用いられ、円錐パンチ15は、板状部材20の穴部21と中心軸が一致するように配置されている。 A conical hole expansion test device as a hole expansion test device has the same configuration as the cylindrical hole expansion test device 10 except for the punch. As shown in FIG. 9, the conical hole expansion test device 10 includes a press tool 11 that press-forms a plate member 20 having a hole 21 to generate cracks near the hole. The press tool 11 includes a die 12 and a blank holder 13 that hold the plate-like member 20, and a punch 15 that press-forms the plate-like member 20. In the conical hole expansion test, a conical punch 15 having a conical tip is used, and the conical punch 15 is arranged so that its central axis coincides with the hole 21 of the plate member 20.

円錐穴広げ試験では、これに限定されるものではないが、ダイ内径D1を53.8mmとし、ダイ肩半径R1を5mmとしたダイ12を用い、パンチ外径D2を50mmとし、パンチ頂角θ1を120度としたパンチ15を用いた。板状部材20の厚さtは、1.6mmとし、穴部21の初期穴径D3は、20mmなどの種々の穴径を用いた。板状部材20の穴部21は、ダイ及びブランクホルダと打ち抜きパンチとを用いてクリアランスを板厚の12%として打ち抜き加工した。 In the conical hole expansion test, although not limited thereto, a die 12 with a die inner diameter D1 of 53.8 mm and a die shoulder radius R1 of 5 mm was used, a punch outer diameter D2 was 50 mm, and a punch apex angle θ1 was used. Punch 15 was used with the angle of 120 degrees. The thickness t of the plate member 20 was 1.6 mm, and the initial hole diameter D3 of the hole portion 21 was various hole diameters such as 20 mm. The hole 21 of the plate member 20 was punched out using a die, a blank holder, and a punch with a clearance of 12% of the plate thickness.

図10は、円錐穴広げ試験後の板状部材及びパンチを示す斜視図である。図10では、板状部材20を板厚方向に貫通する割れが発生するまでパンチ15を移動させた穴広げ試験後の板状部材20及びパンチ15を示している。図10に示すように、穴広げ試験後にはパンチ15によって板状部材20の穴部近傍が変形され、板状部材20の穴部近傍に割れ22が発生する。 FIG. 10 is a perspective view showing the plate member and punch after the conical hole expansion test. FIG. 10 shows the plate-shaped member 20 and punch 15 after a hole expansion test in which the punch 15 was moved until a crack that penetrated the plate-shaped member 20 in the thickness direction occurred. As shown in FIG. 10, after the hole expansion test, the vicinity of the hole in the plate member 20 is deformed by the punch 15, and a crack 22 is generated in the vicinity of the hole in the plate member 20.

円錐穴広げ試験についても、穴広げ試験時にカメラ35によって板状部材20の穴部近傍の表面の画像を撮像し、撮像された板状部材20の穴部近傍の表面の画像に基づいて、作業者などが板状部材20の端部に発生する割れ22の割れ状態を判定する。割れ状態として、割れの起点である割れ発生位置が穴部21の端面である割れ発生位置C1である場合には縁割れであると判定し、割れの起点である割れ発生位置が穴部21の端面から離れた板状部材20の内部である割れ発生位置C2である場合には内割れであると判定する。 Regarding the conical hole expansion test, an image of the surface near the hole of the plate-like member 20 is taken by the camera 35 during the hole expansion test, and the work is performed based on the imaged image of the surface near the hole of the plate-like member 20. A person or the like determines the crack state of the crack 22 occurring at the end of the plate-shaped member 20. As for the crack state, if the crack occurrence position, which is the starting point of the crack, is the crack occurrence position C1, which is the end face of the hole 21, it is determined that it is an edge crack, and the crack occurrence position, which is the starting point of the crack, is determined to be an edge crack. If the crack occurrence position C2 is inside the plate member 20 away from the end face, it is determined that the crack is an internal crack.

円錐穴広げ試験についても、円筒穴広げ試験と同様にして、割れ発生時の割れの状態として縁割れ又は内割れを判定するとともに、板状部材20の端面である穴部21の端面から板状部材20の内部方向である径方向(前記端面の接線直交方向)に所定距離における最大主ひずみとして、板状部材20の穴部21の端面から径方向外側に所定距離にある周方向全ての最大主ひずみの平均値を最大主ひずみとして算出する。 Regarding the conical hole expansion test, in the same manner as the cylindrical hole expansion test, edge cracking or internal cracking is determined as the state of cracking when cracking occurs, and the plate-like As the maximum principal strain at a predetermined distance in the radial direction (direction perpendicular to the tangent of the end surface), which is the internal direction of the member 20, the maximum principal strain in all the circumferential directions at a predetermined distance radially outward from the end surface of the hole 21 of the plate-shaped member 20 Calculate the average value of the principal strains as the maximum principal strain.

そして、板状部材20の端面における最大主ひずみε0を算出すると共に、板状部材20の穴部近傍のひずみ勾配αとして板状部材20の端面から離れた位置における最大主ひずみのひずみ勾配αを算出する。円錐穴広げ試験についても、ひずみ勾配αとして、板状部材20の端面からの距離がd1とd2の間における最大主ひずみの傾きの絶対値をひずみ勾配として算出した。なお、ひずみ勾配αは、板状部材20の端面から離れた他の所定範囲における最大主ひずみの傾きから算出するようにしてもよい。 Then, the maximum principal strain ε0 at the end face of the plate member 20 is calculated, and the strain gradient α of the maximum principal strain at a position away from the end face of the plate member 20 is calculated as the strain gradient α near the hole of the plate member 20. calculate. Regarding the conical hole expansion test, the absolute value of the slope of the maximum principal strain between the distances d1 and d2 from the end surface of the plate-like member 20 was calculated as the strain gradient α. Note that the strain gradient α may be calculated from the slope of the maximum principal strain in another predetermined range apart from the end surface of the plate-like member 20.

このように、円錐穴広げ試験を行い、割れ発生時の割れの状態として縁割れ又は内割れを判定するとともに、割れ発生時における板状部材20の穴部21の端面における最大主ひずみε0を板状部材20の限界ひずみε0として算出し、且つ板状部材20の穴部近傍のひずみ勾配αを算出する。 In this way, a conical hole expansion test is carried out to determine whether the crack is in the state of cracking at the time of cracking, edge cracking or internal cracking, and the maximum principal strain ε0 at the end face of the hole 21 of the plate member 20 at the time of cracking is determined. The critical strain ε0 of the plate-shaped member 20 is calculated, and the strain gradient α near the hole of the plate-shaped member 20 is calculated.

複数の板状部材20について、穴径などを変更して円錐穴広げ試験を行い、割れ発生時の割れの状態として縁割れ又は内割れを判定するとともに、割れ発生時における板状部材20の穴部21の端面における最大主ひずみε0を板状部材20の限界ひずみε0として算出し、且つ板状部材20の穴部近傍のひずみ勾配αを算出する。 A conical hole expansion test is performed on a plurality of plate-shaped members 20 by changing the hole diameter, etc., and edge cracking or internal cracking is determined as the state of cracking at the time of cracking. The maximum principal strain ε0 at the end face of the portion 21 is calculated as the critical strain ε0 of the plate-like member 20, and the strain gradient α near the hole of the plate-like member 20 is calculated.

図3では、ひずみ勾配αを横軸にとり、板状部材20の端面における最大主ひずみε0を限界ひずみとして縦軸にとって表している。円筒穴広げ試験及び円錐穴広げ試験による限界ひずみとしての最大主ひずみとひずみ勾配との算出結果から、ひずみ勾配が相対的に大きい場合は板状部材20に縁割れが発生し、ひずみ勾配が相対的に小さい場合は板状部材20に内割れが発生していることが分かった。 In FIG. 3, the horizontal axis represents the strain gradient α, and the maximum principal strain ε0 at the end face of the plate member 20 is represented as the critical strain on the vertical axis. From the calculation results of the maximum principal strain as the critical strain and the strain gradient in the cylindrical hole expansion test and the conical hole expansion test, it is found that when the strain gradient is relatively large, edge cracking occurs in the plate member 20, and the strain gradient is relatively large. It has been found that when the difference is small, internal cracks have occurred in the plate-shaped member 20.

