JP2023147510A - Air conditioning system of high ceiling warehouse - Google Patents

Air conditioning system of high ceiling warehouse Download PDF

Info

Publication number
JP2023147510A
JP2023147510A JP2022055044A JP2022055044A JP2023147510A JP 2023147510 A JP2023147510 A JP 2023147510A JP 2022055044 A JP2022055044 A JP 2022055044A JP 2022055044 A JP2022055044 A JP 2022055044A JP 2023147510 A JP2023147510 A JP 2023147510A
Authority
JP
Japan
Prior art keywords
air
ceiling
air conditioning
warehouse
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022055044A
Other languages
Japanese (ja)
Inventor
美咲 井澤
Misaki Izawa
喜正 岩田
Yoshimasa Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2022055044A priority Critical patent/JP2023147510A/en
Publication of JP2023147510A publication Critical patent/JP2023147510A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

To provide an air conditioning system of a high ceiling warehouse which enables improvement of temperature distribution in a vertical direction in the high ceiling warehouse and in an air conditioning duct extending direction on a horizontal surface and achieves low costs.SOLUTION: An air conditioning system 1 of a high ceiling warehouse Wh includes: an air conditioner 2 installed on a floor surface Fl of the high ceiling warehouse; an air conditioning duct 3 having an erection part 31 which is erected from the air conditioner 2 to a ceiling Ce and a horizontal part 32 horizontally extending from an upper part of the erection part along the ceiling; multiple through holes 32b which are provided at predetermined intervals in a longitudinal direction of the horizontal part on a lower wall 32a of the horizontal part; and multiple outlet nozzles 4 respectively inserted into the multiple through holes.SELECTED DRAWING: Figure 1

Description

本発明は、物品を所定の温度範囲内で保管する高天井倉庫の空調システムに関し、より詳しくは、物品を保管する多段ラックが設置される高天井自動倉庫の空調に適したものに関する。 The present invention relates to an air-conditioning system for a high-ceiling warehouse that stores articles within a predetermined temperature range, and more particularly, to a system suitable for air-conditioning a high-ceiling automated warehouse in which multi-tiered racks for storing articles are installed.

図10を参照して、従来の高天井自動倉庫Whの空調システム100として、床面Flに設置される空調機2と、空調機2から天井Ce近傍まで立ち上げる立上げ部31及びこの立上げ部31の上部から天井Ce下面に沿って水平にのびる水平部32を有する空調用ダクト30と、空調用ダクト30の水平部32から複数に分岐しボリュームダンパVDを介して接続された複数の短管ダクト321に設けられる複数の吹出口41と、を備えるものが利用されている。ボリュームダンパVDとしては、例えば、下記特許文献1に開示の如く、角型ダクトの途中の風量調整ダンパとして設置されたものが用いられ、吹出口41としては、例えば、下記特許文献2に開示の如く、グリルに風向調整用のシャッタが付設されたもの(所謂VHSグリルレジスタ型の吹出口)が用いられている。なお、高天井自動倉庫Wh内での物品の自動搬送(多段ラック51~54に対する物品の受け渡しを含む)を行う搬送手段としては、スタッカクレーン6(例えば、特許文献3参照)が用いられている。 Referring to FIG. 10, an air conditioning system 100 for a conventional high-ceiling automated warehouse Wh includes an air conditioner 2 installed on the floor Fl, a rising section 31 that rises from the air conditioner 2 to the vicinity of the ceiling Ce, and An air conditioning duct 30 having a horizontal section 32 extending horizontally from the upper part of the section 31 along the lower surface of the ceiling Ce, and a plurality of short sections branched from the horizontal section 32 of the air conditioning duct 30 and connected via a volume damper VD. A device including a plurality of air outlets 41 provided in a pipe duct 321 is used. As the volume damper VD, for example, as disclosed in Patent Document 1 listed below, a damper installed as an air volume adjustment damper in the middle of a square duct is used, and as the air outlet 41, for example, as disclosed in Patent Document 2 listed below, is used. A grill with a shutter for adjusting the wind direction (a so-called VHS grill register type air outlet) is used. Note that a stacker crane 6 (see, for example, Patent Document 3) is used as a conveying means for automatically conveying articles (including transferring articles to and from multi-tiered racks 51 to 54) within the high-ceiling automated warehouse Wh. .

実用新案登録第2584735号公報Utility model registration No. 2584735 特許第3311272号公報Patent No. 3311272 特許第5169211号公報Patent No. 5169211

