JP2023147928A - Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film - Google Patents

Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film Download PDF

Info

Publication number
JP2023147928A
JP2023147928A JP2022055715A JP2022055715A JP2023147928A JP 2023147928 A JP2023147928 A JP 2023147928A JP 2022055715 A JP2022055715 A JP 2022055715A JP 2022055715 A JP2022055715 A JP 2022055715A JP 2023147928 A JP2023147928 A JP 2023147928A
Authority
JP
Japan
Prior art keywords
tin oxide
coating liquid
film
particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022055715A
Other languages
Japanese (ja)
Inventor
康佑 港
Kosuke Minato
宏忠 荒金
Hirotada Aragane
良 村口
Makoto Muraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2022055715A priority Critical patent/JP2023147928A/en
Publication of JP2023147928A publication Critical patent/JP2023147928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

To provide a coating liquid including particles, enabling the formation of a film with increased conductivity.SOLUTION: A coating liquid contains tin oxide particles, a dispersant, a binder, and an organic solvent, with the coating liquid having an average particle size of 150-400 nm. The dispersant used here is a titanate coupling agent or an anionic surfactant. A film formed using such a coating liquid has a low haze. The film also has high conductivity.SELECTED DRAWING: None

Description

本発明は、導電膜形成用の塗布液およびその製造方法と導電膜付基材の製造方法に関する。 The present invention relates to a coating liquid for forming a conductive film, a method for manufacturing the same, and a method for manufacturing a substrate with a conductive film.

酸化スズ含有粒子を含む塗布液を用いて基材上に導電膜を形成することができる。導電膜では、帯電が防止されるため、表面に埃等のごみが付着し難い。このような帯電防止用の導電膜は、スマートホンやカーナビのタッチパネル等に用いられる。これらの用途では、画面や部品が見易い必要がある。そのため、ヘーズの低い導電膜が求められている。平均粒子径の小さい(100nm程度)酸化スズ含有粒子が溶媒やバインダに分散し易いと、膜のヘーズが低くなる。このような膜を形成可能な塗布液として、有機カップリング剤により表面処理された酸化スズ含有粒子と界面活性剤を含む塗布液が挙げられる(例えば、特許文献1を参照)。 A conductive film can be formed on a substrate using a coating liquid containing particles containing tin oxide. Since the conductive film prevents charging, it is difficult for dirt such as dust to adhere to the surface. Such antistatic conductive films are used in smart phones, car navigation touch panels, and the like. In these applications, the screen and parts need to be easily visible. Therefore, a conductive film with low haze is required. If tin oxide-containing particles with a small average particle diameter (about 100 nm) are easily dispersed in a solvent or binder, the haze of the film will be low. Examples of coating liquids capable of forming such a film include coating liquids containing tin oxide-containing particles whose surface has been treated with an organic coupling agent and a surfactant (see, for example, Patent Document 1).

また、無機酸化物等の芯材表面に酸化スズが被覆された粒子が知られている(例えば、特許文献2)。この粒子の粒径は、芯材の粒径に応じた大きさにできる。シランカップリング剤を粒子表面に処理すると、この粒子は有機溶媒に分散できる。 Furthermore, particles in which the surface of a core material such as an inorganic oxide is coated with tin oxide are known (for example, Patent Document 2). The particle size of these particles can be adjusted according to the particle size of the core material. When the particle surface is treated with a silane coupling agent, the particle can be dispersed in an organic solvent.

国際公開第2001‐018137号International Publication No. 2001-018137 特開2018-085231号公報JP2018-085231A

特許文献1では、界面活性剤と、有機カップリング剤が表面処理された酸化スズ含有粒子とを含む塗布液を用いて導電膜が形成されている。そのため、導電膜の透明性は高い。しかし、バインダを添加する前、分散液中の酸化スズ含有粒子の平均粒子径が小さい。そのため、塗布液や膜中の粒子も小さい。その結果、膜の導電性が低い。 In Patent Document 1, a conductive film is formed using a coating liquid containing a surfactant and tin oxide-containing particles whose surface is treated with an organic coupling agent. Therefore, the conductive film has high transparency. However, before adding the binder, the average particle size of the tin oxide-containing particles in the dispersion is small. Therefore, the particles in the coating liquid and film are also small. As a result, the conductivity of the membrane is low.

特許文献2の酸化スズが被覆された粒子は平均粒子径が大きい。しかし、粒子表面に被覆された酸化スズの層が薄いため、粒子の導電性が低い。また、特許文献2で分散剤として用いられているシランカップリング剤を酸化スズ含有粒子に適用すると、この粒子を含む膜の導電性が低くなってしまう。 The particles coated with tin oxide of Patent Document 2 have a large average particle diameter. However, the conductivity of the particles is low because the tin oxide layer coated on the particle surface is thin. Further, when the silane coupling agent used as a dispersant in Patent Document 2 is applied to particles containing tin oxide, the conductivity of a film containing the particles becomes low.

そこで、本発明の目的は、膜の導電性を高くできる粒子を含む塗布液を提供することにある。 Therefore, an object of the present invention is to provide a coating liquid containing particles that can increase the conductivity of a film.

そこで、本発明は、酸化スズ含有粒子と、分散剤と、バインダと、有機溶媒と、を含み、この塗布液の平均粒子径が150~400nmである。ここで、分散剤としてチタネートカップリング剤またはアニオン系界面活性剤を用いた。このような塗布液を用いて形成した膜のヘーズは低い。また、膜の導電性が高い。 Therefore, the present invention includes tin oxide-containing particles, a dispersant, a binder, and an organic solvent, and the average particle diameter of the coating liquid is 150 to 400 nm. Here, a titanate coupling agent or an anionic surfactant was used as a dispersant. A film formed using such a coating liquid has a low haze. Furthermore, the film has high conductivity.

さらに、塗布液がシリカ粒子を含むことが好ましい。 Furthermore, it is preferable that the coating liquid contains silica particles.

また、分散剤としてチタネートカップリング剤とアニオン系またはカチオン系の界面活性剤とを用いることが好ましい。 Further, it is preferable to use a titanate coupling agent and an anionic or cationic surfactant as a dispersant.

また、塗布液の製造方法は、酸化スズ含有粒子と、分散剤と、有機溶媒を混合し、懸濁液を調製する工程(混合工程)と、混合液を解砕することにより酸化スズ含有粒子の分散液を調製する工程(解砕工程)と、分散液にバインダを添加する工程(添加工程)を備える。解砕工程で酸化スズ含有粒子の平均粒子径を200~500nmに調整する。 In addition, the manufacturing method of the coating liquid includes a step (mixing step) of mixing tin oxide-containing particles, a dispersant, and an organic solvent to prepare a suspension (mixing step), and a step of disintegrating the mixed liquid to produce a tin oxide-containing particle. The method includes a step of preparing a dispersion (disintegration step) and a step of adding a binder to the dispersion (addition step). In the crushing step, the average particle diameter of the tin oxide-containing particles is adjusted to 200 to 500 nm.

