JP2023147402A - Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2023147402A
JP2023147402A JP2022054873A JP2022054873A JP2023147402A JP 2023147402 A JP2023147402 A JP 2023147402A JP 2022054873 A JP2022054873 A JP 2022054873A JP 2022054873 A JP2022054873 A JP 2022054873A JP 2023147402 A JP2023147402 A JP 2023147402A
Authority
JP
Japan
Prior art keywords
functional composition
water
secondary battery
ptc
ptc functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022054873A
Other languages
Japanese (ja)
Inventor
勇太 田代
Yuta Tashiro
鎭碩 白
Jin Sok Back
弘治 干場
Hiroharu Hoshiba
倫行 深谷
Tomoyuki Fukatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2022054873A priority Critical patent/JP2023147402A/en
Priority to KR1020230041588A priority patent/KR20230141618A/en
Publication of JP2023147402A publication Critical patent/JP2023147402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide a PTC functional composition with excellent coating properties and slurry stability.SOLUTION: A PTC functional composition includes a conductive material, a water-soluble resin, water-dispersed resin particles, and an aqueous medium, and the water-soluble resin is a nonionic polymer containing a (meth)acrylamide monomer unit or a nonionic polymer containing an N-vinylamide monomer unit.SELECTED DRAWING: None

Description

本発明は、PTC機能性組成物、当該PTC機能性組成物を用いたPTC機能性組成物層、非水電解質二次電池用被覆集電体、非水電解質二次電池用電極及び非水電解質二次電池に関するものである。 The present invention relates to a PTC functional composition, a PTC functional composition layer using the PTC functional composition, a coated current collector for a nonaqueous electrolyte secondary battery, an electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte It is related to secondary batteries.

リチウムイオン二次電池をはじめとする非水電解質二次電池は、スマートフォンやノート型パソコン等の電源として広く用いられており、最近は車載用など大型電池にも使用されている。一方、リチウムイオン二次電池は、エネルギー密度が高いという利点の反面、非水電解質を使用するため、安全性に十分な対策が必要であるが、近年電池の大型化に応じて、安全性の確保が更に重要となっている。 Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as power sources for smartphones, notebook computers, etc., and have recently been used in large batteries such as those for vehicles. On the other hand, although lithium-ion secondary batteries have the advantage of high energy density, they use non-aqueous electrolytes and require sufficient safety measures. Security has become even more important.

そこで、リチウムイオン二次電池には、故障等の不慮の事故の際、自発的かつ安全に充放電を停止する所謂シャットダウン機能が求められており、電池内部ではセパレータにその機能が付与されている。しかし、セパレータによるシャットダウンが不完全でセパレータ融点より更に温度が上昇する場合や、外部温度の上昇により、セパレータが融解して内部短絡が発生する場合もあり、さらなる安全性向上に向けた対策が求められている。 Therefore, lithium-ion secondary batteries are required to have a so-called shutdown function that spontaneously and safely stops charging and discharging in the event of an unexpected accident such as a breakdown, and this function is provided to the separator inside the battery. . However, there are cases where the shutdown by the separator is incomplete and the temperature rises further than the melting point of the separator, or when the external temperature rises, the separator melts and an internal short circuit occurs, so measures are required to further improve safety. It is being

その対策として、リチウム二次電池の電極を構成する集電体または活物質層内に正温度係数(PTC)機能性組成物を形成する技術が提案されている(例えば、特許文献1及び2参照)。 As a countermeasure, a technology has been proposed in which a positive temperature coefficient (PTC) functional composition is formed in the current collector or active material layer that constitutes the electrode of a lithium secondary battery (for example, see Patent Documents 1 and 2). ).

国際公開WO2019/003721号公報International Publication WO2019/003721 Publication 国際公開WO2016/158480号公報International Publication WO2016/158480 Publication

ところで従来知られているPTC機能性組成物では、その形成に用いられる複数種類の樹脂が有する官能基の相互作用等により、そのスラリーにおいて凝集物が形成され、塗工性の悪化や、スラリー安定性の悪化等の問題が生じる。それ故、このようなPTC機能性組成物を下地層とする集電体を用いた非水電解質二次電池を作成すると、PTC機能性組成物の厚みが大きくなってしまい、エネルギー密度の向上を阻害する要因となる。 By the way, in conventionally known PTC functional compositions, aggregates are formed in the slurry due to interactions between functional groups of multiple types of resins used to form the composition, resulting in deterioration of coatability and stability of the slurry. Problems such as sexual deterioration occur. Therefore, when creating a non-aqueous electrolyte secondary battery using a current collector with such a PTC functional composition as a base layer, the thickness of the PTC functional composition becomes large, making it difficult to improve energy density. It becomes an inhibiting factor.

そこで本発明は、塗工性及びスラリー安定性に優れたPTC機能性組成物を提供することを主たる課題とするものである。 Therefore, the main object of the present invention is to provide a PTC functional composition with excellent coating properties and slurry stability.

すなわち、本発明の態様1は、導電材と水溶性樹脂と水分散樹脂微粒子と水性媒体とを含有し、前記水溶性樹脂が、(メタ)アクリルアミド系単量体単位を含有するノニオン性重合体、又はN-ビニルアミド系単量体単位を含有するノニオン性重合体であるPTC機能性組成物である。 That is, aspect 1 of the present invention contains a conductive material, a water-soluble resin, water-dispersed resin fine particles, and an aqueous medium, and the water-soluble resin is a nonionic polymer containing a (meth)acrylamide monomer unit. , or a PTC functional composition which is a nonionic polymer containing an N-vinylamide monomer unit.

また本発明の態様2は、前記水分散樹脂粒子がポリオレフィン系材料である前記態様1のPTC機能性組成物である。 A second aspect of the present invention is the PTC functional composition according to the first aspect, wherein the water-dispersed resin particles are a polyolefin material.

本発明の態様3は、前記水分散樹脂粒子がマレイン酸によってその一部又は全ての繰り返し単位が変性されている前記態様2のPTC機能性組成物である。 Aspect 3 of the present invention is the PTC functional composition of Aspect 2, wherein a part or all of the repeating units of the water-dispersed resin particles are modified with maleic acid.

本発明の態様4は、前記導電材が1種類又は複数種類の炭素材料からなるものである前記態様1~3のいずれかのPTC機能性組成物である。 Aspect 4 of the present invention is the PTC functional composition according to any one of Aspects 1 to 3, wherein the conductive material is made of one or more types of carbon materials.

本発明の態様5は、前記水性媒体が、水又は水と相溶な液状媒体である前記態様1~4のいずれかのPTC機能性組成物である。 Aspect 5 of the present invention is the PTC functional composition according to any one of Aspects 1 to 4, wherein the aqueous medium is water or a liquid medium compatible with water.

本発明の態様6は、前記PTC機能性組成物の固形分全体を100質量%として、前記導電材の含有量が10~70質量%であり、前記水溶性樹脂の含有量が1~50質量%であり、前記水分散樹脂粒子の含有量が5~70質量%である前記態様1~5のいずれかのPTC機能性組成物である。 Aspect 6 of the present invention is that the content of the conductive material is 10 to 70% by mass, and the content of the water-soluble resin is 1 to 50% by mass, with the total solid content of the PTC functional composition being 100% by mass. %, and the content of the water-dispersed resin particles is 5 to 70% by mass.

また本発明の別の態様は、以上に説明したような本発明の各態様のPTC機能性組成物を含有するPTC機能性組成物層、集電体上に前記PTC機能性組成物層が形成された非水電解質二次電池用被覆集電体、該非水電解質二次電池用被覆集電体を備えた非水電解質二次電池用電極、又は該非水電解質二次電池用電極を備えた非水電解質二次電池を含むものである。 Another aspect of the present invention is a PTC functional composition layer containing the PTC functional composition of each aspect of the present invention as described above, and the PTC functional composition layer is formed on a current collector. A coated current collector for a non-aqueous electrolyte secondary battery, an electrode for a non-aqueous electrolyte secondary battery equipped with the coated current collector for a non-aqueous electrolyte secondary battery, or a non-aqueous electrolyte secondary battery equipped with the electrode for a non-aqueous electrolyte secondary battery. It includes a water electrolyte secondary battery.

このような本発明によれば、塗工性及びスラリー安定性に優れたPTC機能性組成物を提供することができる。 According to the present invention, a PTC functional composition having excellent coating properties and slurry stability can be provided.

本発明の実施形態に係るPTC機能性組成物により、優れた塗工性とスラリー安定性とが得られる理由については未だ不明な点もある。現在までに得られている知見を基に本発明者らが考えるメカニズムについて以下に説明する。 There are still some points that are unclear as to why the PTC functional composition according to the embodiments of the present invention provides excellent coating properties and slurry stability. The mechanism considered by the present inventors based on the knowledge obtained up to now will be explained below.

すなわち本実施形態のPTC機能性組成物は、導電材と水溶性樹脂と水分散樹脂微粒子と水性媒体とを含有し、水溶性樹脂が(メタ)アクリルアミド系単量体単位を含有するノニオン性重合体、又はN-ビニルアミド系単量体単位を含有するノニオン性重合体であることにより、水分散体樹脂粒子の分散状態安定化に寄与する水分散体樹脂粒子の表面に存在するイオンとの相互作用が抑えられるので、スラリー中の凝集物の形成を抑制することができ、これにより優れた塗工性とスラリー安定性とを発揮することができると考えられる。なお、このメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。 That is, the PTC functional composition of the present embodiment contains a conductive material, a water-soluble resin, water-dispersed resin fine particles, and an aqueous medium, and the water-soluble resin is a nonionic polymer containing a (meth)acrylamide monomer unit. Coalescence or interaction with ions present on the surface of the water dispersion resin particles that contribute to stabilizing the dispersion state of the water dispersion resin particles by being a nonionic polymer containing N-vinylamide monomer units. Since the effect is suppressed, it is possible to suppress the formation of aggregates in the slurry, and it is thought that this makes it possible to exhibit excellent coating properties and slurry stability. Note that the explanation regarding this mechanism is not intended to limit the technical scope of the present invention.

以下に、本発明の一実施形態に係る二次電池の具体的な構成について説明する。 Below, a specific configuration of a secondary battery according to an embodiment of the present invention will be described.

<1.非水電解質二次電池の基本構成>
本実施形態に係るリチウムイオン二次電池は、正極と、負極と、セパレータと、非水電解質と、を備えるものである。リチウムイオン二次電池の形態は、特に限定されないが、例えば、円筒形、角形、ラミネート形、またはボタン形等のいずれであってもよい。
<1. Basic configuration of non-aqueous electrolyte secondary battery>
The lithium ion secondary battery according to this embodiment includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte. The shape of the lithium ion secondary battery is not particularly limited, and may be, for example, cylindrical, prismatic, laminated, button-shaped, or the like.