本実施形態では、穴広げ試験による最大主ひずみとひずみ勾配との算出結果から、縁割れである場合についてひずみ勾配と最大主ひずみとの関係を示した一次関数の近似式を既知の最小二乗法によって算出し、縁割れにおける板状部材20の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データL1aを算出する。板状部材20の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データL1aは、ひずみ勾配が大きいほど限界ひずみが大きくなる限界ひずみ特性を有している。 In this embodiment, based on the calculation results of the maximum principal strain and strain gradient from the hole expansion test, an approximation formula of a linear function showing the relationship between the strain gradient and the maximum principal strain in the case of edge cracking is calculated using the known least squares method. Edge crack limit strain characteristic data L1a indicating the relationship between the limit strain and strain gradient of the plate member 20 at edge cracks is calculated. The edge cracking critical strain characteristic data L1a indicating the relationship between the critical strain and the strain gradient of the plate member 20 has a critical strain characteristic such that the larger the strain gradient is, the larger the critical strain is.

また、穴広げ試験による最大主ひずみとひずみ勾配との算出結果から、内割れである場合についてひずみ勾配と最大主ひずみとの関係を示した二次関数の近似式を既知の最小二乗法によって算出し、内割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データL1bを算出する。板状部材20の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データL1bは、ひずみ勾配が大きいほど限界ひずみが大きくなる限界ひずみ特性を有している。 In addition, based on the calculation results of the maximum principal strain and strain gradient from the hole expansion test, an approximate expression of a quadratic function showing the relationship between the strain gradient and the maximum principal strain in the case of internal cracking was calculated using the known least squares method. Then, internal crack limit strain characteristic data L1b indicating the relationship between the limit strain and strain gradient of the plate-like member at internal cracks is calculated. Internal cracking critical strain characteristic data L1b indicating the relationship between the critical strain and the strain gradient of the plate member 20 has critical strain characteristics such that the greater the strain gradient, the greater the critical strain.

図11は、単軸引張試験の概略構成図である。伸びフランジ割れの評価ではまた、穴広げ試験に用いた板状部材と同一材料の板状部材について、JIS Z2241における5号試験片である板状部材を用いて単軸引張試験を行い、板状部材について単軸引張変形させて延性破壊時のひずみをひずみ勾配に関わらず限界ひずみとする延性破壊限界ひずみ特性データを取得する。 FIG. 11 is a schematic diagram of a uniaxial tensile test. In the evaluation of stretch flange cracking, a uniaxial tensile test was conducted on a plate member made of the same material as the plate member used in the hole expansion test, using a plate member that is a No. 5 test piece in JIS Z2241. A member is subjected to uniaxial tensile deformation to obtain ductile fracture limit strain characteristic data, where the strain at ductile fracture is the limit strain regardless of the strain gradient.

図11に示すように、引張試験装置40は、引張試験片である板状部材50の下端部及び上端部をそれぞれ把持する下側把持部41及び上側把持部42を備えている。板状部材50は、長手方向中央部に所定板幅及び所定板厚を有する平行部51を有している。平行部51は、板幅方向両側の端面が機械加工などの同一の加工によって形成されている。板状部材50として、これに限定されるものではないが、板厚1.6mmのものを用いた。 As shown in FIG. 11, the tensile test device 40 includes a lower grip part 41 and an upper grip part 42 that grip the lower end and the upper end of a plate member 50, which is a tensile test piece, respectively. The plate member 50 has a parallel portion 51 having a predetermined width and a predetermined thickness at the center in the longitudinal direction. The parallel portion 51 has end faces on both sides in the plate width direction formed by the same processing such as machining. Although the plate member 50 is not limited to this, a plate having a thickness of 1.6 mm was used.

単軸引張試験では、板状部材50が塑性変形後に破断するまで板状部材50の長手方向中央部に引張荷重を加えるように下側把持部41及び上側把持部42を互いに離間する方向(白矢印で示す方向)に移動させる。引張試験装置40は、下側把持部41及び上側把持部42を移動させる移動機構(不図示)を備えるとともに、前記移動機構の作動を制御する制御ユニット60を備えている。 In the uniaxial tensile test, the lower gripping part 41 and the upper gripping part 42 are separated from each other in a direction (white direction) shown by the arrow. The tensile test device 40 includes a moving mechanism (not shown) that moves the lower gripping part 41 and the upper gripping part 42, and a control unit 60 that controls the operation of the moving mechanism.

引張試験装置40にはまた、板状部材50の長手方向中央部の表面を撮像する撮像装置としてのカメラ45が設けられ、板状部材50の表面を撮像するように板状部材50の側方に2つのカメラ45が配置されている。2つのカメラ45は、例えば板状部材50の長手方向に直交する方向に対して上下方向に対称位置に配置されている。 The tensile testing apparatus 40 is also provided with a camera 45 as an imaging device that images the surface of the central portion in the longitudinal direction of the plate-like member 50. Two cameras 45 are disposed at. The two cameras 45 are arranged, for example, at symmetrical positions in the vertical direction with respect to a direction perpendicular to the longitudinal direction of the plate-shaped member 50.

2つのカメラ45によって撮像された板状部材50の表面の画像は、制御ユニット60に入力されるようになっている。制御ユニット60は、カメラ45によって撮像された画像をメモリなどの記憶装置に記憶させるとともに、デジタル画像相関法を用いた解析によって、板状部材50の長手方向中央部における表面全体について最大主ひずみを算出するようになっている。 Images of the surface of the plate member 50 captured by the two cameras 45 are input to the control unit 60. The control unit 60 stores the image captured by the camera 45 in a storage device such as a memory, and calculates the maximum principal strain on the entire surface of the plate-shaped member 50 at the longitudinal center by analysis using a digital image correlation method. It is designed to be calculated.

単軸引張試験についても、制御ユニット60は、引張試験前に板状部材50の表面にスプレーによって塗布された塗料ドットパターンを2つのカメラ45によって撮像し、撮像された前後の画像に基づいてドットパターンの位置関係の変化から板状部材50の表面の最大主ひずみを算出するようになっている。制御ユニット60はまた、カメラ45によって撮像された画像及び板状部材50の長手方向中央部の最大主ひずみをディスプレイなどの表示装置(不図示)に表示するようになっている。 Regarding the uniaxial tensile test, the control unit 60 images the paint dot pattern applied by spraying on the surface of the plate member 50 before the tensile test using two cameras 45, and determines the dot pattern based on the before and after images taken. The maximum principal strain on the surface of the plate member 50 is calculated from the change in the positional relationship of the patterns. The control unit 60 is also configured to display the image captured by the camera 45 and the maximum principal strain at the longitudinal center of the plate member 50 on a display device (not shown) such as a display.

図12は、板状部材の長手方向中央部の最大主ひずみを示す図である。図12では、引張試験における破断直前の板状部材50の長手方向中央部の最大主ひずみを表示している。本実施形態では、引張試験時にカメラ45によって板状部材50の長手方向中央部の表面の画像を撮像し、撮像された板状部材50の長手方向中央部の画像に基づいて、デジタル画像相関法を用いて板状部材50の長手方向中央部の最大主ひずみを算出する。 FIG. 12 is a diagram showing the maximum principal strain at the central portion in the longitudinal direction of the plate member. FIG. 12 shows the maximum principal strain at the longitudinal center of the plate member 50 immediately before fracture in the tensile test. In this embodiment, an image of the surface of the central portion in the longitudinal direction of the plate-like member 50 is captured by the camera 45 during the tensile test, and based on the image of the central portion in the longitudinal direction of the plate-shaped member 50, a digital image correlation method is used. The maximum principal strain at the central portion in the longitudinal direction of the plate member 50 is calculated using .

引張試験では、板状部材50の長手方向中央部の中心側に板状部材50の長手方向に最大主ひずみが発生する。図12に示すように、板状部材50の長手方向中央部の最大主ひずみは、板状部材50の長手方向中央部の中心側から長手方向に離れるにつれて小さくなるとともに板状部材50の長手方向中央部の中心側から板幅方向に離れるにつれて小さくなっている。 In the tensile test, the maximum principal strain occurs in the longitudinal direction of the plate-shaped member 50 on the center side of the central portion in the longitudinal direction of the plate-shaped member 50 . As shown in FIG. 12, the maximum principal strain at the longitudinal center of the plate-like member 50 becomes smaller as it moves away from the center of the longitudinal center of the plate-like member 50 in the longitudinal direction. It becomes smaller as it moves away from the center side in the board width direction.

図13は、板状部材の板幅方向位置と最大主ひずみとの関係を示すグラフである。図13では、図12のV-V線に沿った板状部材50の表面について、板状部材50の板幅方向位置を横軸にとり、板状部材50の最大主ひずみを縦軸にとって表示している。図13に示すように、板状部材50の板幅方向中央側に板幅方向位置P10及びP11の間が延性破壊して割れが発生している。 FIG. 13 is a graph showing the relationship between the position of the plate-shaped member in the plate width direction and the maximum principal strain. In FIG. 13, the surface of the plate member 50 along the line VV in FIG. 12 is displayed with the horizontal axis representing the position of the plate member 50 in the width direction and the vertical axis representing the maximum principal strain of the plate member 50. ing. As shown in FIG. 13, ductile failure occurs at the central side of the plate-shaped member 50 in the width direction between positions P10 and P11 in the width direction.