本発明は、酸化スズ含有粒子(以下、酸化スズ粒子と称す)と、分散剤と、バインダと、有機溶媒と、を含む塗布液である。ここで、塗布液を動的光散乱法により測定したときの平均粒子径(以下、塗布液の平均粒子径と称す)は150~400nmである。この平均粒子径が150nm未満だと、粒界抵抗が高くなるため、導電膜(以下、単に膜と称す)の導電性が低下し易い。一方、この平均粒子径が400nmより大きいと、膜中で粒子同士が接触する面積が小さいため、導電性パスが形成され難くなる可能性がある。また、平均粒子径が400nmより大きいと、膜中の粒子が光を散乱し易い。このような粒子を含む膜のヘーズは高くなってしまう。この平均粒子径が350nmより小さいと、膜のヘーズがさらに低くなる。 The present invention is a coating liquid containing tin oxide-containing particles (hereinafter referred to as tin oxide particles), a dispersant, a binder, and an organic solvent. Here, the average particle size of the coating liquid measured by a dynamic light scattering method (hereinafter referred to as the average particle size of the coating liquid) is 150 to 400 nm. If this average particle diameter is less than 150 nm, the grain boundary resistance becomes high, so that the conductivity of the conductive film (hereinafter simply referred to as film) tends to decrease. On the other hand, if the average particle diameter is larger than 400 nm, the area in which the particles come into contact with each other in the film is small, which may make it difficult to form a conductive path. Moreover, when the average particle diameter is larger than 400 nm, the particles in the film tend to scatter light. A film containing such particles will have a high haze. When this average particle diameter is smaller than 350 nm, the haze of the film becomes even lower.

分散剤がチタネートカップリング剤またはアニオン系界面活性剤であることにより、膜の導電性が高くなる。そのため、塗布液を塗工し易い。特に、チタネートカップリング剤を含む分散液にバインダを添加しても、塗布液の粘度が高くなり難い。チタネートカップリング剤以外〔ケイ素(Si)やジルコニウム(Zr),アルミニウム(Al)等〕の有機金属カップリング剤のみを分散剤として用いた場合、膜の導電性が低下してしまう。導電性の低下には金属元素の違いや加水分解速度の違いが影響していると考えられる。 When the dispersant is a titanate coupling agent or an anionic surfactant, the conductivity of the film is increased. Therefore, it is easy to apply the coating liquid. In particular, even if a binder is added to a dispersion containing a titanate coupling agent, the viscosity of the coating liquid is unlikely to increase. If only an organometallic coupling agent such as silicon (Si), zirconium (Zr), aluminum (Al), etc. other than the titanate coupling agent is used as a dispersant, the conductivity of the film will decrease. The decrease in conductivity is thought to be affected by differences in metal elements and differences in hydrolysis rate.

アニオン系界面活性剤は、電離して陰イオンになる親水基と、疎水基とを有する。この親水基は酸化スズ粒子の表面(以下、粒子表面と称す)に吸着し易い。粒子表面に吸着した界面活性剤の疎水基は溶媒側に偏在し易い。そのため、界面活性剤が吸着した酸化スズ粒子は有機溶媒やバインダに分散し易い。分散剤としてアニオン系界面活性剤を用いる場合、チタネートカップリング剤を用いたときより塗布液の粘度が高くなる。しかし、アニオン系界面活性剤は一般的にチタネートカップリング剤より安価である。そのため、アニオン系界面活性剤を用いる場合、コストを下げることができる。また、この場合、膜のヘーズや導電性はチタネートカップリング剤を用いたときと同等である。アニオン系界面活性剤として、リン酸エステル型、脂肪酸型、硫酸エステル型、スルホン酸型、カルボン酸型が挙げられる。中でも、リン酸エステル型界面活性剤を用いると、酸化スズ粒子が有機溶媒やバインダに分散し易くなる。カチオン系やノニオン系界面活性剤のみを用いた場合、酸化スズ粒子が有機溶媒に分散できない。 Anionic surfactants have a hydrophilic group that ionizes and becomes an anion, and a hydrophobic group. This hydrophilic group is easily adsorbed on the surface of tin oxide particles (hereinafter referred to as particle surface). The hydrophobic groups of the surfactant adsorbed on the particle surface tend to be unevenly distributed on the solvent side. Therefore, the tin oxide particles to which the surfactant has been adsorbed are easily dispersed in an organic solvent or binder. When an anionic surfactant is used as a dispersant, the viscosity of the coating liquid becomes higher than when a titanate coupling agent is used. However, anionic surfactants are generally less expensive than titanate coupling agents. Therefore, when using an anionic surfactant, costs can be reduced. Further, in this case, the haze and conductivity of the film are equivalent to those when using a titanate coupling agent. Examples of anionic surfactants include phosphoric acid ester type, fatty acid type, sulfuric acid ester type, sulfonic acid type, and carboxylic acid type. Among these, when a phosphate ester type surfactant is used, tin oxide particles are easily dispersed in an organic solvent or a binder. When only a cationic or nonionic surfactant is used, tin oxide particles cannot be dispersed in an organic solvent.

酸化スズ粒子100質量部に対して分散剤の含有量が1.3質量部以上だと、酸化スズ粒子が有機溶媒やバインダに分散し易い。そのため、膜のヘーズが低くなる。一方、この含有量が2質量部以下であると、粒子に被覆される分散剤の量が減る。そのため、膜の導電性が高くなる。 When the content of the dispersant is 1.3 parts by mass or more with respect to 100 parts by mass of tin oxide particles, the tin oxide particles are easily dispersed in the organic solvent or binder. Therefore, the haze of the film becomes low. On the other hand, if this content is 2 parts by mass or less, the amount of dispersant coated on the particles decreases. Therefore, the conductivity of the film becomes high.

酸化スズ粒子の表面積1mに対して、分散剤の含有量が0.5mg以上だと、酸化スズ粒子が有機溶媒やバインダに分散し易い。そのため、膜のヘーズが低くなる。一方、この含有量が5mg以下だと、粒子に被覆される分散剤の量が減る。そのため、膜の導電性が高くなる。 When the content of the dispersant is 0.5 mg or more per 1 m 2 of surface area of the tin oxide particles, the tin oxide particles are easily dispersed in the organic solvent or binder. Therefore, the haze of the film becomes low. On the other hand, if this content is 5 mg or less, the amount of dispersant coated on the particles will be reduced. Therefore, the conductivity of the film becomes high.

チタネートカップリング剤を用いる場合、チタネートカップリング剤の一部をアニオン系またはカチオン系界面活性剤に置換することにより、コストを下げることができる。このように塗布液中のチタネートカップリング剤の含有量を減らしても、チタネートカップリング剤の性能(特に、塗布液の粘度が高くなり難い効果)を発揮できる。塗布液中の分散剤の量が粒子100質量部に対して1.3質量部以上の場合、チタネートカップリング剤とこれらの界面活性剤の量比(チタネートカップリング剤の量/界面活性剤の量)が0.4以上であると、チタネートカップリング剤の性能が発揮され易い。なお、カチオン系界面活性剤は、疎水基と、電離して陽イオンになる親水基とを有する。カチオン系界面活性剤として、第四級アンモニウム塩系、アミン塩系が挙げられる。 When using a titanate coupling agent, costs can be reduced by substituting a part of the titanate coupling agent with an anionic or cationic surfactant. Even if the content of the titanate coupling agent in the coating liquid is reduced in this way, the performance of the titanate coupling agent (particularly the effect of preventing the viscosity of the coating liquid from becoming high) can be exhibited. When the amount of dispersant in the coating solution is 1.3 parts by mass or more based on 100 parts by mass of particles, the ratio of the titanate coupling agent to these surfactants (amount of titanate coupling agent/surfactant) When the amount) is 0.4 or more, the performance of the titanate coupling agent is likely to be exhibited. Note that the cationic surfactant has a hydrophobic group and a hydrophilic group that ionizes to become a cation. Examples of cationic surfactants include quaternary ammonium salts and amine salts.