上記従来例の空調システム100を高天井自動倉庫Whに設置する場合、多段ラック51~54の設置よりも先に、空調ダクト30及び吹出口41の設置が行われる。上述の如く床面Flから空調ダクト30の水平部32までの高さが10メートルを超える場合、設置作業は、高所作業車を用いるのではなく、足場を組んで行われることが一般的である。この設置作業用の足場は、多段ラック51~54の搬入や設置作業などの障害となるため、空調ダクト30及び吹出口41の設置が完了すると、一旦解体撤去される。その後、多段ラック51~54が設置され、ラック51~54の設置後、搬送設備としてのスタッカクレーン6の搬入据付工事が発生する。その後電気工事として動力盤の設置及び通線工事が進み、床面Flに設置した空調機2への通電が可能になると、各吹出口41の分岐ダクトにあるボリュームダンパVDのダンパ開度調節による風量調整が行われる。風量調整を行うのに際しては、設置作業用と同様の足場が組まれることになる。このように、上記従来例では、設置作業用と風量調整用とで足場を2回組む必要があるため、コスト上昇を招来する。また、VHSまたはHSグリルレジスタ型の吹出口41で適切とされる面速の範囲で吹き出された空気(下降流)の流速では、たとえ面速範囲の最大風量まで多くなるように空調機2の内蔵ファンの風量を増大しボリュームダンパVDを開けて各吹出口41での風向を調整したところで、たとえ吹出口直下でも床面Fl上5m程度のレベルで吹出し動圧が無くなって、床面Fl付近の空気を動かしにくい(床面Fl近傍に空気のよどみが生じる)。また、水平に延長する空調ダクト30の水平部32の途中に多数に分岐しボリュームダンパVDを介して接続される複数の吹出口41同士の風量調整は、吹出口41が開口部が大きく羽根がまばらなレジスタのため、吹出口41ではあまり差圧が立たず、ボリュームダンパVDだけでは空調ダクト30内の静圧分布の悪さを解消しづらく、どうしても分布が悪い。この吹出口41は風量とコストとのバランスで5m程度に1個の大きな設置間隔となり分布的には点で吹く形となる。その結果、高天井自動倉庫Whの天井Ceと床面Flとの間の温度差が大きくなり、ひいては高天井自動倉庫Wh内の上下方向の温度分布が悪化する。上下方向(Z軸方向)の温度分布を改善するために、空調ダクト30の水平部32の下流端(図10(b)中の右端)から床面Fl近傍まで立ち下げる立下げ部33と、立下げ部33の下端から床面Fl近傍に空気を吹き出す吹出口42とが別途設けられているが、これでは、更なるコスト上昇を招来する。 When installing the conventional air conditioning system 100 in the high-ceiling automated warehouse Wh, the air conditioning duct 30 and the air outlet 41 are installed before the multi-stage racks 51 to 54 are installed. As mentioned above, if the height from the floor Fl to the horizontal part 32 of the air conditioning duct 30 exceeds 10 meters, the installation work is generally performed using scaffolding rather than using an aerial work vehicle. be. This scaffold for installation work becomes an obstacle to the carrying in and installation work of the multi-stage racks 51 to 54, so once the installation of the air conditioning duct 30 and the air outlet 41 is completed, it is once dismantled and removed. Thereafter, the multi-tiered racks 51 to 54 are installed, and after the racks 51 to 54 are installed, the work of carrying in and installing the stacker crane 6 as the transport equipment occurs. After that, the installation of the power panel and wiring work progressed as electrical work, and when it became possible to supply electricity to the air conditioner 2 installed on the floor Fl, the damper opening degree of the volume damper VD in the branch duct of each outlet 41 was adjusted. Air volume adjustment is performed. When adjusting the air volume, scaffolding similar to that used for installation work will be erected. As described above, in the conventional example described above, it is necessary to assemble the scaffold twice, once for installation work and once for adjusting air volume, resulting in an increase in costs. Furthermore, at the flow velocity of the air (downward flow) blown out at the VHS or HS grill register type outlet 41 within the surface velocity range that is considered appropriate, even if the flow rate of the air increases to the maximum air velocity within the surface velocity range, the air conditioner When the air volume of the built-in fan was increased and the volume damper VD was opened to adjust the wind direction at each outlet 41, even if it was directly below the outlet, the dynamic pressure of the outlet disappeared at a level of about 5 m above the floor Fl, and the air flow was near the floor Fl. It is difficult to move the air (air stagnation occurs near the floor surface Fl). In addition, the air volume can be adjusted between a plurality of air outlets 41 that are branched into many parts in the middle of the horizontal portion 32 of the air conditioning duct 30 that extends horizontally and are connected via volume dampers VD. Because of the sparse registers, there is not much differential pressure at the air outlet 41, and it is difficult to eliminate the poor static pressure distribution within the air conditioning duct 30 using only the volume damper VD, resulting in a poor distribution. In view of the balance between air volume and cost, the air outlet 41 is installed at a large interval of approximately 5 m, so that the air blows at points in terms of distribution. As a result, the temperature difference between the ceiling Ce and the floor Fl of the high-ceiling automated warehouse Wh increases, and the vertical temperature distribution within the high-ceiling automated warehouse Wh deteriorates. In order to improve the temperature distribution in the vertical direction (Z-axis direction), a vertical part 33 is lowered from the downstream end (right end in FIG. 10(b)) of the horizontal part 32 of the air conditioning duct 30 to near the floor surface Fl; Although an air outlet 42 for blowing out air from the lower end of the vertical portion 33 to the vicinity of the floor surface Fl is separately provided, this causes a further increase in cost.

本発明は、上述のような課題を解決するためになされたもので、高天井倉庫内の上下方向及び水平面で空調ダクト延長方向での温度分布を向上させることが可能な低コストの高天井倉庫の空調システムを提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and is a low-cost high-ceiling warehouse that can improve the temperature distribution in the vertical direction and horizontal plane in the extension direction of air conditioning ducts in the high-ceiling warehouse. The purpose is to provide air conditioning systems.

本発明に係る高天井倉庫の空調システムは、高天井倉庫の床面に設置される空調機と、前記空調機から天井まで立ち上げる立上げ部及びこの立上げ部の上部から天井に沿って水平にのびる水平部を有する空調ダクトと、前記水平部の下壁に前記水平部の長手方向に所定の間隔を存して設けられる複数の透孔と、前記複数の透孔に夫々挿設される複数の吹出ノズルと、を備えることを特徴とするものである。なお、本発明においては、透孔に吹出ノズルが挿設されるとは、吹出ノズルの上端が、水平部の下壁と面一になるのではなく、水平部の内部に位置することをいうものとする。また、高天井倉庫とは、床面から天井までの高さが10m以上の倉庫をいうものとする。 An air conditioning system for a high-ceiling warehouse according to the present invention includes an air conditioner installed on the floor of a high-ceiling warehouse, a rising part that rises from the air conditioner to the ceiling, and a horizontal line extending from the top of the rising part along the ceiling. an air-conditioning duct having a horizontal portion extending into the horizontal portion; a plurality of through holes provided in the lower wall of the horizontal portion at predetermined intervals in the longitudinal direction of the horizontal portion; and a plurality of through holes inserted into the plurality of through holes, respectively. It is characterized by comprising a plurality of blow-off nozzles. In addition, in the present invention, when the blow-off nozzle is inserted into the through hole, it means that the upper end of the blow-off nozzle is not flush with the lower wall of the horizontal portion, but is located inside the horizontal portion. shall be taken as a thing. Furthermore, a high-ceiling warehouse is defined as a warehouse with a height of 10 m or more from the floor to the ceiling.

本発明において、前記高天井倉庫の床面に複数の多段ラックが間隔を存して並設される場合には、互いに隣接する多段ラックの隙間の上方に、この隙間に沿って前記複数の吹出ノズルが配置されることが好ましい。 In the present invention, when a plurality of multi-tiered racks are arranged in parallel at intervals on the floor of the high-ceiling warehouse, the plurality of air outlets are arranged above the gaps between adjacent multi-tiered racks along the gaps. Preferably, a nozzle is arranged.