図13に示すように、板状部材50が単軸引張変形して延性破壊するまで引張試験を行ったとき、板状部材50の延性破壊時の最大主ひずみは、板状部材50の長手方向中央部の板幅方向中央側(板幅方向位置P10)において最大値εmaxをとり、板幅方向一端側及び他端側に向かうにつれて小さくなる最大主ひずみ分布を有している。 As shown in FIG. 13, when a tensile test is performed until the plate member 50 undergoes uniaxial tensile deformation and undergoes ductile failure, the maximum principal strain at the time of ductile failure of the plate member 50 is in the longitudinal direction of the plate member 50. The maximum principal strain distribution has a maximum value εmax at the center side in the sheet width direction (position P10 in the sheet width direction) and decreases toward one end and the other end in the sheet width direction.

本実施形態では、単軸引張試験による板状部材50の延性破壊時の最大主ひずみの最大値εmaxを単軸引張試験による延性破壊時のひずみとして取得する。そして、板状部材50について単軸引張試験による延性破壊時のひずみを、ひずみ勾配に関わらず限界ひずみとする延性破壊限界ひずみ特性データL1cを算出する。図3に示すように、延性破壊限界ひずみ特性データL1cは、ひずみ勾配に関わらず板状部材50の材料に応じて限界ひずみが一定である限界ひずみ特性を有している。 In this embodiment, the maximum value εmax of the maximum principal strain at the time of ductile failure of the plate member 50 in the uniaxial tensile test is acquired as the strain at the time of ductile failure in the uniaxial tensile test. Then, ductile fracture limit strain characteristic data L1c is calculated in which the strain at the time of ductile fracture in the uniaxial tensile test of the plate member 50 is set as the limit strain regardless of the strain gradient. As shown in FIG. 3, the ductile fracture limit strain characteristic data L1c has a limit strain characteristic in which the limit strain is constant depending on the material of the plate member 50 regardless of the strain gradient.

本実施形態では、伸びフランジ割れの評価において、板状部材20の限界ひずみ特性データL1として、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cとを用いる。ひずみ勾配が所定値P1以下である場合、縁割れ限界ひずみデータL1a及び延性破壊限界ひずみ特性データL1cより限界ひずみが小さい内割れ限界ひずみ特性データL1bを用い、ひずみ勾配が所定値P1より大きく所定値P2以下である場合、内割れ限界ひずみ特性データL1b及び延性破壊限界ひずみ特性データL1cより限界ひずみが小さい縁割れ限界ひずみデータL1aを用い、ひずみ勾配が所定値P2より大きい場合、縁割れ限界ひずみデータL1a及び内割れ限界ひずみ特性データL1bより限界ひずみが小さい延性破壊限界ひずみ特性データL1cを用いる。 In this embodiment, in evaluating stretch flange cracking, edge cracking critical strain characteristic data L1a, internal cracking critical strain characteristic data L1b, and ductile fracture critical strain characteristic data L1c are used as critical strain characteristic data L1 of the plate member 20. . If the strain gradient is less than or equal to the predetermined value P1, use the internal crack limit strain characteristic data L1b, which has a smaller limit strain than the edge crack limit strain data L1a and the ductile fracture limit strain characteristic data L1c, and set the strain gradient to a predetermined value larger than the predetermined value P1. If it is less than P2, use the edge cracking limit strain data L1a, which has a smaller limit strain than the internal cracking limit strain characteristic data L1b and the ductile fracture limit strain characteristic data L1c, and if the strain gradient is greater than the predetermined value P2, use the edge cracking limit strain data. The ductile fracture limit strain characteristic data L1c, which has a smaller limit strain than L1a and the internal crack limit strain characteristic data L1b, is used.

板状部材から伸びフランジ部を有するプレス成形品をプレス成形するプレス成形解析時に、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cとを用いて、伸びフランジ部の割れを評価する。プレス成形解析時に、伸びフランジ部の端部について有限要素分割した解析モデルの各要素における最大主ひずみと該要素に伸びフランジ部の端部から離れる方向に隣接する要素とのひずみ勾配とを算出し、各要素において所定ひずみ勾配における最大主ひずみが、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cに基づく限界ひずみ特性データL1の限界ひずみ以上になると伸びフランジ割れが発生すると評価する。 During press forming analysis of press-forming a press-formed product having an elongated flange portion from a plate-like member, the edge crack limit strain characteristic data L1a, the internal crack limit strain characteristic data L1b, and the ductile fracture limit strain characteristic data L1c are used to calculate elongation. Evaluate cracks in the flange. During press forming analysis, calculate the maximum principal strain in each element of the analysis model divided into finite elements for the end of the stretch flange and the strain gradient with the element adjacent to this element in the direction away from the end of the stretch flange. , when the maximum principal strain at a predetermined strain gradient in each element exceeds the critical strain of critical strain characteristic data L1 based on edge crack critical strain characteristic data L1a, internal crack critical strain characteristic data L1b, and ductile fracture critical strain characteristic data L1c, elongation occurs. It is evaluated that flange cracking occurs.

伸びフランジ成形試験として、複数の板状部材についてそれぞれ板状部材の端部に割れを発生させるように成形して限界ひずみを算出する他の伸びフランジ成形試験を用いるようにしてもよい。他の伸びフランジ成形試験を用いる場合についても、割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに伸びフランジ成形試験による限界ひずみと板状部材の端面から板状部材の内部方向(前記端面の接線垂直方向)におけるひずみ勾配とを算出することで、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bを算出する。伸びフランジ成形試験として、複数の伸びフランジ成形試験を用いることも可能である。 As the stretch flange forming test, another stretch flange forming test may be used in which a plurality of plate members are formed so as to generate cracks at the ends of each plate member and the critical strain is calculated. When using other stretch flanging tests, it is also necessary to determine whether the cracking condition at the time of cracking is an edge crack or an internal crack, and also determine the limit strain from the stretch flanging test and the end face of the plate member. By calculating the strain gradient in the internal direction (direction perpendicular to the tangent to the end face), edge crack limit strain characteristic data L1a and internal crack limit strain characteristic data L1b are calculated. It is also possible to use a plurality of stretch flanging tests as the stretch flanging test.

伸びフランジ成形試験として、ひずみ勾配が非常に小さい場合について板状部材の限界ひずみとひずみ勾配との関係を示す特性データを算出するため、複数の板状部材についてそれぞれ板状部材の端部に割れを発生させるように板状部材を成形して限界ひずみを算出する片側打ち抜き引張試験を用いることができる。 As a stretch flange forming test, in order to calculate characteristic data that shows the relationship between the critical strain of a plate-like member and the strain gradient when the strain gradient is very small, cracks were created at the ends of each of the plate-like members for multiple plate-like members. A one-sided punching tensile test can be used in which a plate-like member is formed so as to generate , and the critical strain is calculated.

片側打ち抜き引張試験は、前述した単軸引張試験に用いた引張試験装置と同様の引張試験装置を用いて行うことができる。片側打ち抜き引張試験についても、JIS Z2241における5号試験片である板状部材として、長手方向中央部に所定板幅及び所定板厚を有する平行部を有する板状部材を用いることができる。片側打ち抜き引張試験では、所定打ち抜き端面形状を付与するように平行部の板幅方向一方側の端面が打ち抜き加工によって成形し、平行部の板幅方向他方側の端面が打ち抜き加工とは異なる機械加工などによって成形する。打ち抜き加工として、例えばダイ及びブランクホルダと打ち抜きパンチとを用いてクリアランスを板厚の12%として成形することができる。 The one-sided punching tensile test can be performed using a tensile testing device similar to the one used for the uniaxial tensile test described above. Regarding the one-sided punching tensile test, a plate-shaped member having a parallel portion having a predetermined width and a predetermined thickness at the center in the longitudinal direction can be used as the plate-shaped member which is a No. 5 test piece in JIS Z2241. In the single-sided punching tensile test, the end face on one side in the plate width direction of the parallel part is formed by punching so as to give a predetermined punched end shape, and the end face on the other side in the plate width direction of the parallel part is formed by a mechanical process different from the punching process. Shaped by etc. As a punching process, for example, a die, a blank holder, and a punch can be used to form the blank with a clearance of 12% of the plate thickness.