バインダは、有機溶媒に溶解でき、導電膜を形成できるものであればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂などが挙げられる。複数種類のバインダを混合して用いてもよい。 The binder may be any binder as long as it can be dissolved in an organic solvent and form a conductive film. Examples include thermoplastic resins, thermosetting resins, and ultraviolet curable resins. A mixture of multiple types of binders may be used.

シリカ粒子を含む塗布液を用いて膜を形成すると、膜の導電性が高く、且つ膜のヘーズが低くなる。これは、2つの理由が推察される。一つ目の理由は、塗布液の成分が均質に混ざった状態で膜が形成されることである。このような膜では、構造(密度や表面の凹凸)や組成が均質である。その結果、膜の導電性が高く、且つ膜のヘーズが低くなると推察される。もう一つの理由は、シリカ粒子が膜中で酸化スズ粒子を押し出していることである。この酸化スズ粒子がシリカ粒子の周りに沿った状態で存在することにより、導電パスが形成され易くなる。また、塗布液がシリカ粒子を含むと、膜表面が滑り易くなるため、膜同士の貼りつきを防ぎ易くなる。そのため、膜の取り扱いが容易になる。このシリカ粒子の平均粒子径が70nm以上であると、膜中で酸化スズ粒子を押し出し易い。一方、このシリカ粒子の平均粒子径が400nm以下であると、膜のヘーズが低くなる。シリカ粒子の平均粒子径は150nm以下が好ましい。透過型電子顕微鏡(TEM)を用いてシリカ粒子の平均粒子径を測定することができる。 When a film is formed using a coating liquid containing silica particles, the film has high conductivity and low haze. This is presumed to be due to two reasons. The first reason is that the film is formed with the components of the coating solution homogeneously mixed. Such a film is homogeneous in structure (density and surface roughness) and composition. As a result, it is presumed that the conductivity of the film is high and the haze of the film is low. Another reason is that the silica particles push out the tin oxide particles in the film. When the tin oxide particles exist along the periphery of the silica particles, a conductive path is easily formed. Furthermore, when the coating liquid contains silica particles, the film surface becomes slippery, making it easier to prevent the films from sticking to each other. Therefore, handling of the membrane becomes easier. When the average particle diameter of the silica particles is 70 nm or more, it is easy to push out the tin oxide particles in the film. On the other hand, when the average particle diameter of the silica particles is 400 nm or less, the haze of the film becomes low. The average particle diameter of the silica particles is preferably 150 nm or less. The average particle diameter of silica particles can be measured using a transmission electron microscope (TEM).

有機溶媒は、分散剤とバインダを溶かせるものであればよい。溶媒以外の成分は固形分として扱う。 Any organic solvent may be used as long as it can dissolve the dispersant and binder. Components other than the solvent are treated as solids.

塗布液の固形分濃度が低いほど、塗布液の粘度が低くなる。そのため、この濃度は40重量%以下であることが好ましい。一方、この濃度が20重量%以上であると、厚い膜を形成し易い。厚い膜の硬度や導電性は高い。 The lower the solid content concentration of the coating liquid, the lower the viscosity of the coating liquid. Therefore, this concentration is preferably 40% by weight or less. On the other hand, if this concentration is 20% by weight or more, it is easy to form a thick film. Thick films have high hardness and conductivity.

塗布液中の固形分の酸化スズ粒子濃度が40重量%以上であると、導電パスが形成され易い。 When the concentration of tin oxide particles in the solid content of the coating liquid is 40% by weight or more, conductive paths are likely to be formed.

塗布液中の固形分のバインダ濃度が10重量%以上であると、酸化スズ粒子が塗布液やバインダに分散し易い。この濃度は20重量%以上が好ましい。一方、この濃度が45重量%以下だと、膜の導電性が高くなる。この濃度は35重量%以下がより好ましい。 When the solid binder concentration in the coating liquid is 10% by weight or more, tin oxide particles are easily dispersed in the coating liquid and the binder. This concentration is preferably 20% by weight or more. On the other hand, if this concentration is 45% by weight or less, the conductivity of the film will be high. This concentration is more preferably 35% by weight or less.

塗布液中の固形分のシリカ粒子濃度が5重量%以上であると、導電パスが形成され易い。一方、この濃度が50重量%以下であると、膜のヘーズが低くなる。また、膜の導電性が高くなる。この濃度が20重量%以下であると、膜が基材に密着し易い。 When the solid silica particle concentration in the coating liquid is 5% by weight or more, conductive paths are likely to be formed. On the other hand, if this concentration is 50% by weight or less, the haze of the film will be low. Furthermore, the conductivity of the film is increased. When this concentration is 20% by weight or less, the film tends to adhere to the base material.

以下、酸化スズ粒子について説明する。一次粒子が複数結合して形成された酸化スズ粒子を用いると、ヘーズが低くなる。この粒子の酸化スズ含有率がSnO換算で90重量%以上だと、粒界抵抗が低い。そのため、膜の導電性が高くなる。 The tin oxide particles will be explained below. When tin oxide particles formed by combining a plurality of primary particles are used, the haze is reduced. When the tin oxide content of the particles is 90% by weight or more in terms of SnO 2 , grain boundary resistance is low. Therefore, the conductivity of the film becomes high.

酸化スズ粒子の一次粒子径が小さいほど、膜のヘーズが低くなる。膜のヘーズを低くする目的では、酸化スズ粒子の一次粒子径は50nm以下が好ましく、30nm以下がより好ましく、10nm以下がさらに好ましい。一方、この一次粒子径が大きいと、酸化スズ粒子の粒界抵抗が低くなる。そのため、膜の抵抗も低くなる。膜の抵抗を低くする目的では、この一次粒子径は20nm以上が好ましい。 The smaller the primary particle diameter of the tin oxide particles, the lower the haze of the film. For the purpose of reducing the haze of the film, the primary particle diameter of the tin oxide particles is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less. On the other hand, when the primary particle size is large, the grain boundary resistance of the tin oxide particles becomes low. Therefore, the resistance of the film is also lowered. For the purpose of lowering the resistance of the film, the primary particle diameter is preferably 20 nm or more.

酸化スズ粒子の比表面積が低いほど、酸化スズ粒子の粒界抵抗が低くなる。そのため、この比表面積は100m/g以下が好ましく、50m/g以下がより好ましい。一方、この比表面積が30m/g以上であると、膜のヘーズが低くなる。この比表面積は35m/g以上がより好ましい。 The lower the specific surface area of the tin oxide particles, the lower the grain boundary resistance of the tin oxide particles. Therefore, this specific surface area is preferably 100 m 2 /g or less, more preferably 50 m 2 /g or less. On the other hand, when the specific surface area is 30 m 2 /g or more, the haze of the film becomes low. This specific surface area is more preferably 35 m 2 /g or more.

アンチモンやリンがドープされている酸化スズ粒子は高い導電性を有する。特に、アンチモンドープ酸化スズ粒子は高い導電性を有する。アンチモン(Sb)のドープ量がSb換算で2~6重量%であると、酸化スズ粒子の導電性が高くなる。一方、リンドープ酸化スズ粒子は、アンチモンドープ酸化スズ粒子ほど高い導電性を有さない。しかし、リンはアンチモンに比べて環境に負荷をかけ難い。P換算でリン(P)のドープ量が4~6重量%であると、酸化スズ粒子の導電性が高くなる。 Tin oxide particles doped with antimony or phosphorus have high conductivity. In particular, antimony-doped tin oxide particles have high electrical conductivity. When the amount of antimony (Sb) doped is 2 to 6% by weight in terms of Sb 2 O 3 , the conductivity of the tin oxide particles becomes high. On the other hand, phosphorus-doped tin oxide particles do not have as high conductivity as antimony-doped tin oxide particles. However, phosphorus has less of a burden on the environment than antimony. When the doping amount of phosphorus (P) is 4 to 6% by weight in terms of P 2 O 5 , the conductivity of the tin oxide particles becomes high.