本発明において、前記吹出ノズルの開口径は、65mm~150mmの範囲内に設定され、互いに隣接する前記吹出ノズルの間隔は、500mm~1,000mmの範囲内に設定されることが好ましい。開口径が65mmより小さいと、吹出ノズルの数を増やす必要がある一方で、開口径が150mmより大きいと、高速で空気を吹き出すことができなくなり、誘引効果が使えない場合がある。間隔が1,000mmより広いと、吹出ノズルから吹き出された3~7m/sという比較的高速な空気による周囲空気の誘因による面での吹き降ろし効果が小さくなり、大風量且つ水平面内で均一な速度分布を持つ下降気流を形成できなくなる場合がある。一方、間隔が500mmより狭いと、吹出ノズルの数が過剰となる。 In the present invention, it is preferable that the opening diameter of the blow-off nozzle is set within the range of 65 mm to 150 mm, and the interval between the blow-off nozzles adjacent to each other is set within the range of 500 mm to 1,000 mm. If the opening diameter is smaller than 65 mm, it is necessary to increase the number of blowing nozzles, while if the opening diameter is larger than 150 mm, air cannot be blown out at high speed and the attraction effect may not be used. If the interval is wider than 1,000 mm, the blowdown effect on the surface caused by the surrounding air caused by the air blown out from the blowout nozzle at a relatively high speed of 3 to 7 m/s will be small, and the air will be large and uniform in the horizontal plane. It may become impossible to form a downdraft with a velocity distribution. On the other hand, if the interval is narrower than 500 mm, the number of blowing nozzles will be excessive.

本発明によれば、空調ダクトの水平部に複数の吹出ノズルを挿設し、吹出ノズルの上端がダクト水平部の内部に位置するため、水平部を流れる空気の動圧成分を多く持った中央位置の空気の静圧再取得が進むことで、各吹出ノズルから下方に向けて空気が各吹出ノズルの位置によらず均一な高速で吹き出される。各吹出ノズルから吹き出された空気がその周囲の空気を誘引することで、大風量且つ水平面内で均一な速度分布を持つ下降気流が形成される。下降気流は、床面に近づくのに従って徐々に流速が低下するものの、床面付近でも微風速で空気が動いている。このため、高天井倉庫内の上下方向及び水平面で空調ダクト延長方向での温度分布を向上させることができる。しかも、各吹出ノズルの位置ごとの風量調整は空調機の動作如何によらず不要であるため、風量調整作業用の足場を設置する必要がない。その上、空調ダクトの立下げ部や床面近傍の吹出口も別途設ける必要がないため、設置作業用の足場を1回組めばよいことと相俟って、低コスト化を実現することができる。 According to the present invention, a plurality of blowout nozzles are inserted in the horizontal part of the air conditioning duct, and the upper ends of the blowout nozzles are located inside the horizontal part of the duct, so that the air flowing through the horizontal part has a large dynamic pressure component. As the static pressure of the air at the position is reacquired, air is blown downward from each blow-off nozzle at a uniform high speed regardless of the position of each blow-off nozzle. The air blown out from each blowout nozzle attracts the surrounding air, thereby forming a descending airflow with a large air volume and a uniform velocity distribution in a horizontal plane. Although the velocity of the downdraft gradually decreases as it approaches the floor, the air is still moving at a slight wind speed even near the floor. Therefore, it is possible to improve the temperature distribution in the vertical direction and horizontal plane in the air conditioning duct extension direction in the high ceiling warehouse. Moreover, since it is not necessary to adjust the air volume for each position of each blow-off nozzle regardless of the operation of the air conditioner, there is no need to install a scaffold for the air volume adjustment work. In addition, there is no need to separately install the vertical part of the air conditioning duct or the air outlet near the floor, so the scaffolding for installation only needs to be erected once, which reduces costs. can.

(a)は、実施の形態による高天井倉庫の空調システムの平面図、(b)は、図1(a)のIb-Ib断面図、(c)は、図1(a)のIc-Ic断面図である。(a) is a plan view of an air conditioning system for a high-ceiling warehouse according to an embodiment, (b) is a sectional view taken along line Ib-Ib in FIG. FIG. (a)は、本実施の形態におけるXZ面内での流速分布を示すシミュレーション結果、(b)は、従来例のXZ面内での気体流速分布を示すシミュレーション結果である。(a) is a simulation result showing the flow velocity distribution in the XZ plane in this embodiment, and (b) is a simulation result showing the gas flow velocity distribution in the XZ plane in the conventional example. (a)は、本実施の形態におけるYZ面内での流速分布を示すシミュレーション結果、(b)は、従来例のYZ面内での気体流速分布を示すシミュレーション結果である。(a) is a simulation result showing the flow velocity distribution in the YZ plane in this embodiment, and (b) is a simulation result showing the gas flow velocity distribution in the YZ plane in the conventional example. (a)は、本実施の形態における高さ20mのXY面内での流速分布を示すシミュレーション結果、(b)は、従来例の高さ20mのXY面内での流速分布を示すシミュレーション結果である。(a) is a simulation result showing the flow velocity distribution in the XY plane at a height of 20 m in this embodiment, and (b) is a simulation result showing the flow velocity distribution in the XY plane at a height of 20 m in the conventional example. be. (a)は、本実施の形態における高さ10mのXY面内での流速分布を示すシミュレーション結果、(b)は、従来例の高さ10mのXY面内での流速分布を示すシミュレーション結果である。(a) is a simulation result showing the flow velocity distribution in the XY plane at a height of 10 m in this embodiment, and (b) is a simulation result showing the flow velocity distribution in the XY plane at a height of 10 m in the conventional example. be. (a)は、本実施の形態におけるXZ面内での温度分布を示すシミュレーション結果、(b)は、従来例のXZ面内での温度分布を示すシミュレーション結果である。(a) is a simulation result showing the temperature distribution in the XZ plane in this embodiment, and (b) is a simulation result showing the temperature distribution in the XZ plane in the conventional example. (a)は、本実施の形態におけるYZ面内での温度分布を示すシミュレーション結果、(b)は、従来例のYZ面内での温度分布を示すシミュレーション結果である。(a) is a simulation result showing the temperature distribution in the YZ plane in this embodiment, and (b) is a simulation result showing the temperature distribution in the YZ plane in the conventional example. (a)は、本実施の形態における高さ20mのXY面内での温度分布を示すシミュレーション結果、(b)は、従来例の高さ20mのXY面内での温度分布を示すシミュレーション結果である。(a) is a simulation result showing the temperature distribution in the XY plane at a height of 20 m in this embodiment, and (b) is a simulation result showing the temperature distribution in the XY plane at a height of 20 m in the conventional example. be. (a)は、本実施の形態における高さ10mのXY面内での温度分布を示すシミュレーション結果、(b)は、従来例の高さ10mのXY面内での温度分布を示すシミュレーション結果である。(a) is a simulation result showing the temperature distribution in the XY plane at a height of 10 m in this embodiment, and (b) is a simulation result showing the temperature distribution in the XY plane at a height of 10 m in the conventional example. be. (a)は、従来例の高天井倉庫の空調システムの平面図、(b)は、図10(a)のXb-Xb断面図、(c)は、図10(a)のXc-Xc断面図である。(a) is a plan view of a conventional high-ceiling warehouse air conditioning system, (b) is a cross-sectional view taken along the line Xb-Xb in FIG. 10(a), and (c) is a cross-sectional view taken along the line Xc-Xc in FIG. 10(a). It is a diagram.

