JP2023149454A - Waterless offset original plate manufacturing method and manufacturing apparatus - Google Patents

Waterless offset original plate manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP2023149454A
JP2023149454A JP2022058036A JP2022058036A JP2023149454A JP 2023149454 A JP2023149454 A JP 2023149454A JP 2022058036 A JP2022058036 A JP 2022058036A JP 2022058036 A JP2022058036 A JP 2022058036A JP 2023149454 A JP2023149454 A JP 2023149454A
Authority
JP
Japan
Prior art keywords
coating
base material
film
cylindrical base
release film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022058036A
Other languages
Japanese (ja)
Inventor
義則 谷
Yoshinori Tani
泰宏 中田
Yasuhiro Nakada
潔 箕浦
Kiyoshi Minoura
明宏 飯原
Akihiro Iihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2022058036A priority Critical patent/JP2023149454A/en
Publication of JP2023149454A publication Critical patent/JP2023149454A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide a manufacturing method of a waterless offset original plate of a columnar substrate in which a peelable film has the high coatability with respect to a substrate while using a material of an easy-to-peel film for the peelable film for substrate reproduction, which can perform stable printing and can manufacture a high-quality original plate that has the adhesion of a functional film necessary for printing.SOLUTION: A manufacturing method includes: a first application step of spraying a peelable film material from a first applicator provided on the lower side of a columnar substrate to a peripheral surface of the columnar substrate while rotating a shaft of the columnar substrate as the central shaft by using the peelable film material with a specific physical property and applying the liquid peelable film material while making it adhere to the surface of the columnar substrate; a first solidification step of shrinking the peelable film material applied onto the columnar substrate and forming a peelable film on the columnar substrate by performing dry-solidification of the peelable film material applied in such a state that the columnar substrate is rotated subsequently to the first application step; and a second application step of discharging a silicone film material from a second applicator and applying the silicone film material to the surface of the peelable film.SELECTED DRAWING: Figure 1

Description

本発明は、水なしオフセット原版の製造方法および製造装置に関する。 The present invention relates to a method and apparatus for manufacturing a waterless offset original plate.

水なしオフセット印刷は、通常のオフセット印刷で油性インキを反発させるために用いている湿し水の代わりに、インキ反発性のあるシリコーン材料を用いていることを特徴とする平版印刷技術である。この水なしオフセット印刷では、原版として、アルミニウムなどの板材表面にシリコーンの膜を形成したものを用いるのが一般的である(特許文献1)。 Waterless offset printing is a lithographic printing technology characterized by using a silicone material with ink repellency instead of the dampening water used to repel oil-based ink in normal offset printing. In this waterless offset printing, it is common to use a plate material such as aluminum on which a silicone film is formed on the surface of the original plate (Patent Document 1).

具体的には、連続する長い板材に対しシリコーン材料を連続して塗布した後、必要とする原版の大きさに応じ、個々の長さにカットして使用する。そして、その原版に印刷パターンを加工し、印刷版とした後は、版胴と呼ばれる円柱基材に印刷版を巻き付け、印刷機にて使用される。 Specifically, the silicone material is continuously applied to a long continuous plate, and then the plate is cut into individual lengths depending on the size of the required original plate. After a printing pattern is processed on the original plate to form a printing plate, the printing plate is wound around a cylindrical base material called a plate cylinder and used in a printing machine.

しかし、その際、印刷版の端部が円柱基材上の周方向で継ぎ目となり、この継ぎ目部分近傍では印刷できないという課題がある。この課題に対し、特許文献2には、オフセット原版を従来の板状から継ぎ目の無い円柱状とする原版が提案されている。さらに、特許文献2には、円筒状版基材の梨地状粗面に塗布したレジストパターンを、超音波洗浄処理、化学薬品洗浄処理などの処理を行って、円筒状版基材の表面からレジストパターン部を除去することで印刷版を再生処理することが開示されている。 However, in this case, there is a problem in that the edge of the printing plate forms a seam in the circumferential direction on the cylindrical base material, and printing is not possible in the vicinity of this seam. To address this problem, Patent Document 2 proposes an original plate in which the offset original plate is changed from the conventional plate shape to a seamless columnar shape. Furthermore, Patent Document 2 discloses that a resist pattern applied to the matte rough surface of a cylindrical plate base material is subjected to treatments such as ultrasonic cleaning treatment and chemical cleaning treatment, so that the resist pattern is removed from the surface of the cylindrical plate base material. It is disclosed that a printing plate is recycled by removing the pattern portion.

さらに、特許文献3には、水なしオフセット印刷において、円筒状版基材の表面にシリコーン樹脂層をコーティングする方法などで継ぎ目がなくシームレスに形成することが提案されている。 Further, in waterless offset printing, Patent Document 3 proposes a method of coating the surface of a cylindrical plate base material with a silicone resin layer to form a seamless pattern without any seams.

特開平05-094008号公報Japanese Patent Application Publication No. 05-094008 国際公開第2017/104327号International Publication No. 2017/104327 国内公開第2017/077825号Domestic publication No. 2017/077825

原版の基材形状が、従来の板状から円柱形状になった場合、その製造において従来の手法を用いることが困難となる工程がある。基材上に必要な機能膜を形成する工程もその1つである。例えば、円柱状基材を用いる際は、原版の大きさによって、外径の異なる円柱状基材を用いるが、その保管や運送時において、板状基材のように重ねて、コンパクトにまとめることが出来ないことから、原版の製造は印刷所や印刷メーカーで実施される場合がある。 When the shape of the base material of the original plate changes from a conventional plate shape to a cylindrical shape, there are steps in the manufacturing process in which it is difficult to use conventional methods. One of them is the process of forming a necessary functional film on a base material. For example, when using cylindrical base materials, different outer diameters are used depending on the size of the original plate, but when storing and transporting them, they can be stacked like plate-like base materials to make them compact. Since this is not possible, the original plate may be manufactured at a printing shop or printing manufacturer.

原版の製造場所が印刷所や印刷メーカーとなった場合、原版の製造は、その場所で必要な個数のみ作ることとなり、その保管場所や運送負荷の関係で、同じ円柱状基材を繰り返し再利用するのが好ましい。この円柱状基材の再利用においては、円柱状基材の表面に形成した機能膜を、印刷版として使用した後に除去し、再度、機能膜を形成するという再生工程が必要となる。水なしオフセット原版の機能膜として用いられるシリコーン材料は、円柱状基材に密着しやすく、完全に無くなるまで除去することが困難である。そこで、円柱基材上に容易に剥離できる剥離膜を設けておいて、剥離膜上にシリコーン膜を形成し、基材を再生する際は、その剥離膜をシリコーン膜ごと引き剥がす再生方法が考えられるが、円柱状基材の表面に形成した剥離膜は、印刷時における版面の剥がれを防ぐために、円柱状基材との密着力が必要であり、特に、印刷時の回転方向である基材の周方向には、円柱状基材と強固な密着性が求められる。 If the original plate is manufactured at a printing shop or printing manufacturer, the original plate will be manufactured only in the required number at that location, and the same cylindrical base material will be reused repeatedly due to the storage space and transportation load. is preferable. Reusing this cylindrical base material requires a recycling process in which the functional film formed on the surface of the cylindrical base material is removed after being used as a printing plate, and the functional film is formed again. The silicone material used as the functional film of the waterless offset original plate tends to adhere to the cylindrical substrate and is difficult to remove until it is completely gone. Therefore, a recycling method has been considered in which a release film that can be easily peeled off is provided on a cylindrical base material, a silicone film is formed on the release film, and when the base material is recycled, the release film is peeled off together with the silicone film. However, the release film formed on the surface of the cylindrical substrate needs to have good adhesion to the cylindrical substrate in order to prevent the plate surface from peeling off during printing. Strong adhesion to the cylindrical base material is required in the circumferential direction.

つまり、円柱状基材を再生のために設ける剥離膜は、再生工程において容易に剥がすことができることに加え、印刷工程では、円柱状基材に対し強固に密着し剥がれないという、相反する機能を両立させる必要がある。しかしながら、水なしオフセット原版の製造において、円柱状基材表面に液状の剥離膜材料を塗布し剥離膜を形成することも、剥離時の易剥離性と円柱状基材との高い密着性を両立することは検討されていなかった。 In other words, the release film provided for recycling the cylindrical base material has the contradictory function of not only being easily peelable during the recycling process, but also firmly adhering to the cylindrical base material and not peeling off during the printing process. It is necessary to balance both. However, in the production of waterless offset master plates, coating a liquid release film material on the surface of a cylindrical base material to form a release film also achieves both easy peelability and high adhesion to the cylindrical base material. It was not considered to do so.

すなわち、本発明の解決しようとする課題は、円柱状基材の表面に継ぎ目のないシームレスの水なしオフセット原版を製造するに際し、円柱状基材から剥離し易く円柱状基材を再生可能にしつつ、印刷時においては基材に対し高い密着状態を保持し安定した印刷を行うことであり、そのための製造方法および製造装置の提供することを目的とする。 That is, the problem to be solved by the present invention is to manufacture a seamless waterless offset original plate with no seams on the surface of a cylindrical base material, while making the cylindrical base material easy to peel from and recyclable. The purpose of this invention is to maintain a high degree of adhesion to a base material and perform stable printing during printing, and an object thereof is to provide a manufacturing method and a manufacturing apparatus for this purpose.

上記課題を解決するため、本発明は、以下の構成からなる水なしオフセット原版の製造方法および製造装置を提供する。
(1)円柱状基材の表面に、液状の剥離膜材料を塗布する第1の塗布工程と、前記剥離膜材料を乾燥固化し前記円柱状の基材の表面に剥離膜を形成する第1の固化工程と、前記剥離膜の表面にシリコーン膜材料を塗布する第2の塗布工程と、前記シリコーン膜材料を乾燥固化する第2の固化工程とを含む、水なしオフセット原版の製造方法において、前記剥離膜材料は、乾燥固化後の標準剥離特性において、塗膜厚みが100μm以下のとき、剥離膜の引張強さ[N/mm]と塗膜厚み[mm]の積が、剥離膜の粘着力[N/mm]を超える剥離膜材料を用い、前記第1の塗布工程が、前記円柱状基材の軸を中心軸として回転させながら、前記円柱状基材の周面方向に対し、前記円柱状基材の下方に設けた第1の塗布器から前記剥離膜材料を噴き上げ、前記円柱状基材の表面に前記液状の剥離膜材料を付着させながら塗布する工程であり、
前記第1の固化工程が、前記第1の塗布工程に続き、前記円柱基材を回転した状態で塗布された剥離膜材料の乾燥固化を行うことで、前記円柱基材上で塗布された剥離膜材料を収縮させ、前記円柱基材上に前記剥離膜を形成する工程であり、前記第2の塗布工程は、第2の塗布器から前記シリコーン膜材料を吐出し、前記剥離膜の表面に前記シリコーン膜材料を塗布する工程であり、円柱状基材の表面に、少なくとも前記剥離膜とシリコーン膜とを含む積層体が形成される、水なしオフセット原版の製造方法である。
In order to solve the above problems, the present invention provides a method and apparatus for manufacturing a waterless offset original plate having the following configuration.
(1) A first coating step of applying a liquid release film material to the surface of the columnar base material, and a first coating step of drying and solidifying the release film material to form a release film on the surface of the columnar base material. A method for producing a waterless offset original plate, comprising a solidifying step, a second coating step of applying a silicone film material to the surface of the release film, and a second solidifying step of drying and solidifying the silicone film material, The release film material has standard release properties after drying and solidification, such that when the film thickness is 100 μm or less, the product of the release film tensile strength [N/mm 2 ] and the coating film thickness [mm] is Using a release film material with an adhesive force exceeding [N/mm], the first application step is performed while rotating the axis of the cylindrical base material as a central axis, with respect to the circumferential direction of the cylindrical base material. Spraying the release film material from a first applicator provided below the cylindrical base material, and applying the liquid release film material while adhering it to the surface of the cylindrical base material,
The first solidifying step is subsequent to the first coating step, and is performed by drying and solidifying the release film material applied while rotating the cylindrical base material, so that the release film material coated on the cylindrical base material is This is a step of shrinking the film material to form the release film on the cylindrical base material, and the second application step is a step of discharging the silicone film material from a second applicator and applying it onto the surface of the release film. This is a step of applying the silicone film material, and is a method for producing a waterless offset original plate, in which a laminate including at least the release film and the silicone film is formed on the surface of a cylindrical base material.