以下、塗布液の製造方法について説明する。まず、酸化スズ含有粉末(以下、酸化スズ粉末と称す)と、分散剤と、有機溶媒を混合し、酸化スズ粉末の懸濁液を調製する〔混合工程〕。懸濁液中の酸化スズ粉末を解砕することにより、酸化スズ粒子の分散液を調製する〔解砕工程〕。解砕時に、分散液の平均粒子径(すなわち、酸化スズ粒子の平均粒子径)を200nm~500nmに調整する。この分散液にバインダを添加することにより、塗布液を調製する〔添加工程〕。 The method for manufacturing the coating liquid will be described below. First, a tin oxide-containing powder (hereinafter referred to as tin oxide powder), a dispersant, and an organic solvent are mixed to prepare a suspension of tin oxide powder [mixing step]. A dispersion of tin oxide particles is prepared by crushing the tin oxide powder in the suspension [crushing step]. During crushing, the average particle size of the dispersion (ie, the average particle size of the tin oxide particles) is adjusted to 200 nm to 500 nm. A coating liquid is prepared by adding a binder to this dispersion liquid (addition step).

酸化スズ粉末の一次粒子径が500nm以下であると、解砕工程で酸化スズ粉末を平均粒子径が500nm以下に解砕し易い。 When the primary particle size of the tin oxide powder is 500 nm or less, the tin oxide powder can be easily crushed into an average particle size of 500 nm or less in the crushing step.

酸化スズ粉末の比表面積が低いほど、酸化スズ粒子の粒界抵抗が低くなる。そのため、この比表面積は100m/g以下が好ましく、50m/g以下がより好ましい。一方、この比表面積が2m/g以上であると、解砕工程で平均粒子径が500nm以下になるように酸化スズ粉末を解砕し易い。この比表面積が30m/g以上であると、膜のヘーズが低くなる。この比表面積は35m/g以上がより好ましい。 The lower the specific surface area of the tin oxide powder, the lower the grain boundary resistance of the tin oxide particles. Therefore, this specific surface area is preferably 100 m 2 /g or less, more preferably 50 m 2 /g or less. On the other hand, when this specific surface area is 2 m 2 /g or more, it is easy to crush the tin oxide powder so that the average particle size becomes 500 nm or less in the crushing step. When this specific surface area is 30 m 2 /g or more, the haze of the film becomes low. This specific surface area is more preferably 35 m 2 /g or more.

酸化スズ粉末として、例えば特開平6-76636や特願昭62-51008等に記載の方法で製造された酸化スズ粉末が使用できる。また、酸化スズ粉末を調製する方法として、スズイオン溶液を中和する方法、加熱水中へ塩化スズ溶解させた溶液を加えて加水分解する方法が挙げられる。以下、中和する方法について説明する。酸化スズに酸を加えることによりイオン化した後、塩基を用いてこのイオンを中和する。これにより、酸化スズの沈降物を得る。これを乾燥・焼成することにより、酸化スズ粉末が得られる。中和するとき、三酸化アンチモンもイオン化し、スズイオンと一緒に中和する(共沈する)ことができる。共沈すると、アンチモンを酸化スズ粉末にドープすることができる。調製する酸化スズ粒子全量に対して、2~6重量%のアンチモンをドープすると、酸化スズ粒子の導電性が高くなる。 As the tin oxide powder, for example, tin oxide powder produced by the method described in Japanese Patent Application Laid-Open No. 6-76636 and Japanese Patent Application No. 62-51008 can be used. Furthermore, methods for preparing tin oxide powder include a method in which a tin ion solution is neutralized, and a method in which a solution of tin chloride dissolved in heated water is added and hydrolyzed. The method of neutralization will be explained below. After ionizing tin oxide by adding acid, the ions are neutralized using a base. This yields a tin oxide precipitate. By drying and firing this, tin oxide powder is obtained. When neutralizing, antimony trioxide also ionizes and can be neutralized (co-precipitated) together with tin ions. Co-precipitation allows antimony to be doped into the tin oxide powder. Doping 2 to 6% by weight of antimony with respect to the total amount of tin oxide particles to be prepared increases the conductivity of the tin oxide particles.

混合工程では、酸化スズ粉末と、分散剤と、有機溶媒を混合し、酸化スズ粉末の懸濁液を調製する。ここでは分散剤(分散剤Aとする)として、チタネートカップリング剤またはアニオン系界面活性剤を混合する。このような分散剤であれば、解砕工程の後で酸化スズ粒子が有機溶媒に分散し易くなる。分散剤を有機溶媒に混合・溶解し、分散剤溶液を調製した後、酸化スズ粉末と分散剤溶液を混合することが好ましい。この方法であれば、解砕工程において、酸化スズ粒子の表面に分散剤が均一に処理される。 In the mixing step, tin oxide powder, a dispersant, and an organic solvent are mixed to prepare a suspension of tin oxide powder. Here, a titanate coupling agent or an anionic surfactant is mixed as a dispersant (referred to as dispersant A). With such a dispersant, the tin oxide particles can be easily dispersed in the organic solvent after the crushing step. It is preferable to mix and dissolve the dispersant in an organic solvent to prepare a dispersant solution, and then mix the tin oxide powder and the dispersant solution. With this method, the surface of the tin oxide particles is uniformly treated with the dispersant in the crushing step.

懸濁液中の酸化スズ粉末を解砕することにより、酸化スズ含有粒子の分散液を調製する。酸化スズ粉末を解砕すると、酸化スズ粒子になる。このとき、酸化スズ粒子の平均粒子径を200~500nmに調整する。酸化スズ粒子の平均粒子径は遠心沈降式により測定できる(塗布液の平均粒子径とは測定方法が異なる)。酸化スズの平均粒子径が200nm以上のとき、アニオン系界面活性剤やチタネートカップリング剤が酸化スズ粒子の表面に吸着し易い。そのため、酸化スズ粒子が有機溶媒に分散できる。カチオン系やノニオン系界面活性剤のみを用いた場合、平均粒子径が200nm以上の酸化スズ粒子は有機溶媒に分散できない。酸化スズ粒子の平均粒子径が200nm以上であることにより、塗布液の平均粒子径が150nm以上になる。酸化スズ粒子の平均粒子径が200nm未満であると、塗布液の平均粒子径が150nm未満となる。そのため、酸化スズ粒子が膜中で導電パスを形成し難くなる。一方、酸化スズ粒子の平均粒子径が500nm以下であることにより、塗布液の平均粒子径が400nm以下になる。この平均粒子径であれば、膜のヘーズが低くなる。 A dispersion of tin oxide-containing particles is prepared by crushing the tin oxide powder in the suspension. When tin oxide powder is crushed, it becomes tin oxide particles. At this time, the average particle diameter of the tin oxide particles is adjusted to 200 to 500 nm. The average particle diameter of tin oxide particles can be measured by a centrifugal sedimentation method (the measurement method is different from that of the coating liquid). When the average particle diameter of tin oxide is 200 nm or more, anionic surfactants and titanate coupling agents are easily adsorbed on the surface of tin oxide particles. Therefore, tin oxide particles can be dispersed in an organic solvent. When only a cationic or nonionic surfactant is used, tin oxide particles having an average particle diameter of 200 nm or more cannot be dispersed in an organic solvent. When the average particle size of the tin oxide particles is 200 nm or more, the average particle size of the coating liquid becomes 150 nm or more. If the average particle size of the tin oxide particles is less than 200 nm, the average particle size of the coating liquid will be less than 150 nm. Therefore, it becomes difficult for tin oxide particles to form conductive paths in the film. On the other hand, when the average particle size of the tin oxide particles is 500 nm or less, the average particle size of the coating liquid becomes 400 nm or less. With this average particle diameter, the haze of the film will be low.