以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。各図においては、作図の都合上、一部の構成要素の図示が省略されている場合がある。 Embodiments will be described below with reference to the drawings. Common or corresponding elements in each figure are denoted by the same reference numerals, and description thereof will be simplified or omitted. In each figure, illustration of some components may be omitted for convenience of drawing.

図1(a)は、実施の形態による高天井自動倉庫Whの空調システム1の平面図であり、図1(b)は、図1(a)のIb-Ib断面図であり、図1(c)は、図1(a)のIc-Ic断面図である。本実施の形態では、後述する空調ダクト3の水平部32の長手方向をX軸方向、上下方向をZ軸方向、X軸方向及びZ軸方向に直交する、後述する多段ラック51~54の並設方向をY軸方向とする。 FIG. 1(a) is a plan view of an air conditioning system 1 for a high-ceiling automated warehouse Wh according to an embodiment, and FIG. 1(b) is a sectional view taken along line Ib-Ib in FIG. 1(a). c) is a sectional view taken along line Ic-Ic in FIG. 1(a). In this embodiment, the longitudinal direction of the horizontal part 32 of the air conditioning duct 3 is the X-axis direction, the vertical direction is the Z-axis direction, and the multi-stage racks 51 to 54, which will be described later, are aligned at right angles to the X-axis direction and the Z-axis direction. The installation direction is the Y-axis direction.

空調システム1は、高天井自動倉庫Whの床面Flに設置される3台の空調機2と、各空調機2に夫々接続される3つの空調ダクト3と、各空調ダクト3の後述する水平部32に設けられる複数の吹出口4と、を備える。 The air conditioning system 1 includes three air conditioners 2 installed on the floor Fl of a high-ceiling automated warehouse Wh, three air conditioning ducts 3 connected to each air conditioner 2, and a horizontal A plurality of air outlets 4 provided in the section 32 are provided.

空調機2は、図示省略する吸気口から高天井自動倉庫Wh内の空気を吸い込んだ還り空気を冷却または加熱(本実施形態では加熱)し、加熱した空気を空調ダクト3に送り込むことができるように構成されている。空調機2としては、例えば、冷却コイル及び温水コイルを備える公知のものが利用できるため、これ以上の説明は省略する。また、空調ダクト3としては、例えば0.2mmAq/m程度の圧力損失にて選定でき、その場合例えば8,000CMHの風量の空調機2でなら、空調ダクトの断面での各辺が700mm×500mm程度のものを利用できるため、これ以上の説明は省略する。 The air conditioner 2 sucks air from the high-ceiling automated warehouse Wh through an intake port (not shown), cools or heats (heats in this embodiment) return air, and sends the heated air to the air conditioning duct 3. It is composed of As the air conditioner 2, for example, a known type including a cooling coil and a hot water coil can be used, so further explanation will be omitted. In addition, the air conditioning duct 3 can be selected with a pressure loss of, for example, about 0.2 mmAq/m, and in that case, for example, if the air conditioner 2 has an air volume of 8,000 CMH, each side of the cross section of the air conditioning duct should be 700 mm x 500 mm. Since only a few can be used, further explanation will be omitted.

空調ダクト3は、空調機2から天井Ce近傍の所定高さまで立ち上げる立上げ部31と、立上げ部31の上部から天井Ceの下面に沿って水平に且つX軸方向にのびる水平部32と、を有する。水平部32の下壁32aには、X軸方向に等間隔で複数の透孔32bが開設されている。各透孔32bには、透孔32bよりも大きい面積を持つ板状の固定部材34が接着剤や溶接などにより下方から取り付けられている。固定部材34の中央部には、後述する吹出ノズル4の筒部4aのねじ山に対応するねじ溝が切られた貫通孔34aが開設されている。吹出ノズル4は筒部4aにネジ山があり貫通孔34aにねじ溝があると調整取付けしやすいが、これに限らず一定の差込代が確保できるならほかの形式の固定でもよい。なお、本実施形態では、水平部32が、下流側に向かうのに従って断面積が段階的に小さくなるように形成されているが、一定の断面積で形成されてもよい。また、本実施形態では、3つの空調ダクト3に対応させて3つの空調機2を設けているが、1つの空調機2を3つの空調ダクト3で兼用してもよい。この場合、空調機2から立ち上げる立上げ部31の上部から3つの水平部32に分岐するように構成することができる。 The air conditioning duct 3 has a rising part 31 that rises from the air conditioner 2 to a predetermined height near the ceiling Ce, and a horizontal part 32 that extends horizontally from the top of the rising part 31 along the lower surface of the ceiling Ce in the X-axis direction. , has. A plurality of through holes 32b are formed in the lower wall 32a of the horizontal portion 32 at equal intervals in the X-axis direction. A plate-shaped fixing member 34 having a larger area than the through hole 32b is attached to each through hole 32b from below by adhesive, welding, or the like. A through hole 34a is formed in the center of the fixing member 34, and has a threaded groove corresponding to a thread of a cylindrical portion 4a of the blowing nozzle 4, which will be described later. The blow-off nozzle 4 can be easily adjusted and installed if the cylindrical portion 4a has a thread and the through hole 34a has a thread groove, but this is not limiting, and other types of fixing may be used as long as a certain insertion allowance can be secured. In addition, in this embodiment, the horizontal part 32 is formed so that the cross-sectional area becomes gradually smaller toward the downstream side, but it may be formed to have a constant cross-sectional area. Further, in this embodiment, three air conditioners 2 are provided corresponding to the three air conditioning ducts 3, but one air conditioner 2 may be used also by three air conditioning ducts 3. In this case, the structure can be such that the rising part 31 that is raised from the air conditioner 2 branches into three horizontal parts 32 from the upper part.