(1-1.正極)
正極は、正極集電体と、該正極集電体上に形成された正極合剤層とを備えている。
(1-1. Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.

正極集電体は、導電体であればどのようなものでも良く、例えば、板状又は箔状のものであり、アルミニウム、ステンレス鋼、及びニッケルメッキ鋼等で構成されることが好ましい。 The positive electrode current collector may be any electrically conductive material, such as a plate or foil, and is preferably made of aluminum, stainless steel, nickel-plated steel, or the like.

正極合剤層は、少なくとも正極活物質を含み、導電剤と、正極用バインダーとをさらに含んでいてもよい。 The positive electrode mixture layer includes at least a positive electrode active material, and may further include a conductive agent and a positive electrode binder.

正極活物質は、例えば、リチウムを含む遷移金属酸化物または固溶体酸化物であり、電気化学的にリチウムイオンを吸蔵および放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、Li1.0Ni0.88Co0.1Al0.01Mg0.01等を挙げることができるが、これ以外にも、LiCoO等のLi・Co系複合酸化物、LiNiCoMn等のLi・Ni・Co・Mn系複合酸化物、LiNiO等のLi・Ni系複合酸化物、またはLiMn等のLi・Mn系複合酸化物等を例示することができる。固溶体酸化物としては、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMn1.5Ni0.5等を例示することができる。なお、正極活物質の含有量(含有比)は、特に制限されず、非水電解質二次電池の正極合剤層に適用可能な含有量であればよい。また、これらの化合物を単独で用いても良いし、または複数種混合して用いてもよい。 The positive electrode active material is, for example, a transition metal oxide or solid solution oxide containing lithium, and is not particularly limited as long as it is a material that can electrochemically insert and release lithium ions. Examples of transition metal oxides containing lithium include Li 1.0 Ni 0.88 Co 0.1 Al 0.01 Mg 0.01 O 2 , but also LiCoO 2 and the like. , Li/Ni/Co/Mn based complex oxides such as LiNix Co y Mn z O 2 , Li/Ni based complex oxides such as LiNiO 2 , or LiMn 2 O 4 etc. Examples include Li/Mn-based composite oxides. Solid solution oxides include Li a Mn x Co y Ni z O 2 (1.150≦a≦1.430, 0.45≦x≦0.6, 0.10≦y≦0.15, 0.20 z≦0.28), LiMn 1.5 Ni 0.5 O 4 and the like. Note that the content (content ratio) of the positive electrode active material is not particularly limited, and may be any content that can be applied to the positive electrode mixture layer of a nonaqueous electrolyte secondary battery. Further, these compounds may be used alone or in combination.

導電剤は、正極の導電性を高めるためのものであれば特に制限されない。導電剤の具体例としては、例えば、カーボンブラック、天然黒鉛、人造黒鉛及び繊維状炭素の中から選ばれる一種以上を含有するものを挙げることができる。カーボンブラックの例としては、ファーネスブラック、チャネルブラック、サーマルブラック、ケッチェンブラック、アセチレンブラック等を挙げることができる。繊維状炭素の例としては、カーボンナノチューブ、グラフェン、カーボンナノファイバ等を挙げることができる。導電剤の含有量は、特に制限されず、非水電解質二次電池の正極合剤層に適用可能な含有量であれば良い。 The conductive agent is not particularly limited as long as it is used to enhance the conductivity of the positive electrode. Specific examples of the conductive agent include those containing one or more selected from carbon black, natural graphite, artificial graphite, and fibrous carbon. Examples of carbon black include furnace black, channel black, thermal black, Ketjen black, acetylene black, and the like. Examples of fibrous carbon include carbon nanotubes, graphene, carbon nanofibers, and the like. The content of the conductive agent is not particularly limited, and may be any content that can be applied to the positive electrode mixture layer of a non-aqueous electrolyte secondary battery.

正極用バインダーとしては、例えば、ポリフッ化ビニリデン等のフッ素含有樹脂、スチレンブタジエンゴム等のエチレン含有樹脂、エチレンプロピレンジエン三元共重合体、アクリロニトリルブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ポリビニルアルコール、カルボキシメチルセルロース若しくはカルボキシメチルセルロース誘導体(カルボキシメチルセルロースの塩等)、又はニトロセルロース等を挙げることができる。正極用バインダーは、正極活物質及び導電剤を正極集電体上に結着させることができるものであればよく、特に制限されない。 Examples of the positive electrode binder include fluorine-containing resins such as polyvinylidene fluoride, ethylene-containing resins such as styrene-butadiene rubber, ethylene-propylene diene terpolymer, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, Examples include polyethylene, polyvinyl alcohol, carboxymethylcellulose or carboxymethylcellulose derivatives (salts of carboxymethylcellulose, etc.), nitrocellulose, and the like. The positive electrode binder is not particularly limited as long as it can bind the positive electrode active material and the conductive agent onto the positive electrode current collector.

(1-2.負極)
負極は、負極集電体と、該負極集電体上に形成された負極合剤層とを備えるものである。
(1-2. Negative electrode)
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.

負極集電体は、導電体であればどのようなものでも良く、例えば、板状又は箔状のものであり、銅、ステンレス鋼、及びニッケルメッキ鋼等で構成されるものであることが好ましい。 The negative electrode current collector may be of any type as long as it is a conductor, such as a plate or foil, and is preferably made of copper, stainless steel, nickel-plated steel, etc. .

負極合剤層は、少なくとも負極活物質を含み、導電剤と、負極用バインダーとをさらに含んでいても良い。 The negative electrode mixture layer includes at least a negative electrode active material, and may further include a conductive agent and a negative electrode binder.

前記負極活物質は、電気化学的にリチウムイオンを吸蔵及び放出することが出来るものであれば特に限定されないが、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、Si系活物質又はSn系活物質(例えば、ケイ素(Si)もしくはスズ(Sn)もしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金)、金属リチウム及びLiTi12等の酸化チタン系化合物、リチウム窒化物等が考えられる。負極活物質としては、以上に挙げたもののうち一種類を用いても良いし、2種類以上を併用しても良い。なお、ケイ素の酸化物は、SiOx(0≦x≦2)で表される。 The negative electrode active material is not particularly limited as long as it can electrochemically insert and release lithium ions, but examples include graphite active materials (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, (natural graphite coated with artificial graphite, etc.), Si-based active material or Sn-based active material (e.g., mixture of graphite active material with fine particles of silicon (Si) or tin (Sn) or their oxides, Possible materials include fine particles, alloys based on silicon or tin), metallic lithium, titanium oxide compounds such as Li 4 Ti 5 O 12 , and lithium nitride. As the negative electrode active material, one type of those listed above may be used, or two or more types may be used in combination. Note that the silicon oxide is represented by SiOx (0≦x≦2).

導電剤は、負極の導電性を高めるためのものであれば特に制限されず、例えば、正極の項で説明したものと同様のものを使用することができる。 The conductive agent is not particularly limited as long as it enhances the conductivity of the negative electrode, and for example, the same materials as those described in the section regarding the positive electrode can be used.

負極用バインダーとしては、負極活物質及び導電剤を負極集電体上に結着させることができるものであればよく、特に制限されない。負極用バインダーは、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸(PAA)、スチレンブタジエン系共重合体(SBR)、カルボキシメチルセルロースの金属塩(CMC)などであってもよい。1種のバインダーが単独で使用されても良いし、2種以上を含有するものとしても良い。 The negative electrode binder is not particularly limited as long as it can bind the negative electrode active material and the conductive agent onto the negative electrode current collector. Examples of the negative electrode binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid (PAA), styrene-butadiene copolymer (SBR), metal salt of carboxymethyl cellulose (CMC), etc. It's okay. One type of binder may be used alone, or two or more types may be used.

(1-3.セパレータ)
セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。なお、セパレータの気孔率は、特に制限されず、従来のリチウムイオン二次電池のセパレータが有する気孔率を任意に適用することが可能である。
(1-3. Separator)
The separator is not particularly limited, and any separator may be used as long as it can be used as a separator for lithium ion secondary batteries. As the separator, it is preferable to use porous membranes, nonwoven fabrics, etc., which exhibit excellent high rate discharge performance, alone or in combination. Examples of resins constituting the separator include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. Copolymer, vinylidene fluoride-perfluorovinylether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexane Fluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, Examples include vinylidene fluoride-ethylene-tetrafluoroethylene copolymer. Note that the porosity of the separator is not particularly limited, and any porosity that a separator of a conventional lithium ion secondary battery has can be applied.

セパレータの表面に、耐熱性を向上させるための無機粒子を含む耐熱層、または電極と接着して電池素子を固定化するための接着剤を含む層があってもよい。前述の無機粒子としては、Al、AlOOH、Mg(OH)、SiOなどがあげられる。接着剤としてはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン重合体の酸変性物、スチレン-(メタ)アクリル酸エステル共重合体などがあげられる。 On the surface of the separator, there may be a heat-resistant layer containing inorganic particles to improve heat resistance, or a layer containing an adhesive to bond to the electrodes and fix the battery element. Examples of the above-mentioned inorganic particles include Al 2 O 3 , AlOOH, Mg(OH) 2 , and SiO 2 . Examples of adhesives include vinylidene fluoride-hexafluoropropylene copolymers, acid-modified vinylidene fluoride polymers, and styrene-(meth)acrylate copolymers.

(1-4.非水電解液)
非水電解液は、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを使用することができる。非水電解液は、電解液用溶媒である非水溶媒に電解質塩を含有させた組成を有する。
(1-4. Nonaqueous electrolyte)
As the non-aqueous electrolyte, the same non-aqueous electrolyte as conventionally used in lithium ion secondary batteries can be used. The nonaqueous electrolyte has a composition in which an electrolyte salt is contained in a nonaqueous solvent that is a solvent for the electrolyte.