ビーズミル等の媒体ミル、高速撹拌機、高圧ホモジナイザー、超音波ホモジナイザー、ジェットミル等の湿式粉砕機を用いて、酸化スズ粉末を粉砕することができる。特に、ビーズミルを用いると、懸濁液中の酸化スズ粉末を解砕し易い。ビーズミルを用いる場合、解砕時間や周速、ビーズの充填率は使用するビーズミルの装置の規模や形状によって適宜調整する必要がある。ビーズ径は周速に応じて適宜調整する。使用するビーズがガラスやジルコニアであると、入手が容易である。使用するビーズがジルコニアやアルミナ等の無機酸化物であると、酸化スズ粉末に与えるエネルギーが高いため、酸化スズ粉末を解砕し易い。解砕後、ステンレス金網等を用いて分散液を濾過すると、粗大粒子を除去できる。 The tin oxide powder can be pulverized using a medium mill such as a bead mill, a high-speed stirrer, a high-pressure homogenizer, an ultrasonic homogenizer, a wet pulverizer such as a jet mill, and the like. In particular, when a bead mill is used, it is easy to crush the tin oxide powder in the suspension. When using a bead mill, the crushing time, circumferential speed, and bead filling rate need to be appropriately adjusted depending on the scale and shape of the bead mill used. The bead diameter is adjusted appropriately according to the circumferential speed. Glass or zirconia beads are easily available. If the beads used are inorganic oxides such as zirconia or alumina, the energy imparted to the tin oxide powder is high, making it easier to crush the tin oxide powder. After crushing, coarse particles can be removed by filtering the dispersion using a stainless wire mesh or the like.

上述の酸化スズ粒子の分散液に、バインダを添加することにより、塗布液が調製される。この分散液にバインダを添加しても、酸化スズ粒子は凝集し難い。凝集しても、塗布液に超音波を照射することにより、凝集した酸化スズ粒子が再分散する。 A coating liquid is prepared by adding a binder to the above-mentioned dispersion of tin oxide particles. Even if a binder is added to this dispersion, the tin oxide particles are difficult to aggregate. Even if they aggregate, the aggregated tin oxide particles are redispersed by irradiating the coating liquid with ultrasonic waves.

超音波を照射する前に、上述の分散剤を追加で添加することにより、酸化スズ粒子の再分散が促進される(ここで添加する分散剤を分散剤Bとする)。分散剤の種類は、既に分散液に含まれている分散剤と同じ種類でも、異なる種類でもよい。このとき、塗布液に含まれている分散剤の合計量が酸化スズ粒子100質量部に対して1.3質量部以上であることにより、酸化スズ粒子が有機溶媒に分散し易くなる。一方、この合計量が粒子100質量部に対して2質量部以下であると、粒子に被覆される分散剤の量が減るため、膜の導電性が高くなる。 By additionally adding the above-mentioned dispersant before irradiating the ultrasonic wave, redispersion of the tin oxide particles is promoted (the dispersant added here is referred to as dispersant B). The type of dispersant may be the same as or different from the dispersant already contained in the dispersion. At this time, when the total amount of the dispersant contained in the coating liquid is 1.3 parts by mass or more based on 100 parts by mass of tin oxide particles, the tin oxide particles can be easily dispersed in the organic solvent. On the other hand, when this total amount is 2 parts by mass or less based on 100 parts by mass of particles, the amount of dispersant coated on the particles decreases, so that the conductivity of the film increases.

基材上に上述の塗布液を塗布し、乾燥することにより、膜付基材を製造できる。基材は均一な液膜を形成可能で、乾燥温度に耐えられるものであればよい。塗布方法として、バーコーター法、ディップ法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法、加圧塗布法等が挙げられる。平均膜厚は、用途に応じて適宜選択できる。平均膜厚は50nm以上だと、静電気による急激な電圧変化を抑制し易い。平均膜厚は80nm以上が好ましい。平均膜厚が1000nm以下であると、透明性が高くなる。平均膜厚は300nm以下が好ましい。 A film-coated base material can be manufactured by applying the above-mentioned coating liquid onto a base material and drying it. The substrate may be any material as long as it can form a uniform liquid film and can withstand the drying temperature. Examples of the coating method include a bar coater method, a dip method, a spray method, a spinner method, a roll coating method, a gravure coating method, a slit coating method, a pressure coating method, and the like. The average film thickness can be selected as appropriate depending on the application. When the average film thickness is 50 nm or more, rapid voltage changes due to static electricity can be easily suppressed. The average film thickness is preferably 80 nm or more. When the average film thickness is 1000 nm or less, transparency becomes high. The average film thickness is preferably 300 nm or less.

[実施例1]
以下、塗布液の調製方法を具体的に示す。他の実施例や比較例の塗布液の調製条件も併せて表1に示す。
[Example 1]
The method for preparing the coating liquid will be specifically described below. Table 1 also shows the preparation conditions for the coating liquids of other Examples and Comparative Examples.

まず、以下のように酸化スズ粉末を調製した。スズ酸カリウム153gを水343gに溶解させた。これに吐酒石9.3gを加え、溶解させた。これを硝酸とともに、50℃の温水にpHを8.5に保持するように、12時間かけて添加した。これにより、ゾルを得た。このゾルから粒子を濾別し、粒子を洗浄した。粒子を100℃で5時間乾燥後、550℃で3時間焼成することにより、酸化スズ粉末を得た。 First, tin oxide powder was prepared as follows. 153 g of potassium stannate was dissolved in 343 g of water. 9.3 g of tartarite was added to this and dissolved. This was added together with nitric acid to 50° C. hot water over 12 hours so as to maintain the pH at 8.5. This gave a sol. The particles were filtered from this sol and washed. Tin oxide powder was obtained by drying the particles at 100°C for 5 hours and then calcining them at 550°C for 3 hours.

〔混合工程〕
次に、酸化スズ粉末と、分散剤Aと、有機溶媒を混合し、懸濁液を調製した。有機溶媒として2-ブタノン(林純薬工業社製、有機溶媒)84gと、分散剤(チタネートカップリング剤)としてプレンアクト(登録商標) 9SA(味の素ファインテクノ社製)1.5gとを混合した。これを10分間攪拌することにより、分散剤溶液を調製した。この分散剤溶液85.5gと、酸化スズ粉末43gとを2Lのガラスビーカー中で混合することにより、懸濁液を調製した。
[Mixing process]
Next, tin oxide powder, dispersant A, and an organic solvent were mixed to prepare a suspension. 84 g of 2-butanone (manufactured by Hayashi Pure Chemical Industries, Ltd., organic solvent) as an organic solvent and 1.5 g of PreneAct (registered trademark) 9SA (manufactured by Ajinomoto Fine Techno Co., Ltd.) as a dispersant (titanate coupling agent) were mixed. A dispersant solution was prepared by stirring this for 10 minutes. A suspension was prepared by mixing 85.5 g of this dispersant solution and 43 g of tin oxide powder in a 2 L glass beaker.