伸びフランジ成形試験として、片側打ち抜き引張試験を用いる場合、板状部材を板厚方向に貫通する割れが発生するまで引張試験を行うことで、板状部材の平行部の板幅方向の端部近傍に割れが発生する。試験時にはカメラによって板状部材の平行部の表面の画像を撮像し、撮像された板状部材の平行部の表面の画像に基づいて、作業者などが板状部材の端部に発生する割れの割れ状態を判定する。 When using a one-sided punching tensile test as a stretch flange forming test, the tensile test is performed until a crack occurs that penetrates the plate-like member in the thickness direction. Cracks occur. During the test, a camera captures an image of the surface of the parallel part of the plate-shaped member, and based on the captured image of the surface of the parallel part of the plate-shaped member, a worker etc. can identify the cracks that occur at the end of the plate-shaped member. Determine the crack condition.

片側打ち抜き引張試験では、板状部材の端面における最大主ひずみε0を算出すると共に、板状部材の端部近傍のひずみ勾配αとして板状部材の端面から前記端面から板状部材の内部方向(前記端面の接線垂直方向)に離れた位置における最大主ひずみのひずみ勾配αを算出する。 In the single-sided punching tensile test, the maximum principal strain ε0 at the end face of the plate-like member is calculated, and the strain gradient α near the end of the plate-like member is calculated from the end face of the plate-like member in the internal direction of the plate-like member (as described above). The strain gradient α of the maximum principal strain at a position away from the end surface in the direction perpendicular to the tangent to the end surface is calculated.

伸びフランジ成形試験として、片側打ち抜き引張試験を用い、複数の板状部材のそれぞれについて伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに、伸びフランジ成形試験による限界ひずみと板状部材の端面から板状部材の内部方向(前記端面の接線垂直方向)におけるひずみ勾配とを算出することができる。 As a stretch flange forming test, a one-sided punching tensile test is used to determine whether the cracking state at the time of cracking in the stretch flange forming test for each of a plurality of plate members is an edge crack or an internal crack. It is possible to calculate the critical strain from the forming test and the strain gradient in the internal direction of the plate-like member (direction perpendicular to the tangent to the end face) from the end face of the plate-like member.

板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データL1として、実際の伸びフランジ成形試験による割れの状態である縁割れ又は内割れに応じて縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bとを算出し、縁割れ限界ひずみ特性データL1a及び内割れ限界ひずみ特性データL1bを用いて伸びフランジ割れを評価するので、縁割れのみを考慮した限界ひずみ特性データを用いる場合に比して、伸びフランジ割れの評価精度を向上させることができる。さらに、単軸引張試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データL1cを用いて伸びフランジ部の割れを評価するので、ひずみ勾配が大きい場合についても限界ひずみが過剰に大きくなることを抑制することができ、伸びフランジ割れの評価精度を向上させることができる。 As critical strain characteristic data L1 showing the relationship between critical strain and strain gradient of a plate-shaped member, edge crack critical strain characteristic data L1a and internal cracking are determined according to edge cracking or internal cracking, which is the state of cracking in an actual stretch flange forming test. Since the limit strain characteristic data L1b for cracking is calculated, and the edge crack limit strain characteristic data L1a and the internal crack limit strain characteristic data L1b are used to evaluate stretch flange cracking, when using limit strain characteristic data considering only edge cracks. The evaluation accuracy of stretch flange cracking can be improved compared to the above. Furthermore, since the cracking of the stretch flange is evaluated using the ductile fracture critical strain characteristic data L1c, in which the critical strain is the strain at ductile fracture in the uniaxial tensile test, the critical strain may be excessively large even when the strain gradient is large. Therefore, it is possible to improve the evaluation accuracy of stretch flange cracking.

図3に示すように、板状部材20の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データL1として、縁割れのみを考慮した限界ひずみ特性データL1aのみを用いる場合、ひずみ勾配が所定値P1以下である場合には内割れ限界ひずみ特性データL1bより限界ひずみが大きく、プレス成形解析によって伸びフランジ割れが発生しないと評価されても実際にプレス成形したときに伸びフランジ割れが発生するおそれがある。 As shown in FIG. 3, when only the limit strain characteristic data L1a that takes into account only edge cracking is used as the limit strain characteristic data L1 that indicates the relationship between the limit strain and the strain gradient of the plate member 20, the strain gradient is a predetermined value. If it is less than P1, the critical strain is larger than the internal cracking critical strain characteristic data L1b, and even if it is evaluated by press forming analysis that stretch flange cracking will not occur, there is a risk that stretch flange cracking will occur during actual press forming. be.

また、縁割れのみを考慮した限界ひずみ特性データL1aのみを用いる場合、ひずみ勾配が所定値P2より大きい場合には延性破壊限界ひずみ特性データL1cより限界ひずみが大きく、プレス成形解析によって伸びフランジ割れが発生しないと評価されても実際にプレス成形したときに伸びフランジ割れが発生するおそれがある。 In addition, when using only the limit strain characteristic data L1a that takes only edge cracking into consideration, if the strain gradient is larger than the predetermined value P2, the limit strain is larger than the ductile fracture limit strain characteristic data L1c, and the press forming analysis shows that stretch flange cracks are not detected. Even if it is evaluated that no cracking will occur, there is a risk that stretch flange cracking will occur during actual press forming.

本実施形態では、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cとを用いるので、伸びフランジ割れの評価精度を向上させることができる。 In this embodiment, the edge crack limit strain characteristic data L1a, the internal crack limit strain characteristic data L1b, and the ductile fracture limit strain characteristic data L1c are used, so that the evaluation accuracy of stretch flange cracks can be improved.

図14は、伸びフランジ割れの評価方法を示すフローチャートである。図14に示すように、プレス成形品1の伸びフランジ部8の割れを評価する際には、先ず、穴部21を有する板状部材20について伸びフランジ成形試験を行う(ステップS1)。伸びフランジ成形試験時には、伸びフランジ成形試験による割れ発生時の割れ状態を判定し、割れ状態が縁割れであるか内割れであるかを判定する(ステップS2)。伸びフランジ成形試験として穴広げ試験を行う場合、穴広げ試験時の割れ状態が縁割れであるか内割れであるかを判定する。 FIG. 14 is a flowchart showing a method for evaluating stretch flange cracking. As shown in FIG. 14, when evaluating cracks in the stretch flange portion 8 of the press-formed product 1, first, a stretch flange forming test is performed on the plate member 20 having the hole portion 21 (step S1). During the stretch flange forming test, the cracking state at the time of crack occurrence in the stretch flange forming test is determined, and it is determined whether the cracking state is an edge crack or an internal crack (step S2). When performing a hole expansion test as a stretch flange forming test, it is determined whether the crack state during the hole expansion test is an edge crack or an internal crack.

伸びフランジ成形試験時にはまた、伸びフランジ成形試験による限界ひずみと板状部材の端面から板状部材の内部方向におけるひずみ勾配とを算出する(ステップS3)。伸びフランジ成形試験として穴広げ試験を行う場合、前記穴部の径方向におけるひずみ勾配とを算出する。穴広げ試験時に穴部21の端部に割れが発生すると、カメラ35によって撮像された板状部材20の表面の画像に基づいて、板状部材20の穴部近傍の表面全体について板状部材20の最大主ひずみを算出する。前述したように、板状部材20の表面全体について算出された板状部材20の最大主ひずみから、板状部材20の限界ひずみとひずみ勾配とを算出する。 During the stretch flanging test, the limit strain due to the stretch flanging test and the strain gradient in the direction from the end face of the plate member to the inside of the plate member are calculated (step S3). When performing a hole expansion test as a stretch flange forming test, the strain gradient in the radial direction of the hole is calculated. When a crack occurs at the end of the hole 21 during the hole expansion test, based on the image of the surface of the plate member 20 taken by the camera 35, the entire surface of the plate member 20 near the hole is removed. Calculate the maximum principal strain of. As described above, the critical strain and strain gradient of the plate-shaped member 20 are calculated from the maximum principal strain of the plate-shaped member 20 calculated for the entire surface of the plate-shaped member 20.

複数の板状部材20を用いて穴広げ試験として円筒穴広げ試験及び円錐穴広げ試験を行い、各穴広げ試験についてステップS1~ステップS3を繰り返し、複数の板状部材20についてそれぞれ、割れ状態を判定するとともに、穴広げ試験による限界ひずみとひずみ勾配とを算出する。 A cylindrical hole expansion test and a conical hole expansion test are performed as hole expansion tests using a plurality of plate-shaped members 20, and steps S1 to S3 are repeated for each hole expansion test to check the cracking state of each of the plurality of plate-shaped members 20. At the same time, the limit strain and strain gradient are calculated by the hole expansion test.