(2)前記第1の塗布工程が、前記円柱状基材の回転運動を行いながら、前記第1の塗布器を円柱状の基材の軸方向に往復移動させることにより、前記円柱状基材の周面に前記剥離膜材料を噴き上げて塗膜を形成することを特徴とする、(1)に記載の水なしオフセット原版の製造方法である。
(3)前記液状の剥離膜材料の粘度が、0.01~1Poiseである、(1)または(2)に記載の水なしオフセット原版の製造方法である。
(4)前記第1の固化工程の途中で、前記円柱状基材を回転した状態で、第2の塗布工程を開始する、(1)~(3)に記載の水なしオフセット原版の製造方法である。
(5)前記第1の固化工程および前記第2の固化工程が、前記円柱状の基材の回転により生じる風、もしくは、前記円柱状の基材上の塗膜面に対してエアーノズルから送風することで行う、(1)~(4)のいずれかに記載の水なしオフセット原版の製造方法である。
(6)前記剥離膜材料に光硬化型樹脂を用い、前記剥離膜材料の塗布後、基材を回転した状態で光照射を行い、前記剥離膜材料を固化する、(1)~(4)のいずれかに記載の水なしオフセット原版の製造方法である。
(2) The first application step is performed by reciprocating the first applicator in the axial direction of the cylindrical base material while rotating the cylindrical base material. The method for producing a waterless offset original plate according to (1), characterized in that a coating film is formed by spraying the release film material onto the peripheral surface of the original plate.
(3) The method for producing a waterless offset original plate according to (1) or (2), wherein the liquid release film material has a viscosity of 0.01 to 1 Poise.
(4) The method for producing a waterless offset original plate according to (1) to (3), wherein the second coating step is started while the cylindrical base material is rotated during the first solidification step. It is.
(5) The first solidification step and the second solidification step are performed using wind generated by rotation of the cylindrical base material or air blown from an air nozzle to the coating surface on the cylindrical base material. The method for producing a waterless offset original plate according to any one of (1) to (4) is performed by:
(6) Using a photocurable resin as the release film material, and after applying the release film material, irradiating with light while rotating the base material to solidify the release film material, (1) to (4) A method for producing a waterless offset original plate according to any one of the above.

(7)円柱状基材の周面に第1の塗材を塗布するための第1の塗布ノズルとしてファウンテンノズルを有する第1の塗布手段と、円柱状基材の周面に第2の塗材を塗布するための第2の塗布ノズルを有する第2の塗布手段と、前記円柱状基材を円柱の軸を中心軸として回転せしめるための回転駆動手段と、前記円柱状基材の周面に塗布された塗膜を固化するエアーノズルからの送風または光照射による固化手段と、塗膜の膜厚値を計測する測定器と、前記第1および第2の塗布手段と前記固化手段との切り替えを行う制御器を少なくとも有し、
前記の第1および第2の塗布手段は、該円柱状基材の回転軸方向に前記第1の塗布ノズルおよび第2の塗布ノズルを移動させる移動手段を備え、さらに、前記回転駆動手段によって前記円柱状基材を回転した状態で前記第1および第2の塗布ノズルを前記移動手段により移動させることで塗材の塗布を行い、かつ、前記第2の塗布手段は、前記測定器の測定値に基づき、前記固化手段を停止した後、前記第2の塗布手段による塗布工程を開始する、水なしオフセット原版の製造装置である。
(7) a first coating means having a fountain nozzle as a first coating nozzle for applying a first coating material to the circumferential surface of the columnar substrate; a second coating means having a second coating nozzle for applying the material; a rotational drive means for rotating the columnar base material about the axis of the cylinder; and a peripheral surface of the columnar base material. a solidifying means by air blowing from an air nozzle or light irradiation to solidify the coating film applied to the surface, a measuring device for measuring the film thickness value of the coating film, the first and second coating means, and the solidifying means. It has at least a controller for switching,
The first and second coating means are provided with moving means for moving the first coating nozzle and the second coating nozzle in the direction of the rotation axis of the cylindrical base material, and the rotational drive means further includes The coating material is applied by moving the first and second coating nozzles by the moving means while the cylindrical base material is rotated, and the second coating means is configured to apply the coating material based on the measured value of the measuring device. In this waterless offset master manufacturing apparatus, the coating process by the second coating means is started after the solidification means is stopped.

本発明によれば、円柱状基材の表面に継ぎ目のないシームレスの水なしオフセット原版を製造するに際し、円筒状基材の表面に塗布された剥離膜材料を収縮させ、円柱基材上に剥離膜を形成し、引き続き、剥離層の表面にシリコーン膜を形成する積層体構造により、剥離層円柱状基材から剥離し易く、かつ、印刷時においては基材に対し高い密着状態を保持し安定した印刷を行うことができる。 According to the present invention, when manufacturing a seamless waterless offset original plate with no seams on the surface of a cylindrical base material, the release film material applied to the surface of the cylindrical base material is shrunk, and the release film material is peeled onto the cylindrical base material. The laminate structure in which a film is formed and then a silicone film is formed on the surface of the release layer allows the release layer to be easily peeled off from the cylindrical base material, and maintains a high degree of adhesion to the base material during printing and is stable. printing.

これにより、円柱状形状の基材に対応した、これら製造方法および製造装置を用いることで、易剥離膜を有する水なしオフセット原版を、効率よく、且つ高品質に製造することが可能となる。 As a result, by using these manufacturing methods and manufacturing apparatuses that are compatible with cylindrical shaped base materials, it becomes possible to efficiently manufacture a waterless offset master having an easily peelable film with high quality.

本発明に係る製造装置の実施の一形態を示す斜視模式図である。1 is a schematic perspective view showing an embodiment of a manufacturing apparatus according to the present invention. 本発明に係る製造装置の実施の一形態を示す正面模式図である。FIG. 1 is a schematic front view showing an embodiment of a manufacturing apparatus according to the present invention. 第1の塗布工程および第1の固化工程を示す側面模式図である。FIG. 3 is a schematic side view showing a first application step and a first solidification step. 第2の塗布工程および第2の固化工程を示す側面模式図である。It is a side surface schematic diagram which shows the 2nd application process and the 2nd solidification process. 塗膜の乾燥固化を行う装置構成を正面模式図である。FIG. 2 is a schematic front view of the configuration of an apparatus for drying and solidifying a coating film. 積層体の形成工程を示す概略斜視図である。It is a schematic perspective view which shows the formation process of a laminated body.

以下、本発明の実施の一形態について、図面を参照しながら説明する。本発明は、以下の説明および図面により理解されるものであるが、本発明の実施形態がこれらに限定されるものではない。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The present invention will be understood from the following description and drawings, but the embodiments of the present invention are not limited thereto.

本発明の水なしオフセット原版の製造方法は、円柱状基材の表面に、液状の剥離膜材料を塗布する第1の塗布工程とその離型膜材料の乾燥固化工程と、さらにシリコーン膜材料を塗布する第2の塗布工程とそのシリコーン膜材料の乾燥固化工程とを含み、円柱状基材の表面に、少なくとも前記剥離膜とシリコーン膜とを含む積層体が形成される。本発明の剥離膜材料は、乾燥固化後の標準剥離特性において、塗膜厚みが100μm以下のとき、剥離膜の引張強さ[N/mm]と塗膜厚み[mm]の積が、剥離膜の粘着力[N/mm]を超える易剥離材料を用いており、前記第1の塗布工程が、前記円柱状基材の軸を中心軸として回転させながら、前記円柱状基材の周面に対し、前記円柱状基材の下方に設けた第1の塗布器から前記剥離膜材料を噴き上げ、前記円柱状基材の表面に前記液状の剥離膜材料を付着させながら塗布する工程である。そして、前記第1の固化工程が、前記第1の塗布工程に続き実行され、前記円柱基材を回転した状態で塗布された剥離膜材料の乾燥固化を行うことで、前記円柱基材上で塗布された剥離膜材料を収縮させ、前記円柱基材上に前記剥離膜を形成する。その後、前記第2の塗布工程は、第2の塗布器から前記シリコーン膜材料を吐出し、前記剥離膜の表面に前記シリコーン膜材料を塗布する工程である。剥離膜材料とは、剥離膜となる剥離材料を表し、シリコーン膜材料とは、シリコーン膜を成すシリコーン材料を表し、剥離膜とシリコーン膜の積層体は機能膜と呼ぶことがある。 The method for producing a waterless offset original plate of the present invention includes a first coating step of applying a liquid release film material to the surface of a cylindrical base material, a drying and solidifying step of the release film material, and a step of applying a silicone film material. The method includes a second coating step and a step of drying and solidifying the silicone film material, and a laminate including at least the release film and the silicone film is formed on the surface of the cylindrical base material. The release film material of the present invention has a standard release property after drying and solidification in which, when the film thickness is 100 μm or less, the product of the tensile strength of the release film [N/mm 2 ] and the film thickness [mm] is An easily peelable material exceeding the adhesive force [N/mm] of the film is used, and the first application step is performed on the peripheral surface of the cylindrical base material while rotating about the axis of the cylindrical base material as a central axis. On the other hand, this is a step in which the release film material is sprayed up from a first applicator provided below the cylindrical base material, and the liquid release film material is applied while adhering to the surface of the cylindrical base material. Then, the first solidifying step is performed following the first coating step, and by drying and solidifying the release film material applied while rotating the cylindrical base material, the first solidifying step is performed on the cylindrical base material. The applied release film material is contracted to form the release film on the cylindrical base material. Thereafter, the second coating step is a step of discharging the silicone film material from a second applicator and applying the silicone film material to the surface of the release film. The release film material refers to a release material that becomes a release film, the silicone film material refers to a silicone material that forms a silicone film, and a laminate of a release film and a silicone film is sometimes called a functional film.

本発明において、シリコーン材料を塗布する第2の塗布方法は限定されないが、以下の実施態様の説明においては、第2の塗布工程は第1の塗布工程に類似する方法を用いて説明される。すなわち、前記円柱状基材の下方に設けた第2の塗布器から塗液を噴き上げ、前記円柱状基材の表面に前記得以上の塗液を付着させながら塗布する工程である。 In the present invention, the second application method of applying the silicone material is not limited, but in the following description of the embodiments, the second application step will be described using a method similar to the first application step. That is, this is a step in which a coating liquid is sprayed up from a second applicator provided below the cylindrical base material, and the coating liquid is applied while adhering to the surface of the cylindrical base material in an amount greater than the above-mentioned amount.

本発明において、水なしオフセット原版の機能膜として用いられるシリコーン材料は、円柱状基材に密着しやすく剥離することが困難であることから、円柱基材上に容易に剥離できる剥離膜をシリコーン膜との間に設けることで、で容易に剥離される。そして、円柱状基材を再生する際は、その剥離膜をシリコーン膜ごと引き剥がし再生される。一方、円柱状基材の表面に形成した剥離膜は、印刷時における版面の剥がれを防ぐために、円柱状基材との強固な密着性を必要とするものでもある。 In the present invention, the silicone material used as the functional film of the waterless offset original plate easily adheres to the cylindrical base material and is difficult to peel off. By placing it between the two, it can be easily peeled off. When the cylindrical base material is recycled, the release film is peeled off along with the silicone film. On the other hand, the release film formed on the surface of the cylindrical base material also requires strong adhesion to the cylindrical base material in order to prevent the plate surface from peeling off during printing.

ここで、本発明の剥離膜材料に求められる標準剥離特性は、以下の通りである。なお、本発明における「標準剥離特性」とは、剥離材料を塗布等により基材上に薄く形成した剥離層が有する特性により、剥離膜材料を表した指標である。ここで、剥離性が良好、すなわち易剥離性を有する剥離膜材料は、基材上に形成された剥離膜を、基材から引き剥がす際に剥離膜が破断することなく容易に剥離することが可能であり、剥離膜自体の引張強度と基材と剥離膜との粘着強度に関係する。そして、本発明の水なしオフセット原版に用いられる剥離材の標準剥離特性は、剥離膜の引張強さ[N]が基材と剥離膜との密着力[N]よりも大きいものである。 Here, the standard release properties required for the release film material of the present invention are as follows. Note that the "standard release characteristics" in the present invention is an index representing the release film material based on the characteristics of a release layer formed thinly on a base material by coating or the like with a release material. Here, a release film material that has good releasability, that is, easy releasability, can easily peel off the release film formed on the base material without causing the release film to break when it is peeled off from the base material. This is possible and is related to the tensile strength of the release film itself and the adhesive strength between the base material and the release film. The standard release characteristic of the release material used in the waterless offset original plate of the present invention is that the tensile strength [N] of the release film is greater than the adhesion strength [N] between the base material and the release film.