非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、酪酸メチル、プロピオン酸エチル、プロピオン酸プロピル等の鎖状エステル類、テトラヒドロフラン又はその誘導体、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、又はメチルジグライム、エチレングリコールモノプロピルエーテル、プロピレンレングリコールモノプロピルエーテル等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキソラン又はその誘導体、エチレンスルフィド、スルホラン、スルトン又はその誘導体等を、単独で、またはそれら2種以上を混合して使用することができる。なお、前記非水溶媒を2種以上混合して使用する場合、各非水溶媒の混合比は、従来のリチウムイオン二次電池で用いられる混合比が適用可能である。 Examples of the nonaqueous solvent include cyclic carbonate esters such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, vinylene carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, and dimethyl carbonate. , chain carbonates such as diethyl carbonate and ethyl methyl carbonate, chain esters such as methyl formate, methyl acetate, methyl butyrate, ethyl propionate, and propyl propionate, tetrahydrofuran or its derivatives, 1,3-dioxane, 1, 4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, ethers such as methyl diglyme, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, nitriles such as acetonitrile, benzonitrile, Dioxolane or its derivatives, ethylene sulfide, sulfolane, sultone or its derivatives, etc. can be used alone or in combination of two or more thereof. In addition, when using a mixture of two or more types of the above-mentioned non-aqueous solvents, the mixing ratio of each non-aqueous solvent can be applied to the mixing ratio used in conventional lithium ion secondary batteries.

電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LIPF-x(C2n+1)x[但し、1<x<6、n=1or2]、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウムイオン二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、前述したようなリチウム化合物(電解質塩)を0.8mol/l以上1.5mol/l以下程度の濃度で含有させた非水電解液を使用することが好ましい。 Examples of electrolyte salts include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LIPF 6 -x (C n F 2n+1 )x [where 1<x<6, n=1or2], LiSCN, LiBr, LiI, Inorganic ionic salts containing one of lithium (Li), sodium (Na) or potassium (K) such as Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN; LiCF3SO3 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , LiN( CF3SO2 ) ( C4F9SO2 ) , LiC( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , ( CH3 ) 4NBF4 , ( CH3 ) 4NBr , ( C2H5 ) 4NClO4 , ( C2H5 ) 4NI , ( C3H7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, ( Examples include organic ionic salts such as C 2 H 5 ) 4 N-phtalate, lithium stearyl sulfonate, lithium octylsulfonate, and lithium dodecylbenzenesulfonate, and these ionic compounds may be used alone or in combination of two or more. It is possible to use Note that the concentration of the electrolyte salt may be the same as that of the non-aqueous electrolyte used in conventional lithium ion secondary batteries, and is not particularly limited. In this embodiment, it is preferable to use a non-aqueous electrolytic solution containing the above-mentioned lithium compound (electrolyte salt) at a concentration of about 0.8 mol/l or more and 1.5 mol/l or less.

なお、非水電解液には、各種の添加剤を添加してもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系の添加剤、炭酸エステル系の添加剤、硫酸エステル系の添加剤、リン酸エステル系の添加剤、ホウ酸エステル系の添加剤、酸無水物系の添加剤、及び電解質系の添加剤等が挙げられる。これらのうちいずれか1種を非水電解液に添加しても良いし、複数種類の添加剤を非水電解液に添加してもよい。 Note that various additives may be added to the non-aqueous electrolyte. Such additives include negative electrode additives, positive electrode additives, ester additives, carbonate ester additives, sulfate ester additives, phosphate ester additives, and boric ester additives. , acid anhydride-based additives, electrolyte-based additives, and the like. Any one of these additives may be added to the non-aqueous electrolyte, or multiple types of additives may be added to the non-aqueous electrolyte.

<2.本実施形態に係る非水電解質二次電池の製造方法>
次に、リチウムイオン二次電池の製造方法について説明する。
正極は、以下のように作製される。まず、正極活物質、導電剤、及び正極用バインダーを所望の割合で混合したものを、正極スラリー用溶媒に分散させることで正極スラリーを形成する。次いで、この正極スラリーを正極集電体上に塗布して乾燥させることで、正極合剤層を形成する。なお、塗布の方法は、特に限定されず、例えば、ナイフコーター法、グラビアコーター法、リバースロールコーター、スリットダイコーター等が考えられる。以下の各塗布工程も同様の方法により行われる。次いで、プレス機により正極合剤層を所望の密度となるようにプレスする。これにより、正極が作製される。
<2. Method for manufacturing a non-aqueous electrolyte secondary battery according to the present embodiment>
Next, a method for manufacturing a lithium ion secondary battery will be explained.
The positive electrode is produced as follows. First, a positive electrode slurry is formed by dispersing a mixture of a positive electrode active material, a conductive agent, and a positive electrode binder in a desired ratio in a positive electrode slurry solvent. Next, this positive electrode slurry is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer. Note that the coating method is not particularly limited, and examples thereof include a knife coater method, a gravure coater method, a reverse roll coater, a slit die coater, and the like. The following coating steps are also performed in the same manner. Next, the positive electrode mixture layer is pressed using a press so that it has a desired density. In this way, a positive electrode is produced.

負極は、正極と同様に作製される。まず負極合剤層を構成する材料を混合したものを負極スラリー用溶媒に分散させることで、負極スラリーを作製する。次いで、負極スラリーを負極集電体上に塗布して乾燥させることで、負極合剤層を形成する。次いで、プレス機により負極合剤層を所望の密度となるようにプレスする。これにより、負極が作製される。 The negative electrode is produced in the same way as the positive electrode. First, a negative electrode slurry is prepared by dispersing a mixture of materials constituting the negative electrode mixture layer in a negative electrode slurry solvent. Next, a negative electrode mixture layer is formed by applying the negative electrode slurry onto the negative electrode current collector and drying it. Next, the negative electrode mixture layer is pressed using a press so that it has a desired density. In this way, a negative electrode is produced.

次いで、セパレータを正極及び負極で挟むことで、電極構造体を作製する。次いで、電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形、ボタン形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に非水電解液を注入することで、セパレータ内の各気孔や正極及び負極の空隙に電解液を含浸させる。これにより、リチウムイオン二次電池が作製される。 Next, an electrode structure is produced by sandwiching the separator between a positive electrode and a negative electrode. Next, the electrode structure is processed into a desired shape (for example, cylindrical, square, laminated, button-shaped, etc.) and inserted into a container of the desired shape. Next, by injecting the non-aqueous electrolyte into the container, each pore in the separator and the voids in the positive and negative electrodes are impregnated with the electrolyte. In this way, a lithium ion secondary battery is manufactured.

<3.本実施形態に係る非水電解質二次電池の特徴構成>
以下に、本実施形態に係る非水電解質二次電池の特徴構成について説明する。
<3. Characteristic configuration of non-aqueous electrolyte secondary battery according to this embodiment>
Below, the characteristic structure of the non-aqueous electrolyte secondary battery according to this embodiment will be explained.

(3-1.PTC機能性組成物層)
前述した正極及び負極は、正温度係数(PTC)機能性組成物を含有するPTC機能性組成物層を下地層として更に備えている。
(3-1. PTC functional composition layer)
The above-described positive electrode and negative electrode further include a PTC functional composition layer containing a positive temperature coefficient (PTC) functional composition as an underlayer.

PTC機能性組成物層は、導電材と、水溶性樹脂と、水分散樹脂微粒子と、水性媒体とを少なくとも含有するものである。PTC機能性組成物層は、正極集電体と負極集電体との間に形成されていれば良く、例えば、正極集電体と正極合剤層との間、及び/又は負極集電体と負極合剤層との間に設けられていることが好ましい。本実施形態では、PTC機能性組成物層は、正極集電体と正極合剤層との間、及び負極集電体と負極合剤層との間の両方に設けられている。 The PTC functional composition layer contains at least a conductive material, a water-soluble resin, water-dispersed resin particles, and an aqueous medium. The PTC functional composition layer may be formed between the positive electrode current collector and the negative electrode current collector, for example, between the positive electrode current collector and the positive electrode mixture layer, and/or between the negative electrode current collector and the negative electrode mixture layer. In this embodiment, the PTC functional composition layer is provided both between the positive electrode current collector and the positive electrode mixture layer and between the negative electrode current collector and the negative electrode mixture layer.

<導電材>
導電材は、導電性を有する粒子状のものであり、グラファイト、カーボンブラック、ファーネスブラック、黒鉛化ファーネスブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバ、カーボンファイバー)、フラーレン等の炭素材料等の1種又は複種類からなるものである。
<Conductive material>
The conductive material is a particulate material that has conductivity, and includes carbon materials such as graphite, carbon black, furnace black, graphitized furnace black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), fullerene, etc. It consists of one or more of the following.

導電材の含有量が少ないと、PTC機能性組成物層の電池動作温度での電気抵抗が高くなり、電圧降下が増大しセル容量、セル電圧、負荷特性、サイクル特性などの電池特性が低下する恐れがある。一方、導電材の含有量が過多であると、相対的に水分散樹脂の含有量が低下し、PTC機能が不十分となる恐れがある。そのため、導電材の含有量は、PTC機能性組成物から溶媒などの液体成分を除いた固形分全体を100質量%として、10質量%以上70質量%以下が好ましく、17.5質量%以上35質量%以下がより好ましく、22.5質量%以上35質量%以下がさらに好ましい。 When the content of the conductive material is low, the electrical resistance of the PTC functional composition layer at the battery operating temperature increases, the voltage drop increases, and battery characteristics such as cell capacity, cell voltage, load characteristics, and cycle characteristics deteriorate. There is a fear. On the other hand, if the content of the conductive material is too large, the content of the water-dispersed resin will be relatively reduced, and the PTC function may become insufficient. Therefore, the content of the conductive material is preferably 10% by mass or more and 70% by mass or less, and 17.5% by mass or more and 35% by mass, based on 100% by mass of the entire solid content excluding liquid components such as solvents from the PTC functional composition. It is more preferably at most 22.5% by mass and at most 35% by mass.

なお、PTC機能性組成物の固形分全体とは、例えば、乾燥させることによって液体部分を全て揮発させた後に残る固体の総質量を指すものであり、すなわちPTC機能性組成物を作製する際に使用した各成分の粉体としての総質量に等しいものである。以下において同じである。 In addition, the entire solid content of the PTC functional composition refers to the total mass of solids remaining after all the liquid parts are volatilized by drying, that is, when producing the PTC functional composition. It is equal to the total mass of each component used as powder. The same applies below.

<水溶性樹脂>
水溶性樹脂は、水溶性を備え、導電材と水分散樹脂微粒子とを結着させるものである。ここでいう水溶性とは、例えば、25℃の水99g中に水溶性樹脂(E)1g入れて撹拌し、25℃で24時間放置した後、分離・析出せずに水中で樹脂が溶解可能なものを意味する。本発明の水溶性樹脂は、具体的には、(メタ)アクリルアミド系単量体単位を含有するノニオン性重合体、又はN-ビニルアミド系単量体単位を有するノニオン性重合体であることを特徴とする。
<Water-soluble resin>
The water-soluble resin is water-soluble and binds the conductive material and the water-dispersed resin particles. Water-soluble here means, for example, that when 1 g of water-soluble resin (E) is added to 99 g of water at 25°C, stirred, and left at 25°C for 24 hours, the resin can be dissolved in water without separation or precipitation. mean something Specifically, the water-soluble resin of the present invention is characterized in that it is a nonionic polymer containing a (meth)acrylamide monomer unit or a nonionic polymer containing an N-vinylamide monomer unit. shall be.