次に、伸びフランジ成形試験による割れ状態が縁割れである場合について、割れ状態が縁割れであるときの各板状部材20の限界ひずみとひずみ勾配とに基づいて、縁割れにおける板状部材20の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データL1aを算出する(ステップS4)。 Next, regarding the case where the cracking state in the stretch flange forming test is an edge cracking, based on the limit strain and strain gradient of each plate member 20 when the cracking state is an edge cracking, Edge crack limit strain characteristic data L1a indicating the relationship between the limit strain and the strain gradient is calculated (step S4).

伸びフランジ成形試験による割れ状態が内割れである場合についても、割れ状態が内割れであるときの各板状部材20の限界ひずみとひずみ勾配とに基づいて、内割れにおける板状部材20の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データL1bを算出する(ステップS5)。 Even when the crack state in the stretch flange forming test is an internal crack, the limit of the plate member 20 in internal cracking is determined based on the limit strain and strain gradient of each plate member 20 when the crack state is an internal crack. Internal crack limit strain characteristic data L1b indicating the relationship between strain and strain gradient is calculated (step S5).

ステップS1~S5において、伸びフランジ成形試験として、穴広げ試験などと共に、ひずみ勾配が非常に小さい場合について板状部材の限界ひずみとひずみ勾配との関係を示す特性データを算出するため、片側打ち抜き引張試験を行うようにしてもよい。 In steps S1 to S5, as a stretch flange forming test, along with a hole expansion test and the like, one-sided punching tensile You may also conduct a test.

片側打ち抜き引張試験を行う場合についても、片側打ち抜き引張試験を行い(ステップS1)、割れ発生時の割れ状態を判定し(ステップS2)、限界ひずみと板状部材の端面から板状部材の内部方向におけるひずみ勾配とを算出し(ステップS3)、穴広げ試験などの他の伸びフランジ成形試験などと共に、縁割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データL1aを算出し(ステップS4)、内割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データL1bを算出する(ステップS5)。 When performing a one-sided punching tensile test, the one-sided punching tensile test is also performed (step S1), the crack state at the time of cracking is determined (step S2), and the critical strain and the internal direction of the plate-like member from the end face of the plate-like member are determined. (Step S3), and calculate edge cracking critical strain characteristic data L1a that shows the relationship between the critical strain of the plate member at edge cracking and the strain gradient, along with other stretch flange forming tests such as hole expansion tests. is calculated (step S4), and internal crack limit strain characteristic data L1b indicating the relationship between the limit strain and strain gradient of the plate-like member at internal cracks is calculated (step S5).

伸びフランジ部8の割れを評価する際にはまた、伸びフランジ成形試験に用いた板状部材20と同一材料の板状部材50について単軸引張変形試験として単軸引張試験を行う(ステップS6)。単軸引張試験時には板状部材50の最大主ひずみを算出する。引張試験時に板状部材50が延性破壊して割れが発生するまで、カメラ45によって撮像された板状部材50の長手方向中央部の画像に基づいて、板状部材50の長手方向中央部の最大主ひずみを算出する。 When evaluating cracks in the stretch flange portion 8, a uniaxial tensile test is also performed as a uniaxial tensile deformation test on the plate member 50 made of the same material as the plate member 20 used in the stretch flange forming test (step S6). . During the uniaxial tensile test, the maximum principal strain of the plate member 50 is calculated. Until the plate member 50 undergoes ductile failure during the tensile test and cracks occur, the maximum length of the longitudinal center portion of the plate member 50 is determined based on the image of the longitudinal center portion of the plate member 50 taken by the camera 45. Calculate the principal strain.

板状部材50が延性破壊して割れが発生すると、板状部材50の破断時の最大主ひずみの最大値εmaxを引張試験による延性破壊時のひずみとし、板状部材50について引張試験による延性破壊時のひずみを、ひずみ勾配に関わらず限界ひずみとする延性破壊限界ひずみ特性データL1cを算出する(ステップS7)。 When the plate-shaped member 50 undergoes ductile fracture and cracks occur, the maximum value εmax of the maximum principal strain at the time of fracture of the plate-shaped member 50 is set as the strain at the time of ductile fracture in the tensile test, and the plate-shaped member 50 undergoes ductile fracture in the tensile test. Ductile fracture limit strain characteristic data L1c is calculated in which the strain at time is the limit strain regardless of the strain gradient (step S7).

次に、縁割れ限界ひずみ特性データL1a及び内割れ限界ひずみ特性データL1bと延性破壊限界ひずみ特性データL1cとに基づいて、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データL1を算出する(ステップS8)。限界ひずみ特性データL1は、縁割れ限界ひずみ特性データL1a、内割れ限界ひずみ特性データL1b及び延性破壊限界ひずみ特性データL1cのうち所定ひずみ勾配に対する限界ひずみが小さい限界ひずみ特性データによって形成される。 Next, based on the edge crack limit strain characteristic data L1a, the internal crack limit strain characteristic data L1b, and the ductile fracture limit strain characteristic data L1c, limit strain characteristic data L1 indicating the relationship between the limit strain and the strain gradient of the plate-shaped member are generated. is calculated (step S8). The limit strain characteristic data L1 is formed by limit strain characteristic data having a small limit strain for a predetermined strain gradient among edge crack limit strain characteristic data L1a, internal crack limit strain characteristic data L1b, and ductile fracture limit strain characteristic data L1c.

限界ひずみ特性データL1は、ひずみ勾配が所定値P1以下である場合は内割れ限界ひずみ特性データL1bによって形成され、ひずみ勾配が所定値P1より大きく所定値P2以下である場合は縁割れ限界ひずみ特性データL1bによって形成され、ひずみ勾配が所定値P2より大きい場合は延性破壊限界ひずみ特性データL1cによって形成される。 The limit strain characteristic data L1 is formed by the internal crack limit strain characteristic data L1b when the strain gradient is less than or equal to the predetermined value P1, and is formed by the edge crack limit strain characteristic when the strain gradient is greater than the predetermined value P1 and less than or equal to the predetermined value P2. It is formed by data L1b, and when the strain gradient is larger than a predetermined value P2, it is formed by ductile fracture limit strain characteristic data L1c.

そして、このようにして算出された板状部材の限界ひずみ特性データL1を用い、板状部材から伸びフランジ部を有するプレス成形品を成形するプレス成形解析を行い、伸びフランジ部の端部について有限要素分割した解析モデルの各要素における最大主ひずみと該要素に伸びフランジ部の端部から離れる方向に隣接する要素とのひずみ勾配とを算出し、限界ひずみ特性データL1以上である場合には割れが発生すると評価することで、伸びフランジ割れを評価する(ステップS9)。 Then, using the limit strain characteristic data L1 of the plate-shaped member calculated in this way, a press forming analysis is performed to form a press-formed product having a stretch flange part from the plate-shaped member, and the end part of the stretch flange part is The maximum principal strain in each element of the divided analytical model and the strain gradient of the element adjacent to the element in the direction away from the end of the stretch flange are calculated, and if the strain gradient is greater than or equal to the limit strain characteristic data L1, cracking is detected. Stretch flange cracking is evaluated by evaluating that it occurs (step S9).

本実施形態ではまた、板状部材として、前述した材料Aからなる引張強度が980MPa程度以上を有する高張力鋼板に代えて、材料Aと同様の980MPa級高張力鋼板において添加成分を変更した材料を用いた材料B及び材料Cからなる板状部材についても同様に、板状部材20の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを算出した。 In this embodiment, instead of the above-mentioned high tensile strength steel plate made of material A having a tensile strength of about 980 MPa or more, a material of a 980 MPa class high tensile strength steel plate similar to material A with different additive components is used as the plate member. For the plate-like members made of the materials B and C used, limit strain characteristic data indicating the relationship between the limit strain and the strain gradient of the plate-like member 20 was similarly calculated.

材料B及び材料Cを用いた限界ひずみ特性データについてもそれぞれ、材料Aを用いた限界ひずみ特性データL1と同様に、縁割れ限界ひずみデータと内割れ限界ひずみ特性データと延性破壊限界ひずみ特性データとによって形成された。材料B及び材料Cを用いた限界ひずみ特性データについてもそれぞれ、材料Aを用いた板状部材と同様に、前記限界ひずみ特性データを用いて板状部材から伸びフランジ部を有するプレス成形品を成形するプレス成形解析を行い、伸びフランジ割れを評価することができる。 Similarly to the limit strain characteristic data L1 using material A, the limit strain characteristic data using material B and material C are edge crack limit strain data, internal crack limit strain characteristic data, and ductile fracture limit strain characteristic data. formed by. Regarding the limit strain characteristic data using material B and material C, similarly to the plate member using material A, a press molded product having a stretch flange portion is formed from the plate member using the limit strain characteristic data. It is possible to perform press forming analysis and evaluate stretch flange cracking.