ここで、引張強さは、剥離膜材料が膜状態での材料強度:T[N/mm]であり、JIS B 7721(2018年)で定められた引張試験機により測定することができ、幅W[mm]と膜厚t[mm]の断面積[mm]から、T/(W・t)で表される。粘着力:P[N/m]は、JIS Z 0237(2009年)に記載の90度引き剥がしによる粘着力の測定方法により測定することができ、幅W[mm]から、P/Wで表される。そして、剥離膜の厚み、つまり膜厚tは100μm以下のときに、標準剥離特性として、T・W・tが、P・Wを超える易剥離膜材料であることが必要である。標準剥離特性と本発明の製造方法により得られる剥離膜の特性については、詳細を後述する。 Here, the tensile strength is the material strength of the release film material in a film state: T [N/mm 2 ], and can be measured by a tensile tester specified in JIS B 7721 (2018), From the cross-sectional area [mm 2 ] of the width W [mm] and the film thickness t [mm], it is expressed as T/(W·t). Adhesive strength: P [N/m] can be measured by the method of measuring adhesive strength by 90 degree peeling described in JIS Z 0237 (2009), and is expressed as P/W from the width W [mm]. be done. When the thickness of the release film, that is, the film thickness t, is 100 μm or less, it is necessary that the material is an easily peelable film material whose standard release property is T·W·t exceeding P·W. The details of the standard release characteristics and the characteristics of the release film obtained by the manufacturing method of the present invention will be described later.

まず、本発明の製造方法に係る装置の構成について図面を参照しながら説明する。 First, the configuration of an apparatus according to the manufacturing method of the present invention will be explained with reference to the drawings.

<製造装置の構成>
図1は、水なしオフセット原版の製造装置100の一例を示す概略構成図である。図2は、図1の製造装置100の一部である塗布工程を詳細に示す正面図で、図3及び図4は、同じく図1の製造装置100の一部である塗布工程について、図3は第1の塗布工程および第1の固化工程、図4は第2の塗布工程および第2の固化工程を示す側面図である。また、図5は、同じく図1の製造装置100の一部である乾燥固化工程を示す正面図である。
<Configuration of manufacturing equipment>
FIG. 1 is a schematic configuration diagram showing an example of an apparatus 100 for manufacturing a waterless offset master plate. FIG. 2 is a front view showing in detail the coating process that is part of the manufacturing apparatus 100 in FIG. 1, and FIGS. 4 is a side view showing the first coating step and the first solidifying step, and FIG. 4 is a side view showing the second coating step and the second solidifying step. Further, FIG. 5 is a front view showing a drying and solidifying process, which is also a part of the manufacturing apparatus 100 of FIG. 1.

図1には、液状の剥離膜材料を塗布する第1の塗布工程では、塗材の噴き上げを行うファウンテン方式の第1の塗布ノズル121a、および、塗材の供給および回収機能を有する第1の塗布回収ユニット122aを少なくとも有しており、剥離膜材料が円柱状基材の表面に塗布される。図1に示す製造装置100は、塗布対象となる円柱状基材111を軸中心回りに回転させつつ、塗材を吐出する第1の塗布ノズル121aを、円柱状基材111の軸方向を示す移動方向Pに対し往復で移動させ、基材の外周面に塗材Fを重ねながら塗布する。その後、円柱状基材111を軸中心回りに回転させつつ、基材の外周面上の塗材Fへ向けて気流による固化手段141から気流を噴射することで、塗材Fを乾燥固化させる。 In the first coating process of applying a liquid release film material, FIG. It has at least a coating and recovery unit 122a, and the release film material is coated on the surface of the cylindrical base material. The manufacturing apparatus 100 shown in FIG. 1 rotates the cylindrical base material 111 to be coated around the axis, and a first coating nozzle 121a that discharges the coating material is arranged in the axial direction of the cylindrical base material 111. The coating material F is applied to the outer peripheral surface of the base material while being overlapped by moving the coating material F in a reciprocating manner in the moving direction P. Thereafter, while rotating the cylindrical base material 111 around its axis, the coating material F is dried and solidified by injecting airflow from the airflow solidifying means 141 toward the coating material F on the outer peripheral surface of the base material.

図1には、シリコーン膜材料を塗布する第2の塗布工程として、第2の塗布ノズル121bおよび第2の塗布回収ユニット122bを少なくとも有しており、図1中では第2の塗布工程を実施するために円柱状基材から離れて待機している。そして、図1に図示していないが、第1の塗布工程および第1の固化工程の後に、第2の塗布ノズル121bおよび第2の塗布回収ユニット122bにより、シリコーン材料が剥離膜上に塗布され、第2の固化工程を経て、シリコーン膜が形成され、水なしオフセット印刷原版が製造される。 1 includes at least a second coating nozzle 121b and a second coating and recovery unit 122b as a second coating process for applying a silicone film material, and in FIG. 1, the second coating process is performed. Waiting away from the cylindrical substrate in order to Although not shown in FIG. 1, after the first coating step and the first solidification step, the silicone material is coated onto the release film by the second coating nozzle 121b and the second coating and recovery unit 122b. , a silicone film is formed through a second solidification step, and a waterless offset printing original plate is manufactured.

図1の製造装置100は、第1の固化工程と第2の固化工程に使用される気流による固化手段141が1つ示されているが、複数個の気流による固化手段を設けてそれぞれ独立に乾燥固化に供してもよい。なお、図1では気流による固化手段141は円柱状基材の軸方向にスリット状の気流吐出口を有するスリット型ノズルを記載したが、形状としては、これ以外のノズル形状を用いてもよい。 Although the manufacturing apparatus 100 in FIG. 1 shows one airflow solidification means 141 used in the first solidification step and the second solidification step, a plurality of airflow solidification means are provided and each of the solidification means is independently operated. It may be subjected to drying and solidification. In FIG. 1, the airflow solidification means 141 is a slit-type nozzle having a slit-like airflow outlet in the axial direction of the cylindrical base material, but other nozzle shapes may be used.

塗膜に対し、気流による固化手段141で気流を基材周面の塗膜面に噴射する際は、塗膜全面対して気流が噴射されるよう、円柱基材を回転した状態で噴射するのが好ましい。これにより、基材回転により基材表面に発生する気流で塗膜の乾燥が促進されることに加え、重力影響による塗膜の液流動も抑えることが出来る。 When the airflow solidifying means 141 injects airflow onto the coating surface of the surrounding surface of the base material, the cylindrical base material is rotated so that the airflow is sprayed over the entire surface of the coating film. is preferred. As a result, in addition to promoting the drying of the coating film by the air flow generated on the surface of the substrate due to the rotation of the substrate, it is also possible to suppress liquid flow in the coating film due to the influence of gravity.

この固化工程では、図3および図4に示す膜厚センサ151で、塗膜の膜厚値を測定し、センサ制御器152にその測定値を取り込むことで、塗膜の付着量を検知し、第1塗布工程の終了および第1固化工程の開始タイミングを制御することの他、第1塗布工程終了後の塗膜変化状態を測定することで塗膜の乾燥固化状態をモニターしてもよい。 In this solidification process, the film thickness value of the paint film is measured by the film thickness sensor 151 shown in FIGS. 3 and 4, and the measured value is taken into the sensor controller 152 to detect the amount of the paint film attached. In addition to controlling the end timing of the first coating step and the start timing of the first solidifying step, the drying and solidifying state of the coating film may be monitored by measuring the change state of the coating film after the first coating step is completed.

たとえば、センサ制御器152に取り込まれた測定値は、連動動作制御器150にも伝達され、第1の塗布工程における塗膜の付着量が、次工程の第1固化工程に移行できる状態になると、連動動作制御器150からの指令により、第1の固化工程に移行する。そして、塗膜の乾燥固化状態が、次工程の第2の塗布工程に移行できる状態になると、連動動作制御器150からの指令により、第2の塗布工程に移行する。第2の塗布工程では、図1に示す、第2の塗布ノズル121bを円柱状基材111の軸方向へ移動させながら、剥離膜の表面上にシリコーン機能層の塗布を行い、引き続き、図1及び図4に示す気流による固化手段141から気流噴射し、塗膜の乾燥固化を行うことで、円柱基材上に複数の機能膜を積層する積層体を形成することができる。 For example, the measured value taken into the sensor controller 152 is also transmitted to the interlocking operation controller 150, and when the amount of coating film deposited in the first coating process reaches a state where it can be transferred to the next process, the first solidifying process, , according to a command from the interlocking operation controller 150, a transition is made to the first solidification step. Then, when the dry and solidified state of the coating film reaches a state where it can be transferred to the next step, the second coating step, the step is transferred to the second coating step in response to a command from the interlocking operation controller 150. In the second coating step, the silicone functional layer is coated on the surface of the release film while moving the second coating nozzle 121b in the axial direction of the cylindrical base material 111, as shown in FIG. By injecting airflow from the airflow solidification means 141 shown in FIG. 4 and drying and solidifying the coating film, a laminate in which a plurality of functional films are laminated on a cylindrical base material can be formed.

また、本発明の製造装置100は、図1に示す円柱状基材111を回転させる回転駆動手段と、図2に示す塗布手段を基材の長手方向(図中のY方向)に移動させる移動手段と、図3および図4に示す膜厚センサ151およびセンサ制御器152からなる膜厚検知部を備えてもよい。第1および第2の塗布ノズルおよび塗布ヘッドと、気流による固化手段141などと、それぞれの移動手段および回転手段、並びに膜厚検知部を連動させてもよい。 The manufacturing apparatus 100 of the present invention also includes a rotation drive means for rotating the cylindrical base material 111 shown in FIG. 1, and a movement means for moving the coating means shown in FIG. 2 in the longitudinal direction of the base material (Y direction in the figure). The device may also include a film thickness detection unit including a film thickness sensor 151 and a sensor controller 152 shown in FIGS. 3 and 4. The first and second coating nozzles and coating heads, the airflow solidifying means 141, and the like, the respective moving means and rotating means, and the film thickness detection section may be linked.

図6(a)~(d)は、各工程とその連動を示したもので、図6(a)には、円柱状基材の表面に、滴状の剥離膜材料を往復移動で積層塗布する第1の塗布工程が示され、図6(b)には、前記剥離膜材料を乾燥固化し前記円柱状の基材の表面に剥離膜を形成する第1の固化工程が示され、図6(c)には前記剥離膜の表面にシリコーン膜材料を塗布する第2の塗布工程の一例が示され、図6(d)には前記シリコーン膜材料を乾燥固化する第2の固化工程の一例が示されている。図6(a)~(d)は連動動作制御器150により各工程を制御し工程を順に動作させてもよい。 Figures 6(a) to 6(d) show each process and its interlocking. Figure 6(a) shows droplet-shaped release film material applied in layers on the surface of a cylindrical base material by reciprocating movement. FIG. 6(b) shows a first solidifying step of drying and solidifying the release film material to form a release film on the surface of the cylindrical base material. 6(c) shows an example of the second coating step of applying the silicone film material to the surface of the release film, and FIG. 6(d) shows an example of the second solidifying step of drying and solidifying the silicone film material. An example is shown. In FIGS. 6A to 6D, each step may be controlled by the interlocking operation controller 150 and the steps may be operated in sequence.

以下、装置の各手段および塗膜の形成について、詳細に説明する。
<回転駆動手段>
図2に示す回転駆動手段は、円柱状基材111を回転支持する左右の回転中心軸112、113と、前記回転中心軸を支持する支持台114、115と、回転支持軸に接続されて、円柱状基材111を回転駆動させるアクチュエータ116と、前記アクチュエータを制御し、円柱状基材111の回転速度を制御する回転速度制御器117を備える。回転駆動手段は、円柱状基材111を任意の回転数で回転させることができ、円柱状基材111の回転数は塗布に適した回転数や、乾燥固化を行うに適した回転数を得ることができる。回転駆動手段は、第1の塗布ノズル121a、第2の塗布ノズル121bを往復または直動移動させる手段、つまり、図1中の矢印(符号P)とは独立して制御されることが好ましい。
Hereinafter, each means of the apparatus and the formation of the coating film will be explained in detail.
<Rotation drive means>
The rotation drive means shown in FIG. 2 is connected to left and right rotation center shafts 112 and 113 that rotatably support the cylindrical base material 111, support stands 114 and 115 that support the rotation center shafts, and the rotation support shaft, It includes an actuator 116 that rotationally drives the cylindrical base material 111, and a rotation speed controller 117 that controls the actuator and controls the rotation speed of the cylindrical base material 111. The rotation driving means can rotate the cylindrical base material 111 at an arbitrary number of revolutions, and the number of revolutions of the cylindrical base material 111 is set to a number of revolutions suitable for coating or drying and solidifying. be able to. It is preferable that the rotation driving means is controlled independently of the means for reciprocating or linearly moving the first coating nozzle 121a and the second coating nozzle 121b, that is, the arrow (symbol P) in FIG. 1.