(メタ)アクリルアミド系単量体単位としては、例えば、アクリルアミド、メタクリルアミド、N-イソプロピルアクリルアミド、N-メチロールアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ブチルアクリルアミド、N-tertブチルアクリルアミド、アクロイルモルホリン等が挙げられる。 Examples of (meth)acrylamide monomer units include acrylamide, methacrylamide, N-isopropylacrylamide, N-methylolacrylamide, N-(2-hydroxyethyl)acrylamide, N,N-dimethyl(meth)acrylamide, N , N-diethyl (meth)acrylamide, N-butylacrylamide, N-tertbutylacrylamide, acroylmorpholine and the like.

(メタ)アクリルアミド系単量体単位の中でも、水溶性と密着性と電解液低膨潤性の観点から、アクリルアミドが好ましい。N-ビニルアミド系単量体単位としては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルイソブチルアミド等が挙げられる。これらの(メタ)アクリルアミド系単量体単位ならびにN-ビニルアミド系単量体単位は、1種類を単独で含有してもよく、2種類以上を任意の比率で含有してもよい。 Among (meth)acrylamide-based monomer units, acrylamide is preferred from the viewpoints of water solubility, adhesion, and low electrolyte swelling property. Examples of the N-vinylamide monomer unit include N-vinylformamide, N-vinylacetamide, N-vinylisobutyramide, and the like. These (meth)acrylamide monomer units and N-vinylamide monomer units may contain one type alone or two or more types in any ratio.

また上記水溶性樹脂は、(メタ)アクリルアミド系単量体単位及びN-ビニルアミド系単量体単位以外のその他の単量体単位を含有しても良い。その他の単量体単位は、(メタ)アクリルアミド系単量体及びN-ビニルアミド系単量体と共重合し得るノニオン性の単量体単位であれば特に制限されない。その他のノニオン性単量体単位としては、例えば、(メタ)アクリル酸エステル単量体単位、シアン化ビニル単量体単位、ビニルアルコール、ビニルピロリドン等が挙げられる。 Further, the water-soluble resin may contain other monomer units other than the (meth)acrylamide monomer unit and the N-vinylamide monomer unit. Other monomer units are not particularly limited as long as they are nonionic monomer units that can be copolymerized with the (meth)acrylamide monomer and the N-vinylamide monomer. Examples of other nonionic monomer units include (meth)acrylic acid ester monomer units, vinyl cyanide monomer units, vinyl alcohol, vinyl pyrrolidone, and the like.

水溶性樹脂の含有量が少ないと、水溶性樹脂による結着性が損なわれ、導電剤などのPTC機能性組成組成層成分が製造中に集電体から脱落し十分なPTC機能が得られない恐れがある。一方、水溶性樹脂の含有量が過多であると、導電剤の不足による電池特性の低下や水分散樹脂の不足によるPTC機能の低下が生じるとなる恐れがある。そのため、水溶性樹脂の含有量は、PTC機能性組成物から溶媒などの液体成分を除いた固形分全体を100質量%として、1質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましく、22.5質量%以上32.5質量%以下がさらに好ましい。 If the content of the water-soluble resin is low, the binding properties of the water-soluble resin will be impaired, and PTC functional composition layer components such as conductive agents will fall off from the current collector during manufacturing, making it impossible to obtain sufficient PTC function. There is a fear. On the other hand, if the content of the water-soluble resin is too large, there is a risk that the battery characteristics will be degraded due to a lack of the conductive agent and the PTC function will be degraded due to the lack of the water-dispersible resin. Therefore, the content of the water-soluble resin is preferably 1% by mass or more and 50% by mass or less, and 10% by mass or more and 40% by mass, based on 100% by mass of the entire solid content excluding liquid components such as solvents from the PTC functional composition. % or less, more preferably 22.5% by mass or more and 32.5% by mass or less.

<水分散樹脂微粒子>
水分散樹脂微粒子は、一般的に水性エマルションとも呼ばれるものであり、樹脂粒子が水中で溶解せずに、微粒子の形態で分散されているものである。
<Water-dispersed resin particles>
Water-dispersed resin fine particles are generally also called aqueous emulsions, and are resin particles that are not dissolved in water but are dispersed in the form of fine particles.

具体的にこの水分散樹脂微粒子は、例えば、エチレン、プロピレン、イソブチレン、イソブテン、1-ブテン、2-ブテン、1-ペンテン、4-メチル-1-ペンテン、3-メチル-1-ペンテンン、1-ヘキセン、1-オクテン、ノルボネン等をオレフィン成分とするポリオレフィン系材料が挙げられる。水分散樹脂微粒子を構成するポリオレフィン系材料は、これらオレフィン成分単一の重合体でも良く、2成分以上の共重合体でも良い。 Specifically, the water-dispersed resin particles include, for example, ethylene, propylene, isobutylene, isobutene, 1-butene, 2-butene, 1-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1- Examples include polyolefin materials containing hexene, 1-octene, norbornene, etc. as olefin components. The polyolefin material constituting the water-dispersed resin particles may be a single polymer of these olefin components, or a copolymer of two or more components.

また水分散樹脂微粒子を構成するポリオレフィン系材料は、マレイン酸又はエチルアクリルレートを有する化合物によりその一部又はすべての繰り返し単位が変性されていることが好ましく、特にマレイン酸により変性されていることが好ましい。 Further, it is preferable that the polyolefin material constituting the water-dispersed resin particles has some or all of its repeating units modified with a compound having maleic acid or ethyl acrylate, and it is particularly preferred that the polyolefin material be modified with maleic acid. preferable.

水分散樹脂微粒子の含有量が少ないと、故障等の不慮の事故により電池温度が上昇した際、自発的かつ安全に充放電を停止する所謂シャットダウン機能が不十分となる恐れがある。一方、水溶性樹脂微粒子の含有量が過多であると、充放電を停止する所謂シャットダウン機能を発現させる必要のない程度の温度上昇でシャットダウン機能が発現し電池性能が低下する恐れがある。そのため、水分散樹脂微粒子の含有量は、PTC機能性組成物から溶媒などの液体成分を除いた固形分全体を100質量%として、5質量%以上70質量%以下が好ましく、20質量%以上60質量%以下がより好ましく、35質量%以上50質量%以下がさらに好ましい。 If the content of water-dispersed resin fine particles is low, there is a risk that the so-called shutdown function, which spontaneously and safely stops charging and discharging, may be insufficient when the battery temperature rises due to an unexpected accident such as a breakdown. On the other hand, if the content of the water-soluble resin fine particles is too large, a shutdown function may be developed at a temperature rise that does not require the development of a so-called shutdown function that stops charging and discharging, and battery performance may deteriorate. Therefore, the content of the water-dispersed resin particles is preferably 5% by mass or more and 70% by mass or less, and 20% by mass or more and 60% by mass, based on 100% by mass of the entire solid content excluding liquid components such as solvents from the PTC functional composition. It is more preferably at most 35% by mass and at most 50% by mass.

<水性媒体>
水性媒体としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。
<Aqueous medium>
As the aqueous medium, it is preferable to use water, but if necessary, for example, a liquid medium that is compatible with water may be used in order to improve the coating properties on the current collector.

水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。 Liquid media that are compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters. ethers, nitriles, etc., and may be used within a range that is compatible with water.

<その他添加剤>
PTC機能性組成物には、界面活性剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などのその他添加剤が必要に応じて更に含まれていてもよい。界面活性剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などのその他添加剤としては、ノニオン性であることが好ましい。ノニオン性のその他添加剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、オキシエチレン・オキシプロピレンブロックコポリマー、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエート等のソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。界面活性剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などのその他添加剤としてこのようなものを用いれば、前記添加剤を添加した際に生じ得るPTC機能性組成物中における凝集物の発生を抑制することができる。
<Other additives>
The PTC functional composition may further contain other additives such as a surfactant, a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjuster, a viscosity adjuster, etc. as necessary. good. Other additives such as surfactants, film-forming aids, antifoaming agents, leveling agents, preservatives, pH adjusters, and viscosity adjusters are preferably nonionic. Other nonionic additives include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl allyl ether, Oxyethylene derivatives, oxyethylene/oxypropylene block copolymers, sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, glycerin fatty acid esters, polyoxyethylene fatty acid esters, sucrose fatty acid esters, polyethylene glycol, polypropylene Examples include glycol and the like. If other additives such as surfactants, film-forming aids, antifoaming agents, leveling agents, preservatives, pH adjusters, and viscosity modifiers are used, problems may occur when the above additives are added. The generation of aggregates in the PTC functional composition can be suppressed.

(3-2.PTC機能性組成物層の作製方法)
前述したPTC機能性組成物を水やNMP等の溶媒に懸濁してスラリー状にしたものを、正極集電体又は負極集電体上に乾燥後の厚みが0.1μm以上5μm以下、より好ましくは0.3μm以上2μm以下の厚みとなるように塗布し、乾燥させることによって形成することができる。本明細書においては、PTC機能性組成物層が表面に形成された集電体を被覆集電体と呼ぶこととする。被覆集電体のPTC機能性組成物層の厚みが0.1μm以上であれば、異常発熱時PTC機能を十分に発揮することができるので好ましい。また、被覆集電体のPTC機能性組成物層の厚みが5μm以下であれば、電極に占める活物質の含有比率を確保して、電池容量の低下を抑えることができるので好ましい。この被覆集電体が備えるPTC機能性組成物層の上に合剤層を形成することによって正極又は負極となる二次電池用電極を作製することができる。
(3-2. Method for producing PTC functional composition layer)
The above-described PTC functional composition is suspended in a solvent such as water or NMP to form a slurry, and the thickness after drying is preferably 0.1 μm or more and 5 μm or less, more preferably on a positive electrode current collector or negative electrode current collector. can be formed by applying the coating to a thickness of 0.3 μm or more and 2 μm or less and drying it. In this specification, a current collector having a PTC functional composition layer formed on its surface is referred to as a coated current collector. It is preferable that the thickness of the PTC functional composition layer of the coated current collector is 0.1 μm or more, since the PTC function can be sufficiently exhibited during abnormal heat generation. Further, it is preferable that the thickness of the PTC functional composition layer of the coated current collector is 5 μm or less, since it is possible to secure the content ratio of the active material in the electrode and suppress a decrease in battery capacity. By forming a mixture layer on the PTC functional composition layer included in this coated current collector, an electrode for a secondary battery that becomes a positive electrode or a negative electrode can be produced.