このように、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データとして、実際の伸びフランジ成形試験による割れの状態である内割れ又は縁割れに応じて内割れの限界ひずみ特性データ及び縁割れの限界ひずみ特性データを算出し、内割れ及び縁割れの限界ひずみ特性データを用いて伸びフランジ割れを評価するので、縁割れのみを考慮した限界ひずみ特性データを用いる場合に比して、伸びフランジ割れの評価精度を向上させることができる。さらに、単軸引張変形試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データを用いて伸びフランジ部の割れを評価するので、ひずみ勾配が大きい場合についても限界ひずみが過剰に大きくなることを抑制することができ、伸びフランジ割れの評価精度を向上させることができる。 In this way, as critical strain characteristic data showing the relationship between the critical strain and strain gradient of a plate-like member, the critical strain characteristic of internal cracking can be calculated according to internal cracking or edge cracking, which is the state of cracking in the actual stretch flange forming test. data and limit strain characteristic data for edge cracks are calculated, and stretch flange cracks are evaluated using limit strain characteristic data for internal cracks and edge cracks, compared to using limit strain characteristic data that takes only edge cracks into account. Therefore, it is possible to improve the evaluation accuracy of stretch flange cracking. Furthermore, since we evaluate cracks in the stretch flange using ductile fracture critical strain characteristic data in which the critical strain is the strain at ductile fracture in a uniaxial tensile deformation test, the critical strain may be excessively large even when the strain gradient is large. Therefore, it is possible to improve the evaluation accuracy of stretch flange cracking.

本実施形態では、穴広げ試験として円筒穴広げ試験及び円錐穴広げ試験を用いて内割れの限界ひずみ特性データ及び縁割れの限界ひずみ特性データを取得しているが、先端部が球頭状に形成された球頭パンチを用いた球頭穴広げ試験を用いて、割れの状態を判定するとともに板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを取得することも可能である。 In this embodiment, limit strain characteristic data for internal cracks and limit strain characteristic data for edge cracks are obtained using a cylindrical hole expansion test and a conical hole expansion test as hole expansion tests. Using a spherical hole expansion test using a formed spherical punch, it is possible to determine the state of cracking and to obtain critical strain characteristic data that shows the relationship between the critical strain and strain gradient of a plate-shaped member. be.

内割れ限界ひずみ特性データL1bとして、穴広げ試験による最大主ひずみとひずみ勾配との算出結果から、内割れである場合についてひずみ勾配と最大主ひずみとの関係を示した二次関数の近似式を算出しているが、一次関数の近似式を算出して内割れ限界ひずみ特性データを算出するようにしてもよい。 As the internal crack limit strain characteristic data L1b, from the calculation results of the maximum principal strain and strain gradient by the hole expansion test, an approximate expression of a quadratic function showing the relationship between the strain gradient and the maximum principal strain in the case of internal cracking is calculated. However, the internal crack limit strain characteristic data may be calculated by calculating an approximate expression of a linear function.

本実施形態では、板状部材の材料として、980MPa級高張力鋼板を用いているが、他の鋼板やアルミニウム合金板などの他の金属製の板材についても同様に適用可能である。また、伸びフランジ成形試験について、同一条件において、複数の板状部材を用いて複数回の伸びフランジ成形試験を行い、複数回の伸びフランジ成形試験の最大主ひずみの平均値を用いるようにすることも可能である。 In this embodiment, a 980 MPa class high tensile strength steel plate is used as the material of the plate-like member, but the present invention can be similarly applied to plate materials made of other metals such as other steel plates and aluminum alloy plates. In addition, regarding the stretch flange forming test, perform the stretch flange forming test multiple times using multiple plate members under the same conditions, and use the average value of the maximum principal strain of the multiple stretch flange forming tests. is also possible.

限界ひずみ特性データL1として、伸びフランジ成形試験による割れ発生時の割れ状態が縁割れ又は内割れである場合には、縁割れ限界ひずみデータと内割れ限界ひずみ特性データと延性破壊限界ひずみ特性データとによって形成された限界ひずみ特性データが用いられているが、伸びフランジ成形試験による割れ発生時の割れ状態が縁割れのみである場合には、縁割れ限界ひずみデータと延性破壊限界ひずみ特性データとが用いられる。限界ひずみ特性データL1として、縁割れ限界ひずみ特性データ、内割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データのうち少なくとも縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データが用いられる。 As limit strain characteristic data L1, if the crack state at the time of crack occurrence in the stretch flange forming test is edge cracking or internal cracking, edge crack limit strain data, internal crack limit strain characteristic data, and ductile fracture limit strain characteristic data. The critical strain characteristic data formed by used. As the limit strain characteristic data L1, at least edge crack limit strain characteristic data and ductile fracture limit strain characteristic data are used among edge crack limit strain characteristic data, internal crack limit strain characteristic data, and ductile fracture limit strain characteristic data.

本実施形態では、伸びフランジ成形試験において割れが発生したときの最大主ひずみを用いて限界ひずみと最大ひずみのひずみ勾配であるひずみ勾配との関係を示す限界ひずみ特性データを算出しているが、伸びフランジ成形試験において割れが発生する直前における最大主ひずみを用いて限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データを算出するようにすることも可能である。 In this embodiment, the maximum principal strain when cracking occurs in the stretch flange forming test is used to calculate the critical strain characteristic data that indicates the relationship between the critical strain and the strain gradient that is the strain gradient of the maximum strain. It is also possible to calculate critical strain characteristic data indicating the relationship between critical strain and strain gradient using the maximum principal strain immediately before cracking occurs in the stretch flange forming test.

本実施形態では、伸びフランジ成形試験において、板状部材の表面をカメラによって撮像し、撮像された表面の画像に基づいて限界ひずみとひずみ勾配とを算出しているが、スクライブドサークル法などの他の方法を用いて限界ひずみとひずみ勾配とを算出してもよい。単軸引張変形試験についても、スクライブドサークル法などの他の方法を用いて延性破壊時のひずみを算出してもよい。また、伸びフランジ成形試験では、カメラによって撮像された表面の画像に基づいて割れ状態を判定しているが、他の方法を用いて判定してもよい。 In this embodiment, in the stretch flange forming test, the surface of the plate member is imaged by a camera, and the critical strain and strain gradient are calculated based on the image of the surface. Other methods may be used to calculate the critical strain and strain gradient. Regarding the uniaxial tensile deformation test, the strain at ductile failure may be calculated using other methods such as the scribed circle method. Further, in the stretch flange forming test, the crack state is determined based on the image of the surface taken by the camera, but the determination may be made using other methods.

このように、本実施形態に係る伸びフランジ割れ評価方法は、複数の板状部材20についてそれぞれ伸びフランジ成形試験を行い、伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出し、板状部材20の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データL1として、縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bとを算出する。また、板状部材50について単軸引張変形試験を行い、単軸引張変形試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データL1cを算出する。そして、縁割れ限界ひずみ特性データL1a、内割れ限界ひずみ特性データL1b及び延性破壊限界ひずみ特性データL1cのうち少なくとも縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて伸びフランジ部の割れを評価する。 As described above, the stretch flange crack evaluation method according to the present embodiment performs a stretch flange forming test on each of a plurality of plate members 20, and determines whether the crack state at the time of crack occurrence in the stretch flange forming test is an edge crack or an internal crack. At the same time, the limit strain and strain gradient from the stretch flange forming test are calculated, and the limit strain characteristic data L1 indicating the relationship between the limit strain and strain gradient of the plate-shaped member 20 is used as edge crack limit strain characteristic data. L1a and internal crack limit strain characteristic data L1b are calculated. Further, a uniaxial tensile deformation test is performed on the plate member 50, and ductile fracture limit strain characteristic data L1c is calculated, with the strain at the time of ductile fracture in the uniaxial tensile deformation test as the limit strain. Then, cracks in the stretch flange portion are detected using at least the edge crack limit strain characteristic data and the ductile fracture limit strain characteristic data among the edge crack limit strain characteristic data L1a, the internal crack limit strain characteristic data L1b, and the ductile fracture limit strain characteristic data L1c. evaluate.

