JP2023149312A - Controller, underground heat utilization system, control method and program - Google Patents

Controller, underground heat utilization system, control method and program Download PDF

Info

Publication number
JP2023149312A
JP2023149312A JP2022057820A JP2022057820A JP2023149312A JP 2023149312 A JP2023149312 A JP 2023149312A JP 2022057820 A JP2022057820 A JP 2022057820A JP 2022057820 A JP2022057820 A JP 2022057820A JP 2023149312 A JP2023149312 A JP 2023149312A
Authority
JP
Japan
Prior art keywords
heat
water
well
pumped
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022057820A
Other languages
Japanese (ja)
Other versions
JP7504410B2 (en
Inventor
伸治 三原
Shinji Mihara
林日 崔
Rinnichi SAI
正頌 坂井
Masanobu Sakai
徹 山口
Toru Yamaguchi
悠 竹中
Yutaka Takenaka
正喜 中尾
Masaki Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
University Public Corporation Osaka
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd, University Public Corporation Osaka filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2022057820A priority Critical patent/JP7504410B2/en
Publication of JP2023149312A publication Critical patent/JP2023149312A/en
Application granted granted Critical
Publication of JP7504410B2 publication Critical patent/JP7504410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide a controller that easily maintain heat balance and volume balance throughout the year, an underground heat utilization system, a control method and a program.SOLUTION: A controller comprises: a material balance control unit that controls a heat source well facility comprising a hot water well and a cold water well so that an annual pumped water volume and an annual returned water volume of each of the hot water well and the cold water well are equal; and a heat balance control unit that controls a heat storage auxiliary facility including at least one of a heating device and a cooling device so that an annual heat amount of pumped water and an annual heat amount of returned water of both the hot water well and the cold water well are equal.SELECTED DRAWING: Figure 3

Description

本開示は、制御装置、地中熱利用システム、制御方法、及びプログラムに関する。 The present disclosure relates to a control device, a geothermal heat utilization system, a control method, and a program.

近年、井戸に蓄えた蓄熱を利用する地中熱利用システムが提案されている。 In recent years, geothermal heat utilization systems that utilize heat stored in wells have been proposed.

これに関連する技術として、例えば、特許文献1には、帯水層に延びる複数の井戸に蓄えた温水及び冷水を利用する地中熱利用システムが開示されている。 As a related technology, for example, Patent Document 1 discloses a geothermal heat utilization system that utilizes hot water and cold water stored in a plurality of wells extending into an aquifer.

特開平11-325650号公報Japanese Patent Application Publication No. 11-325650

特許文献1に開示された地中熱利用システムは、冷房負荷に偏った建物の場合にあっては、冷却塔等を介して温水を冷却し、暖房負荷に偏った建物の場合にあっては、太陽熱等を介して冷水を温めて井戸を回復している。
しかし、特許文献1に開示された地中熱利用システムでは、年間を通じた熱量バランスと体積バランスとを維持できないことがある。
The geothermal heat utilization system disclosed in Patent Document 1 cools hot water via a cooling tower etc. in the case of a building with a biased cooling load, and cools hot water through a cooling tower etc. in the case of a building with a biased heating load. Wells are being restored by heating cold water, such as through solar heat.
However, in the geothermal heat utilization system disclosed in Patent Document 1, the heat balance and volume balance may not be maintained throughout the year.

本開示は、上記課題を解決するためになされたものであって、年間を通じた熱量バランスと体積バランスとを維持しやすい制御装置、地中熱利用システム、制御方法、及びプログラムを提供することを目的とする。 The present disclosure has been made in order to solve the above problems, and aims to provide a control device, a geothermal heat utilization system, a control method, and a program that can easily maintain heat balance and volume balance throughout the year. purpose.

上記課題を解決するために、本開示に係る制御装置は、温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御する物質平衡制御部と、加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する熱平衡制御部と、を備える。 In order to solve the above problems, a control device according to the present disclosure controls a heat source well equipment including a hot water well and a cold water well to determine the annual pumped water volume and return water volume of each well of the hot water well and the cold water well. A heat storage auxiliary equipment including at least one of a heating device and a cooling device, a material balance control unit that controls the material balance to be equal to each other, and a heat storage auxiliary equipment including at least one of a heating device and a cooling device. and a thermal balance control section that controls the temperature to be equal to the temperature.

本開示に係る制御方法は、温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する。 The control method according to the present disclosure controls a heat source well equipment including a hot water well and a cold water well so that the annual pumped water volume and the returned water volume of each of the hot water well and the cold water well are equal, and the heat source well equipment includes a hot water well and a cold water well. A heat storage auxiliary equipment including at least one of the device and the cooling device is controlled so that the heat amount of pumped water and the heat amount of returned water in both the hot water well and the cold water well during the year are equalized.

本開示に係るプログラムは、コンピュータに、温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御することを実行させる。 A program according to the present disclosure causes a computer to control a heat source well equipment including a hot water well and a cold water well so as to equalize the pumped water volume and return water volume of each of the hot water well and the cold water well. , controlling a heat storage auxiliary equipment including at least one of a heating device and a cooling device so as to equalize the heat amount of pumped water and the heat amount of returned water in both the hot water well and the cold water well during the year; let

本開示の制御装置、地中熱利用システム、制御方法、及びプログラムによれば、年間を通じた熱量バランスと体積バランスとを維持しやすい。 According to the control device, geothermal heat utilization system, control method, and program of the present disclosure, it is easy to maintain the heat balance and volume balance throughout the year.

本開示の実施形態に係る地中熱利用システムの系統図である。1 is a system diagram of a geothermal heat utilization system according to an embodiment of the present disclosure. 本開示の実施形態に係る地中熱利用システムの年間サイクルにおける機能を説明する図である。FIG. 2 is a diagram illustrating functions in an annual cycle of a geothermal heat utilization system according to an embodiment of the present disclosure. 本開示の実施形態に係る制御装置のブロック図である。FIG. 1 is a block diagram of a control device according to an embodiment of the present disclosure. 本開示の実施形態に係る制御方法のフローチャートである。3 is a flowchart of a control method according to an embodiment of the present disclosure. 年間サイクルにおける還水温度と揚水温度の関係を示す図である。It is a figure showing the relationship between return water temperature and pumped water temperature in an annual cycle.

以下、本開示に係る実施形態について、図面を用いて説明する。すべての図面において同一または相当する構成には同一の符号を付し、共通する説明は省略する。 Embodiments according to the present disclosure will be described below with reference to the drawings. In all the drawings, the same or corresponding structures are given the same reference numerals, and common explanations are omitted.

<実施形態>
本開示に係る地中熱利用システムの実施形態について、図1~図5を参照して説明する。
(地中熱利用システムの構成)
図1に示すように、地中熱利用システム1は、熱源井戸設備10と、蓄熱補助設備20と、ヒートポンプ30と、熱交換器40と、制御装置50とを備える。
熱負荷LD(例:空調負荷)が暖房を利用している時、地中熱利用システム1は、熱源井戸設備10に蓄えられた温水の温熱を暖房に利用すると同時に排冷熱を蓄える。
熱負荷LDが冷房を利用している時、地中熱利用システム1は、熱源井戸設備10に蓄えられた冷水の冷熱を冷房に利用すると同時に排温熱を蓄える。
<Embodiment>
An embodiment of a geothermal heat utilization system according to the present disclosure will be described with reference to FIGS. 1 to 5.
(Configuration of geothermal heat utilization system)
As shown in FIG. 1, the geothermal heat utilization system 1 includes a heat source well facility 10, a heat storage auxiliary facility 20, a heat pump 30, a heat exchanger 40, and a control device 50.
When the heat load LD (eg, air conditioning load) uses heating, the geothermal heat utilization system 1 uses the hot water stored in the heat source well equipment 10 for heating, and at the same time stores exhaust cold heat.
When the heat load LD uses air conditioning, the geothermal heat utilization system 1 uses the cold heat of the cold water stored in the heat source well equipment 10 for cooling, and at the same time stores waste heat.

(熱源井戸設備の構成)
熱源井戸設備10は、温水井戸11と、冷水井戸12と、配管13とを備える。
(Configuration of heat source well equipment)
The heat source well equipment 10 includes a hot water well 11, a cold water well 12, and piping 13.

温水井戸11及び冷水井戸12は、それぞれ、地上から帯水層LY内に延びている。
温水井戸11及び冷水井戸12は、それぞれスクリーンを有するケーシング等を備え、帯水層LYの地下水を取り込んだり、温水井戸11及び冷水井戸12の内部から帯水層LYへ地下水を戻したりできるように構成されている。
地中熱利用システム1の定常運転時において、温水井戸11周辺の帯水層LYには温水が蓄えられ、冷水井戸12周辺の帯水層LYには冷水が蓄えられている。
温水井戸11と冷水井戸12とは、蓄えられた温水と冷水とが混ざらない程度に互いに十分離れた距離に設けられている。
The hot water well 11 and the cold water well 12 each extend from the ground into the aquifer LY.
The hot water well 11 and the cold water well 12 are each equipped with a casing having a screen, etc., so that they can take in groundwater from the aquifer LY and return groundwater from the inside of the hot water well 11 and the cold water well 12 to the aquifer LY. It is configured.
During steady operation of the geothermal heat utilization system 1, hot water is stored in the aquifer LY around the hot water well 11, and cold water is stored in the aquifer LY around the cold water well 12.
The hot water well 11 and the cold water well 12 are provided at a sufficient distance from each other so that the stored hot water and cold water do not mix.

地中熱利用システム1において、熱源井戸設備10は、地下水を、温水井戸11及び冷水井戸12のうちの一方から地上にくみ上げ、熱利用及び補助蓄熱のために地上で熱交換を行い、温水井戸11及び冷水井戸12のうちの他方に注入する。つまり、熱源井戸設備10は、温水井戸11から地下水をくみ上げて冷水井戸12に注入する場合と、冷水井戸12から地下水をくみ上げて温水井戸11に注入する場合の、2つの運転モードを有する。 In the geothermal heat utilization system 1, the heat source well equipment 10 pumps groundwater to the ground from one of the hot water well 11 and the cold water well 12, performs heat exchange above ground for heat utilization and supplementary heat storage, and pumps groundwater to the ground from one of the hot water well 11 and the cold water well 12, and performs heat exchange on the ground for heat utilization and supplementary heat storage. 11 and the other of cold water well 12. That is, the heat source well equipment 10 has two operating modes: one in which groundwater is pumped up from the hot water well 11 and injected into the cold water well 12, and the other in which groundwater is pumped up from the cold water well 12 and injected into the hot water well 11.

配管13は、温水井戸11と冷水井戸12とを接続する。
配管13の一端である第一端131は、温水井戸11の内部に延びており、温水井戸11の内部の地下水に浸漬されている。
配管13の他端である第二端132は、冷水井戸12の内部に延びており、冷水井戸12の内部の地下水に浸漬されている。
Piping 13 connects hot water well 11 and cold water well 12.
A first end 131 that is one end of the pipe 13 extends inside the hot water well 11 and is immersed in groundwater inside the hot water well 11 .
A second end 132 , which is the other end of the pipe 13 , extends into the cold water well 12 and is immersed in groundwater inside the cold water well 12 .

第一端131及び第二端132の各々には、ポンプPP、調整弁RV、逆止弁CV等が設けられており、配管13内の水の流量を調整できるように構成されている。
ポンプPPは、制御装置50からの指令により、インバータ制御により出力を変更できる。
調整弁RVは、制御装置50からの指令により、開度を変更できる。
Each of the first end 131 and the second end 132 is provided with a pump PP, a regulating valve RV, a check valve CV, etc., and is configured to be able to adjust the flow rate of water in the pipe 13.
The output of the pump PP can be changed by inverter control based on a command from the control device 50.
The opening degree of the regulating valve RV can be changed by a command from the control device 50.

(ヒートポンプの構成)
ヒートポンプ30は、コンデンサ、エバポレータ、コンプレッサ等を備え、熱交換器40を介して、熱負荷LDと配管13との間に設けられている。
ヒートポンプ30は、熱交換器40で配管13内の水と熱交換を行った媒体を冷却したり、加熱したりする。これにより、ヒートポンプ30は、配管13内の水から得られた温熱又は冷熱を熱負荷LDに利用する一方、熱負荷LDから排出される排温熱又は排冷熱を、熱交換器40を介して、配管13内の水に蓄える。
(Heat pump configuration)
The heat pump 30 includes a condenser, an evaporator, a compressor, etc., and is provided between the heat load LD and the pipe 13 via a heat exchanger 40.
The heat pump 30 cools or heats the medium that has undergone heat exchange with the water in the piping 13 in the heat exchanger 40. As a result, the heat pump 30 uses the hot or cold heat obtained from the water in the pipe 13 for the heat load LD, and the exhaust heat or cold heat discharged from the heat load LD via the heat exchanger 40. The water is stored in the pipe 13.

(熱交換器の構成)
熱交換器40は、配管13内の水とヒートポンプ30側及び蓄熱補助設備20側の媒体との間で熱交換する。
具体的には、熱交換器40は、配管13内の水として、温水井戸11からくみ上げられて配管13内を流れる地下水と、ヒートポンプ30側及び蓄熱補助設備20側の媒体との間で熱交換する。熱交換が行われた後の地下水は、熱交換器40から配管13内を流れ、冷水井戸12に注入される。
逆に、熱交換器40は、配管13内の水として、冷水井戸12からくみ上げられて配管13内を流れる地下水と、ヒートポンプ30側及び蓄熱補助設備20側の媒体との間で熱交換する。熱交換が行われた後の地下水は、熱交換器40から配管13内を流れ、温水井戸11に注入される。
熱交換器40は、地上で延びる配管13の途中に設けられている。
(Configuration of heat exchanger)
The heat exchanger 40 exchanges heat between the water in the pipe 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side.
Specifically, the heat exchanger 40 exchanges heat between groundwater pumped up from the hot water well 11 and flowing through the pipe 13 as water in the pipe 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side. do. The groundwater after heat exchange flows from the heat exchanger 40 through the piping 13 and is injected into the cold water well 12.
Conversely, the heat exchanger 40 exchanges heat between the groundwater pumped up from the cold water well 12 and flowing through the pipe 13 as water in the pipe 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side. The groundwater after heat exchange flows from the heat exchanger 40 through the piping 13 and is injected into the hot water well 11.
The heat exchanger 40 is provided in the middle of the pipe 13 extending above the ground.

熱交換器40を経た水が温水の場合、温水井戸11では温水蓄熱を行う。
熱交換器40を経た水が冷水の場合、冷水井戸12では冷水蓄熱を行う。
ここで「温水」とは、帯水層LYの地下水の初期地中温度より高い温度の水のことであり、「冷水」とは、帯水層LYの地下水の初期地中温度より低い温度の水のことである。
例えば、帯水層LYの地下水の初期地中温度は18℃である。
When the water that has passed through the heat exchanger 40 is hot water, the hot water well 11 stores hot water heat.
When the water that has passed through the heat exchanger 40 is cold water, the cold water well 12 stores cold water heat.
Here, "hot water" refers to water with a temperature higher than the initial underground temperature of the groundwater in the aquifer LY, and "cold water" refers to water with a temperature lower than the initial underground temperature of the groundwater in the aquifer LY. It's about water.
For example, the initial underground temperature of the groundwater in the aquifer LY is 18°C.

(蓄熱補助設備の構成)
蓄熱補助設備20は、熱交換器40で配管13内の水と熱交換を行った媒体を冷却したり、加熱したりする。
蓄熱補助設備20は、加熱装置201と、冷却装置206とを備える。
本実施形態において、加熱装置201は太陽熱集熱器202を備え、冷却装置206は冷却塔207を備える。
(Configuration of heat storage auxiliary equipment)
The heat storage auxiliary equipment 20 cools or heats the medium that has undergone heat exchange with the water in the piping 13 using the heat exchanger 40 .
The heat storage auxiliary equipment 20 includes a heating device 201 and a cooling device 206.
In this embodiment, the heating device 201 includes a solar heat collector 202 and the cooling device 206 includes a cooling tower 207.

冷却塔207は、水を大気と接触させて気化させるときの気化熱を利用し、蓄熱補助設備20の媒体を冷却する。
これにより、図2に示すように、冬期において、熱負荷LDにおける暖房と同時に冷水井戸12への蓄冷を行う通常の運転に加え、必要に応じて冷却塔207を利用した冷水井戸12への補助蓄冷が可能となる。
The cooling tower 207 cools the medium of the heat storage auxiliary equipment 20 by utilizing the heat of vaporization when water is brought into contact with the atmosphere and vaporized.
As a result, as shown in FIG. 2, in winter, in addition to normal operation in which cold water is stored in the cold water well 12 at the same time as heating in the heat load LD, supplementary operation to the cold water well 12 using the cooling tower 207 is performed as necessary. Cool storage becomes possible.

太陽熱集熱器202は、太陽により水を温めて得られた太陽熱を利用し、蓄熱補助設備20の媒体を加熱する。
これにより、図2に示すように、夏期において、熱負荷LDにおける冷房と同時に温水井戸11への蓄熱を行う通常の運転に加え、必要に応じて太陽熱集熱器202を利用した温水井戸11への補助蓄熱が可能となる。
The solar heat collector 202 heats the medium of the heat storage auxiliary equipment 20 using solar heat obtained by heating water by the sun.
As a result, as shown in FIG. 2, in summer, in addition to the normal operation in which heat is stored in the hot water well 11 at the same time as cooling in the heat load LD, the hot water well 11 is stored in the hot water well 11 using the solar heat collector 202 as necessary. auxiliary heat storage becomes possible.

(制御装置の構成)
図3に示すように、制御装置50は、物質平衡制御部501と、熱平衡制御部505とを機能的に備える。
(Configuration of control device)
As shown in FIG. 3, the control device 50 functionally includes a material balance control section 501 and a thermal balance control section 505.

制御装置50は、ハードウェア構成として、CPU51と、メモリ52、通信インタフェース53と、記録媒体54とを備える。 The control device 50 includes a CPU 51, a memory 52, a communication interface 53, and a recording medium 54 as a hardware configuration.

CPU51は、予め用意されたプログラムに従って動作することで種々の機能を発揮するプロセッサである。CPU51の機能については後述する。 The CPU 51 is a processor that performs various functions by operating according to programs prepared in advance. The functions of the CPU 51 will be described later.

メモリ52は、CPU51の動作に必要な記憶領域を有する。 The memory 52 has a storage area necessary for the operation of the CPU 51.

通信インタフェース53は、通信線を介して他の装置と通信可能に接続するための接続インタフェースであり、他の装置に指令を送信したり、他の装置からの応答を受信したりできるように構成されている。 The communication interface 53 is a connection interface for communicably connecting to other devices via a communication line, and is configured to be able to send commands to other devices and receive responses from other devices. has been done.

記録媒体54は、制御装置50の筐体内に設けられたローカルの記録媒体であって、HDDやSSDなどの大容量記憶デバイスである。 The recording medium 54 is a local recording medium provided within the housing of the control device 50, and is a large-capacity storage device such as an HDD or an SSD.

次に、制御装置50のCPU51の機能について説明する。
CPU51は、予め用意されたプログラムに従って動作することで、上述のように、物質平衡制御部501及び熱平衡制御部505としての機能を発揮する。
Next, the functions of the CPU 51 of the control device 50 will be explained.
The CPU 51 functions as the material balance control section 501 and the thermal balance control section 505, as described above, by operating according to a program prepared in advance.

(物質平衡制御部の構成)
物質平衡制御部501は、熱源井戸設備10を、温水井戸11及び冷水井戸12の各井戸の年間における揚水体積と還水体積とを等しくするように制御する。
物質平衡制御部501は、体積算出部502と、井戸設備操作部503とを備える。
(Configuration of material balance control section)
The material balance control unit 501 controls the heat source well equipment 10 so that the annual volume of pumped water and the volume of returned water of each of the hot water well 11 and the cold water well 12 are made equal.
The material balance control section 501 includes a volume calculation section 502 and a well equipment operation section 503.

体積算出部502は、年間の各運転期間における各井戸の揚水又は還水すべき設定体積を算出する。
具体的には、体積算出部502は、温水井戸11と冷水井戸12と別々に、暖房運転期間(例えば冬期の一期間)における設定体積を算出する。
また、体積算出部502は、温水井戸11と冷水井戸12と別々に、暖房と低温外気との併用の運転期間(例えば冬期の別期間)における設定体積を算出する。
また、体積算出部502は、温水井戸11と冷水井戸12と別々に、冷房運転期間(例えば夏期)における設定体積を算出する。
The volume calculation unit 502 calculates the set volume of water to be pumped or returned from each well in each operating period of the year.
Specifically, the volume calculation unit 502 calculates the set volumes for the hot water well 11 and the cold water well 12 separately during the heating operation period (for example, one period in winter).
Further, the volume calculation unit 502 calculates the set volumes for the hot water well 11 and the cold water well 12 separately during an operation period in which heating and low-temperature outside air are used together (for example, another period in winter).
Further, the volume calculation unit 502 calculates the set volumes for the hot water well 11 and the cold water well 12 separately during the cooling operation period (for example, in the summer).

井戸設備操作部503は、算出された設定体積に基づき、熱源井戸設備10を操作する。
具体的には、各運転期間における各井戸の揚水又は還水の体積が、算出された設定体積となるように、ポンプPP、調整弁RV等に指令を送り、配管13内の水の流量を制御する。
The well equipment operation unit 503 operates the heat source well equipment 10 based on the calculated set volume.
Specifically, a command is sent to the pump PP, the regulating valve RV, etc., and the flow rate of water in the pipe 13 is adjusted so that the volume of water pumped or returned from each well during each operation period becomes the calculated set volume. Control.

(熱平衡制御部の構成)
熱平衡制御部505は、蓄熱補助設備20を、温水井戸11及び冷水井戸12の両方の井戸の年間における揚水熱量と還水熱量とを等しくするように制御する。
熱平衡制御部505は、温度算出部506と、補助設備操作部509とを備える。
(Configuration of thermal balance control section)
The heat balance control unit 505 controls the heat storage auxiliary equipment 20 so that the annual heat amount of pumped water and the heat amount of returned water of both the hot water well 11 and the cold water well 12 are made equal.
Thermal balance control section 505 includes a temperature calculation section 506 and an auxiliary equipment operation section 509.

温度算出部506は、還水すべき還水温度を算出する。
具体的には、温度算出部506は、暖房運転期間(例えば冬期の一期間)における冷水井戸12への還水温度を算出する。
また、温度算出部506は、暖房と低温外気との併用運転期間(例えば冬期の別期間)における冷水井戸12への還水温度を算出する。
また、温度算出部506は、冷房運転期間(例えば夏期の別期間)における温水井戸11への還水温度を算出する。
The temperature calculation unit 506 calculates the temperature of the return water to be returned.
Specifically, the temperature calculation unit 506 calculates the temperature of return water to the cold water well 12 during a heating operation period (for example, one period in winter).
Furthermore, the temperature calculation unit 506 calculates the temperature of return water to the cold water well 12 during a period of combined operation of heating and low-temperature outside air (for example, another period in winter).
Furthermore, the temperature calculation unit 506 calculates the temperature of water returned to the hot water well 11 during the cooling operation period (for example, during another period in the summer).

温度算出部506は、第一算出部507と、第二算出部508とを備える。
第一算出部507は、前期の還水履歴から揚水温度応答を求めるモデル式により、揚水温度応答の還水重み付け平均値を算出する。モデル式の詳細については後述する。
第二算出部508は、第一算出部507で算出した揚水温度応答から次期の還水温度を決定する。
The temperature calculation section 506 includes a first calculation section 507 and a second calculation section 508.
The first calculation unit 507 calculates a weighted average value of the pumped water temperature response using a model equation that calculates the pumped water temperature response from the previous period's return water history. Details of the model formula will be described later.
The second calculation unit 508 determines the next return water temperature from the pumped water temperature response calculated by the first calculation unit 507.

補助設備操作部509は、温度算出部506が算出した還水すべき還水温度に基づき、蓄熱補助設備20を操作する。
具体的には、各運転期間において加熱が必要な時は、補助設備操作部509は、体積算出部502で算出された体積で還水しつつ還水温度が算出した還水温度となるように、蓄熱補助設備20の加熱装置201に指令を送り、加熱装置201の加熱能力を操作する。
逆に、各運転期間において冷却が必要な時は、補助設備操作部509は、体積算出部502で算出された体積で還水しつつ還水温度が算出した還水温度となるように、蓄熱補助設備20の冷却装置206に指令を送り、冷却装置206の冷却能力を操作する。
The auxiliary equipment operating unit 509 operates the heat storage auxiliary equipment 20 based on the temperature of the return water calculated by the temperature calculation unit 506 to be returned.
Specifically, when heating is required in each operation period, the auxiliary equipment operation unit 509 returns water at the volume calculated by the volume calculation unit 502 while returning the water to the calculated return water temperature. , sends a command to the heating device 201 of the heat storage auxiliary equipment 20, and operates the heating capacity of the heating device 201.
Conversely, when cooling is required during each operation period, the auxiliary equipment operation section 509 returns water with the volume calculated by the volume calculation section 502 and stores heat so that the return water temperature becomes the calculated return water temperature. A command is sent to the cooling device 206 of the auxiliary equipment 20 to manipulate the cooling capacity of the cooling device 206.

(制御装置の動作)
本実施形態の制御装置50の動作について説明する。
制御装置50の動作は、制御方法の実施形態に相当する。
制御装置50は、図4に示す各ステップを実施する。
(Operation of control device)
The operation of the control device 50 of this embodiment will be explained.
The operation of the control device 50 corresponds to an embodiment of the control method.
The control device 50 implements each step shown in FIG.

まず、物質平衡制御部501は、熱源井戸設備10を、温水井戸11及び冷水井戸12の各井戸の年間における揚水体積と還水体積とを等しくするように制御する(ST01:物質平衡制御ステップ)
具体的には、体積算出部502は、年間の各運転期間における揚水又は還水すべき設定体積を算出し(ST01A:設定体積算出ステップ)、井戸設備操作部503は、熱源井戸設備10を操作する(ST01B:井戸設備操作ステップ)
First, the material balance control unit 501 controls the heat source well equipment 10 so that the annual pumped water volume and the returned water volume of each of the hot water well 11 and the cold water well 12 are equalized (ST01: material balance control step).
Specifically, the volume calculation unit 502 calculates the set volume to be pumped or returned in each operating period of the year (ST01A: set volume calculation step), and the well equipment operation unit 503 operates the heat source well equipment 10. (ST01B: Well equipment operation step)

ST01の実施と並行して、熱平衡制御部505は、蓄熱補助設備20を、温水井戸11及び冷水井戸12の両方の井戸の年間における揚水熱量と還水熱量とを等しくするように制御する(ST02:物質平衡制御ステップ)。
具体的には、温度算出部506は、年間の各運転期間における還水すべき設定温度を算出し(ST02A:設定温度算出ステップ)、補助設備操作部509は、設定温度に基づき、蓄熱補助設備20を操作する(ST02B:補助設備操作ステップ)。
In parallel with the implementation of ST01, the heat balance control unit 505 controls the heat storage auxiliary equipment 20 to equalize the annual heat amount of pumped water and the heat amount of returned water for both the hot water well 11 and the cold water well 12 (ST02 : material equilibrium control step).
Specifically, the temperature calculation unit 506 calculates the set temperature at which water should be returned during each operating period of the year (ST02A: set temperature calculation step), and the auxiliary equipment operation unit 509 operates the heat storage auxiliary equipment based on the set temperature. 20 (ST02B: auxiliary equipment operation step).

(モデル式の詳細説明)
地中熱利用システム1では、図5に示すようなモデルを構築する。
図5において、縦軸は揚水・還水温度を示し、横軸は揚水・還水体積を示す。
地中熱利用システム1は、還水温度を設定することができ、図5においても蓄熱・蓄冷期間中一定としている。
図5に示すモデルは、夏期冷房負荷が冬期暖房負荷よりも大きい場合を想定している。このため、図5に示すモデルには、暖房運転による蓄冷では足りない冷熱分を補うために冬期における蓄熱補助設備20の運転が加えられている。もし、夏期冷房負荷が冬期暖房負荷よりも大きい場合、夏期に蓄熱を補う運転が必要となる。
揚水温度は前年度の還水履歴の影響を受けるため、前年度の還水履歴から揚水温度応答を求めるためのモデル式を作成し、次年度運転時の注水温度を決定する。
揚水温度は、揚水期間中徐々に初期地下水温度へ向かって低下又は上昇するが、作成する簡易モデルでは、揚水温度応答を還水重み付け平均値として算出し、使用する。
(Detailed explanation of model formula)
In the geothermal heat utilization system 1, a model as shown in FIG. 5 is constructed.
In FIG. 5, the vertical axis shows the pumped water/return water temperature, and the horizontal axis shows the pumped water/return water volume.
The geothermal heat utilization system 1 can set the return water temperature, and it is kept constant during the heat storage/cold storage period in FIG. 5 as well.
The model shown in FIG. 5 assumes that the summer cooling load is larger than the winter heating load. For this reason, the model shown in FIG. 5 includes operation of the heat storage auxiliary equipment 20 in winter in order to compensate for the amount of cold energy that is insufficient to store cold heat through heating operation. If the summer cooling load is greater than the winter heating load, it will be necessary to operate to supplement heat storage in the summer.
Since the pumped water temperature is affected by the previous year's return water history, a model formula is created to calculate the pumped water temperature response from the previous year's return water history, and the water injection temperature for the next year's operation is determined.
The pumped water temperature gradually decreases or increases toward the initial groundwater temperature during the pumping period, but in the created simple model, the pumped water temperature response is calculated and used as a weighted average value of the returned water.

ここで、熱量の正負の定義に関し、帯水層LYへの熱の流入を正とし、帯水層LYからの熱の流出を負とする。
また、各記号を以下のように定義する。
Qw,w:冬期の熱量(図5に示す網掛け部の面積)
Qw,s:夏期の熱量(図5に示す網掛け部の面積)
Tp,w:冬期の温水井戸揚水温度
Ti,w,1:冬期の冷水井戸還水温度
Ti,s:夏期の温水井戸還水温度
Tp,s:夏期の冷水井戸揚水温度
Ti,w,2:暖房と低温外気との併用運転期間における平均還水温度
Vw,1:暖房運転期間の揚水・還水体積
Vw,2:暖房と低温外気との併用運転期間の揚水・還水体積
Vw,s:冷房運転期間の揚水・還水体積
Vw,w=Vw,1+Vw,2
Here, regarding the definition of positive and negative amounts of heat, the inflow of heat into the aquifer LY is defined as positive, and the outflow of heat from the aquifer LY is defined as negative.
In addition, each symbol is defined as follows.
Qw,w: Heat amount in winter (area of the shaded part shown in Figure 5)
Qw,s: Summer heat amount (shaded area shown in Figure 5)
Tp,w: Hot water well pumping temperature in winter Ti,w,1: Cold water well return temperature in winter Ti,s: Hot water well return temperature in summer Tp,s: Cold water well pumping temperature in summer Ti,w,2: Average return water temperature during the combined operation period of heating and low-temperature outside air Vw,1: Pumped water/return water volume during the heating operation period Vw,2: Pumped water/return water volume during the combined operation period of heating and low-temperature outside air Vw,s: Volume of pumped and returned water during cooling operation period Vw,w = Vw,1 + Vw,2

冬期の熱量Qw,w(図5に示す網掛け部の面積)は、式(1)となる。 The amount of heat Qw,w (the area of the shaded part shown in FIG. 5) in winter is expressed by equation (1).

Figure 2023149312000002
Figure 2023149312000002

式(1)の右辺第一項は、式(2)となる。 The first term on the right side of equation (1) becomes equation (2).

Figure 2023149312000003
Figure 2023149312000003

ここで、暖房運転期間におけるTp,wの平均温度を式(3)のようにおく。 Here, the average temperature of Tp,w during the heating operation period is set as shown in equation (3).

Figure 2023149312000004
Figure 2023149312000004

すると、式(2)は式(4)となる。 Then, equation (2) becomes equation (4).

Figure 2023149312000005
Figure 2023149312000005

同様に、暖房と低温外気との併用運転期間におけるTp,wの平均温度を式(5)のようにおく。 Similarly, the average temperature of Tp,w during the combined operation period of heating and low-temperature outside air is set as shown in equation (5).

Figure 2023149312000006
Figure 2023149312000006

すると、式(1)は式(6)となる。 Then, equation (1) becomes equation (6).

Figure 2023149312000007
Figure 2023149312000007

同様に、夏期の熱量Qw,s(図5に示す網掛け部の面積)である式(7)において、式(8)のようにおく。 Similarly, in equation (7), which is the amount of heat Qw,s in summer (the area of the shaded part shown in FIG. 5), equation (8) is set.

Figure 2023149312000008
Figure 2023149312000008

Figure 2023149312000009
Figure 2023149312000009

すると、式(9)となる。 Then, equation (9) is obtained.

Figure 2023149312000010
Figure 2023149312000010

結果、年間サイクルの式として、式(6)と式(9)が得られる。 As a result, equations (6) and (9) are obtained as equations for the annual cycle.

次に、年間サイクルの物質平衡式は、式(10)となる。 Next, the material balance equation for the annual cycle is equation (10).

Figure 2023149312000011
Figure 2023149312000011

年間サイクルの熱平衡式は、式(11)となる。 The heat balance equation for the annual cycle is equation (11).

Figure 2023149312000012
Figure 2023149312000012

以上より、熱物質平衡制御は次のように定式化できる。
「年間サイクルにおいて、式(6)、式(9)、式(10)、式(11)を満足する、変数Ti,w,1、Ti,w,2、Ti,s、Vw,1、Vw,2を求めること。」
From the above, heat-material balance control can be formulated as follows.
“In the annual cycle, variables Ti,w,1, Ti,w,2, Ti,s, Vw,1, Vw that satisfy equations (6), (9), equations (10), and equations (11) ,2.”

上記で説明した年間熱物質平衡制御を実現するためには、還水履歴から揚水温度応答を得るモデルが必要である。 In order to realize the annual heat-material balance control described above, a model is required to obtain the pumped water temperature response from the return water history.

Tp,w(冬期の温水井戸揚水温度)は、Ti,s(夏期の温水井戸還水温度)から式(12)に示す関数により求める。 Tp,w (warm water well pumping temperature in winter) is determined from Ti,s (warm water well return water temperature in summer) by the function shown in equation (12).

Figure 2023149312000013
Figure 2023149312000013

Tp,s(夏期の冷水井戸揚水温度)は、Ti,w,1(冬期の冷水井戸還水温度)とTi,w,2(暖房と低温外気との併用運転期間における平均還水温度)とから、式(13)に示す関数により求める。 Tp,s (cold water well pumping temperature in summer) is determined by Ti,w,1 (cold water well return water temperature in winter) and Ti,w,2 (average return water temperature during combined operation period of heating and low temperature outside air). , it is determined by the function shown in equation (13).

Figure 2023149312000014
Figure 2023149312000014

各期の熱回収率εは、帯水層LYに同量の水が注入され、そこから揚水されるときの生産エネルギーと投入エネルギーの比として定義される。水のエネルギー量は、帯水層LYの基の周辺温度T0を基準として定義される。熱回収率εは、式(14)となる。 The heat recovery rate ε for each period is defined as the ratio of production energy to input energy when the same amount of water is injected into the aquifer LY and pumped from there. The energy content of water is defined with reference to the ambient temperature T0 of the aquifer LY. The heat recovery rate ε is expressed by equation (14).

Figure 2023149312000015
Figure 2023149312000015

式(14)は、式(15)のように書くことができる。 Equation (14) can be written as Equation (15).

Figure 2023149312000016
Figure 2023149312000016

無次元温度T'は、式(16)のように定義される。 The dimensionless temperature T' is defined as in equation (16).

Figure 2023149312000017
Figure 2023149312000017

熱回収率の式(14)は、式(17)のように表記できる。 Equation (14) of the heat recovery rate can be expressed as Equation (17).

Figure 2023149312000018
Figure 2023149312000018

還水流量、揚水流量が一定の場合、無次元化揚水温度は、式(18)となる。 When the return water flow rate and the pumped water flow rate are constant, the dimensionless pumped water temperature is expressed by equation (18).

Figure 2023149312000019
Figure 2023149312000019

1、2サイクル目の揚水温度応答は、過去のデータから予測することができないため、下記の手順で想定する必要がある。 The pumped water temperature response for the first and second cycles cannot be predicted from past data, so it must be estimated using the following procedure.

[1]物性値や帯水層条件を設定する。 [1] Set physical property values and aquifer conditions.

[2]縦分散長と等価熱伝導率から、式(19)に従って、有効熱伝導率を求める。 [2] From the longitudinal dispersion length and equivalent thermal conductivity, calculate the effective thermal conductivity according to equation (19).

Figure 2023149312000020
Figure 2023149312000020

[3]式(20)に示すように、無次元数を求める。 [3] Calculate the dimensionless number as shown in equation (20).

Figure 2023149312000021
Figure 2023149312000021

[4]揚水温度データベース(Doughtyらによるもの(CHRISTINE DOUGHTY等,“A Dimensionless Parameter Approach to the Thermal Behavior of an Aquifer Thermal Energy Storage System”,WATER RESOURCES RESEARCH,1982年6月,VOL.18,NO.3,p. 571-587)、中尾、仲西によるもの(中尾正喜,仲西琴音等,“帯水層蓄熱システム企画のための揚水温度予測手法(第1報)既往研究の無次元化アプローチと課題”,空気調和・衛生工学会大会学術講演論文集,公益社団法人 空気調和・衛生工学会,2020年,第2巻,p.169-172))から、無次元数に近い揚水温度データを抽出する。 [4] Pumped water temperature database (by Doughty et al., “A Dimensionless Parameter Approach to the Thermal Behavior of an Aquifer Thermal Energy Storage System”, WATER RESOURCES RESEARCH, June 1982, VOL.18, NO.3 , pp. 571-587), by Nakao and Nakanishi (Masayoshi Nakao, Kotone Nakanishi, et al., “Pumped water temperature prediction method for planning aquifer heat storage system (first report): non-dimensionalization approach and issues of past research” Extract pumped water temperature data that is close to a dimensionless number from the Society of Air Conditioning and Sanitary Engineers Conference Academic Conference Papers, Public Interest Incorporated Association, Society of Air Conditioning and Sanitary Engineers, 2020, Volume 2, p. 169-172)) .

(作用及び効果)
本実施形態によれば、制御装置50は、各井戸の年間における揚水体積と還水体積とを等しくでき、両方の井戸の年間における揚水熱量と還水熱量とを等しくできる。
したがって、制御装置50は、年間を通じた熱量バランスと体積バランスとを維持しやすい。
加えて、年間を通じたこれらのバランスを維持できれば、還水温度の低下又は上昇が抑制でき、地中の熱塊サイズが安定し、周辺帯水層及び地球環境への影響を抑制できる。
また、自動制御しやすいことで、長期安定した運用が可能であり、帯水層蓄熱利用が普及しやすい。
また、事前に蓄冷運転方式、運転時間等を決めることができるため、蓄熱、消費電力ロス等の縮小が可能となる。
また、簡易的に平均揚水温度変化を求めることにより、制御装置50は、物質平衡制御及び熱平衡制御を実施しやすい。
(action and effect)
According to this embodiment, the control device 50 can equalize the volume of pumped water and the volume of returned water for each well in a year, and can equalize the amount of heat of pumped water and the amount of heat of returned water for both wells in a year.
Therefore, the control device 50 easily maintains the heat balance and volume balance throughout the year.
In addition, if these balances can be maintained throughout the year, the drop or rise in return water temperature can be suppressed, the size of the underground thermal mass can be stabilized, and the impact on surrounding aquifers and the global environment can be suppressed.
In addition, since it is easy to automatically control, stable operation over a long period of time is possible, making it easier to popularize the use of aquifer heat storage.
Furthermore, since the cold storage operation method, operation time, etc. can be determined in advance, it is possible to reduce heat storage, power consumption loss, etc.
Furthermore, by simply determining the average pumped water temperature change, the control device 50 can easily perform material balance control and heat balance control.

また、本実施形態の制御装置50は、年間の各運転期間における揚水又は還水すべき設定体積と還水すべき設定温度を算出し、熱源井戸設備10と蓄熱補助設備20とを操作するため、制御装置50は、熱源井戸設備10及び蓄熱補助設備20を、各運転期間の目標となる揚水又は還水すべき体積と還水すべき温度とに設定できる。 Further, the control device 50 of the present embodiment calculates the set volume to be pumped or returned and the set temperature to return water in each operating period of the year, and operates the heat source well equipment 10 and the heat storage auxiliary equipment 20. , the control device 50 can set the heat source well equipment 10 and the heat storage auxiliary equipment 20 to the volume to be pumped or returned and the temperature to be returned, which are the targets for each operation period.

また、本実施形態の制御装置50は、第一算出部507を備えることにより、蓄熱補助設備20の利用の有無を含む期間における平均的な還水温度を予測できる。 Further, by including the first calculation unit 507, the control device 50 of this embodiment can predict the average return water temperature in a period including whether or not the heat storage auxiliary equipment 20 is used.

また、本実施形態の制御装置50は、第二算出部508を備えることにより、次期の還水温度を予測できる。 Moreover, the control device 50 of this embodiment can predict the next return water temperature by including the second calculation unit 508.

また、本実施形態の加熱装置201は、太陽熱集熱器202を含むことにより、太陽熱のような未利用の自然エネルギーが可能である。 Moreover, the heating device 201 of this embodiment includes the solar heat collector 202, so that it is possible to use unused natural energy such as solar heat.

また、本実施形態の冷却装置206は、冷却塔207を含むことにより、低い外気温を利用した蓄冷が可能である。 Moreover, the cooling device 206 of this embodiment includes the cooling tower 207, so that it is possible to store cold by utilizing the low outside temperature.

また、本実施形態では、配管13内の水とヒートポンプ30側及び蓄熱補助設備20側の媒体との間で熱交換が行われるため、熱源井戸設備10と熱負荷LDとの間、及び熱源井戸設備10と蓄熱補助設備20との間での熱収受がしやすい。 Moreover, in this embodiment, since heat exchange is performed between the water in the piping 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side, the heat source well equipment 10 and the heat load LD and the heat source well Heat can be easily absorbed between the equipment 10 and the heat storage auxiliary equipment 20.

<変形例>
本実施形態では、蓄熱補助設備20は、加熱装置201と、冷却装置206とを備えるが、蓄熱を補助できるなら、どのように構成されてもよい。
変形例として、寒冷地においては、蓄熱補助設備20は、加熱装置201及び冷却装置206のうち、加熱装置201のみを備えてもよい。
他の変形例として、温暖地においては、蓄熱補助設備20は、加熱装置201及び冷却装置206のうち、冷却装置206のみを備えてもよい。
<Modified example>
In this embodiment, the heat storage auxiliary equipment 20 includes a heating device 201 and a cooling device 206, but it may be configured in any manner as long as it can assist in heat storage.
As a modification, in a cold region, the heat storage auxiliary equipment 20 may include only the heating device 201 out of the heating device 201 and the cooling device 206.
As another modification, in a warm region, the auxiliary heat storage equipment 20 may include only the cooling device 206 out of the heating device 201 and the cooling device 206.

本実施形態では、温度算出部506は、第一算出部507と、第二算出部508とを備えるが、還水温度を算出できるならどのように構成されてもよい。
変形例として、温度算出部506は、第一算出部507及び第二算出部508のうち、第一算出部507のみを備えてもよい。
他の変形例として、温度算出部506は、第一算出部507及び第二算出部508のうち、第二算出部508のみを備えてもよい。
In this embodiment, the temperature calculation unit 506 includes a first calculation unit 507 and a second calculation unit 508, but may be configured in any manner as long as it can calculate the return water temperature.
As a modification, the temperature calculation unit 506 may include only the first calculation unit 507 out of the first calculation unit 507 and the second calculation unit 508.
As another modification, the temperature calculation unit 506 may include only the second calculation unit 508 out of the first calculation unit 507 and the second calculation unit 508.

ヒートポンプ30は、熱負荷LDに対して設けられているが、配管13内の水に温熱又は冷熱を提供するために必要であれば、さらに他の設備にも設けられてもよい。
変形例として、ヒートポンプ30は、熱負荷LDに加えて、蓄熱補助設備20に対して設けられてもよい。
Although the heat pump 30 is provided for the heat load LD, it may also be provided for other equipment if necessary to provide hot or cold heat to the water in the pipe 13.
As a modification, the heat pump 30 may be provided for the heat storage auxiliary equipment 20 in addition to the heat load LD.

なお、上述の各実施形態においては、制御装置50の各種機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをマイコンといったコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、コンピュータシステムのCPU51の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 In each of the embodiments described above, a program for realizing various functions of the control device 50 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system such as a microcomputer. Various processes are performed by setting and executing the command. Here, various processes of the CPU 51 of the computer system are stored in a computer-readable recording medium in the form of a program, and the various processes described above are performed by reading and executing this program by the computer. Further, the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like. Alternatively, this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.

<その他の実施形態>
以上、本開示の実施形態を説明したが、この実施形態は、例として示したものであり、本開示の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、本開示の範囲とその均等の範囲に含まれるものとする。
<Other embodiments>
Although the embodiment of the present disclosure has been described above, this embodiment is shown as an example and is not intended to limit the scope of the present disclosure. This embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the present disclosure. This embodiment and its modifications are included within the scope and gist of the present disclosure, as well as within the scope of the present disclosure and its equivalents.

<付記>
上述の実施形態に記載の制御装置50、地中熱利用システム1、制御方法、及びプログラムは、例えば以下のように把握される。
<Additional notes>
The control device 50, geothermal heat utilization system 1, control method, and program described in the above-described embodiment can be understood, for example, as follows.

(1)第1の態様に係る制御装置50は、温水井戸11と冷水井戸12とを備える熱源井戸設備10を、前記温水井戸11及び前記冷水井戸12の各井戸の年間における揚水体積と還水体積とを等しくするように制御する物質平衡制御部501と、加熱装置201及び冷却装置206のうち、少なくとも一方を含む蓄熱補助設備20を、前記温水井戸11及び前記冷水井戸12の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する熱平衡制御部505と、を備える。 (1) The control device 50 according to the first aspect controls the heat source well equipment 10 including the hot water well 11 and the cold water well 12 to determine the annual pumped volume and return water of each of the hot water well 11 and the cold water well 12. A heat storage auxiliary equipment 20 including at least one of a heating device 201 and a cooling device 206 is connected to a material balance control unit 501 that controls the volumes to be equal to each other, and a heat storage auxiliary equipment 20 that includes at least one of a heating device 201 and a cooling device 206. A heat balance control unit 505 is provided that controls the heat amount of pumped water and the heat amount of returned water in the year to be equal.

本態様によれば、制御装置50は、各井戸の年間における揚水体積と還水体積とを等しくでき、両方の井戸の年間における揚水熱量と還水熱量とを等しくできる。
したがって、制御装置50は、年間を通じた熱量バランスと体積バランスとを維持しやすい。
加えて、年間を通じたこれらのバランスを維持できれば、還水温度の低下又は上昇が抑制でき、地中の熱塊サイズが安定し、周辺帯水層及び地球環境への影響を抑制できる。
また、自動制御しやすいことで、長期安定した運用が可能であり、帯水層蓄熱利用が普及しやすい。
また、事前に蓄冷運転方式、運転時間等を決めることができるため、蓄熱、消費電力ロス等の縮小が可能となる。
According to this aspect, the control device 50 can equalize the pumped water volume and return water volume of each well in a year, and can make the pumped water heat amount and return water heat amount of both wells equal in a year.
Therefore, the control device 50 easily maintains the heat balance and volume balance throughout the year.
In addition, if these balances can be maintained throughout the year, the drop or rise in return water temperature can be suppressed, the size of the underground thermal mass can be stabilized, and the impact on surrounding aquifers and the global environment can be suppressed.
In addition, since it is easy to automatically control, stable operation over a long period of time is possible, making it easier to popularize the use of aquifer heat storage.
Furthermore, since the cold storage operation method, operation time, etc. can be determined in advance, it is possible to reduce heat storage, power consumption loss, etc.

(2)第2の態様に係る制御装置50は、前記物質平衡制御部501が、前記年間の各運転期間における揚水又は還水すべき設定体積を算出する体積算出部502を備え、前記熱平衡制御部505が、前記各運転期間における還水すべき設定温度を算出する温度算出部506を備え、前記設定体積に基づき、前記熱源井戸設備10を操作する井戸設備操作部503と、前記設定温度に基づき、前記蓄熱補助設備20を操作する補助設備操作部509と、をさらに備える(1)の制御装置50である。 (2) In the control device 50 according to the second aspect, the material balance control unit 501 includes a volume calculation unit 502 that calculates a set volume of water to be pumped or returned in each operating period of the year, and the heat balance control unit 50 The unit 505 includes a temperature calculation unit 506 that calculates a set temperature at which water should be returned in each of the operating periods, a well equipment operation unit 503 that operates the heat source well equipment 10 based on the set volume, and a well equipment operation unit 503 that operates the heat source well equipment 10 based on the set volume. Based on the above, the control device 50 of (1) further includes an auxiliary equipment operating section 509 that operates the heat storage auxiliary equipment 20.

本態様によれば、制御装置50は、熱源井戸設備10及び蓄熱補助設備20を、各運転期間の目標となる揚水又は還水すべき体積と還水すべき温度とに設定できる。 According to this aspect, the control device 50 can set the heat source well equipment 10 and the heat storage auxiliary equipment 20 to the volume to be pumped or returned and the temperature to be returned, which are the targets for each operation period.

(3)第3の態様に係る制御装置50は、前記温度算出部506が、前期の還水履歴から揚水温度応答を求めるモデル式により、前記揚水温度応答の還水重み付け平均値を算出する第一算出部507を備える(2)の制御装置50である。 (3) In the control device 50 according to the third aspect, the temperature calculation unit 506 calculates a weighted average value of the pumped water temperature response using a model formula for calculating the pumped water temperature response from the previous period's return water history. This is the control device 50 of (2) including a calculation unit 507.

本態様によれば、制御装置50は、蓄熱補助設備20の利用の有無を含む期間における平均的な還水温度を予測できる。 According to this aspect, the control device 50 can predict the average return water temperature in a period including whether or not the heat storage auxiliary equipment 20 is used.

(4)第4の態様に係る制御装置50は、前記温度算出部506が、前記第一算出部で算出した前記揚水温度応答から次期の還水温度を算出する第二算出部508を備える(2)または(3)の制御装置50である。 (4) In the control device 50 according to the fourth aspect, the temperature calculation unit 506 includes a second calculation unit 508 that calculates the next return water temperature from the pumped water temperature response calculated by the first calculation unit ( This is the control device 50 of 2) or (3).

本態様によれば、制御装置50は、次期の還水温度を予測できる。 According to this aspect, the control device 50 can predict the next return water temperature.

(5)第5の態様に係る制御装置50は、前記加熱装置201が、太陽熱集熱器202を含む(1)から(4)のいずれか一つの制御装置50である。 (5) The control device 50 according to the fifth aspect is the control device 50 according to any one of (1) to (4), in which the heating device 201 includes a solar heat collector 202.

本態様によれば、太陽熱のような未利用の自然エネルギーが可能である。 According to this aspect, unused natural energy such as solar heat can be used.

(6)第6の態様に係る制御装置50は、前記冷却装置206が、冷却塔207を含む(1)から(5)のいずれか一つの制御装置50である。 (6) The control device 50 according to the sixth aspect is the control device 50 according to any one of (1) to (5), in which the cooling device 206 includes a cooling tower 207.

本態様によれば、低い外気温を利用した蓄冷が可能である。 According to this aspect, cold storage using low outside temperature is possible.

(7)第7の態様に係る制御装置50は、前記熱源井戸設備10が、前記温水井戸11と前記冷水井戸12と接続する配管13をさらに備え、熱負荷LDと前記配管13内との間に設けられているヒートポンプ30と、前記配管13内の水と前記ヒートポンプ30側及び前記蓄熱補助設備20側の媒体との間で、熱交換を行う熱交換器40と、をさらに備える(1)から(6)のいずれか一つの制御装置50である。 (7) In the control device 50 according to the seventh aspect, the heat source well equipment 10 further includes a pipe 13 connecting the hot water well 11 and the cold water well 12, and between the heat load LD and the inside of the pipe 13. (1) The heat exchanger 40 performs heat exchange between the water in the piping 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side. The control device 50 is any one of (6) to (6).

本態様によれば、配管13内の水とヒートポンプ30側及び蓄熱補助設備20側の媒体との間で熱交換が行われるため、熱源井戸設備10と熱負荷LDとの間、及び熱源井戸設備10と蓄熱補助設備20との間での熱収受がしやすい。 According to this aspect, since heat exchange is performed between the water in the pipe 13 and the medium on the heat pump 30 side and the heat storage auxiliary equipment 20 side, the heat source well equipment 10 and the heat load LD and the heat source well equipment Heat can be easily absorbed between 10 and the heat storage auxiliary equipment 20.

(8)第8の態様に係る地中熱利用システム1は、(1)から(7)のいずれか一つの制御装置50と、前記熱源井戸設備10と、前記蓄熱補助設備20と、を備える。 (8) The geothermal heat utilization system 1 according to the eighth aspect includes the control device 50 of any one of (1) to (7), the heat source well equipment 10, and the heat storage auxiliary equipment 20. .

本態様によれば、地中熱利用システム1は、各井戸の年間における揚水体積と還水体積とを等しくでき、両方の井戸の年間における揚水熱量と還水熱量とを等しくできる。
したがって、地中熱利用システム1は、年間を通じた熱量バランスと体積バランスとを維持しやすい。
加えて、年間を通じたこれらのバランスを維持できれば、還水温度の低下又は上昇が抑制でき、地中の熱塊サイズが安定し、周辺帯水層及び地球環境への影響を抑制できる。
また、自動制御しやすいことで、長期安定した運用が可能であり、帯水層蓄熱利用が普及しやすい。
また、事前に蓄冷運転方式、運転時間等を決めることができるため、蓄熱、消費電力ロス等の縮小が可能となる。
According to this aspect, the geothermal heat utilization system 1 can equalize the annual pumped water volume and the returned water volume of each well, and can make the annual pumped water heat amount and the returned water heat amount of both wells equal.
Therefore, the geothermal heat utilization system 1 can easily maintain the heat balance and volume balance throughout the year.
In addition, if these balances can be maintained throughout the year, the drop or rise in return water temperature can be suppressed, the size of the underground thermal mass can be stabilized, and the impact on surrounding aquifers and the global environment can be suppressed.
In addition, since it is easy to automatically control, stable operation over a long period of time is possible, making it easier to popularize the use of aquifer heat storage.
Furthermore, since the cold storage operation method, operation time, etc. can be determined in advance, it is possible to reduce heat storage, power consumption loss, etc.

(9)第9の態様に係る制御方法は、温水井戸11と冷水井戸12とを備える熱源井戸設備10を、前記温水井戸11及び前記冷水井戸12の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、加熱装置201及び冷却装置206のうち、少なくとも一方を含む蓄熱補助設備201を、前記温水井戸11及び前記冷水井戸12の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する。 (9) In the control method according to the ninth aspect, the heat source well equipment 10 including the hot water well 11 and the cold water well 12 is configured to control the annual pumping volume and return water volume of each of the hot water well 11 and the cold water well 12. The heat storage auxiliary equipment 201 including at least one of the heating device 201 and the cooling device 206 is controlled to be equal to the amount of heat pumped in the year of both the hot water well 11 and the cold water well 12. The amount of water heat is controlled to be equal to the amount of water heat.

本態様によれば、制御方法は、各井戸の年間における揚水体積と還水体積とを等しくでき、両方の井戸の年間における揚水熱量と還水熱量とを等しくできる。
したがって、制御方法は、年間を通じた熱量バランスと体積バランスとを維持しやすい。
加えて、年間を通じたこれらのバランスを維持できれば、還水温度の低下又は上昇が抑制でき、地中の熱塊サイズが安定し、周辺帯水層及び地球環境への影響を抑制できる。
また、自動制御しやすいことで、長期安定した運用が可能であり、帯水層蓄熱利用が普及しやすい。
また、事前に蓄冷運転方式、運転時間等を決めることができるため、蓄熱、消費電力ロス等の縮小が可能となる。
According to this aspect, the control method can make the pumped water volume and the return water volume of each well equal in a year, and can make the pumped water heat amount and the return water heat amount of both wells equal in a year.
Therefore, the control method makes it easy to maintain heat balance and volume balance throughout the year.
In addition, if these balances can be maintained throughout the year, the drop or rise in return water temperature can be suppressed, the size of the underground thermal mass can be stabilized, and the impact on surrounding aquifers and the global environment can be suppressed.
In addition, since it is easy to automatically control, stable operation over a long period of time is possible, making it easier to popularize the use of aquifer heat storage.
Furthermore, since the cold storage operation method, operation time, etc. can be determined in advance, it is possible to reduce heat storage, power consumption loss, etc.

(10)第10の態様に係るプログラムは、コンピュータに、温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御することを実行させる。 (10) The program according to the tenth aspect causes a computer to set a heat source well equipment including a hot water well and a cold water well, and to set the pumped water volume and return water volume of each well of the hot water well and the cold water well to be equal to each other in a year. The heat storage auxiliary equipment including at least one of the heating device and the cooling device is controlled so as to equalize the heat amount of pumped water and the heat amount of returned water in both the hot water well and the cold water well during the year. Make the thing you control do.

本態様によれば、プログラムは、各井戸の年間における揚水体積と還水体積とを等しくでき、両方の井戸の年間における揚水熱量と還水熱量とを等しくできる。
したがって、プログラムは、年間を通じた熱量バランスと体積バランスとを維持しやすい。
加えて、年間を通じたこれらのバランスを維持できれば、還水温度の低下又は上昇が抑制でき、地中の熱塊サイズが安定し、周辺帯水層及び地球環境への影響を抑制できる。
また、自動制御しやすいことで、長期安定した運用が可能であり、帯水層蓄熱利用が普及しやすい。
また、事前に蓄冷運転方式、運転時間等を決めることができるため、蓄熱、消費電力ロス等の縮小が可能となる。
According to this aspect, the program can make the pumped water volume and return water volume of each well equal each year, and can make the pumped water heat amount and return water heat amount of both wells equal each year.
Therefore, the program tends to maintain caloric balance and volumetric balance throughout the year.
In addition, if these balances can be maintained throughout the year, the drop or rise in return water temperature can be suppressed, the size of the underground thermal mass can be stabilized, and the impact on surrounding aquifers and the global environment can be suppressed.
In addition, since it is easy to automatically control, stable operation over a long period of time is possible, making it easier to popularize the use of aquifer heat storage.
Furthermore, since the cold storage operation method, operation time, etc. can be determined in advance, it is possible to reduce heat storage, power consumption loss, etc.

1 地中熱利用システム
11 温水井戸
12 冷水井戸
13 配管
20 蓄熱補助装置
30 ヒートポンプ
40 熱交換器
50 制御装置
51 CPU
52 メモリ
53 通信インタフェース
54 記録媒体
131 第一端
132 第二端
201 加熱装置
202 太陽熱集熱器
206 冷却装置
207 冷却塔
501 物質平衡制御部
502 体積算出部
503 井戸設備操作部
505 熱平衡制御部
506 温度算出部
507 第一算出部
508 第二算出部
509 補助設備操作部
CV 逆止弁
LD 熱負荷
LY 帯水層
PP ポンプ
RV 調整弁
1 Geothermal heat utilization system 11 Hot water well 12 Cold water well 13 Piping 20 Heat storage auxiliary device 30 Heat pump 40 Heat exchanger 50 Control device 51 CPU
52 Memory 53 Communication interface 54 Recording medium 131 First end 132 Second end 201 Heating device 202 Solar heat collector 206 Cooling device 207 Cooling tower 501 Material balance control section 502 Volume calculation section 503 Well equipment operation section 505 Heat balance control section 506 Temperature Calculation unit 507 First calculation unit 508 Second calculation unit 509 Auxiliary equipment operation unit CV Check valve LD Heat load LY Aquifer PP Pump RV Adjustment valve

Claims (10)

温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御する物質平衡制御部と、
加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する熱平衡制御部と、
を備える制御装置。
a material balance control unit that controls a heat source well facility including a hot water well and a cold water well so that the pumped water volume and the returned water volume of each of the hot water well and the cold water well are equal to each other in a year;
a heat balance control unit that controls a heat storage auxiliary equipment including at least one of a heating device and a cooling device so as to equalize the heat amount of pumped water and the heat amount of returned water in both the hot water well and the cold water well in the year; ,
A control device comprising:
前記物質平衡制御部が、前記年間の各運転期間における揚水又は還水すべき設定体積を算出する体積算出部を備え、
前記熱平衡制御部が、前記各運転期間における還水すべき設定温度を算出する温度算出部を備え、
前記設定体積に基づき、前記熱源井戸設備を操作する井戸設備操作部と、
前記設定温度に基づき、前記蓄熱補助設備を操作する補助設備操作部と、
をさらに備える
請求項1に記載の制御装置。
The material balance control unit includes a volume calculation unit that calculates a set volume of water to be pumped or returned in each operating period of the year,
The heat balance control unit includes a temperature calculation unit that calculates a set temperature at which the water should be returned in each of the operation periods,
a well equipment operation unit that operates the heat source well equipment based on the set volume;
an auxiliary equipment operation unit that operates the heat storage auxiliary equipment based on the set temperature;
The control device according to claim 1, further comprising:.
前記温度算出部が、前期の還水履歴から揚水温度応答を求めるモデル式により、前記揚水温度応答の還水重み付け平均値を算出する第一算出部を備える請求項2に記載の制御装置。 3. The control device according to claim 2, wherein the temperature calculation section includes a first calculation section that calculates a weighted average value of the pumped water temperature response using a model equation that calculates the pumped water temperature response from the previous period's return water history. 前記温度算出部が、前記第一算出部で算出した前記揚水温度応答から次期の還水温度を算出する第二算出部を備える請求項3に記載の制御装置。 The control device according to claim 3, wherein the temperature calculation unit includes a second calculation unit that calculates the next return water temperature from the pumped water temperature response calculated by the first calculation unit. 前記加熱装置が、太陽熱集熱器を含む請求項1から4のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 4, wherein the heating device includes a solar heat collector. 前記冷却装置が、冷却塔を含む請求項1から5のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 5, wherein the cooling device includes a cooling tower. 前記熱源井戸設備が、前記温水井戸と前記冷水井戸と接続する配管をさらに備え、
熱負荷と前記配管内との間に設けられているヒートポンプと、
前記配管内の水と前記ヒートポンプ側及び前記蓄熱補助設備側の媒体との間で、熱交換を行う熱交換器と、
をさらに備える
請求項1から6のいずれか一項に記載の制御装置。
The heat source well equipment further includes piping connecting the hot water well and the cold water well,
a heat pump provided between the heat load and the inside of the piping;
a heat exchanger that exchanges heat between the water in the piping and the medium on the heat pump side and the heat storage auxiliary equipment side;
The control device according to any one of claims 1 to 6, further comprising:
請求項1から7のいずれか一項に記載の制御装置と、
前記熱源井戸設備と、
前記蓄熱補助設備と、
を備える
地中熱利用システム。
A control device according to any one of claims 1 to 7,
The heat source well equipment;
The heat storage auxiliary equipment;
A geothermal heat utilization system.
温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、
加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する、
制御方法。
Controlling a heat source well equipment including a hot water well and a cold water well so that the annual pumped water volume and the returned water volume of each of the hot water well and the cold water well are equal,
Controlling a heat storage auxiliary equipment including at least one of a heating device and a cooling device so as to equalize the heat amount of pumped water and the heat amount of returned water in the year of both the hot water well and the cold water well.
Control method.
コンピュータに、
温水井戸と冷水井戸とを備える熱源井戸設備を、前記温水井戸及び前記冷水井戸の各井戸の年間における揚水体積と還水体積とを等しくするように制御し、
加熱装置及び冷却装置のうち、少なくとも一方を含む蓄熱補助設備を、前記温水井戸及び前記冷水井戸の両方の井戸の前記年間における揚水熱量と還水熱量とを等しくするように制御する
ことを実行させる
プログラム。
to the computer,
Controlling a heat source well equipment including a hot water well and a cold water well so that the annual pumped water volume and the returned water volume of each of the hot water well and the cold water well are equal,
Controlling a heat storage auxiliary equipment including at least one of a heating device and a cooling device so as to equalize the heat amount of pumped water and the heat amount of returned water in both the hot water well and the cold water well during the year. program.
JP2022057820A 2022-03-31 2022-03-31 Control device, geothermal heat utilization system, control method, and program Active JP7504410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022057820A JP7504410B2 (en) 2022-03-31 2022-03-31 Control device, geothermal heat utilization system, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022057820A JP7504410B2 (en) 2022-03-31 2022-03-31 Control device, geothermal heat utilization system, control method, and program

Publications (2)

Publication Number Publication Date
JP2023149312A true JP2023149312A (en) 2023-10-13
JP7504410B2 JP7504410B2 (en) 2024-06-24

Family

ID=88288016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022057820A Active JP7504410B2 (en) 2022-03-31 2022-03-31 Control device, geothermal heat utilization system, control method, and program

Country Status (1)

Country Link
JP (1) JP7504410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478892B1 (en) 2023-09-26 2024-05-07 三菱重工サーマルシステムズ株式会社 Control device, geothermal heat utilization system, control method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085644A (en) 2005-09-22 2007-04-05 Sekisui House Ltd Underground water heat utilizing system
JP2014115016A (en) 2012-12-10 2014-06-26 Atago Seisakusho:Kk Geothermal utilization heating and cooling system
JP6857883B2 (en) 2017-03-31 2021-04-14 三菱重工サーマルシステムズ株式会社 Geothermal utilization system and geothermal utilization method
JP7278545B2 (en) 2019-06-26 2023-05-22 三菱重工サーマルシステムズ株式会社 GEOTHERMAL SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478892B1 (en) 2023-09-26 2024-05-07 三菱重工サーマルシステムズ株式会社 Control device, geothermal heat utilization system, control method, and program

Also Published As

Publication number Publication date
JP7504410B2 (en) 2024-06-24

Similar Documents

Publication Publication Date Title
Hirmiz et al. Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Han et al. Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area
Yang et al. Study on intermittent operation strategies of a hybrid ground-source heat pump system with double-cooling towers for hotel buildings
Youssef et al. Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production
Madani et al. A descriptive and comparative analysis of three common control techniques for an on/off controlled Ground Source Heat Pump (GSHP) system
McKenna et al. Thermal energy storage using phase change material: Analysis of partial tank charging and discharging on system performance in a building cooling application
You et al. Performance analysis of hybrid ground-coupled heat pump system with multi-functions
Mensah et al. Assessment of design strategies in a ground source heat pump system
Cardemil et al. Thermal analysis of a water source heat pump for space heating using an outdoor pool as a heat source
Huang et al. Performance evaluation of heating tower heat pump systems over the world
Ma et al. Effects of photovoltaic/thermal (PV/T) control strategies on the performance of liquid-based PV/T assisted heat pump for space heating
KR20230164712A (en) calculating device, calculation method, program, control device, control method, control program
JP7504410B2 (en) Control device, geothermal heat utilization system, control method, and program
Xu et al. On-off cycling model featured with pattern recognition of air-to-water heat pumps
Yan et al. Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator
Sun et al. Research on multi-objective optimization of control strategies and equipment parameters for a combined heating system of geothermal and solar energy in cold and arid regions based on TRNSYS
Xu et al. Performance evaluation of a pipe-embedded phase change material (PE-PCM) roof integrated with solar collector
Zhang et al. Performance of the variable-temperature multi-cold source district cooling system: A case study
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
Alnaqi et al. Transient numerical study on injecting PCM in buildings along with extra comfort ventilation: Use of artificial neural network to decline energy utilization
Gao et al. Experimental investigation on storage-type heat pump system for efficient supply in cold region
Chen et al. A comprehensive study on the impacts of isolation heat exchangers on the energy performance of surface water heat pump systems
Torbarina et al. Parametric analysis of system performance and cost of heating systems with heat pump and latent thermal energy storage
Atam et al. Borehole dynamics parameterization for thermal performance optimization under operational constraints
Huang et al. Evaluation of phase change thermal storage in a cascade heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7504410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150