より具体的には、PTC機能性組成物層と正極集電体とを備える正極用被覆集電体のPTC機能性組成物層の上に正極合剤層を形成することによって、前記正極を形成することができる。同様に、PTC機能性組成物層と負極集電体とを備える負極用被覆集電体のPTC機能性組成物層の上に負極合剤層を形成することによって、前記負極を形成することができる。 More specifically, the positive electrode is formed by forming a positive electrode mixture layer on the PTC functional composition layer of a coated current collector for a positive electrode that includes a PTC functional composition layer and a positive electrode current collector. can do. Similarly, the negative electrode can be formed by forming a negative electrode mixture layer on the PTC functional composition layer of a coated current collector for a negative electrode that includes a PTC functional composition layer and a negative electrode current collector. can.

以下、本発明を具体的な実施例に基づいてより詳細に説明する。しかしながら、以下の実施例は、あくまでも本発明の一例であり、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on specific examples. However, the following examples are merely examples of the present invention, and the present invention is not limited to the following examples.

<水溶性樹脂の合成>
(水溶性樹脂(B-1)の合成)
メカニカルスターラー、撹拌棒、温度計を装着した2000mLのセパラブルフラスコ内に、アクリルアミド60.0g、イオン交換水1125.0gを仕込んで400rpmにて撹拌した後、系内を窒素置換し、ジャケット温度を85℃の設定にして昇温した。系内温度が60℃になった時点で、2,2´-アゾビス(2-メチル-N-2-ヒドロキシエチルプロピオンアミド)1217mgをイオン交換水15.0gに溶解した開始剤水溶液を添加した。ジャケット温度85℃の設定にて、前述の開始剤添加から12時間撹拌を継続して、無色透明のポリマー水溶液を得た。反応後の水溶液の不揮発分を測定したところ、5.1質量%であった。これを回収して水溶性樹脂(B-1)を5.1質量%含有するpH7.2の水溶液を得た。
<Synthesis of water-soluble resin>
(Synthesis of water-soluble resin (B-1))
60.0 g of acrylamide and 1125.0 g of ion-exchanged water were charged into a 2000 mL separable flask equipped with a mechanical stirrer, stirring rod, and thermometer, and the mixture was stirred at 400 rpm.The inside of the system was replaced with nitrogen, and the jacket temperature was lowered. The temperature was raised to a setting of 85°C. When the temperature inside the system reached 60°C, an aqueous initiator solution containing 1217 mg of 2,2'-azobis(2-methyl-N-2-hydroxyethylpropionamide) dissolved in 15.0 g of ion-exchanged water was added. With the jacket temperature set at 85° C., stirring was continued for 12 hours from the addition of the initiator described above to obtain a colorless and transparent polymer aqueous solution. The nonvolatile content of the aqueous solution after the reaction was measured and found to be 5.1% by mass. This was collected to obtain an aqueous solution containing 5.1% by mass of water-soluble resin (B-1) and having a pH of 7.2.

(水溶性樹脂(B-2)の合成)
メカニカルスターラー、撹拌棒、温度計を装着した2000mLのセパラブルフラスコ内に、アクリルアミド45.0g、メタクリルアミド45.0g、イオン交換水790.0gを仕込んで400rpmにて撹拌した後、系内を窒素置換し、ジャケット温度を85℃の設定にして昇温した。系内温度が60℃になった時点で、2,2´-アゾビス(2-メチル-N-2-ヒドロキシエチルプロピオンアミド)1675mgをイオン交換水20.0gに溶解した開始剤水溶液を添加した。ジャケット温度85℃の設定にて、前述の開始剤添加から12時間撹拌を継続して、無色透明のポリマー水溶液を得た。反応後の水溶液の不揮発分を測定したところ、10.0質量%であった。これを回収して水溶性樹脂(B-2)を10.0質量%含有するpH7.8の水溶液を得た。
(Synthesis of water-soluble resin (B-2))
45.0 g of acrylamide, 45.0 g of methacrylamide, and 790.0 g of ion-exchanged water were charged into a 2000 mL separable flask equipped with a mechanical stirrer, a stirring rod, and a thermometer. After stirring at 400 rpm, the system was filled with nitrogen. After the replacement, the jacket temperature was set at 85°C and the temperature was raised. When the system temperature reached 60° C., an aqueous initiator solution containing 1,675 mg of 2,2'-azobis(2-methyl-N-2-hydroxyethylpropionamide) dissolved in 20.0 g of ion-exchanged water was added. With the jacket temperature set at 85° C., stirring was continued for 12 hours from the addition of the initiator described above to obtain a colorless and transparent polymer aqueous solution. The nonvolatile content of the aqueous solution after the reaction was measured and found to be 10.0% by mass. This was recovered to obtain an aqueous solution containing 10.0% by mass of water-soluble resin (B-2) and having a pH of 7.8.

(水溶性樹脂(B-3)の合成)
メカニカルスターラー、撹拌棒、温度計を装着した2000mLのセパラブルフラスコ内に、N-ビニルホルムアミド100.0g、イオン交換水880.0gを仕込んで400rpmにて撹拌した後、系内を窒素置換し、ジャケット温度を85℃の設定にして昇温した。系内温度が60℃になった時点で、2,2´-アゾビス(2-メチル-N-2-ヒドロキシエチルプロピオンアミド)2028mgをイオン交換水20.0gに溶解した開始剤水溶液を添加した。ジャケット温度85℃の設定にて、前述の開始剤添加から6時間撹拌継続した後、2,2´-アゾビス(2-メチル-N-2-ヒドロキシエチルプロピオンアミド)2028mgをイオン交換水20.0gに溶解した開始剤水溶液を添加して撹拌をさらに6時間継続して、無色透明のポリマー水溶液を得た。反応後の水溶液の不揮発分を測定したところ、10.0質量%であった。これを回収して水溶性樹脂(B-3)を10.0質量%含有するpH7.5の水溶液を得た。
(Synthesis of water-soluble resin (B-3))
In a 2000 mL separable flask equipped with a mechanical stirrer, a stirring rod, and a thermometer, 100.0 g of N-vinylformamide and 880.0 g of ion-exchanged water were charged and stirred at 400 rpm, and then the system was replaced with nitrogen. The jacket temperature was set at 85° C. and the temperature was raised. When the temperature inside the system reached 60° C., an aqueous initiator solution containing 2,028 mg of 2,2′-azobis(2-methyl-N-2-hydroxyethylpropionamide) dissolved in 20.0 g of ion-exchanged water was added. With the jacket temperature set at 85°C, stirring was continued for 6 hours from the addition of the above-mentioned initiator, and then 2028 mg of 2,2'-azobis(2-methyl-N-2-hydroxyethylpropionamide) was added to 20.0 g of ion-exchanged water. An aqueous initiator solution dissolved in the solution was added and stirring was continued for an additional 6 hours to obtain a colorless and transparent aqueous polymer solution. The nonvolatile content of the aqueous solution after the reaction was measured and found to be 10.0% by mass. This was collected to obtain an aqueous solution containing 10.0% by mass of water-soluble resin (B-3) and having a pH of 7.5.

<水溶性樹脂の選定>
水溶性樹脂(B-4)としてカルボキシメチルセルロースのナトリウム塩の1.36質量%水溶液を使用した。また水溶性樹脂(B-5)としてポリアクリル酸のナトリウム塩の25.0質量%溶液を使用した。
<Selection of water-soluble resin>
A 1.36% by mass aqueous solution of sodium salt of carboxymethylcellulose was used as the water-soluble resin (B-4). Further, a 25.0% by mass solution of sodium salt of polyacrylic acid was used as the water-soluble resin (B-5).

<PTC機能性組成物の作製>
(実施例1)
導電性炭素材料として導電材(A-1)を70.0g、結着剤である水溶性樹脂(B-1)を5.1%水溶液588g(固形分として30g)、水100.0gを入れディスパーを用いて3000rpmにて20分間混合した。前記の混合物を吉田工業機械株式会社製NanoVatorにより圧力80MPaにて高圧分散処理した。前記高圧分散処理を3回繰り返し、導電材(A-1)の分散液を得た。次いで、前記分散液に水分散樹脂粒子(C-1)を120g(固形分として30g)ミキサーにて500rpmにて10分間混合し、PTC機能性組成物を得た。
<Preparation of PTC functional composition>
(Example 1)
Add 70.0 g of conductive material (A-1) as a conductive carbon material, 588 g of a 5.1% aqueous solution (30 g as solid content) of water-soluble resin (B-1) as a binder, and 100.0 g of water. Mixing was performed for 20 minutes at 3000 rpm using a disper. The above mixture was subjected to high-pressure dispersion treatment using NanoVator manufactured by Yoshida Kogyo Kikai Co., Ltd. at a pressure of 80 MPa. The high-pressure dispersion treatment was repeated three times to obtain a dispersion of conductive material (A-1). Next, 120 g (30 g as solid content) of the water-dispersed resin particles (C-1) was mixed with the dispersion using a mixer at 500 rpm for 10 minutes to obtain a PTC functional composition.

(実施例2~20)
表4に示す組成比に従って、導電材及び水溶性樹脂及び水分散樹脂粒子の種類及び投入量を変更した以外は同様の手順でPTC機能性組成物及び二次電池セル及び正極対称セル作製を行った。
(Examples 2 to 20)
According to the composition ratio shown in Table 4, a PTC functional composition, a secondary battery cell, and a positive electrode symmetrical cell were prepared using the same procedure except that the types and amounts of the conductive material, water-soluble resin, and water-dispersed resin particles were changed. Ta.

(比較例1~11)
表4に示す組成比に従って、導電材及び水溶性樹脂及び水分散樹脂粒子の種類及び投入量を変更した以外は同様の手順でPTC機能性組成物及び二次電池セル及び正極対称セル作製を行った。
(Comparative Examples 1 to 11)
According to the composition ratio shown in Table 4, a PTC functional composition, a secondary battery cell, and a positive electrode symmetrical cell were prepared using the same procedure except that the types and amounts of the conductive material, water-soluble resin, and water-dispersed resin particles were changed. Ta.