本実施形態では、水平部32に複数の吹出ノズル4を夫々挿設している。吹出ノズル4は、円筒状の筒部4aと、筒部4aの下端に一体に形成され、一定の径で延長する吹出部4bと、で構成されている。吹出部4b下端の開口径Dnは、65mm~150mmの範囲内に設定することができる。これにより、吹出ノズル4から高速で空気を吹き出すことができる。開口径Dnが65mmより小さいと、吹出ノズル4の数を大幅に増やす必要がある一方で、開口径Dnが150mmより大きいと、高速で空気を吹き出せなくなる場合がある。筒部4aの外側面には、貫通孔34aのねじ溝に対応(螺合)するねじ山が形成されている。そして、吹出ノズル4をその筒部4aを上側にして貫通孔34aに当接させながら回転させると、水平部32に対して吹出ノズル4が挿設される。これに限らず一定の差込代が確保できるならほかの形式の固定でもよい。即ち、吹出ノズル4の上端が、水平部32の下壁32aと面一ではなく、水平部32の内部に位置している。これにより、吹出ノズル4の上端が水平部32の内部に位置するため、水平部32を流れる空気の動圧成分を多く持った中央近傍位置の空気の静圧再取得が進むことで、各吹出ノズル4から下方に向けて各吹出ノズル4の位置によらず均一な高速で空気が吹き出される。筒部4aの挿入長さLnは、筒部4aの上端が水平部32内面の摩擦抵抗による流速低下の影響を受けない位置に配置されるように設定される。なお、各吹出ノズル4の挿入長さLnを厳密に一致させる必要はなく、挿入長さLnが多少異なっていても、上端が水平部32の中央近傍まで差し込まれていれば、各吹出ノズル4から吹き出される空気の流速は殆ど変わらない。互いに隣接する吹出ノズル4の間隔Snは、500mm~1,000mmの範囲内に設定することが好ましい。これによれば、吹出部4bの開口径Dnを上記範囲内に設定することと相俟って、後述する誘引効果を確実に得ることができる。間隔Snが1,000mmより広いと、誘引効果が小さくなり、大風量の下降気流を形成できなくなる場合がある。一方、間隔Snが500mmより狭いと、吹出ノズル4の数が過剰となる。また、水平部32の肉厚が比較的厚く、水平部32がステンレスなどの比較的硬い材料で形成されるような場合には、透孔32bに直接ねじ溝を切ってもよい。この場合、固定部材34を省略することができるため、部品点数を減らすことができ、有利である。これに限らず一定の差込代が確保できるならほかの形式の固定でもよい。 In this embodiment, a plurality of blow-off nozzles 4 are inserted into the horizontal portion 32, respectively. The blow-off nozzle 4 includes a cylindrical tube portion 4a and a blow-off portion 4b that is integrally formed at the lower end of the tube portion 4a and extends with a constant diameter. The opening diameter Dn at the lower end of the blowing portion 4b can be set within a range of 65 mm to 150 mm. Thereby, air can be blown out from the blow-off nozzle 4 at high speed. When the opening diameter Dn is smaller than 65 mm, it is necessary to significantly increase the number of blowing nozzles 4, while when the opening diameter Dn is larger than 150 mm, air may not be able to be blown out at high speed. A thread that corresponds to (screws into) the thread groove of the through hole 34a is formed on the outer surface of the cylindrical portion 4a. Then, when the blow-off nozzle 4 is rotated with its cylindrical portion 4 a facing upward and in contact with the through-hole 34 a, the blow-off nozzle 4 is inserted into the horizontal portion 32 . Not limited to this, other types of fixing may be used as long as a certain insertion fee can be secured. That is, the upper end of the blow-off nozzle 4 is not flush with the lower wall 32a of the horizontal section 32, but is located inside the horizontal section 32. As a result, the upper end of the blowout nozzle 4 is located inside the horizontal section 32, so that the static pressure of the air near the center, where the air flowing through the horizontal section 32 has a large dynamic pressure component, is reacquired. Air is blown out from the nozzles 4 downward at a uniform high speed regardless of the position of each blowing nozzle 4. The insertion length Ln of the cylindrical portion 4a is set such that the upper end of the cylindrical portion 4a is located at a position where it is not affected by a decrease in flow velocity due to frictional resistance on the inner surface of the horizontal portion 32. Note that it is not necessary to make the insertion lengths Ln of each blow-off nozzle 4 exactly the same, and even if the insertion lengths Ln are slightly different, as long as the upper end is inserted to the vicinity of the center of the horizontal portion 32, each blow-off nozzle 4 The flow velocity of the air blown out remains almost unchanged. The interval Sn between adjacent blow-off nozzles 4 is preferably set within the range of 500 mm to 1,000 mm. According to this, in combination with setting the opening diameter Dn of the blowing portion 4b within the above range, the attraction effect described later can be reliably obtained. If the interval Sn is wider than 1,000 mm, the attraction effect will be reduced, and it may become impossible to form a descending airflow with a large amount of air. On the other hand, if the interval Sn is narrower than 500 mm, the number of blow-off nozzles 4 will be excessive. Further, in the case where the horizontal portion 32 is relatively thick and made of a relatively hard material such as stainless steel, a thread groove may be directly cut into the through hole 32b. In this case, since the fixing member 34 can be omitted, the number of parts can be reduced, which is advantageous. Not limited to this, other types of fixing may be used as long as a certain insertion fee can be secured.

高天井自動倉庫Whには、X軸方向に長手の複数(本実施形態では4つ)の多段ラック51~54が、Y軸方向に間隔を存して複数(本実施形態では4つ)並設されている。各多段ラック51~54には、図示省略する物品が収納される。本実施形態では、Y軸方向内側で隣接する2つの多段ラック52,53の間の隙間S2が、多段ラック52,53と夫々隣接するY軸方向外側の多段ラック51,54との間の隙間S1,S3よりも小さく設定されている。そして、これらの隙間S1,S2,S3のZ軸方向上方に水平部32が配置される。これにより、隙間S1,S2,S3の上方に、且つ、隙間S1,S2,S3に沿って、複数の吹出ノズル4が配置される。このように吹出ノズル4を配置することで、各吹出ノズル4から吹き出された空気ひいては後述する下降気流が、床面Flまで到達可能な空間を確保すると共に、多段ラック51~54の内部に入り込み易くなる。また、多段ラック51,54のY軸方向外側には、多段ラック51~54の各棚収納部から物品を出し入れするスタッカクレーン6が2列設置されている。スタッカクレーン6は、高天井自動倉庫Wh内での物品の自動搬送(多段ラック51~54に対する物品の受け渡しを含む)を行うものであり、図外のコンピュータにより駆動制御される。多段ラック51~54及びスタッカクレーン6としては公知のものを利用できるため、これ以上の説明は省略する。 In the high-ceiling automated warehouse Wh, a plurality of (four in the present embodiment) multi-tiered racks 51 to 54 are arranged in parallel in the Y-axis direction with a plurality of (four in the present embodiment) longitudinal racks arranged at intervals in the Y-axis direction. It is set up. Each of the multistage racks 51 to 54 stores articles (not shown). In this embodiment, the gap S2 between the two multi-stage racks 52, 53 adjacent on the inside in the Y-axis direction is the gap S2 between the multi-stage racks 52, 53 and the multi-stage racks 51, 54 on the outside in the Y-axis direction, respectively. It is set smaller than S1 and S3. The horizontal portion 32 is arranged above these gaps S1, S2, and S3 in the Z-axis direction. Thereby, a plurality of blow-off nozzles 4 are arranged above the gaps S1, S2, S3 and along the gaps S1, S2, S3. By arranging the blowout nozzles 4 in this way, the air blown out from each blowout nozzle 4 and the downward airflow described below can secure a space in which they can reach the floor surface Fl, and also allow the air to enter the inside of the multi-stage racks 51 to 54. It becomes easier. Furthermore, two rows of stacker cranes 6 are installed outside the multi-stage racks 51 and 54 in the Y-axis direction for loading and unloading articles from each shelf storage section of the multi-stage racks 51 to 54. The stacker crane 6 automatically transports articles within the high-ceiling automated warehouse Wh (including the delivery of articles to the multi-tiered racks 51 to 54), and is driven and controlled by a computer (not shown). As the multistage racks 51 to 54 and the stacker crane 6, known ones can be used, so further explanation will be omitted.

本実施の形態によれば、空調ダクト3の水平部32に複数の吹出ノズル4を挿設したため、水平部32を流れる空気が各吹出ノズル4から下方に向けて高速で吹き出される。各吹出ノズル4から吹き出された空気がその周囲の空気を誘引することで、大風量且つ水平面内(XY面内)で均一な流速を持つ下降気流が形成される。下降気流は、床面Flに近づくのに従って徐々に流速が低下するものの、床面Flまで到達する。このため、床面Fl近傍に空気のよどみが生じることはなく、高天井自動倉庫Wh内の上下方向(Z軸方向)及び水平面で空調ダクト延長方向(X軸方向)での温度分布を向上させることができる。しかも、吹出ノズル4の風量調整(挿入長さLnの調整)は不要であるため、風量調整作業用の足場を設置する必要がない。その上、上記従来例の如く空調ダクト30の立下げ部33や床面Fl近傍の吹出口42を別途設ける必要がないため、設置作業用の足場を1回組めばよいことと相俟って、低コスト化を実現することができる。 According to this embodiment, since the plurality of blowout nozzles 4 are inserted into the horizontal portion 32 of the air conditioning duct 3, the air flowing through the horizontal portion 32 is blown out from each blowout nozzle 4 downward at high speed. The air blown out from each blowout nozzle 4 attracts the surrounding air, thereby forming a descending airflow with a large air volume and a uniform flow velocity in the horizontal plane (XY plane). The downdraft reaches the floor Fl, although its flow velocity gradually decreases as it approaches the floor Fl. Therefore, air stagnation does not occur near the floor surface Fl, improving temperature distribution in the vertical direction (Z-axis direction) and horizontal plane in the air conditioning duct extension direction (X-axis direction) inside the high-ceiling automated warehouse Wh. be able to. Moreover, since there is no need to adjust the air volume of the blow-off nozzle 4 (adjustment of the insertion length Ln), there is no need to install a scaffold for the air volume adjustment work. Furthermore, since there is no need to separately provide the hanging part 33 of the air conditioning duct 30 or the air outlet 42 near the floor surface Fl as in the conventional example, this also allows the scaffolding for the installation work to be erected once. , it is possible to realize cost reduction.

本実施の形態では、高天井自動倉庫Wh内の上下方向の温度分布を確認するため、以下の条件でシミュレーションを行った。即ち、床面Flから天井Ceまでの距離を24,000mm(24m)、空調ダクト3のダクト寸法(断面での各辺)を700mm×500mm、吹出ノズル4の開口径Dnを80mm、間隔Snを700mm、挿入長さLnを100mmとした。また、本実施の形態と比較される従来例では、図10に示すようにVHSグリルレジスタ型の吹出口41を用い、吹出口41の間隔を5,000mmとし、下がり部33と吹出口42を別途設けた点を除き、実施の形態と同一のシミュレーション条件とした。 In this embodiment, in order to confirm the temperature distribution in the vertical direction inside the high-ceiling automated warehouse Wh, a simulation was performed under the following conditions. That is, the distance from the floor Fl to the ceiling Ce is 24,000 mm (24 m), the duct dimensions (each side in cross section) of the air conditioning duct 3 are 700 mm x 500 mm, the opening diameter Dn of the blowing nozzle 4 is 80 mm, and the interval Sn is 700 mm, and the insertion length Ln was 100 mm. In addition, in a conventional example compared with this embodiment, as shown in FIG. 10, VHS grill register type air outlets 41 are used, the interval between the air outlets 41 is 5,000 mm, and the descending portion 33 and the air outlet 42 are separated. The simulation conditions were the same as in the embodiment except for the points provided separately.

本実施の形態では、図2(a)及び図3(a)を参照して、各吹出ノズル4から吹き出された空気の流速は4.5m/sであったが、吹出ノズル4の1,500mm下レベルでの面での吹き降ろし気流の風速が0.25m/sと高速であることが確認された。図4(a)も参照して、各吹出ノズル4から吹き出された気流がその周囲の空気を誘引することで、大風量且つXY面内で均一な流速分布を持つ下降気流が形成されることが確認された。図5(a)も参照して、下降気流は、床面Flに近づくのに従って徐々に流速が低下するものの、床面Fl付近でも微風速で空気が動いていることが判った。また、図3(a)及び図4(a)に顕著に示されるように、多段ラック51~54の内部に空気が入り込んでいくことも確認された。これは、誘引効果により大風量且つXY面内で均一な流速分布を持つ下降気流が形成されるためであると推測される。 In this embodiment, with reference to FIGS. 2(a) and 3(a), the flow velocity of the air blown out from each blow-off nozzle 4 was 4.5 m/s; It was confirmed that the wind speed of the downflow airflow at a level below 500 mm was as high as 0.25 m/s. Referring also to FIG. 4(a), the airflow blown out from each blowout nozzle 4 attracts the surrounding air, thereby forming a descending airflow with a large air volume and a uniform flow velocity distribution within the XY plane. was confirmed. Referring also to FIG. 5(a), it was found that although the velocity of the downdraft gradually decreases as it approaches the floor surface Fl, the air moves at a slight wind speed even near the floor surface Fl. Furthermore, as clearly shown in FIGS. 3(a) and 4(a), it was also confirmed that air entered the interior of the multi-stage racks 51 to 54. It is presumed that this is because a descending airflow with a large air volume and a uniform velocity distribution in the XY plane is formed due to the attraction effect.

そして、本実施の形態では、上述したような下降気流が床面Flに到達することにより、図6(a)及び図7(a)に示すように、高天井倉庫Whの天井Ce近傍が19℃程度、高天井倉庫Whの中央レベルでは17.5℃程度、床面Fl近傍でも16.5℃程度であり、結果として、高天井倉庫Wh内の上下方向の温度分布が後述の従来例と比べて向上することが確認された。また、図8(a)及び図9(a)に示すように、高さ20m、10mのXY面内での温度分布も向上することが確認された。これは、多段ラック51~54の内部に空気が入り込むことによるものと推測される。 In this embodiment, when the above-mentioned downdraft reaches the floor surface Fl, as shown in FIGS. 6(a) and 7(a), the vicinity of the ceiling Ce of the high ceiling warehouse Wh becomes 19 ℃, about 17.5℃ at the center level of the high-ceiling warehouse Wh, and about 16.5℃ near the floor surface Fl. As a result, the temperature distribution in the vertical direction inside the high-ceiling warehouse Wh is similar to the conventional example described below. It was confirmed that there was an improvement in comparison. Furthermore, as shown in FIGS. 8(a) and 9(a), it was confirmed that the temperature distribution in the XY plane at heights of 20 m and 10 m was also improved. It is presumed that this is due to air entering the multi-stage racks 51-54.

それに対して、従来例では、図2(b)及び図3(b)を参照して、各吹出口41から吹き出された空気の流速はその動圧を有したままの直下では0.25m/sと高いが、その周囲の空気の流速は0.10m/s程度未満と低く、吹出し風速が低速なので周囲の空気を誘引する力がほとんど発生していないことが確認された。これより、本実施形態のような誘引効果が得られず、下降気流が大風量のものとはならないことが判った。図4(b)及び図5(b)も参照して、下降気流のXY面内での流速分布は不均一であり、床面Flに近づくのに従って急激に流速が低下することが確認された。このため、図示は省略するが、立下げ部33と吹出口42を別途設けなければ、下降気流が床面Flまで到達しないことが判った。図2(b)において床面Fl近傍で流速が高いのは、床面Fl近傍の吹出口42から空気を吹き出しているためである。また、図3(b)及び図4(b)に示すように、多段ラック51~54の内部には実施の形態ほど空気が入り込まないことが確認された。これは、各吹出口41の直下で局所的に流速が高く、XY面内での流速分布が不均一であるためであると推測される。 On the other hand, in the conventional example, referring to FIGS. 2(b) and 3(b), the flow velocity of the air blown out from each outlet 41 is 0.25 m/min directly below the air outlet 41 while maintaining its dynamic pressure. s, but the flow velocity of the surrounding air was low at less than about 0.10 m/s, and it was confirmed that because the blowing wind speed was low, almost no force was generated to attract the surrounding air. From this, it was found that the attraction effect as in the present embodiment could not be obtained and the descending airflow did not have a large air volume. Referring also to FIG. 4(b) and FIG. 5(b), it was confirmed that the flow velocity distribution of the downdraft in the XY plane is non-uniform, and the flow velocity decreases rapidly as it approaches the floor surface Fl. . For this reason, although not shown in the drawings, it has been found that the descending airflow will not reach the floor surface Fl unless the vertical part 33 and the air outlet 42 are separately provided. The reason why the flow velocity is high near the floor surface Fl in FIG. 2(b) is that air is blown out from the air outlet 42 near the floor surface Fl. Furthermore, as shown in FIGS. 3(b) and 4(b), it was confirmed that air did not enter inside the multi-stage racks 51 to 54 as much as in the embodiment. This is presumed to be because the flow velocity is locally high directly below each outlet 41 and the flow velocity distribution within the XY plane is non-uniform.

そして、従来例では、立下げ部33と吹出口42を別途設けたにも拘わらず、図6(b)及び図7(b)に示すように、高天井倉庫Whの天井Ce近傍の吹出口42の直下が22℃程度まで高い温度であるにもかかわらず、高天井倉庫Whの中央レベルでは16.8℃、床面Fl近傍まで来ると15.5℃程度であり、上下方向の温度分布が実施の形態より悪いことが確認された。さらに、図8(b)及び図9(b)に示すように、高さ20m、10mのXY面内での温度分布も、実施の形態より悪いことが確認された。これは、実施の形態よりも多段ラック51~54の内部に空気が入り込む量が少ないことによるものと推測される。 In the conventional example, although the vertical part 33 and the air outlet 42 are separately provided, as shown in FIGS. 6(b) and 7(b), the air outlet near the ceiling Ce of the high-ceiling warehouse Wh. Even though the temperature directly below 42 is as high as about 22°C, it is 16.8°C at the center level of the high ceiling warehouse Wh and about 15.5°C near the floor Fl, so the temperature distribution in the vertical direction is was confirmed to be worse than the embodiment. Furthermore, as shown in FIGS. 8(b) and 9(b), it was confirmed that the temperature distribution in the XY plane at heights of 20 m and 10 m was also worse than in the embodiment. This is presumed to be because the amount of air entering the multi-stage racks 51 to 54 is smaller than in the embodiment.

本実施の形態では、暖房運転を行う場合を例に説明したが、冷房運転を行う場合にも適用することができる。冷房運転においても、高天井自動倉庫Wh内の上下方向の温度分布が向上することが確認された。 Although the present embodiment has been described using an example of heating operation, the present invention can also be applied to cooling operation. It was confirmed that the temperature distribution in the vertical direction inside the high-ceiling automated warehouse Wh also improved during the cooling operation.

また、本実施形態では、物品の自動搬送を行うスタッカクレーン6を設置した高天井自動倉庫Whに適用した場合を例に説明したが、スタッカクレーン6が設置されていなくてもよく、床面Flから天井Ceまでの高さが10m以上の高天井倉庫に対して本発明は広く適用することができる。 In addition, in this embodiment, an example has been described in which the application is applied to a high-ceiling automated warehouse Wh in which a stacker crane 6 for automatically transporting articles is installed, but the stacker crane 6 may not be installed, and the floor surface Fl The present invention can be widely applied to high-ceiling warehouses where the height from ceiling Ce to ceiling Ce is 10 m or more.

Wh 高天井自動倉庫(高天井倉庫)、 Fl 床面、 Ce 天井、 1 空調システム、 2 空調機、 3 空調ダクト、 31 立上げ部、 32 水平部、 32a 下壁、 32b 透孔、 4 吹出ノズル、 51,52,53,54 多段ラック Wh high-ceiling automated warehouse (high-ceiling warehouse), Fl floor surface, Ce ceiling, 1 air conditioning system, 2 air conditioner, 3 air conditioning duct, 31 rising part, 32 horizontal part, 32a lower wall, 32b through hole, 4 blowing nozzle , 51, 52, 53, 54 Multi-stage rack

Claims (3)

高天井倉庫の床面に設置される空調機と、
前記空調機から天井まで立ち上げる立上げ部及びこの立上げ部の上部から天井に沿って水平にのびる水平部を有する空調ダクトと、
前記水平部の下壁に前記水平部の長手方向に所定の間隔を存して設けられる複数の透孔と、
前記複数の透孔に夫々挿設される複数の吹出ノズルと、を備えることを特徴とする高天井倉庫の空調システム。
An air conditioner installed on the floor of a high-ceiling warehouse,
an air conditioning duct having a rising part rising from the air conditioner to the ceiling and a horizontal part extending horizontally from the top of the rising part along the ceiling;
a plurality of through holes provided in the lower wall of the horizontal portion at predetermined intervals in the longitudinal direction of the horizontal portion;
An air conditioning system for a high ceiling warehouse, comprising: a plurality of blowout nozzles inserted into the plurality of through holes, respectively.
請求項1記載の高天井倉庫の空調システムであって、前記高天井倉庫の床面に複数の多段ラックが間隔を存して並設されるものにおいて、
互いに隣接する多段ラックの隙間の上方に、この隙間に沿って前記複数の吹出ノズルが間隔を存して配置されることを特徴とする高天井倉庫の空調システム。
The air conditioning system for a high-ceiling warehouse according to claim 1, wherein a plurality of multi-stage racks are arranged in parallel at intervals on the floor of the high-ceiling warehouse,
An air conditioning system for a high-ceiling warehouse, characterized in that the plurality of blow-off nozzles are arranged at intervals above a gap between mutually adjacent multi-stage racks along the gap.
前記吹出ノズルの開口径は、65mm~150mmの範囲内に設定され、
互いに隣接する前記吹出ノズルの間隔は、500mm~1,000mmの範囲内に設定されることを特徴とする請求項1または請求項2に記載の高天井倉庫の空調システム。
The opening diameter of the blowing nozzle is set within a range of 65 mm to 150 mm,
The air conditioning system for a high-ceiling warehouse according to claim 1 or 2, wherein an interval between the blow-off nozzles adjacent to each other is set within a range of 500 mm to 1,000 mm.
JP2022055044A 2022-03-30 2022-03-30 Air conditioning system of high ceiling warehouse Pending JP2023147510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022055044A JP2023147510A (en) 2022-03-30 2022-03-30 Air conditioning system of high ceiling warehouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055044A JP2023147510A (en) 2022-03-30 2022-03-30 Air conditioning system of high ceiling warehouse

Publications (1)

Publication Number Publication Date
JP2023147510A true JP2023147510A (en) 2023-10-13

Family

ID=88289093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055044A Pending JP2023147510A (en) 2022-03-30 2022-03-30 Air conditioning system of high ceiling warehouse

Country Status (1)

Country Link
JP (1) JP2023147510A (en)

Similar Documents

Publication Publication Date Title
US8545296B2 (en) Clean room
US6623353B1 (en) Venturi type air distribution system
JP5997539B2 (en) Air supply system
JP2011085351A (en) Displacement ventilation equipment for large-spaced room
JP2023147510A (en) Air conditioning system of high ceiling warehouse
US8978741B2 (en) Device for reducing temperature variations in plenums
WO2011043669A2 (en) Air curtain device and method for realizing a horizontal air curtain with additional airflow
JP2016176626A (en) Air conditioner testing system
JP2015190678A (en) Air conditioning system of three-dimensional warehouse
JP2018066503A (en) Data center
JP5872081B1 (en) Air conditioning system for large spaces
JP5785633B2 (en) Air supply device
JP6262313B1 (en) Air conditioning system for large spaces
US20190346156A1 (en) Hvacr system including multi-positional and multi-use plenum fans
ITUB20150759A1 (en) BLOWER DEVICE TO DELIVER A FLOW OF AIR WITH AMPLIFIED FLOW RATE AND MODULAR COOLING UNIT
JP2006328687A (en) Clean room and method of designing and constructing the same
JP2019027689A (en) Variable flow type coanda air conditioning system
JP2009198014A (en) Air-conditioning air outlet device
US20140080402A1 (en) Adjustable Air Flow Restrictors
WO2018217238A1 (en) Method for improving the ventilation effectiveness of large conditioned air plenum environments including such environments in multilevel raised floor electro-mechanical distribution systems
CN220321335U (en) Uniform air flue
JP5679007B2 (en) Temperature control system
CN220597596U (en) Jet flow wall suction stable cooling air beam and cooling air box system thereof
US20220412605A1 (en) Adaptive hvac support structure
JP7493122B2 (en) Multi-branch chamber