〔解砕工程〕
本工程では、懸濁液中の酸化スズ粉末を解砕する。まず、懸濁液128.5gにガラスビーズ BZ-06 (アズワン社製、ビーズ径は0.5mmφ)255gを加えた。バッチ式ビーズミル イージーナノRMBII型を用いて、懸濁液(酸化スズ粉末)中の酸化スズ粉末を解砕することにより、酸化スズ粒子を調製した。酸化スズ粒子の平均粒子径が340nm(表1に記載の酸化スズ粒子の平均粒子径)となるまで解砕を続けた(他の実施例および比較例でも、酸化スズ粒子の平均粒子径が、表1に記載の酸化スズ粒子の平均粒子径となるまで、解砕を続けた。)。ビーズミルの周速は12m/sとした。網目44μmのステンレス金網を用いて、懸濁液からガラスビーズを分離した。これに2-ブタノンを加えることにより、分散液(固形分濃度を35.0重量%)を調製した。
[Crushing process]
In this step, the tin oxide powder in the suspension is crushed. First, 255 g of glass beads BZ-06 (manufactured by As One, beads diameter: 0.5 mm) was added to 128.5 g of the suspension. Tin oxide particles were prepared by crushing tin oxide powder in a suspension (tin oxide powder) using a batch type bead mill Easy Nano RMBII type. Crushing was continued until the average particle size of the tin oxide particles became 340 nm (the average particle size of the tin oxide particles listed in Table 1) (also in other Examples and Comparative Examples, the average particle size of the tin oxide particles was 340 nm). Crushing was continued until the average particle diameter of the tin oxide particles was reached as shown in Table 1.) The peripheral speed of the bead mill was 12 m/s. Glass beads were separated from the suspension using a stainless wire mesh with a mesh size of 44 μm. A dispersion liquid (solid content concentration: 35.0% by weight) was prepared by adding 2-butanone to this.

〔添加工程〕
本工程では、分散液にバインダを添加する。2-ブタノン17.77gにバインダとしてアクリル樹脂(クラレ社製クラリティ(登録商標)LA2270)7.62gを溶解した。これを攪拌中の分散液56.70gに添加した。この分散液を5分間攪拌した。3-メタクリロキシプロピルトリメトキシシランで表面処理されたシリカゾル(溶媒は4-メチル-2-ペンタノン、SiO濃度37%、SEMで測定した平均粒子径が140nm)6.86gをシリカ粒子として分散液に添加した。この分散液を5分間攪拌した後、分散剤B(実施例1ではリン酸エステル型アニオン界面活性剤)としてプライサーフ(登録商標)A212C(第一工業製薬社製)0.3gを分散液に添加した。この分散液を5分間攪拌した後、2-ブタノン10.75gを分散液に添加した。この分散液を60分間攪拌した後、超音波分散機(カイジョー社製 Horn type 5281型)を用いて超音波を分散液に60秒間照射した。ステンレス金網を用いてこの分散液を濾過することにより、塗布液を調製した。
[Addition process]
In this step, a binder is added to the dispersion. 7.62 g of acrylic resin (Clarity (registered trademark) LA2270 manufactured by Kuraray Co., Ltd.) as a binder was dissolved in 17.77 g of 2-butanone. This was added to 56.70 g of the dispersion being stirred. This dispersion was stirred for 5 minutes. Dispersion of 6.86 g of silica sol surface-treated with 3-methacryloxypropyltrimethoxysilane (solvent: 4-methyl-2-pentanone, SiO 2 concentration: 37%, average particle diameter measured by SEM: 140 nm) as silica particles added to. After stirring this dispersion for 5 minutes, 0.3 g of Prysurf (registered trademark) A212C (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was added as dispersant B (phosphate ester type anionic surfactant in Example 1) to the dispersion. Added. After stirring the dispersion for 5 minutes, 10.75 g of 2-butanone was added to the dispersion. After stirring this dispersion for 60 minutes, the dispersion was irradiated with ultrasonic waves for 60 seconds using an ultrasonic dispersion machine (Horn type 5281 manufactured by Kaijo). A coating solution was prepared by filtering this dispersion using a stainless wire mesh.

この塗布液を25℃にした後、粘度計TVB-10型(東機産業社製)を用いてこの塗布液の粘度を測定した。他の実施例および比較例の測定結果も併せて表1に示す。 After the coating liquid was heated to 25° C., the viscosity of the coating liquid was measured using a viscometer model TVB-10 (manufactured by Toki Sangyo Co., Ltd.). Measurement results of other Examples and Comparative Examples are also shown in Table 1.

以下のように塗布液の平均粒子径を測定した。塗布液1gに、2-ブタノン9g添加した。バス型超音波洗浄機を用いて超音波をこの塗布液に60秒間照射することにより、測定サンプルを調製した。測定サンプルをガラスセルに充填し、動的光散乱式の粒子径測定装置(Malvern社製ゼータサイザーナノZS)を用いて塗布液の体積平均粒子径を測定した。他の実施例および比較例の測定結果も併せて表1に示す。 The average particle diameter of the coating liquid was measured as follows. 9 g of 2-butanone was added to 1 g of the coating solution. A measurement sample was prepared by irradiating this coating liquid with ultrasonic waves for 60 seconds using a bath-type ultrasonic cleaner. A glass cell was filled with the measurement sample, and the volume average particle diameter of the coating liquid was measured using a dynamic light scattering type particle diameter measuring device (Zetasizer Nano ZS manufactured by Malvern). Measurement results of other Examples and Comparative Examples are also shown in Table 1.

バーコーター法により、ポリエステルフィルム(東洋紡社製コスモシャイン(登録商標)A4360)上にこの塗布液を塗布した。25℃、50RH%の条件で20分間塗布液を乾燥することにより、膜付基材を得た。この膜付基材の表面抵抗と光学特性を以下のように測定した。他の実施例および比較例の測定結果も併せて表2に示す。 This coating liquid was applied onto a polyester film (Cosmoshine (registered trademark) A4360 manufactured by Toyobo Co., Ltd.) by a bar coater method. The coating solution was dried for 20 minutes at 25°C and 50RH% to obtain a film-coated base material. The surface resistance and optical properties of this film-coated base material were measured as follows. The measurement results of other Examples and Comparative Examples are also shown in Table 2.

(表面抵抗)
表面抵抗測定機(日東精工アナリテック社製ハイレスターUX MCP-HT800)を用いて膜の表面抵抗を測定した。
(Surface resistance)
The surface resistance of the film was measured using a surface resistance measuring device (Hirester UX MCP-HT800 manufactured by Nitto Seiko Analytech).

(光学特性)
ヘーズメーター(スガ試験機社製HZ-V3)を用いて膜付基材のヘーズを測定した。
(optical properties)
The haze of the film-coated substrate was measured using a haze meter (HZ-V3 manufactured by Suga Test Instruments Co., Ltd.).

[実施例2]
混合工程において、分散剤Aとしてプライサーフ(登録商標)A212Cを1.3g添加した以外は、実施例1と同様に懸濁液および分散液を調製した。
添加工程において、この分散液を用いたことと、分散剤Bとしてプレンアクト(登録商標) 9SA(味の素ファインテクノ社製、チタネート系カップリング剤)0.3g添加したこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 2]
A suspension and a dispersion were prepared in the same manner as in Example 1, except that 1.3 g of Plysurf (registered trademark) A212C was added as dispersant A in the mixing step.
In the addition step, the same as Example 1 was used, except that this dispersion was used and 0.3 g of Prenact (registered trademark) 9SA (manufactured by Ajinomoto Fine Techno, Inc., titanate coupling agent) was added as dispersant B. A coating solution and a substrate with a film were obtained.

[実施例3]
添加工程において、平均粒子径160nmのシリカゾルをシリカ粒子として用いたこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 3]
A coating liquid and a film-coated substrate were obtained in the same manner as in Example 1, except that in the addition step, silica sol with an average particle diameter of 160 nm was used as the silica particles.

[実施例4]
添加工程において、平均粒子径300nmのシリカゾルをシリカ粒子として用いたこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 4]
A coating liquid and a film-coated substrate were obtained in the same manner as in Example 1, except that in the addition step, silica sol with an average particle diameter of 300 nm was used as the silica particles.

[実施例5]
混合工程において、プレンアクト9SAの添加量を1.4gにしたこと以外は実施例1と同様に懸濁液と分散液を調製した。添加工程において、この分散液を用いたことと、分散剤Bとしてプレンアクト9SAを0.3g添加したこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 5]
In the mixing step, a suspension and a dispersion were prepared in the same manner as in Example 1, except that the amount of Prenact 9SA added was 1.4 g. In the addition step, a coating solution and a film-coated substrate were obtained in the same manner as in Example 1, except that this dispersion was used and 0.3 g of PrenAct 9SA was added as dispersant B.

[実施例6]
混合工程において、プレンアクト9SAの混合量を2.3gにしたこと以外は実施例1と同様に懸濁液と分散液を調製した。添加工程において、この分散液を用いたことと、分散剤Bを添加しなかったこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 6]
In the mixing step, a suspension and a dispersion were prepared in the same manner as in Example 1, except that the amount of Prenact 9SA mixed was 2.3 g. A coating solution and a film-coated substrate were obtained in the same manner as in Example 1, except that this dispersion was used in the addition step and dispersant B was not added.

[実施例7]
添加工程において、分散剤BとしてプライサーフA212Cを0.3g添加したこと以外は、実施例2と同様に塗布液と膜付基材を得た。
[Example 7]
A coating liquid and a film-coated substrate were obtained in the same manner as in Example 2, except that 0.3 g of Plysurf A212C was added as dispersant B in the addition step.

[実施例8]
添加工程において、分散剤BとしてフィラノールPA-075F(日油社製)0.3g混合したこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 8]
A coating solution and a film-coated substrate were obtained in the same manner as in Example 1, except that 0.3 g of Filanol PA-075F (manufactured by NOF Corporation) was mixed as dispersant B in the addition step.

[実施例9]
添加工程において、2-ブタノン23.70gにバインダとしてクラリティLA2270を10.15g溶解させた。これを攪拌中の分散液56.70gに添加した。この分散液に、シリカ粒子を添加しなかった。この分散液を5分間攪拌した後、分散剤BとしてプライサーフA212C 0.3gを分散液に添加した。この分散液を5分間攪拌した後、2-ブタノン9.15gを分散液に添加した。これら以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 9]
In the addition step, 10.15 g of Clarity LA2270 as a binder was dissolved in 23.70 g of 2-butanone. This was added to 56.70 g of the dispersion being stirred. No silica particles were added to this dispersion. After stirring this dispersion for 5 minutes, 0.3 g of Plysurf A212C as dispersant B was added to the dispersion. After stirring this dispersion for 5 minutes, 9.15 g of 2-butanone was added to the dispersion. A coating liquid and a film-coated base material were obtained in the same manner as in Example 1 except for the above.

[実施例10]
添加工程において、2-ブタノン11.85gにバインダとしてクラリティLA2270を5.08g溶解させた。これを攪拌中の分散液56.70gに添加した。この分散液に、3-メタクリロキシプロピルトリメトキシシランで表面処理されたシリカゾル(溶媒は4-メチル-2-ペンタノン、SiO濃度37%、140nm〔SEMで測定〕)13.72gをシリカ粒子として添加した。この分散液を5分間攪拌した後、分散剤BとしてプライサーフA212C 0.3gを分散液に添加した。この分散液を5分間攪拌した後、2-ブタノン12.35gを分散液に添加した。これら以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 10]
In the addition step, 5.08 g of Clarity LA2270 as a binder was dissolved in 11.85 g of 2-butanone. This was added to 56.70 g of the dispersion being stirred. To this dispersion, 13.72 g of silica sol surface-treated with 3-methacryloxypropyltrimethoxysilane (solvent: 4-methyl-2-pentanone, SiO 2 concentration 37%, 140 nm [measured by SEM]) was added as silica particles. Added. After stirring this dispersion for 5 minutes, 0.3 g of Plysurf A212C as dispersant B was added to the dispersion. After stirring this dispersion for 5 minutes, 12.35 g of 2-butanone was added to the dispersion. A coating liquid and a film-coated base material were obtained in the same manner as in Example 1 except for the above.

[実施例11]
混合工程において、分散剤AとしてプライサーフA212Cを2.6g添加したこと以外は、実施例1と同様に懸濁液と分散液を調製した。添加工程において、この分散液を用いたことと、分散剤Bを添加しなかったこと以外は、実施例1と同様に塗布液と膜付基材を得た。
[Example 11]
A suspension and a dispersion were prepared in the same manner as in Example 1, except that 2.6 g of Plysurf A212C was added as dispersant A in the mixing step. A coating solution and a film-coated substrate were obtained in the same manner as in Example 1, except that this dispersion was used in the addition step and dispersant B was not added.

[実施例12]
添加工程において、バインダ樹脂としてアクリル樹脂(DIC社製ACRYDIC A-166)を用いたこと以外は実施例1と同様に塗布液と膜付基材を得た。
[Example 12]
A coating solution and a film-coated substrate were obtained in the same manner as in Example 1, except that an acrylic resin (ACRYDIC A-166 manufactured by DIC Corporation) was used as the binder resin in the addition step.

[比較例1]
解砕工程において、酸化スズ粒子の平均粒子径が190nmとなるまで解砕を続けた。それ以外は、実施例1と同様に塗布液と膜付基材を得た。
[Comparative example 1]
In the crushing step, crushing was continued until the average particle diameter of the tin oxide particles became 190 nm. Other than that, a coating liquid and a film-coated substrate were obtained in the same manner as in Example 1.

[比較例2]
解砕工程において、酸化スズ粉末の平均粒子径が550nmとなるまで解砕を続けた。それ以外は、実施例1と同様に塗布液と膜付基材を得た。
[Comparative example 2]
In the crushing step, crushing was continued until the average particle size of the tin oxide powder reached 550 nm. Other than that, a coating liquid and a film-coated substrate were obtained in the same manner as in Example 1.

[比較例3]
混合工程において、分散剤Aとしてシランカップリング剤(3-メタクリロキシプロピルトリメトキシシラン、信越シリコーン社製 KBM-503)を1.3g添加したこと以外は、実施例1と同様に懸濁液を得た。解砕工程において、この懸濁液を用いたこと以外は実施例1と同様の条件で懸濁液中の酸化スズ粉末を解砕した。解砕を続けても、酸化スズ粉末の平均粒子径は570nmまでしか下がらなかった。網目44μmのステンレス金網を用いて、懸濁液からガラスビーズを分離した。これに2-ブタノンを加えることにより、分散液(固形分濃度を35.0重量%)を調製した。この分散液を用いること以外は実施例1と同様に塗布液と膜付基材を得た。
[Comparative example 3]
In the mixing step, the suspension was prepared in the same manner as in Example 1, except that 1.3 g of a silane coupling agent (3-methacryloxypropyltrimethoxysilane, KBM-503, manufactured by Shin-Etsu Silicone Co., Ltd.) was added as dispersant A. Obtained. In the crushing step, the tin oxide powder in the suspension was crushed under the same conditions as in Example 1 except that this suspension was used. Even if the crushing was continued, the average particle size of the tin oxide powder decreased only to 570 nm. Glass beads were separated from the suspension using a stainless wire mesh with a mesh size of 44 μm. A dispersion liquid (solid content concentration: 35.0% by weight) was prepared by adding 2-butanone to this. A coating solution and a film-coated substrate were obtained in the same manner as in Example 1 except that this dispersion was used.