<リチウムイオン二次電池の作製>
(被覆集電体)
厚さ10μmのアルミニウム集電箔上にPTC機能性組成物を、グラビアコーターを用いて厚み1.5μmまたは3μmで塗工乾燥し被覆集電体を作製した。
<Production of lithium ion secondary battery>
(Coated current collector)
A PTC functional composition was coated onto an aluminum current collector foil having a thickness of 10 μm using a gravure coater to a thickness of 1.5 μm or 3 μm and dried to prepare a coated current collector.

(正極作製)
LiCoO、アセチレンブラック、ポリフッ化ビニリデンを固形分の質量比97.7:1.0:1.3でN-メチル-2-ピロリドン溶媒中に分散させて混合することで、正極合剤スラリーを作製した。次いで、乾燥後の合剤塗布量(面密度)が片面18.9mg/cm2になるようにスラリーを、PTC機能性組成物を塗工乾燥した被覆集電体上の片面に塗工乾燥させた後、ロールプレス機で合剤層密度が4.15g/ccとなるようにプレスし、正極を作製した。
(Cathode production)
By dispersing and mixing LiCoO 2 , acetylene black, and polyvinylidene fluoride in an N-methyl-2-pyrrolidone solvent at a solid content mass ratio of 97.7:1.0:1.3, a positive electrode mixture slurry was prepared. Created. Next, the slurry was applied to one side of the coated current collector on which the PTC functional composition had been applied and dried so that the amount of mixture applied (area density) after drying was 18.9 mg/cm 2 on one side. After that, the mixture was pressed using a roll press machine so that the mixture layer density was 4.15 g/cc to prepare a positive electrode.

(負極作製)
人造黒鉛活物質100.0g、カルボキシメチルセルロースのナトリウム塩(CMC)の1.36質量%水溶液75.42g、イオン交換水25.86gを分散させて混合した後、変性スチレンブタジエン共重合体が水溶媒に分散した粒子状分散体aの40質量%水分散液3.85gを加えることで、負極合剤スラリーを作製した。次いで、乾燥後の合剤塗布量(面密度)が片面11.15mg/cm2になるようにスラリーを銅箔上の片面に塗工乾燥させた後、ロールプレス機で合剤層密度が1.42g/ccとなるようにプレスし負極を作製した。
(Negative electrode production)
After dispersing and mixing 100.0 g of artificial graphite active material, 75.42 g of a 1.36 mass% aqueous solution of sodium salt of carboxymethylcellulose (CMC), and 25.86 g of ion-exchanged water, the modified styrene-butadiene copolymer was dissolved in the water solvent. A negative electrode mixture slurry was prepared by adding 3.85 g of a 40% by mass aqueous dispersion of particulate dispersion a dispersed in . Next, the slurry was coated on one side of the copper foil so that the coating amount (area density) of the mixture after drying was 11.15 mg/cm 2 on one side. After drying, the mixture layer density was 11.15 mg/cm 2 with a roll press machine. A negative electrode was produced by pressing to a density of .42 g/cc.

(二次電池セル作製)
上述の片面負極電極、片面正極電極にそれぞれニッケル及びアルミリード線を溶接した後、ポリエチレン製多孔質セパレータを介して片面負極1枚を片面正極1枚で挟む形で積層させることで、電極積層体を作製した。次いで、アルミラミネートフィルム内に上記の電極積層体を、リード線を外部に引き出した状態で収納し、電解液を注液して減圧封止することで初期充電前二次電池セルを作製した。電解液には、エチレンカーボネート/ジメチルカーボネート/エチルプロピオネート/プロピルプロピオネートを15/15/30/40(体積比)で混合した溶媒に1.3MのLiPF6と6.0質量%のフルオロエチレンカーボネートおよび0.5質量%のビニレンカーボネートを溶解させたものを使用した。
(Secondary battery cell production)
After welding nickel and aluminum lead wires to the above-mentioned single-sided negative electrode and single-sided positive electrode, respectively, they are laminated with one single-sided negative electrode sandwiched between one single-sided positive electrode with a porous polyethylene separator interposed between them to form an electrode laminate. was created. Next, the above-mentioned electrode laminate was housed in an aluminum laminate film with the lead wire drawn out to the outside, and an electrolytic solution was injected and the film was sealed under reduced pressure to produce a secondary battery cell before initial charging. The electrolyte contains 1.3M LiPF6 and 6.0% by mass of fluorocarbon in a solvent mixed with ethylene carbonate/dimethyl carbonate/ethylpropionate/propylpropionate in a ratio of 15/15/30/40 (volume ratio). A solution containing ethylene carbonate and 0.5% by mass of vinylene carbonate was used.

(正極対称セル作製)
上述の二次電池セル作製において、片面負極電極を片面正極に変更した以外は同様の手順で、正極対極セルを作製した。
(Creation of positive electrode symmetrical cell)
A positive and counter electrode cell was manufactured in the same manner as described above except that the single-sided negative electrode was changed to a single-sided positive electrode.

<PTC機能性組成物、被覆集電体、電極、非水二次電池の評価>
(凝集物の有無)
実施例1~20および比較例1~11において、BYK社製グラインドメーター(0-50μm)を用い、JIS-K5600-2-5にてPTC機能性組成物内に分散している微粒子径を測定した。顕著な斑点が現れ始める点を読み取り、15μm未満であった場合「凝集無し」とし、15μm以上であった場合「凝集有り」とした。
<Evaluation of PTC functional composition, coated current collector, electrode, and non-aqueous secondary battery>
(Presence or absence of aggregates)
In Examples 1 to 20 and Comparative Examples 1 to 11, the diameter of fine particles dispersed in the PTC functional composition was measured according to JIS-K5600-2-5 using a BYK grind meter (0-50 μm). did. The point at which noticeable spots began to appear was read, and if it was less than 15 μm, it was determined that there was no aggregation, and if it was 15 μm or more, it was determined that there was agglutination.

(抵抗増加)
本実施例におけるPTC機能性組成物のPTC機能評価方法を記載する。電気炉内に正極対称セルを設置し、バッテリーテスタに接続した。次いで、前記正極対称セル表面にK熱電対を耐熱テープで貼り付けた。次いで、電気炉内温度を室温から100℃まで昇温し、前記バッテリーテスタおよび前記K熱電対により1kHzインピーダンスおよびセル表面温度を測定した。昇温時における比較例1の抵抗値を100%として、昇温時の各サンプルの抵抗値の相対的な割合を、“抵抗増加(%)”として算出して表4に記載した。
(increased resistance)
A method for evaluating the PTC function of the PTC functional composition in this example will be described. A positive electrode symmetrical cell was installed in an electric furnace and connected to a battery tester. Next, a K thermocouple was attached to the surface of the positive electrode symmetrical cell using heat-resistant tape. Next, the temperature inside the electric furnace was raised from room temperature to 100° C., and the 1 kHz impedance and cell surface temperature were measured using the battery tester and the K thermocouple. Taking the resistance value of Comparative Example 1 at the time of temperature rise as 100%, the relative ratio of the resistance value of each sample at the time of temperature rise was calculated as "resistance increase (%)" and is listed in Table 4.

(高温サイクル寿命)
実施例1~20および比較例1~11で作製した二次電池セルを、25℃の恒温槽内で、充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.1CAで定電流充電、0.05CAで定電圧充電、0.1CAで定電流放電を1サイクル行い、次いで充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電0.2CAで定電流放電を2サイクル行った。この二次電池を、45℃の恒温槽内に移し、充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電、0.2CAで定電流放電を1サイクル、充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電0.2CAで定電流放電を49サイクル行った。51サイクル目以降前記充放電パターンを200サイクルまで繰り返し行った。200サイクル目の容量維持率(%)を(200サイクル目の放電容量)÷(初回放電容量)×100として算出した。
(High temperature cycle life)
The secondary battery cells produced in Examples 1 to 20 and Comparative Examples 1 to 11 were subjected to a constant current of 0.1 CA in a constant temperature bath at 25° C. under the conditions of an end-of-charge voltage of 4.45 V and an end-of-discharge voltage of 3.0 V. Charge, perform one cycle of constant voltage charging at 0.05 CA, constant current discharging at 0.1 CA, then constant current charging at 0.2 CA under the conditions of charge end voltage 4.45 V and discharge end voltage 3.0 V, 0.05 CA. Two cycles of constant voltage charging and constant current discharging were performed at 0.2 CA. This secondary battery was transferred to a constant temperature chamber at 45°C, and charged at a constant current of 0.2CA, charged at a constant voltage of 0.05CA, and charged at a constant voltage of 0.2CA under the conditions of an end-of-charge voltage of 4.45V and an end-of-discharge voltage of 3.0V. 1 cycle of constant current discharge, 49 cycles of constant current charging at 0.2CA, constant voltage charging at 0.05CA, constant current discharging at 0.2CA under the conditions of charge end voltage 4.45V and discharge end voltage 3.0V. Ta. After the 51st cycle, the above charge/discharge pattern was repeated up to 200 cycles. The capacity retention rate (%) at the 200th cycle was calculated as (discharge capacity at 200th cycle)÷(initial discharge capacity)×100.

(高温貯蔵)
実施例1~20および比較例1~11で作製した二次電池セルを、25℃の恒温槽内で、充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.1CAで定電流充電、0.05CAで定電圧充電0.1CAで定電流放電を1サイクル行い、次いで充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電0.2CAで定電流放電を2サイクル行い、充電終止電圧4.45Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電を行い、前記二次電池を満充電状態にした。満充電状態の二次電池のセル電圧と1kHzインピーダンスをバッテリーテスタにて測定し、60℃の恒温槽内に貯蔵した。貯蔵した満充電状態の二次電池を1、3、7日目に室温に戻し、OCVと1kHzインピーダンスをバッテリーテスタにて測定した後、60℃の恒温槽内に貯蔵した。貯蔵した満充電状態の二次電池を14日目に室温に戻し、OCVと1kHzインピーダンスをバッテリーテスタにて測定した後、25℃恒温槽内で放電終止電圧3.0Vの条件で0.2CAで定電流放電し、次いで、充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電0.2CAで定電流放電を2サイクル行い、残存容量及び復帰容量を測定した。
(high temperature storage)
The secondary battery cells produced in Examples 1 to 20 and Comparative Examples 1 to 11 were subjected to a constant current of 0.1 CA in a constant temperature bath at 25° C. under the conditions of an end-of-charge voltage of 4.45 V and an end-of-discharge voltage of 3.0 V. Charging, constant voltage charging at 0.05 CA, constant current discharging at 0.1 CA for one cycle, then constant current charging at 0.2 CA under conditions of charge end voltage 4.45 V and discharge end voltage 3.0 V, and constant current charging at 0.05 CA. Two cycles of constant voltage charging and constant current discharging at 0.2 CA were performed, and constant current charging at 0.2 CA and constant voltage charging at 0.05 CA were performed at a charge end voltage of 4.45 V to bring the secondary battery into a fully charged state. I made it. The cell voltage and 1 kHz impedance of the fully charged secondary battery were measured using a battery tester, and the battery was stored in a constant temperature bath at 60°C. The stored fully charged secondary batteries were returned to room temperature on the 1st, 3rd, and 7th days, and the OCV and 1 kHz impedance were measured using a battery tester, and then stored in a constant temperature bath at 60°C. After returning the stored fully charged secondary battery to room temperature on the 14th day and measuring the OCV and 1kHz impedance with a battery tester, it was heated at 0.2CA at a discharge end voltage of 3.0V in a 25℃ thermostatic chamber. Constant current discharge, then 2 cycles of constant current charging at 0.2 CA, constant voltage charging at 0.05 CA, and constant current discharging at 0.2 CA under the conditions of a charge end voltage of 4.45 V and a discharge end voltage of 3.0 V, Residual capacity and recovered capacity were measured.