これにより、板状部材の限界ひずみとひずみ勾配との関係を示す限界ひずみ特性データL1として、実際の伸びフランジ成形試験による割れの状態である縁割れ又は内割れに応じて縁割れ限界ひずみ特性データL1aと内割れ限界ひずみ特性データL1bとを算出し、縁割れ限界ひずみ特性データL1a及び内割れ限界ひずみ特性データL1bを用いて伸びフランジ割れを評価するので、縁割れのみを考慮した限界ひずみ特性データを用いる場合に比して、伸びフランジ割れの評価精度を向上させることができる。さらに、単軸引張変形試験による延性破壊時のひずみを限界ひずみとする延性破壊限界ひずみ特性データL1cを用いて伸びフランジ部の割れを評価するので、ひずみ勾配が大きい場合についても限界ひずみが過剰に大きくなることを抑制することができ、伸びフランジ割れの評価精度を向上させることができる。割れ発生時の割れ状態が縁割れのみである板状部材には、縁割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて、伸びフランジ割れの評価精度を向上させることができる。 As a result, edge cracking limit strain characteristic data L1, which indicates the relationship between the limit strain and strain gradient of a plate-shaped member, is obtained according to edge cracking or internal cracking, which is the state of cracking in the actual stretch flange forming test. L1a and internal crack limit strain characteristic data L1b are calculated, and stretch flange cracking is evaluated using the edge crack limit strain characteristic data L1a and internal crack limit strain characteristic data L1b, so the limit strain characteristic data takes only edge cracks into account. The evaluation accuracy of stretch flange cracking can be improved compared to the case of using the method. Furthermore, since the cracking of the stretch flange is evaluated using the ductile fracture critical strain characteristic data L1c, in which the critical strain is the strain at ductile failure in the uniaxial tensile deformation test, the critical strain is not excessive even when the strain gradient is large. It is possible to suppress the increase in size, and it is possible to improve the evaluation accuracy of stretch flange cracks. For a plate-shaped member in which the only cracking state at the time of cracking is edge cracking, the accuracy of evaluating stretch flange cracking can be improved by using edge cracking limit strain characteristic data and ductile fracture limit strain characteristic data.

また、伸びフランジ割れ評価方法は、縁割れ限界ひずみ特性データ、内割れ限界ひずみ特性データ及び延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する。これにより、割れ発生時の割れ状態が縁割れ又は内割れである板状部材について、伸びフランジ割れの評価精度を向上させることができる。 Furthermore, the stretch flange crack evaluation method evaluates cracks in the stretch flange portion using edge crack limit strain characteristic data, internal crack limit strain characteristic data, and ductile fracture limit strain characteristic data. As a result, it is possible to improve the evaluation accuracy of stretch flange cracking for plate-shaped members whose cracking state at the time of cracking is edge cracking or internal cracking.

また、伸びフランジ割れ評価方法は、板状部材から伸びフランジ部を有するプレス成形品をプレス成形するプレス成形解析時に、縁割れ限界ひずみ特性データL1a、内割れ限界ひずみ特性データL1b及び延性破壊限界ひずみ特性データL1cのうち少なくとも縁割れ限界ひずみ特性データL1a及び延性破壊限界ひずみ特性データL1cを用いて、伸びフランジ部の割れを評価する。これにより、プレス成形解析時に、伸びフランジ部の端部について有限要素分割した解析モデルの各要素における最大主ひずみと該要素に伸びフランジ部の端部から離れる方向に隣接する要素とのひずみ勾配とを算出することで、プレス成形解析における伸びフランジ部の割れを精度良く評価することができる。 In addition, the stretch flange crack evaluation method uses edge crack limit strain characteristic data L1a, internal crack limit strain characteristic data L1b, and ductile fracture limit strain during press forming analysis in which a press molded product having a stretch flange portion is press-formed from a plate member. Of the characteristic data L1c, at least the edge crack limit strain characteristic data L1a and the ductile fracture limit strain characteristic data L1c are used to evaluate cracks in the stretch flange portion. As a result, during press forming analysis, the maximum principal strain in each element of the analysis model divided into finite elements for the end of the stretch flange and the strain gradient of the element adjacent to the element in the direction away from the end of the stretch flange can be calculated. By calculating , it is possible to accurately evaluate cracks in the stretch flange portion in press forming analysis.

また、伸びフランジ割れ評価方法は、伸びフランジ成形試験において板状部材20の表面をカメラ35によって撮像し、カメラ35によって撮像された板状部材20の表面の画像に基づいて、板状部材20について伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出する。これにより、デジタル画像相関法を用いて限界ひずみとひずみ勾配とを算出することができ、精度良く限界ひずみとひずみ勾配とを算出することが可能である。 In addition, the stretch flange crack evaluation method is such that the surface of the plate member 20 is imaged by the camera 35 in the stretch flange forming test, and based on the image of the surface of the plate member 20 taken by the camera 35, the Calculate the critical strain and strain gradient from the stretch flange forming test. Thereby, it is possible to calculate the critical strain and the strain gradient using the digital image correlation method, and it is possible to calculate the critical strain and the strain gradient with high accuracy.

また、伸びフランジ割れ評価方法は、伸びフランジ成形試験において板状部材20の表面をカメラ35によって撮像し、カメラ35によって撮像された板状部材20の表面の画像に基づいて、板状部材20について伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定する。これにより、板状部材20の表面の画像に基づいて割れ発生時の割れ起点を見つけることで、縁割れ又は内割れの割れ状態の判定精度を向上させてフランジ割れの評価精度を向上させることができる。 In addition, the stretch flange crack evaluation method is such that the surface of the plate member 20 is imaged by the camera 35 in the stretch flange forming test, and based on the image of the surface of the plate member 20 taken by the camera 35, the Determine whether the crack state at the time of crack occurrence in the stretch flange forming test is an edge crack or an internal crack. As a result, by finding the crack origin when a crack occurs based on the image of the surface of the plate member 20, it is possible to improve the accuracy of determining the crack state of edge cracks or internal cracks, and improve the evaluation accuracy of flange cracks. can.

また、伸びフランジ割れ評価方法は、単軸引張変形試験において板状部材50の表面をカメラ45によって撮像し、カメラ45によって撮像された板状部材50の表面の画像に基づいて、板状部材50について単軸引張変形試験による延性破壊時のひずみを算出する。これにより、デジタル画像相関法を用いて延性破壊時のひずみを算出することができ、精度良く延性破壊限界ひずみを算出することが可能である。カメラによって撮像された画像に基づいて、板状部材について伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出するとともに、板状部材について単軸引張変形試験による延性破壊時のひずみを算出することで、デジタル画像相関法を用いて限界ひずみとひずみ勾配とを算出するとともに延性破壊限界ひずみを算出することができ、伸びフランジ割れの評価精度を向上させることができる。 In addition, the stretch flange crack evaluation method involves imaging the surface of the plate-like member 50 with a camera 45 in a uniaxial tensile deformation test, and based on the image of the surface of the plate-like member 50 taken by the camera 45, Calculate the strain at ductile failure using a uniaxial tensile deformation test. Thereby, the strain at the time of ductile failure can be calculated using the digital image correlation method, and the ductile failure limit strain can be calculated with high accuracy. Based on the images captured by the camera, we calculated the critical strain and strain gradient of the plate-shaped member in the stretch flange forming test, and also calculated the strain at the time of ductile failure in the uniaxial tensile deformation test of the plate-shaped member. By using the digital image correlation method, it is possible to calculate the critical strain and the strain gradient as well as the critical strain for ductile fracture, and it is possible to improve the evaluation accuracy of stretch flange cracking.

本発明は、例示された実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能である。 The present invention is not limited to the illustrated embodiments, and various improvements and changes in design are possible without departing from the gist of the present invention.

以上のように、本発明によれば、伸びフランジ割れの評価精度を向上させることができるので、板状部材から伸びフランジ部を有するプレス成形品を成形するプレス成形をシミュレーションする場合に、好適に利用可能である。 As described above, according to the present invention, it is possible to improve the evaluation accuracy of stretch flange cracking, so it is suitable for simulating press forming in which a press-formed product having a stretch flange portion is formed from a plate-like member. Available.

1 プレス成形品
8 伸びフランジ部
10 穴広げ試験装置
14,15 パンチ
20,50 板状部材
22 割れ
30,60 制御ユニット
35,45 カメラ
40 引張試験装置
L1 限界ひずみ特性データ
L1a 縁割れ限界ひずみ特性データ
L1b 内割れ限界ひずみ特性データ
L1c 延性破壊限界ひずみ特性データ
1 Press-formed product 8 Stretch flange portion 10 Hole expansion test device 14, 15 Punch 20, 50 Plate member 22 Cracks 30, 60 Control unit 35, 45 Camera 40 Tensile test device L1 Critical strain characteristic data L1a Edge crack critical strain characteristic data L1b Internal cracking limit strain characteristic data L1c Ductile fracture limit strain characteristic data

Claims (6)

プレス成形品の伸びフランジ部の割れを評価する伸びフランジ割れ評価方法であって、
複数の板状部材についてそれぞれ前記板状部材の端部に割れを発生させるように成形して限界ひずみを算出する伸びフランジ成形試験を行い、
前記複数の板状部材と同一材料の板状部材について単軸引張変形させて延性破壊時のひずみを算出する単軸引張変形試験を行い、
前記複数の板状部材のそれぞれについて前記伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定するとともに前記伸びフランジ成形試験による限界ひずみと前記板状部材の端面から前記板状部材の内部方向におけるひずみ勾配とを算出し、
前記伸びフランジ成形試験による割れ状態が縁割れであるときの各板状部材の限界ひずみとひずみ勾配とに基づいて、縁割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す縁割れ限界ひずみ特性データを算出し、
前記伸びフランジ成形試験による割れ状態が内割れであるときの各板状部材の限界ひずみとひずみ勾配とに基づいて、内割れにおける板状部材の限界ひずみとひずみ勾配との関係を示す内割れ限界ひずみ特性データを算出し、
前記板状部材について前記単軸引張変形試験による延性破壊時のひずみをひずみ勾配に関わらず限界ひずみとする延性破壊限界ひずみ特性データを算出し、
前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データのうち少なくとも前記縁割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する、
伸びフランジ割れ評価方法。
A stretch flange crack evaluation method for evaluating cracks in a stretch flange portion of a press-formed product,
Conducting a stretch flange forming test in which a plurality of plate-like members are formed so as to generate cracks at the ends of each of the plate-like members to calculate the critical strain,
Conducting a uniaxial tensile deformation test in which a plate member made of the same material as the plurality of plate members is subjected to uniaxial tensile deformation and the strain at the time of ductile failure is calculated,
For each of the plurality of plate-shaped members, it is determined whether the crack state at the time of crack occurrence in the stretch-flange forming test is an edge crack or an internal crack, and the critical strain in the stretch-flange forming test and the limit strain of the plate-shaped member are determined. Calculating the strain gradient in the internal direction of the plate-shaped member from the end surface,
Based on the critical strain and strain gradient of each plate-like member when the cracking state in the stretch-flange forming test is edge cracking, the edge cracking limit shows the relationship between the critical strain and strain gradient of the plate-like member in edge cracking. Calculate strain characteristic data,
Based on the critical strain and strain gradient of each plate-like member when the cracking state in the stretch-flange forming test is internal cracking, the internal cracking limit shows the relationship between the critical strain and strain gradient of the plate-like member in internal cracking. Calculate strain characteristic data,
Calculating ductile fracture limit strain characteristic data for the plate-shaped member in which the strain at ductile fracture in the uniaxial tensile deformation test is the limit strain regardless of the strain gradient,
Using at least the edge cracking limit strain characteristic data and the ductile fracture limit strain characteristic data of the edge cracking limit strain characteristic data, the internal cracking limit strain characteristic data, and the ductile fracture limit strain characteristic data, cracks in the stretch flange portion are determined. evaluate,
Stretch flange crack evaluation method.
前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する、
請求項1に記載の伸びフランジ割れ評価方法。
Evaluating cracks in the stretch flange portion using the edge crack limit strain characteristic data, the internal crack limit strain characteristic data, and the ductile fracture limit strain characteristic data;
The stretch flange crack evaluation method according to claim 1.
板状部材から伸びフランジ部を有するプレス成形品をプレス成形するプレス成形解析時に、前記縁割れ限界ひずみ特性データ、前記内割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データのうち少なくとも前記縁割れ限界ひずみ特性データ及び前記延性破壊限界ひずみ特性データを用いて、伸びフランジ部の割れを評価する、
請求項1又は請求項2に記載の伸びフランジ割れ評価方法。
At the time of press forming analysis in which a press-formed product having a stretch flange portion is press-formed from a plate member, at least the edge cracking limit strain characteristic data, the internal cracking limit strain characteristic data, and the ductile fracture limit strain characteristic data are detected. Evaluating cracks in the stretch flange portion using the critical strain characteristic data and the ductile fracture critical strain characteristic data;
The stretch flange cracking evaluation method according to claim 1 or 2.
前記伸びフランジ成形試験において前記板状部材の表面をカメラによって撮像し、
前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記伸びフランジ成形試験による限界ひずみとひずみ勾配とを算出する、
請求項1から請求項3の何れか1項に記載の伸びフランジ割れ評価方法。
In the stretch flange forming test, the surface of the plate member is imaged by a camera,
Calculating the limit strain and strain gradient in the stretch flange forming test for the plate-shaped member based on an image of the surface of the plate-shaped member captured by the camera;
The stretch flange crack evaluation method according to any one of claims 1 to 3.
前記伸びフランジ成形試験において前記板状部材の表面をカメラによって撮像し、
前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記伸びフランジ成形試験による割れ発生時の割れ状態が縁割れであるか内割れであるかを判定する、
請求項1から請求項4の何れか1項に記載の伸びフランジ割れ評価方法。
In the stretch flange forming test, the surface of the plate member is imaged by a camera,
Based on an image of the surface of the plate-shaped member taken by the camera, determining whether the cracking state of the plate-shaped member when a crack occurs in the stretch flange forming test is an edge crack or an internal crack.
The stretch flange crack evaluation method according to any one of claims 1 to 4.
前記単軸引張変形試験において前記板状部材の表面をカメラによって撮像し、
前記カメラによって撮像された前記板状部材の表面の画像に基づいて、前記板状部材について前記単軸引張変形試験による延性破壊時のひずみを算出する、
請求項1から請求項5の何れか1項に記載の伸びフランジ割れ評価方法。
In the uniaxial tensile deformation test, the surface of the plate member is imaged by a camera,
Calculating the strain at the time of ductile failure in the uniaxial tensile deformation test for the plate-shaped member based on an image of the surface of the plate-shaped member captured by the camera;
The stretch flange crack evaluation method according to any one of claims 1 to 5.
JP2022059396A 2022-03-31 2022-03-31 Elongation flange crack evaluation method Pending JP2023150334A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022059396A JP2023150334A (en) 2022-03-31 2022-03-31 Elongation flange crack evaluation method
KR1020230040211A KR20230141555A (en) 2022-03-31 2023-03-28 Stretch-flange crack evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022059396A JP2023150334A (en) 2022-03-31 2022-03-31 Elongation flange crack evaluation method

Publications (1)

Publication Number Publication Date
JP2023150334A true JP2023150334A (en) 2023-10-16

Family

ID=88292446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022059396A Pending JP2023150334A (en) 2022-03-31 2022-03-31 Elongation flange crack evaluation method

Country Status (2)

Country Link
JP (1) JP2023150334A (en)
KR (1) KR20230141555A (en)

Also Published As

Publication number Publication date
KR20230141555A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
Rohatgi et al. Electro-hydraulic forming of sheet metals: Free-forming vs. conical-die forming
US11590591B2 (en) Press die designing method using an index value obtained from two stress gradients in sheet thickness direction and gradient of surface stress distribution in direction
Ahmetoglu et al. Control of blank holder force to eliminate wrinkling and fracture in deep-drawing rectangular parts
CN113196034B (en) Collision performance evaluation test method and device for metal plate for automobile body
Abbasi et al. Analytical method for prediction of weld line movement during stretch forming of tailor-welded blanks
Abdelkefi et al. Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes
JP2020134348A (en) Stress-strain relation estimation method
US11971390B2 (en) Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method
JP2020040111A (en) Deformation limit evaluation method, crack prediction method and press metal mold design method
Cheong On the influence of the through-thickness strain gradients for characterization of formability and fracture of sheet metal alloys
Reddy et al. Formability: A review on different sheet metal tests for formability
WO2024009566A1 (en) Method and device for obtaining forming limit of metal sheet
JP2023150334A (en) Elongation flange crack evaluation method
JP2011173136A (en) Method of determining bending limitation of plate material and method of determining crack of pressed component by bending using the same
Pepelnjak et al. Computer-assisted engineering determination of the formability limit for thin sheet metals by a modified Marciniak method
Li et al. Benchmark 1-nonlinear strain path forming limit of a reverse draw: Part b: Physical tryout report
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
Wagner et al. Improved bendability characterization of UHSS sheets
Jasiński et al. A new approach to experimental testing of sheet metal formability for automotive industry
Ruoppa et al. Bendability tests for ultra-high-strength steels with optical strain analysis and prediction of bending force
Panich et al. Formability prediction of advanced high-strength steel sheets by means of combined experimental and numerical approaches
Zubia et al. Study on the influence of the springback on the hole expansion ratio characterization
JP7452520B2 (en) Press molding crack determination method, press molding crack determination device, press molding crack determination program, and press molding crack suppression method
JP7031640B2 (en) How to evaluate the formability of metal plates
Kim et al. Numerical approach to the evaluation of forming limit curves for zircaloy-4 sheet