<塗布手段とその移動手段>
図3に示す塗布手段は、第1の塗布工程で用いる塗布手段であり、液状の剥離膜材料の塗材を吐出孔から噴き上げ基材に付着させる第1の塗布ノズル121aと、塗材を供給しかつ基材に付着せず落下してきた塗材を回収する第1の塗布回収ユニット122a、第1の送液ポンプ123aと、塗材を蓄える第1の塗材タンク124aを備える。塗液は、第1の塗材タンク124aから第1の塗布回収ユニット122a内の流路(図示せず)を経て、第1の塗布回収ユニット122aの先端に在る第1の塗布ノズル121aの吐出孔から、任意の吐出量で塗材Faを連続吐出できる。ここで、第1の塗布ノズル121aに塗材Faを供給する方式は、塗布ノズルから塗材Faを連続吐出できるものであれば特に限定はなく、第1の送液ポンプ123aに定量ポンプを用いる方法の他、図示しないが、第1の塗材タンク124を加圧し、加圧の圧力を調整することで吐出流量を制御する圧送方式を用いてもよい。
<Application means and its transportation means>
The coating means shown in FIG. 3 is the coating means used in the first coating step, and includes a first coating nozzle 121a that sprays the coating material of liquid release film material from the discharge hole and adheres it to the substrate, and a first coating nozzle 121a that supplies the coating material. In addition, it includes a first coating and recovery unit 122a that collects coating material that has fallen without adhering to the substrate, a first liquid pump 123a, and a first coating material tank 124a that stores the coating material. The coating liquid passes from the first coating material tank 124a through a flow path (not shown) in the first coating and recovery unit 122a, and is delivered to the first coating nozzle 121a located at the tip of the first coating and recovery unit 122a. The coating material Fa can be continuously discharged from the discharge hole at an arbitrary discharge amount. Here, the method of supplying the coating material Fa to the first coating nozzle 121a is not particularly limited as long as the coating material Fa can be continuously discharged from the coating nozzle, and a metering pump is used as the first liquid feeding pump 123a. In addition to the method, although not shown, a pressure feeding method may be used in which the first coating material tank 124 is pressurized and the discharge flow rate is controlled by adjusting the pressurized pressure.

また、図4には、第2の塗布工程で用いる、もう1つの第2の塗布ノズル121bについての塗布手段を示すが、こちらも図3と同様に、シリコーン塗材を供給する第2の塗布回収ユニット122b、第2の送液ポンプ123bと、塗材を蓄える第2の塗材タンク124bを備える。第2の塗布回収ユニット122bの先端に在る第2の塗布ノズル121bの吐出孔から任意の吐出量で塗材Fbを連続吐出できる。これら塗材を供給する方式は、図3の塗布手段と同様に方式を限定するものでなく、また、第2の塗布ノズル121bの形状や塗材を供給する方式については、図3の塗布手段と異なる方式を用いてもよい。 Further, FIG. 4 shows a coating means for another second coating nozzle 121b used in the second coating process, but this is also similar to FIG. It includes a recovery unit 122b, a second liquid feeding pump 123b, and a second coating material tank 124b that stores coating material. The coating material Fb can be continuously discharged at an arbitrary discharge amount from the discharge hole of the second coating nozzle 121b located at the tip of the second coating and recovery unit 122b. The method for supplying these coating materials is not limited to the method as in the application means shown in FIG. A different method may be used.

図2、図3及び図4に示す各塗布手段の移動手段は、第1の塗布回収ユニット122a、第2の塗布回収ユニット122bを支持するステージ131a、131bと、前記ステージが移動するスライダー132と、前記スライダーを駆動するアクチュエータ133と、前記アクチュエータを制御する制御器134を備え、第1の塗布ヘッド121a、第2の塗布ヘッド121bを円柱状基材111の軸方向に対し任意の速度で移動させることができる。ここで、剥離膜材料を塗布する第1の塗布工程において、ステージ131には、第1の塗布回収ユニット122a内の塗布ノズル121aと円柱状基材111との距離を調整する調整機構を有してもよい。 The moving means for each coating means shown in FIGS. 2, 3, and 4 includes stages 131a and 131b that support a first coating and recovery unit 122a and a second coating and recovery unit 122b, and a slider 132 on which the stages move. , includes an actuator 133 that drives the slider, and a controller 134 that controls the actuator, and moves the first coating head 121a and the second coating head 121b at an arbitrary speed in the axial direction of the cylindrical base material 111. can be done. Here, in the first coating process of applying the release film material, the stage 131 has an adjustment mechanism that adjusts the distance between the coating nozzle 121a in the first coating and recovery unit 122a and the cylindrical base material 111. You can.

また、図3に示す第1の塗布ノズル121aの移動手段と図4に示す第2の塗布ノズル121bの移動手段は、それぞれ独立して移動及び制御できることが好ましいが、同じ移動手段を共有してもよい。塗布動作においては、前記回転駆動手段によって基材を回転させながら、これら移動手段によって塗布ノズル121を往復移動させることによって、円筒状の基材の周面に対し、塗布ノズル121から連続して塗材を噴出し基材周面に付着させながら、基材周面全体に塗材を付着させることで周面上に塗膜が形成される。 Further, although it is preferable that the moving means for the first coating nozzle 121a shown in FIG. 3 and the moving means for the second coating nozzle 121b shown in FIG. 4 can be moved and controlled independently, they may share the same moving means. Good too. In the coating operation, the application nozzle 121 is reciprocated by these moving means while the substrate is rotated by the rotation driving means, so that the coating is continuously applied from the coating nozzle 121 to the circumferential surface of the cylindrical substrate. A coating film is formed on the circumferential surface by adhering the coating material to the entire circumferential surface of the substrate while ejecting the material and adhering it to the circumferential surface of the substrate.

また、図2に示す制御器134は、前記塗布手段に、前記塗布手段の移動手段と連動し往復移動の折り返し位置を判定する判定器と、移動手段の位置情報を入力し、所定走査を実行するプログラムが格納された制御器を用いてもよい。この連動動作制御器150によって、例えば、円柱基材の端部など特定の箇所において塗膜の厚みを薄くするなど、膜厚の変化を行いたい場合は、往復移動の折り返し位置を変化させるなど、設定された移動手段の位置情報を元に、塗膜形成に関わる各パラメータを制御すればよい。 Further, the controller 134 shown in FIG. 2 inputs into the application means a determiner that is linked to the movement means of the application means and determines the return position of the reciprocating movement, and position information of the movement means, and executes a predetermined scan. A controller may be used that stores a program to do this. If you want to change the film thickness by using this interlocking motion controller 150, for example, by reducing the thickness of the coating film at a specific location such as the end of a cylindrical base material, you can change the return position of the reciprocating movement, etc. Each parameter related to coating film formation may be controlled based on the set position information of the moving means.

<塗膜を乾燥固化する固化手段>
図3は、円柱状の基材の側面方向から見た模式図である。図3には円柱基材の軸方向にスリット状の気流を吐出する吐出口を有する気流による固化手段141を用いている。乾燥固化手段は、図3に示すように、前記円柱状の基材の周面から径方向に一定の間隙を保持することが好ましい。
<Solidifying means for drying and solidifying the coating film>
FIG. 3 is a schematic diagram of a cylindrical base material viewed from the side. In FIG. 3, an airflow solidification means 141 having a discharge port for discharging a slit-shaped airflow in the axial direction of the cylindrical base material is used. As shown in FIG. 3, the drying and solidifying means preferably maintains a constant gap in the radial direction from the circumferential surface of the cylindrical base material.

また、気流による固化手段141は、供給する気体の圧力を制御する気流噴射の圧力制御器142と、圧縮気体を前記圧力制御器へ供給する圧縮気体供給源143を備え、円柱状基材111の外周面へ向けて、気流を連続噴射できる。この際、気流に用いる気体として、乾燥空気のほか窒素などの不活性気体を用いてもよい。 Further, the airflow solidification means 141 includes an airflow injection pressure controller 142 that controls the pressure of gas to be supplied, and a compressed gas supply source 143 that supplies compressed gas to the pressure controller. Airflow can be continuously jetted towards the outer circumferential surface. At this time, as the gas used for the air flow, in addition to dry air, an inert gas such as nitrogen may be used.

さらに、図3には気流による固化手段141を示したが、固化手段はこれに限定されない。たとえば、光照射器により固化する方法が挙げられる。ただし、本発明の固化手段には、溶媒の除去や樹脂の硬化に用いられる高温の加熱や熱風の噴射による固化方法は、基材の温度上昇を伴い、常温に戻すまでに時間を要することから好ましくない。 Furthermore, although the solidifying means 141 using airflow is shown in FIG. 3, the solidifying means is not limited to this. For example, there is a method of solidifying with a light irradiator. However, the solidification method of the present invention involves high-temperature heating or jetting of hot air used for removing solvents and curing resins, because the solidification method involves an increase in the temperature of the base material and takes time to return to room temperature. Undesirable.

<膜厚検知部>
膜厚検知部は、図3および図4に示す膜厚センサ151およびセンサ制御器152からなる。膜厚センサ151は、円柱状基材111の周面位置に向けて設置されており、塗膜の膜厚値を測定し、センサ制御器152にその測定値を取り込むことで、塗布工程における塗布膜厚値および固化工程における塗膜の乾燥固化状態をモニターすることができる。この際、膜厚センサが測定する膜厚値は、塗膜の表面と裏面を測定し膜厚値を測定するものが好ましいが、基材および塗膜の表面高さを測定し、その高さ変化から膜厚値を算出してもよい。その際、膜厚センサ151および制御装置152により検知する膜厚値は、円柱状基材111の回転状態で測定した複数の測定値を平均した、円柱状基材111の周面における平均膜厚値であるが、それに限らず、周面の特定位置のみで測定を行い、その箇所での測定値を膜厚値としてもよい。
<Film thickness detection section>
The film thickness detection section includes a film thickness sensor 151 and a sensor controller 152 shown in FIGS. 3 and 4. The film thickness sensor 151 is installed toward the circumferential surface position of the cylindrical base material 111, and measures the film thickness of the coating film and imports the measured value into the sensor controller 152, thereby controlling the coating during the coating process. The film thickness value and the drying and solidification state of the coating film during the solidification process can be monitored. At this time, the film thickness value measured by the film thickness sensor is preferably one that measures the front and back surfaces of the paint film to measure the film thickness value, but it also measures the surface height of the base material and the paint film, and The film thickness value may be calculated from the change. At this time, the film thickness value detected by the film thickness sensor 151 and the control device 152 is the average film thickness on the circumferential surface of the cylindrical base material 111, which is the average of a plurality of measured values measured while the cylindrical base material 111 is rotating. However, the value is not limited thereto, and the measurement may be performed only at a specific position on the circumferential surface, and the measured value at that location may be used as the film thickness value.

また、本発明において膜厚センサ151は、共焦点式のレーザーセンサを用いているが、塗膜状態での膜厚値が測定できるセンサであればよく、この限りでない。 Further, in the present invention, a confocal laser sensor is used as the film thickness sensor 151, but the present invention is not limited to this, as long as it is a sensor capable of measuring film thickness values in a coating state.

<剥離膜材料の塗布形成について>
以上の構成を備える製造装置100を用い、円柱基材上に塗膜の形成を行う。剥離膜材料の塗布方法について説明する。塗材の充填工程では、図3に示す第1の塗材タンク124aに十分に脱泡した剥離膜材料の塗材Faを入れ、第1の送液ポンプ123aにより、第1の塗布回収ユニット122a、第1の塗布ノズル121a及び構成部品同士を接続する配管内に送液を行うことで、塗材Faを充填する。塗布動作工程では、円柱状基材111を図2に示す回転支持軸112、113に固定した後、製造装置100において、円柱状基材111を円柱の軸を中心軸とし、一定の回転速度で回転を行う。この時、塗材Faを吐出する第1の塗布ノズル121aは、円柱状基材111の軸方向端部で待機状態である。次に、第1の送液ポンプ123aを稼働させ、第1の塗布回収ユニット122aを介し、第1の塗布ノズル121aから塗材Faの噴出を行う。この際、塗材Faを、回転する円柱状基材111の下方から吹き付けることで、噴出した塗材Faの一部は円柱状基材111の下面に付着するが、付着しなかった塗材は重力により落下し、塗布回収ユニット122aによって回収される。そして、塗布ノズル121および塗布回収ユニット122を円柱状基材111の軸方向に移動させることで、基材周面に対し、塗材Fが付着し、塗膜が形成される。この塗布動作の際、円柱状基材111が1回転する間の、塗布ノズル121の移動量を、付着する塗膜の幅より少なくすることで、塗膜同志が端部で重なり合い、面状の塗膜となる。
<About coating and forming release film material>
A coating film is formed on a cylindrical base material using the manufacturing apparatus 100 having the above configuration. A method for applying the release film material will be explained. In the coating material filling step, the coating material Fa, which is a release film material that has been sufficiently defoamed, is put into the first coating material tank 124a shown in FIG. The coating material Fa is filled by feeding the liquid into the first coating nozzle 121a and the piping connecting the component parts. In the coating operation process, after fixing the cylindrical base material 111 to the rotation support shafts 112 and 113 shown in FIG. Perform rotation. At this time, the first coating nozzle 121a that discharges the coating material Fa is in a standby state at the axial end of the cylindrical base material 111. Next, the first liquid feeding pump 123a is operated, and the coating material Fa is ejected from the first coating nozzle 121a via the first coating and recovery unit 122a. At this time, by spraying the coating material Fa from below the rotating cylindrical base material 111, a part of the sprayed coating material Fa adheres to the lower surface of the cylindrical base material 111, but the remaining coating material It falls due to gravity and is collected by the coating and collection unit 122a. Then, by moving the coating nozzle 121 and the coating and recovery unit 122 in the axial direction of the cylindrical base material 111, the coating material F adheres to the circumferential surface of the base material to form a coating film. During this coating operation, the amount of movement of the coating nozzle 121 during one rotation of the cylindrical base material 111 is made smaller than the width of the coating film to be adhered, so that the coating films overlap at the edges and form a planar shape. It becomes a coating film.

この塗布動作の際に用いる塗材Fは、円柱状基材111への付着量を少なく制御できるものが好ましく、塗液粘度が低く、また、溶媒による希釈量の多いもの、すなわち固形分濃度の低いものがよい。塗布における好ましい適用範囲として、塗材粘度が0.01P~1P、より好ましくは0.03P~0.5Pに粘度を調整した塗材を用いるのがよい。すなわち、本発明の第1の塗布工程において、第1の塗布器から吐出される剥離膜材料の塗液の粘度は、0.01P~1Pの範囲を用いることができる。より好ましくは、剥離膜材料の塗液の粘度が0.03P~0.5Pである。塗液の粘度の単位Pは、Poise:ポアズである。 The coating material F used in this coating operation is preferably one that can control the amount of adhesion to the cylindrical base material 111 to a small extent, has a low coating liquid viscosity, and is diluted with a large amount of solvent, i.e. has a low solid content concentration. The lower the better. The preferred application range for coating is to use a coating material whose viscosity is adjusted to 0.01P to 1P, more preferably 0.03P to 0.5P. That is, in the first coating step of the present invention, the viscosity of the coating liquid of the release film material discharged from the first applicator can be in the range of 0.01P to 1P. More preferably, the viscosity of the coating liquid for the release film material is 0.03P to 0.5P. The unit P of the viscosity of the coating liquid is Poise.

また、剥離膜材料を第1の塗布ノズル121aの吐出孔から安定して塗材Faを噴出させるためには、塗布ノズル121aの吐出孔が大きい方がよく、吐出孔の直径は0.1mm以上を用いるのが好ましい。一方、塗布ノズル121aの吐出孔を大きくし過ぎると、噴き上げに必要な吐出流量が多くなり、少量の付着量制御が難しくなることから、吐出孔の直径は1mm以下であることが好ましい。
<剥離膜とシリコーン膜の乾燥固化について>
まず、図5に塗膜の乾燥固化のための装置構成を示す。図5(a)は気流による固化手段141を用いた場合の乾燥固化手段で、図5(b)は、後に記載する光照射器151を用いて塗膜の固化を行う構成である。図5(a)および(b)は第1の塗布工程を代表して示されている。以下の説明における塗膜は、剥離膜材料を塗布した塗膜である。
In addition, in order to stably spray the coating material Fa from the discharge hole of the first coating nozzle 121a, the discharge hole of the coating nozzle 121a is preferably large, and the diameter of the discharge hole is 0.1 mm or more. It is preferable to use On the other hand, if the discharge hole of the application nozzle 121a is made too large, the discharge flow rate required for spraying will increase, making it difficult to control a small amount of deposited amount, so the diameter of the discharge hole is preferably 1 mm or less.
<About drying and solidification of release film and silicone film>
First, FIG. 5 shows the configuration of an apparatus for drying and solidifying a coating film. FIG. 5(a) shows a drying and solidifying means using an air flow solidifying means 141, and FIG. 5(b) shows a configuration in which a coating film is solidified using a light irradiator 151, which will be described later. FIGS. 5A and 5B are representative illustrations of the first coating step. The coating film in the following description is a coating film coated with a release film material.

まず、図5(a)の構成において乾燥固化工程を説明する。塗布手段により基材上に塗膜を塗布した後は、基材を回転させながら、円柱状基材の周面に向かって、気流噴射手段から気流を噴射することで、塗膜の乾燥を促進させ、塗膜の乾燥固化を行う。 First, the drying and solidifying process will be explained in the configuration shown in FIG. 5(a). After the coating film is applied onto the base material by the application means, drying of the paint film is promoted by spraying airflow from the airflow spraying means toward the circumferential surface of the cylindrical base material while rotating the base material. to dry and solidify the coating film.

この乾燥固化工程において、処理時間を短縮するために、気流の温度を常温に対し10~30℃程度上昇させると効果的であるが、乾燥固化後に円柱基材の温度が過度に上昇した場合、円柱基材に熱によるひずみが発生し、次工程のパターン形成における精度にも影響を与えることから、気流の昇温は行わず、常温で処理することが好ましい。 In this drying and solidifying process, in order to shorten the processing time, it is effective to raise the temperature of the air stream by about 10 to 30°C from room temperature, but if the temperature of the cylindrical base material rises excessively after drying and solidifying, Since thermal distortion occurs in the cylindrical base material, which affects the accuracy of pattern formation in the next step, it is preferable to process at room temperature without raising the temperature of the air flow.

次に、図6には、剥離膜とシリコーン膜との積層体の形成方法の一例を示している。各工程は、第1の塗布工程(a)、第1の固化工程(b)、第2の塗布工程(c)、第2の固化工程(d)の順に行われ、それぞれ、塗布が完了してから塗膜全体に気流を噴射することで乾燥固化を促進させる。さらに、第1の固化工程の途中で、円柱状基材を回転した状態で、第2の塗布工程を開始することもできる。これは、剥離膜表面が完全に固化する前にシリコーン層を塗布し積層体を一体で乾燥させることで密着性をさらに高める観点から、好ましい。 Next, FIG. 6 shows an example of a method for forming a laminate of a release film and a silicone film. Each process is performed in the order of the first coating process (a), the first solidifying process (b), the second coating process (c), and the second solidifying process (d), and each process is performed until the coating is completed. After that, a stream of air is sprayed over the entire coating to accelerate drying and solidification. Furthermore, the second application process can be started while the cylindrical base material is being rotated during the first solidification process. This is preferable from the viewpoint of further improving adhesion by applying the silicone layer and drying the laminate together before the surface of the release film is completely solidified.

この際、各工程(a)~(d)において、円柱基材は回転状態で行うが、回転速度は同じ速度で行わなくともよい。例えば、塗布を回転速度500rpmで行ったのち、乾燥固化は25rpmに速度低下して行うと、固化前の塗膜面において塗材のレベリングが生じ易く、塗布スジのない高品位な塗膜を形成することができる。 At this time, in each step (a) to (d), the cylindrical base material is rotated, but the rotation speed does not have to be the same. For example, if coating is performed at a rotational speed of 500 rpm and then drying and solidifying is performed at a speed reduced to 25 rpm, leveling of the coating material is likely to occur on the coating surface before solidification, resulting in a high-quality coating film without coating streaks. can do.

さらに、異なる乾燥固化の手段として、塗膜材料に、常温で容易に固化させることが可能な光硬化型の樹脂を用いる方法もある。この場合、希釈溶剤を用いない光硬化型の樹脂を用いれば、気流噴射手段を用いる必要はない。一方、樹脂の固化には光照射器を必要とすることから、装置内に図5(b)に示すような光照射器161および照射時間を制御する制御器162を設置し、基材回転状態で光照射を行うことで基材上塗膜の固化を行うとよい。 Furthermore, as a different means of drying and solidifying, there is also a method of using a photocurable resin that can be easily solidified at room temperature as the coating film material. In this case, if a photocurable resin that does not use a diluting solvent is used, there is no need to use an air jet means. On the other hand, since a light irradiator is required to solidify the resin, a light irradiator 161 and a controller 162 for controlling the irradiation time are installed in the apparatus as shown in FIG. It is preferable to solidify the top coating film on the base material by irradiating it with light.

<剥離膜について>
水なしオフセット原版に用いる円柱状基材を再利用するためには、目的の印刷が完了したのち、円柱状基材上に形成した塗膜を除去し、再度、基材上に新規原版用の塗膜を形成することで、円柱状基材を再利用することができる。
<About the release film>
In order to reuse the cylindrical base material used for waterless offset masters, after the desired printing is completed, the coating film formed on the cylindrical base material is removed, and a new master plate is reused on the base material. By forming a coating film, the cylindrical base material can be reused.

オフセット印刷においては、基材上のレジスト膜を薬液で洗浄溶解させることで除去しているが、水なし平版に用いるシリコーン材料を同様の手段で円柱基材上から除去した場合、シリコーン材料が円柱状基材の表面に付着してしまい、一旦、付着したシリコーン材料は円柱状基材表面に薄く残ることから、円柱状基材を再利用する際に表面状態が変わることで原版の品質が低下してしまう。 In offset printing, the resist film on the base material is removed by washing and dissolving it with a chemical solution, but when the silicone material used in waterless lithography is removed from the cylindrical base material by the same method, the silicone material becomes circular. The silicone material adheres to the surface of the columnar substrate, and once it has adhered, it remains thinly on the surface of the columnar substrate, so when the columnar substrate is reused, the surface condition changes and the quality of the original plate deteriorates. Resulting in.

このため、シリコーン材料を除去する手段としては、シリコーン層の下、円柱状基材の表面に、剥離用の塗膜(剥離膜)を形成し、その剥離膜をシリコーン層ごと円柱状基材から膜状に剥離することで、円柱状基材の初期化を安定して行うことができる。 Therefore, as a means to remove the silicone material, a peeling coating film (release film) is formed on the surface of the cylindrical base material under the silicone layer, and the release film is removed from the cylindrical base material together with the silicone layer. By peeling off into a film, the columnar base material can be stably initialized.

剥離膜に求められる機能としては、まず、円柱状基材から容易に剥離できることであり、そのためには、以下の式(1)を満たす膜特性を有する剥離膜材料を用いるのが好ましい。この特性を有する剥離材料を、易剥離性を有すると判定し、このような剥離特性を有する剥離材料を易剥離膜材料と呼ぶ。 The function required of a release film is that it can be easily peeled off from a cylindrical base material, and for this purpose, it is preferable to use a release film material that has film characteristics that satisfy the following formula (1). A release material having this property is determined to have easy release properties, and a release material having such release properties is referred to as an easy release film material.

剥離膜を基材から剥離する際、膜に加わる力は、膜を引き剥がそうとする引張力[N]と基材に膜が留まろうとする密着力[N]であり、引張力[N]が密着力[N]より大きい場合、膜は基材から剥がれることができる。 When peeling a release film from a base material, the forces applied to the film are the tensile force [N] that tries to peel off the film and the adhesion force [N] that tries to keep the film on the base material, and the tensile force [N] ] is greater than the adhesion force [N], the film can be peeled off from the substrate.

この関係式を単位幅[1/mm]あたりの力のつり合いに変形すると式(1)のようになる。
引張強さ(N/mm)×塗膜厚み(mm)>粘着力(N/mm) ・・・ 式(1)
左項の引張強さ[N/mm]は、膜が破断することなく発生できる最大の引張力[N]を膜の断面積[mm]で除した値であり、塗布厚み[mm]を乗じることで単位幅[1/mm]あたりの引張力[N]となる。また、右項の粘着力[N/mm]は、単位幅[1/mm]あたりの密着力[N]である。
When this relational expression is transformed into the balance of forces per unit width [1/mm], it becomes the following equation (1).
Tensile strength (N/mm 2 ) x coating thickness (mm) > adhesive strength (N/mm) ... Formula (1)
The tensile strength [N/mm 2 ] on the left is the value obtained by dividing the maximum tensile force [N] that can be generated without the film breaking by the cross-sectional area [mm 2 ] of the film, and the coating thickness [mm] By multiplying by , the tensile force [N] per unit width [1/mm] is obtained. Further, the adhesive force [N/mm] in the right term is the adhesion force [N] per unit width [1/mm].

この式(1)において、引張強さ×塗膜厚みは、剥離膜を除去する際、膜状態での引き剥がしに耐えられる膜強度であり、この膜強度以下の力であれば剥離膜は破れることなく膜形状を保つことが出来る。また、右項の粘着力は基材から剥離膜を引き剥がす際に生じる抵抗力であり、この力より大きい力で膜を引き上げれば、基材上から膜を引き剥がすことができる。つまり、式(1)を満たす材料では、膜形状を保ったまま連続的に基材から剥離膜を引き剥がすことができるのに対し、式(1)を満たさない条件では、剥離膜の引き剥がしの際、剥離膜がちぎれてしまい、基材上の剥離膜を全て除去するには多大な労力を要してしまう。このように、剥離膜が易剥離性を有するかどうかは、式(1)を膜の材質が満たすかどうかで確認出来ることの他に、基材から剥離膜がどのように剥がれるかを確認することでも、概ね知ることがきる。 In this formula (1), tensile strength x coating film thickness is the film strength that can withstand peeling in the film state when removing the peeling film, and the peeling film will break if the force is less than this film strength. The membrane shape can be maintained without any damage. Furthermore, the adhesive force in the right column is the resistance force that occurs when the release film is peeled off from the base material, and if the film is pulled up with a force greater than this force, the film can be peeled off from the base material. In other words, with a material that satisfies formula (1), the release film can be continuously peeled off from the substrate while maintaining the film shape, whereas under conditions that do not satisfy formula (1), the release film cannot be peeled off. At this time, the release film is torn, and it takes a lot of effort to remove all the release film on the base material. In this way, whether or not a release film has easy peelability can be determined not only by checking whether the material of the film satisfies formula (1), but also by checking how the release film peels off from the base material. You can get a general idea about it.

ここで、式(1)の各項目について説明する。左項の引張強さは、剥離膜材料が膜状態での材料強度であり、JIS B 7721(2018年)で定められた引張試験機により測定することができる。剥離膜における引張強さは、原版として機能膜を保持するうえで20N/mm 以上であることが好ましく、さらに安定性を考慮すると40N/mm 以上であることが好ましい。同じく左項の、塗膜厚みは、剥離膜として乾燥固化した際の膜厚みであり、膜厚が厚くなるほど膜としての強度が向上するという利点があるが、膜厚が大きくなると、その分、乾燥固化に時間が必要であり、また、材料費も多く必要となることから、適度な膜厚が求められる。この剥離膜の厚みとしては、100μm以下が好ましく、また、短時間に乾燥固化を行ううえで50μm以下がさらに好ましい。 Here, each item of equation (1) will be explained. The tensile strength in the left column is the material strength when the release film material is in a film state, and can be measured using a tensile tester specified in JIS B 7721 (2018). The tensile strength of the release film is preferably 20 N/mm 2 or more in order to hold the functional film as an original, and more preferably 40 N/mm 2 or more in consideration of stability. Also in the left column, the coating film thickness is the film thickness when dried and solidified as a peelable film.The thicker the film, the better the strength of the film, but as the film thickness increases, Since drying and solidification require time and material costs are high, an appropriate film thickness is required. The thickness of this peeling film is preferably 100 μm or less, and more preferably 50 μm or less in order to dry and solidify in a short time.

次に右項の粘着力は、JIS Z 0237(2009年)に記載の90度引き剥がしによる粘着力の測定方法を元に、基材を円柱状基材の表面仕上げ状態と同じ表面粗さとして測定する。ここで、本開示における円柱状基材の表面状態は、アルミニウムを母材(A5052)とし、仕上げ面の平均粗さをRa1.6とした。 Next, the adhesive strength in the right column is based on the adhesive strength measurement method by 90 degree peeling described in JIS Z 0237 (2009), assuming that the base material has the same surface roughness as the surface finish of the cylindrical base material. Measure. Here, regarding the surface condition of the cylindrical base material in the present disclosure, aluminum was used as the base material (A5052), and the average roughness of the finished surface was Ra1.6.

また、剥離膜の粘着力の大きさは、式(1)の関係より、小さい値であるほど易剥離性の傾向が大きくなるが、一方、印刷時における円柱状基材への機能膜保持性能は低下する。このため、式(1)を満たす条件内で大きな値の粘着力を有するのがよいが、人力により指で引き剥がしできる容易さを考慮した場合、粘着力の値は0.50N/mm以下が好ましく、また、0.10N/mm以下がさらに好ましい。 In addition, according to the relationship of formula (1), the smaller the adhesive force of the release film, the greater the tendency for easy peelability. decreases. Therefore, it is better to have a large adhesive force within the conditions that satisfy formula (1), but when considering the ease with which it can be peeled off manually with fingers, the adhesive force value should be 0.50 N/mm or less. It is preferable, and more preferably 0.10 N/mm or less.

また、円柱状基材に対して剥離膜が密着する力は、式(1)における基材との粘着力の他に、剥離膜が円柱状基材を締め付ける力によっても向上する。このため、より剥離し易い剥離膜材料を用いたうえで、基材への密着性を保持したい場合は、剥離膜の収縮特性を用いて、円柱状基材上で剥離膜を収縮させ、円柱状基材の保持力を高める方法もある。 Further, the force with which the release film adheres to the cylindrical base material is improved not only by the adhesive force with the base material in equation (1) but also by the force with which the release film tightens the cylindrical base material. Therefore, if you want to use a release film material that is easier to peel off and still maintain adhesion to the base material, use the shrinkage properties of the release film to shrink the release film on a cylindrical base material. There is also a method of increasing the holding power of the columnar base material.

<水なしオフセット原版の製造について>
円柱状基材を用い、本発明の塗布方法および製造装置にて、水なしオフセット原版を製造する際は、第1の塗布工程および第1の固化工程で基材表面に剥離膜を形成したのち、第2の塗布工程および第2の固化工程により、前記剥離膜状にシリコーン層を形成する。
<About the production of waterless offset master plates>
When manufacturing a waterless offset original plate using the coating method and manufacturing apparatus of the present invention using a cylindrical substrate, after forming a release film on the surface of the substrate in the first coating step and the first solidification step. , a second coating step and a second solidification step form a silicone layer in the form of the release film.

詳細に記載すると、まず第1の塗布工程で、円柱状基材を回転した状態で、乾燥固化後の膜厚から計算した剥離膜材量分だけ円柱状基材上に塗膜を形成する。この塗布の際、塗液の量は、塗膜形成に必要な材料の量よりも多く第1の塗布ノズルから噴出し、その一部を円柱基材に付着させることで、噴き上げに必要な流量を確保しつつ、少量の付着量で塗布することができる。付着量を少量に制御できると、目的の膜厚に達するまでに、薄膜状態での積層形成が可能になり、塗膜の積層量が多くなることで、螺旋状塗布の塗布跡が残りにくく、良質な塗布面を形成することができる。この塗膜形成は、例えば、途中で円柱状基材の回転を停止した場合、重力影響による塗材流れにより、塗膜の不均一状態が生じることから、塗布の開始から終了まで円柱状基材の回転状態を保持したまま行うのが好ましい。 To describe in detail, first, in the first coating step, a coating film is formed on the cylindrical base material in an amount equal to the amount of the release film material calculated from the film thickness after drying and solidification while the cylindrical base material is being rotated. During this application, the amount of coating liquid is sprayed from the first coating nozzle in an amount greater than the amount of material required to form a coating film, and a part of it is attached to the cylindrical base material, so that the flow rate necessary for spraying is It can be applied with a small amount of adhesion while ensuring the same. If the amount of coating can be controlled to a small amount, it becomes possible to form a thin layer by the time the desired film thickness is reached, and by increasing the amount of layered coating, it is difficult to leave traces of spiral coating. A high-quality coating surface can be formed. For example, if the rotation of the cylindrical substrate is stopped midway through, the coating material will flow due to the influence of gravity, resulting in an uneven coating. It is preferable to carry out the rotation while maintaining the rotational state.

次に、第1の塗布工程で、剥離膜の塗膜厚さが膜厚センサの測定値が設定膜厚に達したところで、第1の塗布工程を終了させ、液膜の形状が崩れないよう円柱状基材の回転状態を保持しながら、第1の固化工程を行うのがよい。第1の固化工程では、塗膜表面に常温のエアーを吹き付けることで乾燥を促進させ、同時に液膜の収縮固化により、剥離膜が円柱状基材を把持するように固化される。この際、液膜の固化手段はエアー吹き付けの他に、剥離膜材料を光硬化樹脂としたうえで光照射を行ってもよい。光照射による樹脂硬化は、基材の温度上昇を少なく抑えるという利点の他に、短時間で固化工程が完了できるという利点もある。 Next, in the first coating process, when the coating thickness of the peeling film reaches the set thickness as measured by the film thickness sensor, the first coating process is finished to prevent the shape of the liquid film from collapsing. It is preferable to perform the first solidification step while maintaining the rotational state of the cylindrical base material. In the first solidification step, drying is accelerated by blowing air at room temperature onto the surface of the coating film, and at the same time, the liquid film shrinks and solidifies, so that the release film is solidified so as to grip the cylindrical base material. At this time, the means for solidifying the liquid film may be air blowing or light irradiation using a photocuring resin as the release film material. Resin curing by light irradiation not only has the advantage of suppressing the rise in temperature of the base material, but also has the advantage that the solidification process can be completed in a short time.

次に、第1の固化工程を膜厚センサの測定値を元に乾燥状態を判断することで終了させ、引き続き、第2の塗布工程のシリコーン膜材料の塗布に移行する。この第1の固化工程から第2の塗布工程の移行は、第1の固化工程において、剥離膜の固化が完了してから実施してもよいが、剥離膜表面が完全に固化する手前で移行することにより、原版の製造時間を短縮できることのほか、剥離膜とシリコーン層の密着性をより高めることが期待できる。また、この際、剥離膜の乾燥固化は、第2の固化工程による追乾燥により完了する。そして、第2塗布工程が完了したのち、第2の固化工程を行うことで、円柱状基材上に剥離膜、シリコーン層を有する水なしオフセット原版が製造できる。 Next, the first solidification step is ended by determining the dry state based on the measured value of the film thickness sensor, and then the second application step of applying the silicone film material is started. The transition from the first solidification step to the second coating step may be performed after the release film has completely solidified in the first solidification step, but the transition from the first solidification step to the second coating step may be performed before the release film surface is completely solidified. By doing so, it is expected that not only the manufacturing time of the original plate can be shortened, but also the adhesion between the release film and the silicone layer can be further improved. Further, at this time, the drying and solidification of the release film is completed by additional drying in the second solidification step. After the second coating step is completed, a second solidifying step is performed to produce a waterless offset original plate having a release film and a silicone layer on a cylindrical base material.

このようにして製造した水なしオフセット原版は、剥離膜部分が円柱状基材の周面に対して均一な塗膜で形成できることから、印刷時において剥離膜の剥離起点が生じにくく、膜の耐久性が高い。 In the waterless offset original plate manufactured in this way, the release film part can be formed as a uniform coating film on the circumferential surface of the cylindrical base material, so it is difficult for the release film to peel off during printing, and the film has a long lifespan. Highly sexual.

さらに、円柱状基材の再利用時においては、剥離膜に易剥離性の材料を用いていることから、膜面の一部にカッターなどで機能膜にキズを入れ、剥離の起点を作ることにより、手で容易に剥離膜をシリコーン層ごと円柱状基材から剥離することができる。
また、本開示では、水なしオフセット原版の機能膜について、剥離膜とシリコーン層の2層構成について記載したが、この2層以外に、例えば、剥離層とシリコーン層の間に印刷パターンを形成するための感熱層を設けてもよく、その他、シリコーン層の外側に容易に剥離ができる保護膜を設けてもよい。この際、剥離膜上にシリコーン層を形成することと同様に、塗膜の数に応じて塗材の塗布ノズル、塗布手段および塗布ノズル移動手段の数を増加することで、第2塗布工程および第2固化工程と同様な方法で積層膜を形成すればよい。
Furthermore, when reusing the cylindrical base material, since the peeling film is made of an easily peelable material, it is necessary to scratch the functional film with a cutter or the like on a part of the film surface to create a starting point for peeling. This makes it possible to easily peel off the release film along with the silicone layer from the cylindrical base material by hand.
Further, in the present disclosure, a two-layer structure of a release film and a silicone layer has been described for the functional film of the waterless offset original plate, but in addition to these two layers, for example, a printing pattern may be formed between the release layer and the silicone layer. A heat-sensitive layer may be provided for this purpose, and a protective film that can be easily peeled off may also be provided on the outside of the silicone layer. At this time, in the same way as forming a silicone layer on the release film, by increasing the number of coating material coating nozzles, coating means, and coating nozzle moving means according to the number of coating films, the second coating step and The laminated film may be formed by a method similar to the second solidification step.

以下、実施例により本発明の具体的態様を示す。なお、本発明の実施形態はこれらによって何ら限定されるものではない。 Hereinafter, specific embodiments of the present invention will be illustrated by Examples. Note that the embodiments of the present invention are not limited to these in any way.

実施例1、2および比較例1については、それぞれの条件で原版の評価サンプルを作製したのち、印刷時を想定した機能膜の耐久性評価と、基材再生時を想定した剥離膜の剥離性評価を実施した。 For Examples 1 and 2 and Comparative Example 1, evaluation samples of original plates were prepared under each condition, and then the durability evaluation of the functional film assuming printing and the releasability of the release film assuming substrate recycling were performed. An evaluation was conducted.

耐久性評価は、原版の外周面にオフセット印刷時のブランケットを模したゴムローラを押しつけた状態で、50時間および100時間の長時間回転駆動を行い、機能膜が円柱状基材に密着した状態を保持できるかを確認した。評価の対象は、基材に対する剥離膜の浮きや剥がれ、剥離膜に対するシリコーン膜の剥がれであり、状態は目視で確認した。評価基準は、設定した耐久時間(50時間、100時間)を経ても機能膜の状態変化が生じなかったものは「良好:〇」、機能膜に剥がれ、破れなどの欠陥が確認できたものは「不良:×」、また、×には至らないが、その予兆として機能膜に浮きが生じたものは「やや不良:△」と評価した。 For durability evaluation, a rubber roller imitating a blanket during offset printing was pressed against the outer circumferential surface of the original plate, and it was rotated for long periods of time for 50 and 100 hours, and the functional film was in close contact with the cylindrical base material. I checked to see if I could hold it. The evaluation targets were lifting or peeling of the release film from the base material, and peeling of the silicone film from the release film, and the conditions were visually confirmed. The evaluation criteria is "Good: ○" if the functional film did not change its state even after the set durability time (50 hours, 100 hours), and if defects such as peeling or tearing were observed in the functional film. "Poor: x", and those in which lifting occurred in the functional film as a sign of failure, although not reaching x, were evaluated as "slightly poor: △".

剥離性の評価は、人手で剥離膜を基材から除去することを想定し、円柱状基材上の機能膜端部に切り目を入れ、そこから円周方向に剥離しながら、円柱状基材から剥離膜とシリコーン膜の積層体を剥離した。剥離性の評価は、積層体が切れることなく、容易に引き剥がすことが出来るものは「良好:〇」、積層体が3か所以上に引きちぎれてしまい、引き剥がしが困難なものは「不良:×」、また、引き剥がすことは可能だが、積層体が2か所以下で引きちぎれてしまい容易でないものは「やや不良:△」と評価した。 Peelability evaluation assumes that the release film will be removed from the base material manually, by making a cut at the end of the functional film on the cylindrical base material and peeling it off in the circumferential direction from there. The laminate of the release film and silicone film was peeled off. Peelability was evaluated as "Good: 〇" if the laminate could be easily peeled off without tearing, and "Poor:" if the laminate was torn into three or more parts and was difficult to peel off. In addition, those that could be peeled off but were not easy because the laminate was torn off in two or less places were rated as "slightly poor: △".

<実施例1>
図1~図4に示す構成と同等の製造装置を使用し、図6の手順で円柱状基材上に剥離膜とシリコーン膜の積層体を形成した。外径185mm、軸長300mmの円柱状基材を用い、第1の塗布工程において、円柱状基材の周面に均一に平坦な塗膜が形成された場合に、乾燥固化後の膜厚が50μmとなるよう塗布膜の積層量を設定し、出口径Φ0.08mmのファウンテン方式の塗布ノズルを用い、基材を50rpmで回転させた状態で剥離膜の積層塗布を行った。次の第1の固化工程では、基材の回転速度を25rpmに低下させ、スリット型のエアーノズルを用い、吐出流速90m/secの気流を10分間、基材の回転数を25rpmに保持した状態で吹き付け続け、塗膜の乾燥固化を行った。次の第2の塗布工程では、再び基材の回転速度を500rpmに上昇させ、乾燥固化後の膜厚が10μmとなるよう膜厚を設定し、出口径Φ0.5mmのファウンテン方式の塗布ノズルを用い、螺旋状にシリコーン膜材料の積層塗布を行った。次の第2の固化工程では、基材の回転速度を25rpmに低下させ、剥離膜乾燥時と同じスリット型のエアーノズルを用い、吐出流速90m/secの気流を10分間、基材の回転数を25rpmに保持した状態で吹き付け続け、塗膜を乾燥固化した。
<Example 1>
A laminate of a release film and a silicone film was formed on a cylindrical base material in accordance with the procedure shown in FIG. 6 using a manufacturing apparatus having the same configuration as shown in FIGS. 1 to 4. If a cylindrical base material with an outer diameter of 185 mm and an axial length of 300 mm is used, and a uniformly flat coating film is formed on the circumferential surface of the cylindrical base material in the first coating process, the film thickness after drying and solidification is The stacking amount of the coating film was set to be 50 μm, and the release film was coated in layers using a fountain-type coating nozzle with an outlet diameter of 0.08 mm while the base material was rotating at 50 rpm. In the next first solidification step, the rotation speed of the base material was lowered to 25 rpm, and a slit-type air nozzle was used to apply airflow at a discharge flow rate of 90 m/sec for 10 minutes, while the rotation speed of the base material was maintained at 25 rpm. Continue spraying to dry and solidify the coating. In the second coating process, the rotational speed of the substrate was increased to 500 rpm again, the film thickness was set to 10 μm after drying, and a fountain-type coating nozzle with an outlet diameter of Φ0.5 mm was used. The silicone film material was layered and applied in a spiral manner. In the second solidification step, the rotation speed of the substrate was reduced to 25 rpm, and using the same slit-type air nozzle as used for drying the release film, airflow was applied at a discharge flow rate of 90 m/sec for 10 minutes to the rotation speed of the substrate. The spraying was continued at 25 rpm to dry and solidify the coating film.

機能膜の耐久性および剥離膜の剥離性の確認結果を表1に示す。耐久性確認では、実施例1~3において、剥離膜の浮きや剥がれ、また、シリコーン膜の剥がれともに100時間経過後も問題は生じなかった。 Table 1 shows the confirmation results of the durability of the functional film and the releasability of the release film. In the durability check, in Examples 1 to 3, no problems occurred with lifting or peeling of the release film or peeling of the silicone film even after 100 hours.

また、剥離膜材料には、ポリウレタンを原料とし、N,N-ジメチルホルムアミドを主溶剤成分とした固形分濃度5wt%の希釈液を用いた。希釈液材料の液粘度は10cP、乾燥固化後の膜状態での粘着力が0.10N/mmに対し、引張強さ40N/mm、膜厚50μmの易剥離性であった。 Further, as the release film material, a diluted solution containing polyurethane as a raw material and N,N-dimethylformamide as a main solvent component and having a solid content concentration of 5 wt% was used. The liquid viscosity of the diluent material was 10 cP, the adhesive force in the film state after drying and solidification was 0.10 N/mm, and the tensile strength was 40 N/mm 2 and the film thickness was 50 μm, making it easy to peel.

Figure 2023149454000002
Figure 2023149454000002

<実施例2>
図1~図4に示す構成に、第1の固化工程において、図5(b)の光照射器を加えた構成の製造装置を使用し、剥離膜材料に光硬化型の塗材を用いることで、円柱状基材上に剥離膜とシリコーン膜を形成した。第1の塗布工程では、外径185mm、軸長300mmの円柱状基材を用い、円柱状基材の周面に均一に平坦な塗膜が形成された場合に、固化後の膜厚が50μmとなるよう塗膜量を設定し、出口径Φ0.2mmのファウンテン方式の塗布ノズルを用い、基材を500rpmで回転させた状態で螺旋状に剥離膜の塗布を行った。次に第1の固化工程では、基材の回転速度を25rpmに低下させ、照射光量300mW/cm2の光照射器を用い、5分間、基材の回転数を25rpmに保持した状態で光照射を続け、塗膜を固化した。次に第2の塗布工程で、再び基材の回転速度を500rpmに上昇させ、乾燥固化後の膜厚が10μmとなるよう送液ポンプで送液量を調整し、出口径Φ0.5mmのファウンテン方式の塗布ノズルを用い、螺旋状にシリコーン材料の塗布を行った。次に第2の固化工程で、基材の回転速度を25rpmに低下させ、スリット型のエアーノズルを用い、吐出流速90m/secの気流を10分間、基材の回転数を25rpmに保持した状態で吹き付け続け、塗膜を乾燥固化し、下地剥離層、上層シリコーン膜の原版を作製した。
<Example 2>
A manufacturing apparatus having the configuration shown in FIGS. 1 to 4 plus the light irradiator shown in FIG. 5(b) in the first solidification step is used, and a photocurable coating material is used as the release film material. Then, a release film and a silicone film were formed on the cylindrical base material. In the first coating process, a cylindrical base material with an outer diameter of 185 mm and an axial length of 300 mm was used, and when a uniform and flat coating film was formed on the circumferential surface of the cylindrical base material, the film thickness after solidification was 50 μm. The amount of coating film was set so that the peeling film was applied in a spiral manner using a fountain-type coating nozzle with an outlet diameter of 0.2 mm while the substrate was rotating at 500 rpm. Next, in the first solidification step, the rotation speed of the base material was reduced to 25 rpm, and the base material was irradiated with light for 5 minutes using a light irradiator with an irradiation amount of 300 mW/cm 2 while maintaining the rotation speed of the base material at 25 rpm. This was continued to solidify the coating film. Next, in the second coating process, the rotation speed of the substrate was increased to 500 rpm again, the amount of liquid sent by the liquid pump was adjusted so that the film thickness after drying and solidification was 10 μm, and the fountain with an outlet diameter of Φ0.5 mm was used. The silicone material was applied in a spiral manner using a method application nozzle. Next, in the second solidification step, the rotation speed of the base material was lowered to 25 rpm, and a slit-type air nozzle was used to apply airflow at a discharge flow rate of 90 m/sec for 10 minutes, while the rotation speed of the base material was maintained at 25 rpm. The spraying was continued to dry and solidify the coating film, and original plates for the base release layer and upper silicone film were prepared.

剥離膜材料には、ポリウレタンを原料とした光硬化樹脂を用い、材料固化時の膜収縮率は10%、液粘度は50cP、膜状態での粘着力が0.08N/mmに対し、引張強さ40N/mm、膜厚50μmの易剥離性であった。
<比較例1>
実施例1において、第1の塗布工程の塗布手段をスプレーによる液滴噴霧に切り替え、膜厚が50μmとなるよう剥離膜材料の螺旋状塗布を行った。その際、螺旋状塗布における軸方向の移動は1回で終え、積層塗布は実施しなかった。また、第1の固化工程以降は実施例1と同様な方法で剥離膜の乾燥固化およびシリコーン層の形成を行った。
The release film material uses a photocurable resin made from polyurethane, and when the material solidifies, the film shrinkage rate is 10%, the liquid viscosity is 50 cP, the adhesive strength in the film state is 0.08 N/mm, and the tensile strength is The peelability was 40N/mm 2 and the film thickness was 50 μm.
<Comparative example 1>
In Example 1, the coating means in the first coating step was changed to droplet spraying, and the release film material was coated in a spiral shape so that the film thickness was 50 μm. At that time, the axial movement in the spiral coating was completed only once, and laminated coating was not performed. Further, after the first solidification step, the peeling film was dried and solidified and the silicone layer was formed in the same manner as in Example 1.

実施例1~3および比較例1の条件で製作した水なしオフセット原版を用い、機能膜の耐久性および剥離膜の剥離性確認を行った結果を以下に示す。耐久性確認は、各原版を回転保持できる試験機にセットし、回転速度200rpmで保持した状態で、版表面にゴムローラを荷重10kgで押しつけ、50時間および100時間後の版面状態を目視で確認した。実施例1~3において、剥離膜の浮きや剥がれ、また、シリコーン膜の剥がれともに100時間経過後も問題は生じなかった。一方、比較例1では、シリコーン膜に剥がれが生じなかったものの、時間の経過とともに剥離膜の一部で膜の割れが発生し、100時間経過前に剥離膜が破れ基材から剥がれた。 The durability of the functional film and the releasability of the release film were confirmed using waterless offset master plates produced under the conditions of Examples 1 to 3 and Comparative Example 1. The results are shown below. Durability was confirmed by setting each original plate in a testing machine that can hold it in rotation, and pressing a rubber roller against the plate surface with a load of 10 kg while holding the rotation speed at 200 rpm, and visually checking the condition of the plate surface after 50 and 100 hours. . In Examples 1 to 3, there were no problems with lifting or peeling of the release film or peeling of the silicone film even after 100 hours. On the other hand, in Comparative Example 1, although no peeling occurred in the silicone film, cracking occurred in a part of the release film over time, and the release film was torn and peeled off from the base material before 100 hours had passed.

剥離性確認は、原版の機能膜にカッターで切り込みを入れることで剥離膜を一部破断し、そこを起点に機能膜を指で引っ張ることで、容易に剥離膜を剥離できるか確認した。機能膜の耐久性および剥離膜の剥離性の確認結果を示す。剥離性確認では、いずれの条件でも手で剥離膜を剥離することができたが、比較例1では、剥離の途中で膜が切れやすかった。 To check the releasability, a cut was made in the original functional film using a cutter to partially break the release film, and the functional film was pulled from that point with a finger to confirm whether the release film could be easily peeled off. The results of confirming the durability of the functional film and the removability of the release film are shown. When confirming the peelability, the peeling film could be peeled off by hand under any conditions, but in Comparative Example 1, the film was easy to break during peeling.

100:水なしオフセット原版の製造装置
110:回転駆動手段
111:円柱状基材
112、113:回転中心軸
114、115:支持台
116:アクチュエータ
117:回転速度制御器
121a:第1の塗布ノズル
121b:第2の塗布ノズル
122a:第1の塗布回収ユニット
122b:第2の塗布回収ユニット
123a:第1の送液ポンプ
123b:第2の送液ポンプ
124a:第1の塗材タンク
125b:第2の塗材タンク
131a:第1の塗布器のステージ
131b:第2の塗布器のステージ
132:スライダー
133:アクチュエータ
134:塗布手段の移動を制御する制御器
141:気流による固化手段
142:気流噴射の圧力制御器
143:圧縮気体供給源
150:連動動作制御器
151:膜厚センサ
152:センサ制御器
160:光照射器
161:照射時間を制御する制御器
F:塗材
Fa:第1の塗布工程の塗材
Fb:第2の塗布工程の塗材
R:回転方向
P:往復移動方向
100: Waterless offset original plate manufacturing device 110: Rotation drive means 111: Cylindrical base materials 112, 113: Rotation center shafts 114, 115: Support stand 116: Actuator 117: Rotation speed controller 121a: First coating nozzle 121b : Second coating nozzle 122a: First coating and recovery unit 122b: Second coating and recovery unit 123a: First liquid feeding pump 123b: Second liquid feeding pump 124a: First coating material tank 125b: Second Coating material tank 131a: Stage 131b of the first applicator: Stage 132 of the second applicator: Slider 133: Actuator 134: Controller 141 for controlling movement of the application means: Solidifying means by air flow 142: Air jet Pressure controller 143: Compressed gas supply source 150: Interlocking operation controller 151: Film thickness sensor 152: Sensor controller 160: Light irradiator 161: Controller that controls irradiation time F: Coating material Fa: First coating step Coating material Fb: Coating material in the second coating process R: Rotation direction P: Reciprocating direction

Claims (7)

円柱状基材の表面に、液状の剥離膜材料を塗布する第1の塗布工程と、前記剥離膜材料を乾燥固化し前記円柱状の基材の表面に剥離膜を形成する第1の固化工程と、前記剥離膜の表面にシリコーン膜材料を塗布する第2の塗布工程と、前記シリコーン膜材料を乾燥固化する第2の固化工程とを含む、水なしオフセット原版の製造方法において、
前記剥離膜材料は、乾燥固化後の標準剥離特性において、塗膜厚みが100μm以下のとき、剥離膜の引張強さ[N/mm]と塗膜厚み[mm]の積が、剥離膜の粘着力[N/mm]を超える剥離膜材料を用い、
前記第1の塗布工程が、前記円柱状基材の軸を中心軸として回転させながら、前記円柱状基材の周面に対し、前記円柱状基材の下方に設けた第1の塗布器から前記剥離膜材料を噴き上げ、前記円柱状基材の表面に前記液状の剥離膜材料を付着させながら塗布する工程であり、
前記第1の固化工程が、前記第1の塗布工程に続き、前記円柱基材を回転した状態で塗布された剥離膜材料の乾燥固化を行うことで、前記円柱基材上で塗布された剥離膜材料を収縮させ、前記円柱基材上に前記剥離膜を形成する工程であり、
前記第2の塗布工程は、第2の塗布器から前記シリコーン膜材料を吐出し、前記剥離膜の表面に前記シリコーン膜材料を塗布する工程であり、
円柱状基材の表面に、少なくとも前記剥離膜とシリコーン膜とを含む積層体が形成される、水なしオフセット原版の製造方法。
A first coating step of applying a liquid release film material to the surface of the columnar base material, and a first solidification step of drying and solidifying the release film material to form a release film on the surface of the columnar base material. and a second coating step of applying a silicone film material to the surface of the release film, and a second solidification step of drying and solidifying the silicone film material,
The release film material has standard release properties after drying and solidification, such that when the film thickness is 100 μm or less, the product of the release film tensile strength [N/mm 2 ] and the coating film thickness [mm] is Using a release film material that exceeds the adhesive strength [N/mm],
In the first application step, a first applicator provided below the cylindrical base material is applied to the circumferential surface of the cylindrical base material while rotating the cylindrical base material about the axis of the cylindrical base material as a central axis. a step of spraying up the release film material and applying the liquid release film material to the surface of the cylindrical base material while adhering it;
The first solidifying step is subsequent to the first coating step, and is performed by drying and solidifying the release film material applied while rotating the cylindrical base material, so that the release film material coated on the cylindrical base material is a step of shrinking the film material to form the peeling film on the cylindrical base material,
The second coating step is a step of discharging the silicone film material from a second applicator and applying the silicone film material to the surface of the release film,
A method for producing a waterless offset original plate, wherein a laminate including at least the release film and a silicone film is formed on the surface of a cylindrical base material.
前記第1の塗布工程が、前記円柱状基材の回転運動を行いながら、前記第1の塗布器を円柱状の基材の軸方向に往復移動させることにより、前記円柱状基材の周面に前記剥離膜材料を噴き上げて塗膜を形成することを特徴とする、請求項1に記載の水なしオフセット原版の製造方法。 The first coating step reciprocates the first applicator in the axial direction of the cylindrical base material while rotating the cylindrical base material, thereby coating the circumferential surface of the cylindrical base material. 2. The method for producing a waterless offset original plate according to claim 1, wherein the release film material is spouted up to form a coating film. 前記液状の剥離膜材料の粘度が、0.01~1Poiseである、請求項1または2に記載の水なしオフセット原版の製造方法。 The method for producing a waterless offset original plate according to claim 1 or 2, wherein the liquid release film material has a viscosity of 0.01 to 1 Poise. 前記第1の固化工程の途中で、前記円柱状基材を回転した状態で、第2の塗布工程を開始する、請求項1~3のいずれかに記載の水なしオフセット原版の製造方法。 The method for producing a waterless offset original plate according to any one of claims 1 to 3, wherein the second coating process is started while the cylindrical base material is being rotated during the first solidification process. 前記第1の固化工程および前記第2の固化工程が、前記円柱状の基材の回転により生じる風、もしくは、前記円柱状の基材上の塗膜面に対してエアーノズルから送風することで行う、請求項1~4のいずれかに記載の水なしオフセット原版の製造方法。 The first solidifying step and the second solidifying step are performed by using wind generated by rotation of the cylindrical base material or by blowing air from an air nozzle to the coating surface on the cylindrical base material. The method for producing a waterless offset original plate according to any one of claims 1 to 4. 前記剥離膜材料に光硬化型樹脂を用い、前記剥離膜材料の塗布後、基材を回転した状態で光照射を行い、前記剥離膜材料を固化する、請求項1~4のいずれかに記載の水なしオフセット原版の製造方法。 Any one of claims 1 to 4, wherein a photocurable resin is used as the release film material, and after application of the release film material, the base material is irradiated with light while being rotated to solidify the release film material. A method for producing a waterless offset master plate. 円柱状基材の周面に第1の塗材を塗布するための円柱状基材の下方に設けられたファウンテン方式の第1の塗布ノズルを有する第1の塗布手段と、円柱状基材の周面に第2の塗材を塗布するための第2の塗布ノズルを有する第2の塗布手段と、
前記円柱状基材を円柱の軸を中心軸として回転せしめるための回転駆動手段と、
前記円柱状基材の周面に塗布された塗膜を固化するエアーノズルからの送風または光照射による固化手段と、
塗膜の膜厚値を計測する測定器と、前記第1および第2の塗布手段と前記固化手段との切り替えを行う制御器を少なくとも有し、
前記の第1および第2の塗布手段は、該円柱状基材の回転軸方向に前記第1の塗布ノズルおよび第2の塗布ノズルを移動させる移動手段を備え、さらに、前記回転駆動手段によって前記円柱状基材を回転した状態で前記第1および第2の塗布ノズルを前記移動手段により移動させることで塗材の塗布を行い、かつ、
前記第2の塗布手段は、前記測定器の測定値に基づき、前記固化手段を停止した後、前記第2の塗布手段による塗布工程を開始する、水なしオフセット原版の製造装置。
a first coating means having a fountain-type first coating nozzle provided below the columnar base material for applying a first coating material to the circumferential surface of the columnar base material; a second application means having a second application nozzle for applying a second coating material to the peripheral surface;
a rotational drive means for rotating the cylindrical base material about the axis of the cylinder;
Solidifying means for solidifying the coating film applied to the peripheral surface of the cylindrical base material by blowing air from an air nozzle or irradiating light;
It has at least a measuring device for measuring the film thickness value of the coating film, and a controller for switching between the first and second coating means and the solidifying means,
The first and second coating means are provided with moving means for moving the first coating nozzle and the second coating nozzle in the direction of the rotation axis of the cylindrical base material, and the rotational drive means further includes The coating material is applied by moving the first and second coating nozzles with the moving means while the cylindrical base material is rotated, and
The second coating device is a waterless offset master manufacturing apparatus, wherein the second coating device starts a coating process by the second coating device after stopping the solidifying device based on the measurement value of the measuring device.
JP2022058036A 2022-03-31 2022-03-31 Waterless offset original plate manufacturing method and manufacturing apparatus Pending JP2023149454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022058036A JP2023149454A (en) 2022-03-31 2022-03-31 Waterless offset original plate manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022058036A JP2023149454A (en) 2022-03-31 2022-03-31 Waterless offset original plate manufacturing method and manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2023149454A true JP2023149454A (en) 2023-10-13

Family

ID=88288388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022058036A Pending JP2023149454A (en) 2022-03-31 2022-03-31 Waterless offset original plate manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2023149454A (en)

Similar Documents

Publication Publication Date Title
KR101855604B1 (en) Powder material for three-dimensional object formation, hardening liquid and three-dimensional object formation kit, and formation method and formation apparatus of three-dimensional object
JP4823313B2 (en) Cylindrical printing substrate manufacturing method and manufacturing apparatus
CN100455720C (en) Papermaking roll cover and method for its production
WO2010132392A2 (en) Compositions and methods for selective deposition modeling
JP4749063B2 (en) Method for manufacturing sleeve printing original plate for laser engraving and apparatus for manufacturing sleeve printing original plate for laser engraving
US20150158263A1 (en) Embossing apparatus and methods using texture features digitally applied to a work roll or sheet for subsequent roll embossing
WO2006061946A1 (en) Method of transferring and liquid coating apparatus
JP2021534017A (en) A method of manufacturing a three-dimensional molded product by depositing a layered material.
JP4747264B2 (en) Method for manufacturing sleeve printing original plate for laser engraving and apparatus for manufacturing sleeve printing original plate for laser engraving
JP2023149454A (en) Waterless offset original plate manufacturing method and manufacturing apparatus
JP4316757B2 (en) Method for continuous coating of thermosetting polyurethane and method for producing thermosetting polyurethane sheet
JP2023149453A (en) Waterless offset original plate manufacturing method and manufacturing apparatus
JP2023149451A (en) Waterless offset original plate manufacturing method and manufacturing apparatus
JP4609595B1 (en) Mold holding method, cylindrical member manufacturing method, and cylindrical member manufacturing apparatus
KR20160022863A (en) Method for producing cylindrical flexo printing elements
JP6359167B1 (en) Transfer apparatus and transfer method
JP2005238169A (en) Coating film forming apparatus
JP5863576B2 (en) Method, apparatus and system for digital radiation curable gel ink printing with UV gel ink planarization and jet deposition directly on a substrate having a planarizing member with a metal oxide surface
JP7221642B2 (en) Transfer device
JP6404436B1 (en) Transfer apparatus and transfer method
WO2023068190A1 (en) Coating apparatus and coating-film forming method
JP4521976B2 (en) Method and apparatus for producing adhesive tape
JPH11268278A (en) Liquid injection device, preparation of liquid injection device, apparatus for preparing liquid injection device and printing apparatus
JP6397553B1 (en) Transfer device
JP2005297345A (en) Transfer method