(高温貯蔵時の抵抗増加の評価)
高温貯蔵時の抵抗増加(%)を(高温貯蔵14日目に測定した二次電池の1kHzインピーダンス)÷(高温貯蔵直前に測定した二次電池の1kHzインピーダンス)×100%として算出した。
(Evaluation of resistance increase during high temperature storage)
The increase in resistance (%) during high temperature storage was calculated as (1 kHz impedance of the secondary battery measured on the 14th day of high temperature storage) ÷ (1 kHz impedance of the secondary battery measured immediately before high temperature storage) x 100%.

(高温貯蔵時の電圧低下の評価)
高温貯蔵時の電圧低下(V)を(高温貯蔵直前に測定した二次電池のOCV)-(高温貯蔵14日目に測定した二次電池のOCV)として算出した。
(Evaluation of voltage drop during high temperature storage)
The voltage drop (V) during high-temperature storage was calculated as (OCV of the secondary battery measured immediately before high-temperature storage) - (OCV of the secondary battery measured on the 14th day of high-temperature storage).

(高温貯蔵時の残存容量)
高温貯蔵14日目の1kHzインピーダンスとOCVを測定したのち、25℃恒温槽内で放電終止電圧3.0Vの条件で0.2CAで定電流放電した。この測定で得られた放電容量を高温貯蔵前の満充電容量で除算し、100%をかけたものを高温貯蔵時の残存容量として算出した。
(Residual capacity during high temperature storage)
After measuring the 1 kHz impedance and OCV on the 14th day of high-temperature storage, constant current discharge was performed at 0.2 CA at a discharge end voltage of 3.0 V in a constant temperature bath at 25°C. The discharge capacity obtained in this measurement was divided by the full charge capacity before high temperature storage and multiplied by 100% to calculate the remaining capacity during high temperature storage.

(高温貯蔵時の復帰容量)
高温貯蔵時の残存容量を測定後、25℃恒温槽内で充電終止電圧4.45V、放電終止電圧3.0Vの条件で0.2CAで定電流充電、0.05CAで定電圧充電0.2CAで定電流放電を2サイクル行った。2サイクル目の放電容量を高温貯蔵前の満充電容量で除算し、100%をかけたものを高温貯蔵時の復帰容量として算出した。
(Recovery capacity during high temperature storage)
After measuring the remaining capacity during high-temperature storage, constant current charging at 0.2CA and constant voltage charging at 0.05CA at 0.2CA and constant voltage charging at 0.2CA under the conditions of charge end voltage 4.45V and discharge end voltage 3.0V in a 25℃ constant temperature oven. Two cycles of constant current discharge were performed. The discharge capacity at the second cycle was divided by the full charge capacity before high-temperature storage, and the product was multiplied by 100% to calculate the recovery capacity during high-temperature storage.

(評価結果)
以上に説明した実施例及び比較例で使用した導電材(A-1)~(A-5)の物性を表1に示す。水溶性樹脂(B-1)~(B-3)の構造式を表2に示す、水分散樹脂粒子(C-1)~(C~5)の物性および固形分濃度を表3に示す。また、実施例1~20及び比較例1~11の評価結果を表4にまとめた。
(Evaluation results)
Table 1 shows the physical properties of the conductive materials (A-1) to (A-5) used in the Examples and Comparative Examples described above. The structural formulas of the water-soluble resins (B-1) to (B-3) are shown in Table 2, and the physical properties and solid content concentrations of the water-dispersed resin particles (C-1) to (C-5) are shown in Table 3. Furthermore, the evaluation results of Examples 1 to 20 and Comparative Examples 1 to 11 are summarized in Table 4.

Figure 2023147402000001
Figure 2023147402000001

Figure 2023147402000002
Figure 2023147402000002

Figure 2023147402000003
Figure 2023147402000003

Figure 2023147402000004
Figure 2023147402000004

まず、アンダーコートを有しない比較例1では昇温による抵抗増加が不十分であった。また、アニオン性水溶性樹脂を用いてPTC機能性組成物を作成した比較例2~11では凝集が発生し、実用に供する被覆集電体が得られなかった。本発明の実施の形態で水分散樹脂粒子として用いたポリオレフィン水分散体は変性官能基の導入、pHの調整、界面活性剤の添加などによってエマルションの状態を維持していると考えられるが、比較例2~11で用いた水溶性樹脂(B-4)、(B-5)がイオン性の樹脂であり、これを添加することで前記ポリオレフィン水分散体の分散状態が不安定になり凝集を形成してしまうと考えられる。 First, in Comparative Example 1 without an undercoat, the increase in resistance due to temperature rise was insufficient. Furthermore, in Comparative Examples 2 to 11 in which PTC functional compositions were prepared using anionic water-soluble resins, agglomeration occurred and coated current collectors that could be used for practical use could not be obtained. It is thought that the polyolefin water dispersion used as the water-dispersed resin particles in the embodiment of the present invention maintains an emulsion state by introducing modified functional groups, adjusting the pH, adding a surfactant, etc. The water-soluble resins (B-4) and (B-5) used in Examples 2 to 11 are ionic resins, and their addition makes the dispersion state of the polyolefin water dispersion unstable and causes aggregation. It is thought that it will form.

一方実施例1~20では、PTC機能性組成物を作成する際、凝集が発生することはなく、塗工性及びスラリー安定性に優れていることが確認できた。これは実施例1~20で用いた水溶性樹脂(B-1)、(B-2)、(B-3)がノニオン性であり、変性官能基の導入、pHの調整、界面活性剤の添加などによって維持されているポリオレフィン粒子の分散状態を不安定化しなかったことによると考えられる。また、実施例1~20では、温度上昇時に電気抵抗が十分に上昇し、PTC(正温度係数)機能性を発現することが確認できた。 On the other hand, in Examples 1 to 20, it was confirmed that no aggregation occurred during the preparation of the PTC functional compositions, and that the compositions had excellent coating properties and slurry stability. This is because the water-soluble resins (B-1), (B-2), and (B-3) used in Examples 1 to 20 are nonionic, and the introduction of modified functional groups, pH adjustment, and surfactant This is thought to be due to the fact that the dispersion state of the polyolefin particles maintained by the addition was not destabilized. Furthermore, in Examples 1 to 20, it was confirmed that the electrical resistance increased sufficiently when the temperature rose, and that PTC (positive temperature coefficient) functionality was expressed.

実施例1~12と実施例13~16を比較すると、実施例1~12の高温サイクル寿命および高温貯蔵特性がより優れることが確認された。実施例1~12で用いた水分散樹脂粒子(C-1)、(C-4)、(C-5)はマレイン酸を有する化合物により変性され、実施例13~16で用いた水分散樹脂粒子(C-2)、(C-3)はエチルアクリレートを有する化合物により変性されている。高温サイクル特性や高温貯蔵特性向上の観点から、水分散樹脂粒子の変性はマレイン酸を有する化合物を用いてなされることが好ましいと考えられる。 Comparing Examples 1 to 12 and Examples 13 to 16, it was confirmed that Examples 1 to 12 had better high temperature cycle life and high temperature storage characteristics. The water-dispersed resin particles (C-1), (C-4), and (C-5) used in Examples 1 to 12 were modified with a compound having maleic acid, and the water-dispersed resin particles used in Examples 13 to 16 were Particles (C-2) and (C-3) are modified with a compound containing ethyl acrylate. From the viewpoint of improving high-temperature cycle characteristics and high-temperature storage characteristics, it is considered preferable that the water-dispersed resin particles be modified using a compound containing maleic acid.

実施例1~10で比較すると、PTC機能性組成物中の水分散樹脂粒子の含有量が大きくなるほど、抵抗増加は大きくなる傾向が確認される。PTC機能の向上という観点では、PTC機能性組成物中の水分散樹脂粒子の含有量が大きいほど好ましいと考えられる。一方で実施例1~10の高温サイクル特性および高温貯蔵時の抵抗増加を比較すると、PTC機能性組成物中の水分散樹脂粒子の含有量が小さいほど高温サイクル特性および高温貯蔵時のセル特性が良い傾向が確認される。例えば45℃や60℃等の高温におけるセル特性を良好にするという観点では、PTC機能性組成物中の水分散樹脂粒子の含有量が小さいほど好ましいと考えられる。このようにPTC機能性組成物中の水分散樹脂粒子の含有量を変化させた時、PTC機能とセル特性との間でトレードオフの関係が存在するが、PTC機能性組成物から溶媒などの液体成分を除いた固形分全体を100質量%として、水分散樹脂粒子の含有量が5質量%以上70質量%以下であればPTC機能とセル特性とが両立でき、20質量%以上60質量%以下であればPTC機能とセル特性とがより高度に両立でき、35質量%以上50質量%以下であればPTC機能とセル特性とがさらに高度に両立できる。 Comparing Examples 1 to 10, it is confirmed that the greater the content of water-dispersed resin particles in the PTC functional composition, the greater the resistance increase. From the viewpoint of improving the PTC function, it is considered that the larger the content of water-dispersed resin particles in the PTC functional composition is, the more preferable it is. On the other hand, when comparing the high-temperature cycle characteristics and the increase in resistance during high-temperature storage in Examples 1 to 10, it was found that the smaller the content of water-dispersed resin particles in the PTC functional composition, the better the high-temperature cycle characteristics and cell characteristics during high-temperature storage. A positive trend is confirmed. For example, from the viewpoint of improving cell characteristics at high temperatures such as 45° C. and 60° C., it is considered that the smaller the content of water-dispersed resin particles in the PTC functional composition, the better. When the content of water-dispersed resin particles in the PTC functional composition is changed in this way, there is a trade-off relationship between the PTC function and the cell properties. If the total solid content excluding liquid components is 100% by mass, and the content of water-dispersed resin particles is 5% by mass or more and 70% by mass or less, PTC function and cell properties can be achieved simultaneously, and 20% by mass or more and 60% by mass. If it is below, the PTC function and the cell characteristics can be more highly compatible, and if it is 35% by mass or more and 50% by mass or less, the PTC function and the cell characteristics can be compatible even more highly.