[比較例4]
混合工程において、分散剤Aとしてカチオン系界面活性剤(フィラノールPA-075F)1.3gを添加したこと以外は実施例1と同様に懸濁液を調製した。解砕工程において、この懸濁液を用いたこと以外は実施例1と同様の条件で懸濁液中の酸化スズ粉末を解砕した。しかし、解砕を続けても、酸化スズ粉末を有機溶媒に分散することができなかった。
[Comparative example 4]
A suspension was prepared in the same manner as in Example 1, except that 1.3 g of a cationic surfactant (Filanol PA-075F) was added as dispersant A in the mixing step. In the crushing step, the tin oxide powder in the suspension was crushed under the same conditions as in Example 1 except that this suspension was used. However, even if the crushing was continued, the tin oxide powder could not be dispersed in the organic solvent.

[比較例5]
混合工程において、分散剤AとしてDIC社製メガファック(登録商標)F-553を1.3g添加したこと以外は実施例1と同様に懸濁液を調製した。解砕工程において、この懸濁液を用いたこと以外は実施例1と同様の条件で懸濁液中の酸化スズ粉末を解砕した。しかし、解砕を続けても、酸化スズ粉末を有機溶媒に分散することができなかった。
[Comparative example 5]
A suspension was prepared in the same manner as in Example 1, except that 1.3 g of Megafac (registered trademark) F-553 manufactured by DIC Corporation was added as dispersant A in the mixing step. In the crushing step, the tin oxide powder in the suspension was crushed under the same conditions as in Example 1 except that this suspension was used. However, even if the crushing was continued, the tin oxide powder could not be dispersed in the organic solvent.

Figure 2023147928000001
Figure 2023147928000001

Figure 2023147928000002
Figure 2023147928000002

Claims (7)

酸化スズ含有粒子と、
アニオン系界面活性剤と、
バインダと、
有機溶媒と、を含む塗布液であって、
当該塗布液を動的光散乱法により測定したときの平均粒子径が150~400nmであることを特徴とする導電膜形成用の塗布液。
tin oxide-containing particles;
anionic surfactant,
binder and
A coating liquid comprising an organic solvent,
A coating liquid for forming a conductive film, characterized in that the coating liquid has an average particle diameter of 150 to 400 nm when measured by a dynamic light scattering method.
シリカ粒子をさらに含むことを特徴とする請求項1に記載の塗布液。 The coating liquid according to claim 1, further comprising silica particles. 酸化スズ含有粒子と、
チタネートカップリング剤と、
シリカ粒子と、
バインダと、
有機溶媒と、を含む塗布液であって、
当該塗布液を動的光散乱法により測定したときの平均粒子径が150~400nmであることを特徴とする導電膜形成用の塗布液。
tin oxide-containing particles;
a titanate coupling agent,
silica particles,
binder and
A coating liquid comprising an organic solvent,
A coating liquid for forming a conductive film, characterized in that the coating liquid has an average particle diameter of 150 to 400 nm when measured by a dynamic light scattering method.
前記シリカ粒子の平均粒子径が70~400nmであることを特徴とする請求項2または3に記載の塗布液。 The coating liquid according to claim 2 or 3, wherein the silica particles have an average particle diameter of 70 to 400 nm. アニオン系またはカチオン系の界面活性剤を含むことを特徴とする請求項3に記載の塗布液。 4. The coating liquid according to claim 3, further comprising an anionic or cationic surfactant. 酸化スズ含有粉末と、アニオン系界面活性剤またはチタネートカップリング剤と、有機溶媒を混合し、懸濁液を調製する混合工程と、
前記懸濁液中の前記酸化スズ含有粉末を解砕することにより、酸化スズ含有粒子の分散液を調製する解砕工程と、
解砕工程後の分散液にバインダを添加する添加工程を備え、
前記解砕工程で酸化スズ粒子の平均粒子径を200~500nmに調整することを特徴とする導電膜形成用の塗布液の製造方法。
a mixing step of mixing a tin oxide-containing powder, an anionic surfactant or a titanate coupling agent, and an organic solvent to prepare a suspension;
A crushing step of preparing a dispersion of tin oxide-containing particles by crushing the tin oxide-containing powder in the suspension;
Equipped with an addition step of adding a binder to the dispersion liquid after the crushing step,
A method for producing a coating liquid for forming a conductive film, characterized in that the average particle diameter of the tin oxide particles is adjusted to 200 to 500 nm in the crushing step.
請求項1または3に記載の塗布液、もしくは請求項6に記載の製造方法により得られた塗布液を用いて膜を形成することを特徴とする導電膜付基材の製造方法。 A method for manufacturing a substrate with a conductive film, comprising forming a film using the coating liquid according to claim 1 or 3, or the coating liquid obtained by the manufacturing method according to claim 6.
JP2022055715A 2022-03-30 2022-03-30 Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film Pending JP2023147928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022055715A JP2023147928A (en) 2022-03-30 2022-03-30 Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055715A JP2023147928A (en) 2022-03-30 2022-03-30 Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film

Publications (1)

Publication Number Publication Date
JP2023147928A true JP2023147928A (en) 2023-10-13

Family

ID=88287712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055715A Pending JP2023147928A (en) 2022-03-30 2022-03-30 Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film

Country Status (1)

Country Link
JP (1) JP2023147928A (en)

Similar Documents

Publication Publication Date Title
JP3937113B2 (en) Organic-inorganic composite conductive sol and method for producing the same
KR100807165B1 (en) Use of 2,3-dihydroxynaphthalene-6-sulfonic acid salts as dispersants
TW201346406A (en) Transparent conductive laminate, producing method thereof, electronic paper using the same and touch panel using the same
KR101135835B1 (en) Silica-Based Particles Coated With Antimony Oxide, Method Of Producing The Particles, And Base Material With Coat Including The Particles
JP4681710B2 (en) Electroconductive high-concentration carbon black dispersion, method for producing the same, and composition comprising the same
JP5168790B2 (en) Paint, method for producing the same, coating film using the same, and method for producing the coating film
JP4439876B2 (en) Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof
JP2004182812A (en) Electrically conductive coating and method for forming electrically conductive coating film using the same
JP2023147928A (en) Coating liquid for forming conductive film and method for producing the same, and method for producing substrate with conductive film
JPH11158321A (en) Electroconductive highly concentrated carbon black dispersion, its production and composition comprising the dispersion
JP3935513B2 (en) Method for producing conductive fine powder dispersion
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP3976484B2 (en) Conductive powder organic solvent dispersion and conductive paint
TWI247784B (en) Organic solvent based dispersion of conductive powder and conductive coating material
JPS62230617A (en) Tin oxide sol and production thereof
JP2015140271A (en) Hydrophobic silica powder and method of producing the same
CN115629525A (en) External additive for toner and toner
JP2013244463A (en) Composite particle-dispersed liquid, complex, and production methods thereof
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP3606772B2 (en) Paint for forming transparent antistatic film and substrate with transparent antistatic film
JP2002237214A (en) Conductive coating material composition
JPH0959015A (en) Electroconductive complex body and its production
JP6652908B2 (en) Conductive particles
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film
JPH09249410A (en) Antistatic and antireflecting film