JP2007085644A - Underground water heat utilizing system - Google Patents

Underground water heat utilizing system Download PDF

Info

Publication number
JP2007085644A
JP2007085644A JP2005275186A JP2005275186A JP2007085644A JP 2007085644 A JP2007085644 A JP 2007085644A JP 2005275186 A JP2005275186 A JP 2005275186A JP 2005275186 A JP2005275186 A JP 2005275186A JP 2007085644 A JP2007085644 A JP 2007085644A
Authority
JP
Japan
Prior art keywords
groundwater
well
water
heat
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005275186A
Other languages
Japanese (ja)
Inventor
Kenji Ando
研治 安藤
Keiichiro Hirato
啓一郎 平戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2005275186A priority Critical patent/JP2007085644A/en
Publication of JP2007085644A publication Critical patent/JP2007085644A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground water heat utilizing system capable of recovering the water level of a well without stopping the system for a long period of time, even when there is a drought or dropping of water level in the well for pumping up underground water. <P>SOLUTION: The underground water heat utilizing system is provided with an underground water circulation passage 3 injecting underground water pumped up from the pumping well 1 into a return well 2 after utilizing it in heat exchange with a heat exchange part 21, and a water supply passage 32 discharging tap water or stored rainwater to the outside, or injecting it into the pumping well 1 or the return well 2 after using it in heat exchange with the heat exchange part 21. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば地下から地下水を汲み上げて、その地下水の熱を冷暖房、給湯等に利用した後に、再び地下へ還元する地下水熱利用システムに関する。   The present invention relates to a groundwater heat utilization system that, for example, draws groundwater from the basement and uses the groundwater heat for cooling and heating, hot water supply, and the like, and then returns it to the ground again.

地熱は、年間を通じてほぼ一定の温度を保つことから、夏季は外気より低温、冬季は高温となる。このような地熱の保有媒体である地下水は、全国どこにでもあり、これを浅井戸から汲み上げることで、安価に且つ容易に地熱を回収することができる。   Since geothermal heat maintains a constant temperature throughout the year, it is cooler than the outside air in summer and hot in winter. Groundwater, which is such a geothermal holding medium, can be found anywhere in the country, and it can be easily and inexpensively recovered by pumping it from a shallow well.

このため、本出願人は、例えば特許文献1及び特許文献2に開示されているように、地盤に一対の浅井戸を掘削して、揚水ポンプによって一方の浅井戸から地下水を汲み上げて、この地下水が保有する地熱をヒートポンプを介して住宅の冷暖房や給湯に利用した後に、他方の浅井戸から地下へ還元するといったシステムを提案している。   For this reason, as disclosed in, for example, Patent Document 1 and Patent Document 2, the present applicant excavates a pair of shallow wells in the ground and pumps groundwater from one shallow well by a pump, Has proposed a system in which the geothermal heat possessed by is used for air conditioning and hot water supply of houses via a heat pump and then returned to the underground from the other shallow well.

このように地下水を有効利用することで、エネルギー消費効率を高めて、快適性を維持しながら冷暖房運転や給湯運転に伴う消費電力を削減することができる。これは、化石エネルギー消費量及びこれに伴う二酸化炭素排出量の削減に繋がり、地球環境の保護に寄与することになる。   By effectively using groundwater in this way, it is possible to increase energy consumption efficiency and reduce power consumption associated with air conditioning and hot water supply operations while maintaining comfort. This leads to the reduction of fossil energy consumption and the accompanying carbon dioxide emissions, and contributes to the protection of the global environment.

特開2002−54856号公報JP 2002-54856 A 特開2002−54857号公報JP 2002-54857 A

しかしながら、従来のシステムでは、浅井戸において水位低下や井戸枯れ(渇水)が生じて地下水の汲み上げ量が低減した場合、地下水位の回復を待つか、或いは、別の場所に新たに浅井戸を掘削するといった対処方法しかなく、システムを長期に亘って停止せざるを得ない状況を招くといった不具合があった。   However, in the conventional system, when the water level is lowered or the well is dried up (drought) and the amount of groundwater pumped is reduced, it is necessary to wait for the groundwater level to recover, or to drill a new shallow well at another location. However, there is a problem that there is only a coping method such as doing so, and the system must be stopped for a long time.

なお、一般的な水位低下や渇水の要因としては、降雨量の減少、道路融雪用や灌漑用等としての地下水の大量使用、工場等の民間施設での地下水の大量使用、橋梁等の土木施設の構築に伴う地下水脈の分断等が挙げられる。   Common causes of water level drop and drought include a decrease in rainfall, a large amount of groundwater used for melting snow and irrigation, a large amount of groundwater in private facilities such as factories, and civil engineering facilities such as bridges. For example, the division of groundwater veins associated with the construction of

そこで、この発明は、上記不具合を解消して、地下水を汲み上げる井戸において水位低下や渇水が生じた場合でも、システムを長期に亘って停止させることなく、井戸の水位の回復を図ることができる地下水熱利用システムの提供を目的とする。   Therefore, the present invention solves the above-mentioned problems, and even when a water level drop or drought occurs in a well that pumps up groundwater, the groundwater can recover the well level without stopping the system for a long period of time. The purpose is to provide a heat utilization system.

上記課題を解決するため、この発明の地下水熱利用システムは、揚水井戸1から汲み上げた地下水を、熱交換部21において熱交換に利用した後、還元井戸2へ注入する地下水循環管路3と、水道水若しくは貯留した雨水を、前記熱交換部21において熱交換に利用した後、外部へ排出するか、若しくは、前記揚水井戸1又は還元井戸2へ注入する給水管路32とを備えたことを特徴とする。   In order to solve the above-mentioned problem, the groundwater heat utilization system of the present invention uses groundwater pumped from the pumping well 1 for heat exchange in the heat exchanging part 21 and then injects the groundwater circulation pipe 3 into the reduction well 2; The tap water or the stored rainwater is used for heat exchange in the heat exchanging section 21 and then discharged to the outside, or provided with a water supply pipe 32 that is injected into the pumping well 1 or the reduction well 2. Features.

具体的には、前記地下水循環管路3における地下水の流量を検知する流量検知部14と、管路切換用の切換手段15、44と、前記流量検知部14が前記地下水循環管路3における地下水の流量が所定量以下であることを検知したときに、前記切換手段15、44を制御して前記地下水循環管路3における地下水循環から前記給水管路32における給水に切り換える制御手段50とを備えている。   Specifically, the flow rate detection unit 14 for detecting the flow rate of groundwater in the groundwater circulation pipeline 3, the switching means 15 and 44 for switching pipelines, and the flow rate detection unit 14 include groundwater in the groundwater circulation pipeline 3. Control means 50 for controlling the switching means 15 and 44 to switch from the groundwater circulation in the groundwater circulation pipe 3 to the water supply in the water supply pipe 32 when it is detected that the flow rate of the water is below a predetermined amount. ing.

さらに、前記還元井戸2から地下水を汲み上げるための手動汲み上げ管路30を備えている。さらにまた、前記各井戸1、2は、深さ10m以内の浅井戸とされている。   Further, a manual pumping line 30 for pumping ground water from the reduction well 2 is provided. The wells 1 and 2 are shallow wells having a depth of 10 m or less.

この発明の地下水熱利用システムでは、水道水若しくは貯留した雨水を熱交換部に導いて熱交換させる給水回路を備えているから、揚水井戸において水位低下や渇水が生じた場合でも、システムを長期に亘って停止させることなく、地下水に代えて水道水や雨水の熱を利用してシステムを作動させながら、揚水井戸の水位の回復を図ることができる。特に、熱交換に利用した後の水道水や雨水を井戸に注入させる場合には、井戸水位の回復を促進させることができる。   The groundwater heat utilization system of the present invention includes a water supply circuit that guides tap water or stored rainwater to the heat exchange section to exchange heat, so even if a water level drop or drought occurs in the pumping well, the system can be extended for a long time. Without stopping, the water level of the pumping well can be recovered while operating the system using the heat of tap water or rainwater instead of groundwater. In particular, when tap water or rainwater used for heat exchange is injected into a well, recovery of the well water level can be promoted.

また、地下水循環管路における地下水の流量が所定量以下のときに、地下水循環管路における地下水循環から給水管路における給水に自動的に切り換えるので、揚水井戸の渇水対策を素早く簡単に実行することができる。   In addition, when the flow rate of groundwater in the groundwater circulation pipeline is less than the predetermined amount, the groundwater circulation in the groundwater circulation pipeline is automatically switched from the water supply to the water supply in the feedwater pipeline. Can do.

さらに、手動汲み上げ管路を備えているので、例えば災害や水不足による断水等の非常時において、還元井戸から地下水を直接汲み上げて、非常用の生活用水として利用することができる。   Furthermore, since a manual pumping line is provided, groundwater can be directly pumped from the reduction well and used as emergency domestic water in an emergency such as a disaster or a water outage due to water shortage.

さらにまた、各井戸は、打ち込み工法によって施工可能な深さ10m以内の浅井戸とされているので、深井戸を施工するときと比べて、施工コストを大幅に削減することができ、これによって一般の住宅にも広く普及させるシステムとすることができる。   Furthermore, since each well is a shallow well with a depth of 10 m or less that can be constructed by a driving method, the construction cost can be greatly reduced compared to the construction of a deep well. It can be a system that is widely spread to other houses.

この発明の実施の形態について、図面を参照しつつ詳細に説明する。図1は、この発明の一実施形態に係る住宅に適用した地下水熱利用システムの回路構成を示している。図において、1は揚水井戸、2は還元井戸であって、これら揚水井戸1及び還元井戸2は、例えば深さ10m以内、望ましくは深さ8m以内の浅井戸であり、ストレーナ付きのケーシングを簡易な打ち込み工法によって地上から打ち込むことで構成されている。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a circuit configuration of a groundwater heat utilization system applied to a house according to an embodiment of the present invention. In the figure, 1 is a pumping well, 2 is a reduction well, and these pumping well 1 and reduction well 2 are shallow wells having a depth of, for example, within 10 m, preferably within 8 m, and a casing with a strainer can be simplified. It is composed by driving from the ground by a simple driving method.

そして、これら揚水井戸1と還元井戸2とが地下水循環管路3によって接続されている。地下水循環管路3は、揚水井戸1内に挿入した地下水汲み上げ管5と、還元井戸2内に挿入した地下水注入管6と、これら汲み上げ管5と注入管6とを繋ぐ主管7とから構成されている。そして、主管7には、汲み上げ管5に近い側すなわち上流側から順に、地下水の揚水井戸1への逆流を防止する逆止弁10、地下水に含まれる砂等の固形物を除去する砂取器11、揚水兼給水用ポンプ12、第1電磁弁13、地下水の流量を検知するための流量検知部としてのフローセンサ14、三方弁15が設けられている。そして、主管7のフローセンサ14と三方弁15との間に、熱交換部としてのヒートポンプ20の室外熱交換器21が配されて、この室外熱交換器21において主管7を流れる地下水とヒートポンプ20の冷媒とが熱交換するようになっている。   The pumping well 1 and the reduction well 2 are connected by a groundwater circulation conduit 3. The groundwater circulation pipe 3 is composed of a groundwater pumping pipe 5 inserted into the pumping well 1, a groundwater injection pipe 6 inserted into the reduction well 2, and a main pipe 7 connecting the pumping pipe 5 and the injection pipe 6. ing. The main pipe 7 includes, in order from the side closer to the pumping pipe 5, that is, the upstream side, a check valve 10 that prevents backflow to the groundwater pumping well 1, and a sand catcher that removes solids such as sand contained in the groundwater. 11, a pump 12 for pumping and supplying water, a first electromagnetic valve 13, a flow sensor 14 as a flow rate detection unit for detecting the flow rate of groundwater, and a three-way valve 15 are provided. And the outdoor heat exchanger 21 of the heat pump 20 as a heat exchange part is arranged between the flow sensor 14 of the main pipe 7 and the three-way valve 15, and the ground water flowing through the main pipe 7 and the heat pump 20 in this outdoor heat exchanger 21. The refrigerant exchanges heat.

このように構成された地下水循環管路3では、揚水兼給水用ポンプ12の作動によって揚水井戸1から地下水を汲み上げ、この地下水を砂取器11に通すことで砂等の固形物を除去し、ヒートポンプ20の室外熱交換器21において冷媒との熱交換に利用した後、還元井戸2から地下へ注入するようになっている。   In the groundwater circulation pipe 3 configured in this manner, the groundwater is pumped from the pumping well 1 by the operation of the pump 12 for pumping and supplying water, and the groundwater is passed through the sand collector 11 to remove solids such as sand. After being used for heat exchange with the refrigerant in the outdoor heat exchanger 21 of the heat pump 20, it is injected into the underground from the reduction well 2.

また、この地下水熱利用システムは、還元井戸2から地下水を汲み上げるための手動汲み上げ管路30と、砂取器11の下方に設けた排水管路31と、水道水をヒートポンプ20の室外熱交換器21において冷媒との熱交換に利用した後、外部すなわち管路外へ排出する給水管路32とを備えている。   Further, this groundwater heat utilization system includes a manual pumping line 30 for pumping groundwater from the reduction well 2, a drain pipe 31 provided below the sand collector 11, and an outdoor heat exchanger for the tap water from the tap water. 21 is provided with a water supply pipe 32 that is used for heat exchange with the refrigerant and then discharged outside, that is, outside the pipe.

手動汲み上げ管路30は、地下水循環管路3の注入管6に接続されており、第2電磁弁33及び手押しポンプ34を備えている。また、排水管路31は、主管7における逆止弁10と砂取器11との間に接続されており、第3電磁弁35を備えている。   The manual pumping line 30 is connected to the injection pipe 6 of the groundwater circulation line 3 and includes a second electromagnetic valve 33 and a hand pump 34. Further, the drainage pipe 31 is connected between the check valve 10 and the sand catcher 11 in the main pipe 7 and includes a third electromagnetic valve 35.

給水管路32は、水道メータ40を有する水道管41と地下水循環管路3の主管7とを接続する水供給管42と、主管7に設けた三方弁15に接続された水排出管43と、これら水供給管42と水排出管43とを繋ぐ主管7の一部とから構成されている。水供給管42には、第4電磁弁44が設けられている。   The water supply pipe 32 includes a water supply pipe 42 that connects a water pipe 41 having a water meter 40 and the main pipe 7 of the groundwater circulation pipe 3, and a water discharge pipe 43 that is connected to the three-way valve 15 provided in the main pipe 7. These water supply pipes 42 and water discharge pipes 43 are connected to a part of the main pipe 7. The water supply pipe 42 is provided with a fourth electromagnetic valve 44.

そして、図2に示すように、フローセンサ14、非常用スイッチ45、砂取器洗浄用スイッチ46、ヒートポンプ作動スイッチ47、揚水兼給水用ポンプ12、三方弁15、第1〜第4電磁弁13、33、35、44が、例えばリレー回路等からなる制御手段50に電気的に接続されている。   As shown in FIG. 2, the flow sensor 14, the emergency switch 45, the sand collector cleaning switch 46, the heat pump operation switch 47, the pump for pumping and supplying water 12, the three-way valve 15, and the first to fourth solenoid valves 13. , 33, 35, and 44 are electrically connected to a control means 50 including, for example, a relay circuit.

この制御手段50は、フローセンサ14、非常用スイッチ45、砂取器洗浄用スイッチ46、ヒートポンプ作動スイッチ47からの各種信号により、揚水兼給水用ポンプ12、三方弁15、第1〜第4電磁弁13、33、35、44の作動を制御するようになっている。なお、制御手段50としては、リレー回路に限らず、例えばマイクロコンピュータ等を用いるようにしても良い。   This control means 50 is based on various signals from the flow sensor 14, the emergency switch 45, the sand collector washing switch 46, and the heat pump operation switch 47, and the pump 12 for pumping and supplying water, the three-way valve 15, the first to fourth electromagnetics. The operation of the valves 13, 33, 35, 44 is controlled. The control means 50 is not limited to a relay circuit, and for example, a microcomputer or the like may be used.

次に、上記構成の地下水熱利用システムにおける動作について説明する。まず、ヒートポンプ作動スイッチ47をオンにすると、第2〜第4電磁弁33、35、44が閉じて、第1電磁弁13が開放し、揚水兼給水用ポンプ12が作動する。   Next, the operation of the groundwater heat utilization system having the above configuration will be described. First, when the heat pump operation switch 47 is turned on, the second to fourth electromagnetic valves 33, 35, and 44 are closed, the first electromagnetic valve 13 is opened, and the pump for raising and supplying water 12 is operated.

これによって、図3に示すように、揚水井戸1から地下水循環管路3の汲み上げ管5を通って地下水が汲み上げられる。この地下水は、主管7を通って砂取器11のフィルタをその下面側から上面側へ向けて通過することで、砂等の固形物が除去された後、ヒートポンプ20の室外熱交換器21に導かれる。このとき、フローセンサ14が主管7における地下水の流量を検知して、この流量が所定量よりも多ければ、ヒートポンプ20が作動する。そして、ヒートポンプ20の室外熱交換器21に導かれた地下水は、ヒートポンプ20の冷媒との間で熱交換がなされた後、注入管6を通って還元井戸2へ注入されて地下に還元される。   As a result, as shown in FIG. 3, groundwater is pumped from the pumping well 1 through the pumping pipe 5 of the groundwater circulation pipe 3. This groundwater passes through the main pipe 7 through the filter of the sand collector 11 from its lower surface side to its upper surface side, so that solids such as sand are removed, and then the outdoor water exchanger 21 of the heat pump 20 Led. At this time, if the flow sensor 14 detects the flow rate of groundwater in the main pipe 7 and this flow rate is greater than a predetermined amount, the heat pump 20 is activated. Then, the groundwater led to the outdoor heat exchanger 21 of the heat pump 20 is exchanged with the refrigerant of the heat pump 20 and then injected into the reduction well 2 through the injection pipe 6 to be reduced underground. .

このような正常運転を繰り返すうちに、何らかの要因によって揚水井戸1において水位低下や渇水が生じて地下水の汲み上げ量が低減し、地下水循環管路3の主管7における地下水の流量が所定量以下になると、フローセンサ14がこれを検知する。   While repeating such normal operation, if the water level drops or drought occurs in the pumping well 1 due to some factor, the amount of groundwater pumped down, and the flow rate of groundwater in the main pipe 7 of the groundwater circulation pipe 3 becomes below a predetermined amount. The flow sensor 14 detects this.

そして、このフローセンサ14からの検知信号により、ヒートポンプ20の作動が停止して、制御手段50が、揚水兼給水用ポンプ12の作動を停止するとともに、管路切換用の切換手段としての第4電磁弁44及び三方弁15を切り換える。すなわち、第4電磁弁44が開放して給水管路32の水供給管42が主管7に連通するとともに、三方弁15が切り換わって主管7と給水管路32の水排出管43が連通する。   Then, the detection signal from the flow sensor 14 stops the operation of the heat pump 20, and the control means 50 stops the operation of the pump for pumping and supplying water 12 as well as a fourth switching means for switching the pipeline. The solenoid valve 44 and the three-way valve 15 are switched. That is, the fourth electromagnetic valve 44 is opened and the water supply pipe 42 of the water supply pipe 32 communicates with the main pipe 7, and the three-way valve 15 is switched and the main pipe 7 and the water discharge pipe 43 of the water supply pipe 32 communicate with each other. .

これにより、地下水循環管路3における地下水循環から給水管路32における給水へ切り換わって、再び揚水兼給水用ポンプ12が作動する。すると、図4に示すように、水道管41からの水道水が、水供給管42から主管7を通ってヒートポンプ20の室外熱交換器21に導かれる。このとき、フローセンサ14が主管7における水道水の流量を検知して、この流量が所定量よりも多ければ、ヒートポンプ20が作動する。そして、ヒートポンプ20の室外熱交換器21に導かれた水道水は、ヒートポンプ20の冷媒との間で熱交換がなされた後、水排出管43から管路外へ排出される。   Thereby, it switches from the groundwater circulation in the groundwater circulation pipe 3 to the water supply in the water supply pipe 32, and the pump 12 for pumping and supplying water operates again. Then, as shown in FIG. 4, tap water from the water pipe 41 is led from the water supply pipe 42 through the main pipe 7 to the outdoor heat exchanger 21 of the heat pump 20. At this time, if the flow sensor 14 detects the flow rate of tap water in the main pipe 7 and this flow rate is greater than a predetermined amount, the heat pump 20 is activated. Then, the tap water led to the outdoor heat exchanger 21 of the heat pump 20 is discharged from the water discharge pipe 43 to the outside of the pipe line after heat exchange with the refrigerant of the heat pump 20.

このように、揚水井戸1において水位低下や渇水が生じた場合でも、地下水から水道水に代えて室外熱交換器21での冷媒との熱交換を行わせるようにしているので、システムを長期に亘って停止させることなく、揚水井戸1の水位の回復を図ることができる。そして、揚水井戸1の水位が回復すると、再び正常運転に戻る。   In this way, even when a water level drop or drought occurs in the pumping well 1, heat is exchanged with the refrigerant in the outdoor heat exchanger 21 in place of the tap water from the groundwater. It is possible to recover the water level of the pumping well 1 without stopping it. And if the water level of the pumping well 1 recovers, it will return to normal operation again.

なお、水道管41に設けた水道メータ40によって水道水の使用量を計測しており、揚水井戸1の水位がなかなか回復せずに、水道水の使用量が多くなり過ぎる場合には、ヒートポンプ20の室外熱交換器21を空気熱交換式のものへ変更するといった対策を検討する。   In addition, when the usage-amount of tap water is measured with the water meter 40 provided in the water pipe 41 and the water level of the pumping well 1 does not recover easily, and the usage-amount of tap water increases too much, the heat pump 20 Consider measures such as changing the outdoor heat exchanger 21 to an air heat exchange type.

また、正常運転を繰り返すうちに、砂取器11のフィルタに固形物が沈着して、地下水循環管路3における地下水の流れが悪くなってくるので、定期的に砂取器11のフィルタ洗浄が必要となる。   In addition, as the normal operation is repeated, solid matter is deposited on the filter of the sand collector 11 and the flow of ground water in the groundwater circulation pipe 3 is deteriorated. Therefore, the filter of the sand collector 11 is periodically cleaned. Necessary.

この砂取器11のフィルタ洗浄は、砂取器洗浄用スイッチ46をオンにすることによって行われ、このスイッチ操作によって、制御手段50が、第1、第3、第4電磁弁13、35、44を切り換える。すなわち、第1電磁弁13が閉じて、第3、第4電磁弁35、44が開放することで、給水管路32の水供給管42、主管7、排水管路31が連通する。これにより、図5に示すように、水道管41からの水道水を、砂取器11のフィルタの上面側から下面側へ向けて通過させて、固形物をフィルタから剥がれ落として、フィルタを逆洗浄することができる。そして、洗浄に用いた水道水は、剥がれ落ちた固形物とともに、管路外へ排出される。   Filter cleaning of the sand remover 11 is performed by turning on the sand remover cleaning switch 46, and by this switch operation, the control means 50 causes the first, third, and fourth electromagnetic valves 13, 35, 44 is switched. That is, when the first electromagnetic valve 13 is closed and the third and fourth electromagnetic valves 35 and 44 are opened, the water supply pipe 42, the main pipe 7, and the drain pipe 31 of the water supply pipe 32 are communicated. As a result, as shown in FIG. 5, the tap water from the water pipe 41 is passed from the upper surface side to the lower surface side of the filter of the sand catcher 11, so that the solid matter is peeled off from the filter and the filter is reversed. Can be washed. And the tap water used for washing | cleaning is discharged | emitted out of a pipe line with the solid substance which peeled off.

このように、砂取器11のフィルタ洗浄を定期的に行うことで、地下水を安定的にヒートポンプ20の室外熱交換器21に供給することができ、メンテナンスフリーで高いエネルギー消費効率を維持する冷暖房、給湯を実現できる。なお、このフィルタ洗浄は、砂取器洗浄用スイッチ46の操作によるものだけでなく、例えばフローセンサ14からの検知信号によって自動的に行うようにしても良い。   In this way, by periodically performing filter cleaning of the sand collector 11, groundwater can be stably supplied to the outdoor heat exchanger 21 of the heat pump 20, and air conditioning that maintains maintenance and is highly energy efficient. Realize hot water supply. The filter cleaning is not limited to the operation of the sand removal device cleaning switch 46 but may be automatically performed by a detection signal from the flow sensor 14, for example.

さらに、例えば災害や水不足による断水等の非常時には、非常用スイッチ45をオンにすると、このスイッチ操作によって、制御手段50が、第2電磁弁33を開放して、手動汲み上げ管路30が連通する。これにより、図6に示すように、手押しポンプ34によって還元井戸2からの地下水を直接汲み上げることができ、非常用の生活用水として利用することができる。   Further, when an emergency switch 45 is turned on, for example, in the event of an emergency such as a disaster or a water outage due to water shortage, the control means 50 opens the second electromagnetic valve 33 by this switch operation, and the manual pumping line 30 communicates. . Thereby, as shown in FIG. 6, the groundwater from the reduction | restoration well 2 can be directly pumped by the hand pump 34, and it can utilize as an emergency domestic water.

この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で上記実施形態に多くの修正及び変更を加え得ることは勿論である。   The present invention is not limited to the above embodiment, and it is needless to say that many modifications and changes can be made to the above embodiment within the scope of the present invention.

例えば、給水管路32としては、水道管41に接続するだけでなく、例えば雨水を溜める貯留タンクに接続して、その貯留タンク内の雨水を、ヒートポンプ20の室外熱交換器21へ導いた後、外部へ排出するように構成しても良い。さらに、給水管路32としては、図7及び図8に示すように、主管7の三方弁15からの水排出管43を汲み上げ管5や注入管6に接続して、水道管41からの水道水や貯留タンク内の雨水を、ヒートポンプ20の室外熱交換器21において熱交換に利用した後、揚水井戸1や還元井戸2へ注入させるように構成しても良い。なお、この図7及び図8に示す地下水熱利用システムにおいて、その他の構成は、図1に示す地下水熱利用システムと同様である。   For example, the water supply pipe 32 is not only connected to the water pipe 41 but also connected to, for example, a storage tank for storing rainwater, and the rainwater in the storage tank is guided to the outdoor heat exchanger 21 of the heat pump 20. It may be configured to discharge to the outside. Further, as the water supply pipe 32, as shown in FIGS. 7 and 8, the water discharge pipe 43 from the three-way valve 15 of the main pipe 7 is connected to the pumping pipe 5 and the injection pipe 6, and the water pipe from the water pipe 41 is connected. You may comprise so that water and the rainwater in a storage tank may be inject | poured into the pumping well 1 or the reduction | restoration well 2, after using it for the heat exchange in the outdoor heat exchanger 21 of the heat pump 20. FIG. The groundwater heat utilization system shown in FIGS. 7 and 8 has the same configuration as that of the groundwater heat utilization system shown in FIG.

この発明の一実施形態に係る地下水熱利用システムの回路構成を示す図である。It is a figure which shows the circuit structure of the groundwater heat utilization system which concerns on one Embodiment of this invention. 同じくそのブロック図である。It is also the block diagram. 正常運転時の地下水の流れを示す図である。It is a figure which shows the flow of groundwater at the time of normal operation. 渇水時の水道水の流れを示す図である。It is a figure which shows the flow of the tap water at the time of drought. フィルタ洗浄時の水道水の流れを示す図である。It is a figure which shows the flow of the tap water at the time of filter washing | cleaning. 非常時の地下水の流れを示す図である。It is a figure which shows the flow of groundwater at the time of emergency. 別の実施形態に係る地下水熱利用システムの回路構成を示す図である。It is a figure which shows the circuit structure of the groundwater heat utilization system which concerns on another embodiment. さらに別の実施形態に係る地下水熱利用システムの回路構成を示す図である。It is a figure which shows the circuit structure of the groundwater heat utilization system which concerns on another embodiment.

符号の説明Explanation of symbols

1・・揚水井戸、2・・還元井戸、3・・地下水循環管路、14・・流量検知部(フローセンサ)、15、44・・切換手段(三方弁、第4電磁弁)、20・・ヒートポンプ、21・・熱交換部(室外熱交換器)、30・・手動汲み上げ管路、32・・給水管路、50・・制御手段 1 .... pumping well, 2 .... reduction well, 3 .... groundwater circulation pipe, 14 .... flow rate detector (flow sensor), 15, 44 ... switching means (three-way valve, fourth solenoid valve), 20. · Heat pump, 21 ·· Heat exchanger (outdoor heat exchanger), 30 · · Manual pumping line, 32 · · Water supply line, 50 · · Control means

Claims (5)

揚水井戸(1)から汲み上げた地下水を、熱交換部(21)において熱交換に利用した後、還元井戸(2)へ注入する地下水循環管路(3)と、水道水若しくは貯留した雨水を、前記熱交換部(21)において熱交換に利用した後、外部へ排出するか、若しくは、前記揚水井戸(1)又は還元井戸(2)へ注入する給水管路(32)とを備えたことを特徴とする地下水熱利用システム。 After groundwater pumped from the pumping well (1) is used for heat exchange in the heat exchange section (21), the groundwater circulation pipe (3) to be injected into the reduction well (2) and tap water or stored rainwater, A water supply pipe (32) for discharging to the outside after being used for heat exchange in the heat exchanging section (21) or for injecting into the pumping well (1) or the reduction well (2). A featured groundwater heat utilization system. 前記地下水循環管路(3)における地下水の流量を検知する流量検知部(14)と、管路切換用の切換手段(15)(44)と、前記流量検知部(14)が前記地下水循環管路(3)における地下水の流量が所定量以下であることを検知したときに、前記切換手段(15)(44)を制御して前記地下水循環管路(3)における地下水循環から前記給水管路(32)における給水に切り換える制御手段(50)とを備えた請求項1記載の地下水熱利用システム。 A flow rate detection unit (14) for detecting the flow rate of groundwater in the groundwater circulation pipe (3), switching means (15) (44) for switching pipes, and the flow rate detection unit (14) include the groundwater circulation pipe. When it is detected that the flow rate of the groundwater in the channel (3) is less than or equal to a predetermined amount, the switching means (15) (44) is controlled so that the water supply pipeline from the groundwater circulation in the groundwater circulation channel (3) The groundwater heat utilization system according to claim 1, further comprising control means (50) for switching to water supply in (32). 前記熱交換部(21)において、地下水、水道水若しくは貯留した雨水をヒートポンプ(20)の冷媒と熱交換させるようにした請求項1又は2記載の地下水熱利用システム。 The groundwater heat utilization system according to claim 1 or 2, wherein in the heat exchanging section (21), groundwater, tap water, or stored rainwater is subjected to heat exchange with a refrigerant of the heat pump (20). 前記還元井戸(2)から地下水を汲み上げるための手動汲み上げ管路(30)を備えた請求項1又は3のいずれかに記載の地下水熱利用システム。 The groundwater heat utilization system according to any one of claims 1 and 3, further comprising a manual pumping line (30) for pumping groundwater from the reduction well (2). 前記各井戸(1)(2)は、深さ10m以内の浅井戸とされている請求項1乃至4のいずれかに記載の地下水熱利用システム。 The groundwater heat utilization system according to any one of claims 1 to 4, wherein each of the wells (1) and (2) is a shallow well having a depth of 10 m or less.
JP2005275186A 2005-09-22 2005-09-22 Underground water heat utilizing system Pending JP2007085644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275186A JP2007085644A (en) 2005-09-22 2005-09-22 Underground water heat utilizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275186A JP2007085644A (en) 2005-09-22 2005-09-22 Underground water heat utilizing system

Publications (1)

Publication Number Publication Date
JP2007085644A true JP2007085644A (en) 2007-04-05

Family

ID=37972785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275186A Pending JP2007085644A (en) 2005-09-22 2005-09-22 Underground water heat utilizing system

Country Status (1)

Country Link
JP (1) JP2007085644A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886009B1 (en) 2008-11-10 2009-03-03 한국지질자원연구원 Ground water restoration type terrestrial heat exchanger using auto temperature bypass apparatus
JP2011021804A (en) * 2009-07-15 2011-02-03 Tatsuzo Ooka Underground water heat exchange method and underground water heat exchange device
JP2011226755A (en) * 2010-03-30 2011-11-10 Shimizu Corp Groundwater utilization system
CN103238485A (en) * 2013-04-26 2013-08-14 同济大学 Heat pump type greenhouse air conditioning system with solar photovoltaic power supply function and underground water source
JP2014202364A (en) * 2013-04-01 2014-10-27 株式会社アタゴ製作所 Heat exchanger
JP2018515062A (en) * 2016-02-02 2018-06-07 ハイレベン カンパニー リミテッドHileben Co., Ltd. Efficiency improvement equipment for photovoltaic power generation facilities
JP2020062623A (en) * 2018-10-19 2020-04-23 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886009B1 (en) 2008-11-10 2009-03-03 한국지질자원연구원 Ground water restoration type terrestrial heat exchanger using auto temperature bypass apparatus
US8047275B2 (en) 2008-11-10 2011-11-01 Korea Institute Of Geoscience And Mineral Resources (Kigam) Ground water restoration type terrestrial heat exchanger using auto temperature bypass apparatus
JP2011021804A (en) * 2009-07-15 2011-02-03 Tatsuzo Ooka Underground water heat exchange method and underground water heat exchange device
JP2011226755A (en) * 2010-03-30 2011-11-10 Shimizu Corp Groundwater utilization system
JP2014202364A (en) * 2013-04-01 2014-10-27 株式会社アタゴ製作所 Heat exchanger
CN103238485A (en) * 2013-04-26 2013-08-14 同济大学 Heat pump type greenhouse air conditioning system with solar photovoltaic power supply function and underground water source
JP2018515062A (en) * 2016-02-02 2018-06-07 ハイレベン カンパニー リミテッドHileben Co., Ltd. Efficiency improvement equipment for photovoltaic power generation facilities
JP2020062623A (en) * 2018-10-19 2020-04-23 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment device

Similar Documents

Publication Publication Date Title
JP3927593B1 (en) Double pipe type geothermal water circulation device
JP2007085644A (en) Underground water heat utilizing system
JP4486663B2 (en) Highly efficient heat collection system for geothermal wells
KR100954233B1 (en) Multiple purpose sea water heat source heat pump system for heating and cooling
CN201277826Y (en) Intelligent self-cleaning block preventing heat energy collector for native sewage water source
KR100886009B1 (en) Ground water restoration type terrestrial heat exchanger using auto temperature bypass apparatus
EP2641034B1 (en) Closed-loop geothermal probe
JP2014513219A (en) Mine groundwater management system
JP3950835B2 (en) Filter cleaning mechanism in groundwater circulation system
KR101055350B1 (en) Tube well type heat pump system
KR20130010180A (en) Tube well type heat pump system for removing and sterilizing foreign material and air
JP2006046677A (en) Utilization system of ground water
JP2010117081A (en) Underground water heat exchange method and underground water heat exchange device
CN101303202A (en) Native sewage water source intelligent self-cleaning anti-block heat energy collecting device
KR100916761B1 (en) Ground source heat exchange system with thermal storage well
JP2016023914A (en) Multistage type ground water heat utilization system
KR102149119B1 (en) standing column well type geothermal heat pump system based on ground pump
JP2005233527A (en) Power saving method and system for air heat source type air conditioner
US20200056846A1 (en) Recovery system and method for recovery of thermal energy from waste water
JP4174608B2 (en) Snowmelt water supply system for running roof
JP5362468B2 (en) Groundwater heat exchange method and groundwater heat exchange device
KR100904291B1 (en) Air conditioning system that use underground water and rainwater
CN109654581B (en) Season-crossing heat storage composite heating system based on confined aquifer
KR200482630Y1 (en) Permeable heatpump system with easy installation and object removal
KR100940302B1 (en) Ground source heat exchange method with thermal storage well

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070731