実施例1~10で比較すると、PTC機能性組成物中の炭素材料の含有量が小さくなるほど、抵抗増加は大きくなる傾向が確認される。PTC機能の向上という観点では、PTC機能性組成物中の炭素材料の含有量が小さいほど好ましいと考えられる。一方で実施例1~10の高温サイクル特性および高温貯蔵時の抵抗増加を比較すると、PTC機能性組成物中の炭素材料の含有量が大きくなるほど高温サイクル特性および高温貯蔵時のセル特性が良い傾向が確認される。例えば45℃や60℃等の高温におけるセル特性を良好にするという観点では、PTC機能性組成物中の炭素材料の含有量が大きくなるほど好ましいと考えられる。このようにPTC機能性組成物中の炭素材料の含有量を変化させた時、PTC機能とセル特性との間でトレードオフの関係が存在するが、PTC機能性組成物から溶媒などの液体成分を除いた固形分全体を100質量%として、炭素材料の含有量が10質量%以上70質量%以下であればPTC機能とセル特性とが両立でき、17.5質量%以上35質量%以下であればPTC機能とセル特性とがより高度に両立でき、22.5質量%以上35質量%以下であればPTC機能とセル特性とがさらに高度に両立できる。 Comparing Examples 1 to 10, it is confirmed that the smaller the content of carbon material in the PTC functional composition, the greater the resistance increase. From the viewpoint of improving the PTC function, it is considered that the smaller the content of the carbon material in the PTC functional composition, the more preferable it is. On the other hand, when comparing the high-temperature cycle characteristics and resistance increase during high-temperature storage of Examples 1 to 10, it is found that the higher the content of carbon material in the PTC functional composition, the better the high-temperature cycle characteristics and cell characteristics during high-temperature storage. is confirmed. For example, from the viewpoint of improving cell characteristics at high temperatures such as 45° C. and 60° C., it is considered that the higher the content of the carbon material in the PTC functional composition, the more preferable it is. When the content of carbon material in the PTC functional composition is changed in this way, there is a trade-off relationship between the PTC function and the cell properties. The PTC function and cell properties can be achieved both if the carbon material content is 10% by mass or more and 70% by mass or less, and if the total solid content excluding 100% by mass is 17.5% by mass or more and 35% by mass or less. If it is 22.5% by mass or more and 35% by mass or less, the PTC function and cell characteristics can be compatible to a higher degree.

実施例1の抵抗増加と実施例17の抵抗増加を比較すると、実施例17の抵抗増加が大きいことが確認される。実施例1と実施例17とでは、PTC機能性組成物の組成は同じだが、PTC機能性組成物の厚みが異なる。PTC機能性組成物の厚みが大きい場合、PTC機能が発現した後のPTC機能性組成物層の電気抵抗が大きくなるためPTC機能が大きくなると考えられる。一方で、本発明の実施の形態に記されたような二次電池セル内に設けられたPTC機能性組成物層は、一般的な非水電解質二次電池電極用活物質を含まない。前記二次電池セルのエネルギー密度向上の観点からはPTC機能性組成物層の厚みは小さいほど好ましいと考えられる。このようにPTC機能性組成物層の厚みを変化させた時、PTC機能とセル特性との間でトレードオフの関係が存在するが、PTC機能性組成物を塗工し乾燥させた後のPTC機能性組成物の厚みが0.1μm以上5μm以下であればPTC機能とセル特性とが両立でき、0.3μm以上2μm以下であればより高度に両立できる。 Comparing the increase in resistance in Example 1 and the increase in resistance in Example 17, it is confirmed that the increase in resistance in Example 17 is large. In Example 1 and Example 17, the composition of the PTC functional composition is the same, but the thickness of the PTC functional composition is different. It is thought that when the thickness of the PTC functional composition is large, the electrical resistance of the PTC functional composition layer after the PTC function is expressed becomes large, so that the PTC function becomes large. On the other hand, the PTC functional composition layer provided in the secondary battery cell as described in the embodiment of the present invention does not contain a general active material for non-aqueous electrolyte secondary battery electrodes. From the viewpoint of improving the energy density of the secondary battery cell, it is considered that the smaller the thickness of the PTC functional composition layer, the more preferable it is. When the thickness of the PTC functional composition layer is changed in this way, there is a trade-off relationship between the PTC function and the cell characteristics. If the thickness of the functional composition is 0.1 μm or more and 5 μm or less, PTC function and cell characteristics can be compatible, and if the thickness is 0.3 μm or more and 2 μm or less, they can be compatible to a higher degree.

Claims (10)

導電材と水溶性樹脂と水分散樹脂微粒子と水性媒体とを含有し、
前記水溶性樹脂が、(メタ)アクリルアミド系単量体単位を含有するノニオン性重合体、又はN-ビニルアミド系単量体単位を含有するノニオン性重合体であるPTC機能性組成物。
Contains a conductive material, a water-soluble resin, water-dispersed resin particles, and an aqueous medium,
A PTC functional composition, wherein the water-soluble resin is a nonionic polymer containing a (meth)acrylamide monomer unit or a nonionic polymer containing an N-vinylamide monomer unit.
前記水分散樹脂粒子がポリオレフィン系材料である請求項1に記載のPTC機能性組成物。 The PTC functional composition according to claim 1, wherein the water-dispersed resin particles are a polyolefin material. 前記水分散樹脂粒子がマレイン酸を有する化合物によってその一部又は全ての繰り返し単位が変性されている請求項2に記載のPTC機能性組成物。 The PTC functional composition according to claim 2, wherein a part or all of the repeating units of the water-dispersed resin particles are modified with a compound having maleic acid. 前記導電材が1種類又は複数種類の炭素材料からなるものである請求項1~3のいずれか一項に記載のPTC機能性組成物。 The PTC functional composition according to any one of claims 1 to 3, wherein the conductive material is made of one or more types of carbon materials. 前記水性媒体が、水又は水と相溶な液状媒体である請求項1~4のいずれか一項に記載のPTC機能性組成物。 The PTC functional composition according to any one of claims 1 to 4, wherein the aqueous medium is water or a liquid medium compatible with water. 前記PTC機能性組成物の固形分全体を100質量%として、
前記導電材の含有量が10~70質量%であり、
前記水溶性樹脂の含有量が1~50質量%であり、
前記水分散樹脂粒子の含有量が5~70質量%である請求項1~5のいずれか一項に記載のPTC機能性組成物。
The total solid content of the PTC functional composition is 100% by mass,
The content of the conductive material is 10 to 70% by mass,
The content of the water-soluble resin is 1 to 50% by mass,
The PTC functional composition according to any one of claims 1 to 5, wherein the content of the water-dispersed resin particles is 5 to 70% by mass.
請求項1~6のいずれか一項に記載のPTC機能性組成物を含有するPTC機能性組成物層。 A PTC functional composition layer containing the PTC functional composition according to any one of claims 1 to 6. 請求項7記載のPTC機能性組成物層を備えた非水電解質二次電池用被覆集電体。 A coated current collector for a non-aqueous electrolyte secondary battery, comprising the PTC functional composition layer according to claim 7. 請求項8に記載の非水電解質二次電池用被覆集電体を備えた非水電解質二次電池用電極。 An electrode for a non-aqueous electrolyte secondary battery, comprising the coated current collector for a non-aqueous electrolyte secondary battery according to claim 8. 請求項9に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。

A non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to claim 9.

JP2022054873A 2022-03-30 2022-03-30 Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Pending JP2023147402A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022054873A JP2023147402A (en) 2022-03-30 2022-03-30 Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR1020230041588A KR20230141618A (en) 2022-03-30 2023-03-29 PTC Functional Composition, PTC Functional Composition Layer, Undercoated Current Collector for Non-aqueous Electrolyte Rechargeable Battery, Electrode for Non-aqueous Electrolyte Rechargeable Battery, and for Non-aqueous Electrolyte Rechargeable Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022054873A JP2023147402A (en) 2022-03-30 2022-03-30 Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2023147402A true JP2023147402A (en) 2023-10-13

Family

ID=88288951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022054873A Pending JP2023147402A (en) 2022-03-30 2022-03-30 Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2023147402A (en)
KR (1) KR20230141618A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279251A4 (en) 2015-03-30 2018-12-05 Toyo Ink Sc Holdings Co., Ltd. Electrically conductive composition, under layer-attached current collector for electric storage devices, electrode for electric storage devices, and electric storage device
WO2019003721A1 (en) 2017-06-30 2019-01-03 株式会社村田製作所 Lithium-ion secondary cell

Also Published As

Publication number Publication date
KR20230141618A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
US20180040899A1 (en) Positive electrode for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
US10483525B2 (en) Non-aqueous electrolyte secondary battery
US10727528B2 (en) Method of producing lithium ion secondary battery
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
JPWO2011162169A1 (en) Lithium ion secondary battery
JP2016119221A (en) Wound electrode element for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing wound electrode element for nonaqueous electrolyte secondary battery
JP2019507460A (en) A negative electrode and a secondary battery including the negative electrode
JP2017062911A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20150147627A1 (en) Rechargeable lithium battery
WO2016157735A1 (en) Non-aqueous electrolyte secondary battery
WO2024114128A1 (en) Sodium-ion battery
JP2015524601A (en) Lithium secondary battery
JP7053255B2 (en) Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
US20240030446A1 (en) Negative electrode slurry, negative electrode, and rechargeable battery
KR102512063B1 (en) Negative electrode mixture for rechargeable battery, negative electrode for rechargeable battery including the same and rechargeable battery including the same
JP7134555B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP7460261B2 (en) Secondary battery charging and discharging method
JP7427312B2 (en) Deterioration diagnosis method for electrode active materials for lithium secondary batteries
CN113270572B (en) Negative electrode for lithium ion secondary battery and method for manufacturing same
JP2009187819A (en) Method for manufacturing paste for lithium-ion secondary battery
JP2015103404A (en) Negative electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2023543242A (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured thereby
KR20220049447A (en) Negative electrode slurry, negative electrode and rechargeable bettery
JP2023147402A (en) Ptc functional composition, ptc functional composition layer, coated current collector for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery