JP2023143573A - Riser and casting method having high molten metal feed efficiency - Google Patents

Riser and casting method having high molten metal feed efficiency Download PDF

Info

Publication number
JP2023143573A
JP2023143573A JP2022073779A JP2022073779A JP2023143573A JP 2023143573 A JP2023143573 A JP 2023143573A JP 2022073779 A JP2022073779 A JP 2022073779A JP 2022073779 A JP2022073779 A JP 2022073779A JP 2023143573 A JP2023143573 A JP 2023143573A
Authority
JP
Japan
Prior art keywords
feeder
molten metal
riser
height
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022073779A
Other languages
Japanese (ja)
Other versions
JP7240578B1 (en
Inventor
政人 五家
Masato Goie
茂隆 森田
Shigetaka Morita
健太郎 矢野
Kentaro Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOUNDRY TECH CONSULTING KK
Original Assignee
FOUNDRY TECH CONSULTING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOUNDRY TECH CONSULTING KK filed Critical FOUNDRY TECH CONSULTING KK
Priority to JP2022073779A priority Critical patent/JP7240578B1/en
Application granted granted Critical
Publication of JP7240578B1 publication Critical patent/JP7240578B1/en
Publication of JP2023143573A publication Critical patent/JP2023143573A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

To provide a riser and a casting method increasing the molten metal feed action of a riser and reducing a casting amount.SOLUTION: The shape of a riser is made into a combined shape in which a lower part is made into a heat source part having a size of thermally insulating a riser neck part connected to a product part for a suitable time, and an upper part is made into a static pressure part having a fine and high shape to increase molten metal feed pressure, so that the molten metal feed action of the riser is increased and a riser volume is reduced. Further, by executing reduced molten metal feed, a molten metal pressure acted on a riser tip part is reduced to increase the molten metal feed action and to reduce a casting amount.SELECTED DRAWING: Figure 1

Description

鋳鉄系溶湯を重力注湯する鋳造に用いる給湯効率の高い押湯と、これを用いた鋳込量を削減する鋳造方法を提供するものである。 The object of the present invention is to provide a feeder with high water supply efficiency for use in gravity pouring of molten cast iron, and a casting method using the feeder to reduce the amount of pouring.

鋳鉄材は自動車部品を始めとして建設機械、配管、一般機械の部品として広く使われている材料であるが、溶解工程で消費するエネルギーは膨大で、その省エネルギーのため、鋳造歩留り=製品重量/全鋳込重量を向上して鋳込量を削減することが重要な課題である。このためには、押湯の給湯作用を高めて押湯体積を削減することや、何らかの方法で鋳込量を削減することが必要である。 Cast iron is a material that is widely used as parts for automobile parts, construction machinery, piping, and general machinery, but the melting process consumes a huge amount of energy, and in order to save energy, the casting yield = product weight / total An important issue is to improve the casting weight and reduce the casting amount. For this purpose, it is necessary to reduce the volume of the feeder by increasing the hot water supply effect of the riser, or to reduce the amount of pouring by some method.

まず押湯の給湯作用を高めるために用いる技術について、従来技術では、(1)押湯を高くするまたは大きくする。(2)湯口の溶湯高さを高くして押湯及び製品部に高い溶湯静圧をかける。(3)発熱スリーブや発熱材を使用する、などの方法が用いられている。しかし、(1)は押湯体積が大きくなり鋳造歩留りが低下する。(2)は押湯頂部に作用する溶湯静圧が高くなり、押湯頂部に凝固殻を生成し易く殻被り現象が生じ易く、その結果大気圧を有効に利用できず、押湯からの給湯作用が低下して製品に引け巣欠陥が生じ易い。また、(3)は発熱スリーブなどの補助材料の費用がかかるので適用が限定される。したがって、いずれも汎用的かつ安価な手段で押湯の給湯作用を高める方法ではなく、この解決が課題である。 First, regarding the techniques used to enhance the hot water supply effect of the feeder, the conventional techniques include (1) raising or enlarging the feeder; (2) Increase the height of the molten metal at the sprue to apply high molten metal static pressure to the feeder and product area. (3) Methods such as using a heat generating sleeve or heat generating material are used. However, in (1), the feeder volume increases and the casting yield decreases. In (2), the static pressure of the molten metal acting on the top of the feeder becomes high, and a solidified shell is likely to form at the top of the feeder, causing a shell covering phenomenon.As a result, atmospheric pressure cannot be used effectively, and hot water is not supplied from the feeder. The effect is reduced and shrinkage defects are likely to occur in the product. In addition, (3) requires the cost of auxiliary materials such as heat-generating sleeves, so its application is limited. Therefore, none of these methods is a general-purpose and inexpensive method for increasing the hot water supply effect of the feeder, and the problem is to solve this problem.

次に鋳込量の削減について、従来技術では、(1)湯口部の湯口カップの大きさを小さくする。(2)注湯時に注湯量を減らす、などの方法が行われている。しかし、(1)は注湯時の湯こぼれの問題があり適用には限界がある。(2)は製品部及び押湯の高さに応じて適宜採用されているが、湯口カップの範囲内で試行錯誤の結果をもとに一部で行われている程度で、明確な技術思想として確立されてはいない。したがって、鋳込量の削減が可能な新規な方法の開発が課題である。 Next, regarding the reduction of the pouring amount, in the conventional technology, (1) the size of the sprue cup of the sprue portion is reduced. (2) Methods such as reducing the amount of molten metal poured when pouring the molten metal have been used. However, (1) has a problem of hot water spilling during pouring, and its applicability is limited. (2) is adopted as appropriate depending on the height of the product and riser, but it is only done in some cases based on the results of trial and error within the range of the sprue cup, and there is no clear technical concept. It has not been established as such. Therefore, the challenge is to develop a new method that can reduce the amount of casting.

また上記のように、押湯の給湯作用を高めることと鋳込量を削減することは別個の技術として取組まれており、両方を同時に改善する方法ないし技術思想は見当たらない。本願はこの点に着目して発案されたものである。 Furthermore, as mentioned above, increasing the hot water supply effect of the feeder and reducing the amount of pouring have been tackled as separate technologies, and there is no method or technical idea to improve both at the same time. The present application was devised focusing on this point.

従来技術についてさらに、押湯形状、押湯削減、溶湯削減などのキーワードで特許文献を検索した結果、主要なものとして下記の文献が認められた。
Regarding the prior art, we further searched patent documents using keywords such as feeder shape, feeder reduction, and molten metal reduction, and as a result, the following documents were recognized as major ones.

特許第5696321号Patent No. 5696321 特許第5696322号Patent No. 5696322 特許第5458295号Patent No. 5458295 特開2020-124735JP2020-124735

通常、鋳型キャビティーは、製品部、押湯、湯道、湯口で構成されている。本発明では上記問題点に鑑み、給湯作用が高くかつ鋳込量の削減が可能な押湯、すなわち給湯効率の高い押湯、及びこの押湯を用いて鋳込量の削減が可能な鋳造方法を提供するものである。本願の基本的な技術思想はどの材質にも適用可能であるが、特に自動車部品、各種産業部品などに多く用いられている鋳鉄系材料の鋳造に効果的である。 Typically, a mold cavity consists of a product section, a riser, a runner, and a sprue. In view of the above-mentioned problems, the present invention provides a feeder that has a high hot water supply effect and can reduce the amount of poured metal, that is, a feeder with high hot water supply efficiency, and a casting method that uses this feeder to reduce the amount of poured metal. It provides: Although the basic technical idea of the present application can be applied to any material, it is particularly effective for casting cast iron materials that are often used in automobile parts, various industrial parts, etc.

(手段1)
鋳鉄系溶湯を通気性鋳型に重力注湯する鋳造に用いる押湯であって、該押湯の形状は、下部は製品部につながる押湯ネック部を適宜の時間保温する大きさの熱源部とし、上部は細く高くして給湯圧を高める静圧部とした組み合わせ形状であって、該押湯の最大径をD1、最小径をD2、高さをH1、熱源部と静圧部の接する部分の径をD3、静圧部の高さをH2、熱源部の凝固モジュラスをMf、製品部の凝固モジュラスをMcとするとき、押湯の全体形状は0.3≦D2/D1≦0.6、H1/D1≧1.5であり、熱源部は0.8≦Mf/Mc≦1.7であり、静圧部は0.4≦D3/D1≦0.8、H2/D3≧1であることを特徴とする押湯である。
(Measure 1)
This feeder is used for casting in which molten cast iron is poured into a breathable mold by gravity, and the shape of the feeder is such that the lower part is a heat source large enough to keep the neck of the feeder connected to the product section warm for an appropriate period of time. , the upper part is thin and high and has a combination shape with a static pressure part that increases hot water supply pressure, the maximum diameter of the feeder is D1, the minimum diameter is D2, the height is H1, and the part where the heat source part and the static pressure part contact The diameter of the feeder is D3, the height of the static pressure part is H2, the solidification modulus of the heat source part is Mf, and the solidification modulus of the product part is Mc, then the overall shape of the feeder is 0.3≦D2/D1≦0.6 , H1/D1≧1.5, the heat source part is 0.8≦Mf/Mc≦1.7, and the static pressure part is 0.4≦D3/D1≦0.8, H2/D3≧1. It is a boiler bath that is characterized by certain things.

まず、押湯の給湯作用について説明する。押湯が十分な給湯作用を行うためには、押湯頂部が長く融液状態を保ち、大気圧が長時間作用することが重要である。これが発現できた時は、いわゆる押湯頂部の引けが大きくなり、その引け量相当分が製品部へ給湯されたことがわかる。押湯頂部を長く融液状態に保つことの重要性は一般にも認識されており、そのために押湯頂部に発熱剤あるいはウィリアムスコア(突起状の砂型)などが用いられることもある。しかし、これらは費用面及び設置の手間などで採用は少ない。 First, the hot water supply function of the riser will be explained. In order for the feeder to perform a sufficient hot water supply action, it is important that the top of the feeder maintains a molten state for a long time and that atmospheric pressure acts for a long time. When this occurs, the so-called shrinkage at the top of the feeder becomes large, and it can be seen that an amount equivalent to the shrinkage amount is supplied to the product section. It is generally recognized that it is important to keep the top of the feeder in a molten state for a long time, and for this purpose, exothermic agents or Williams cores (protruding sand molds) are sometimes used at the top of the feeder. However, these are rarely adopted due to cost and installation effort.

次に従来の押湯について説明する。その押湯形状は、一般的には円柱体で図2に示すような形状のものが使われている。その技術思想は、押湯のサイズ及び形状は、製品部の凝固モジュラス(体積/表面積)に対応した適宜の凝固モジュラスから決まる体積に見合う直径と高さをもつ円柱体となっている。 Next, a conventional feeder will be explained. The feeder generally has a cylindrical shape as shown in FIG. 2. The technical idea is that the size and shape of the feeder is a cylindrical body with a diameter and height commensurate with the volume determined by an appropriate solidification modulus (volume/surface area) corresponding to the solidification modulus (volume/surface area) of the product part.

本願発明者らは、鋳造後の多くの押湯の調査から、このような従来形状の押湯では次のような問題点があることがわかった。すなわち、押湯頂部の平面部が広いので凝固初期の押湯頂部の湯面低下が小さく、そのため凝固殻ができ易く長くは融液状態を保持できない。その結果、押湯頂部からの大気圧が作用しにくくなり、押湯は有効な給湯作用を働かせることができなくなる場合が多い。これがいわゆる押湯頂部からの引けが誘発されない又はされにくい状態である。たとえ押湯頂部が引けても凝固完了時の引け量(給湯量)は小さく、押湯上部は体積の大きな円柱体になっているので無駄な部分が多く、鋳造歩留りを低下させる原因となっている。すなわち、給湯効率の低い押湯である。 The inventors of the present application investigated many feeders after casting and found that such conventionally shaped feeders have the following problems. That is, since the flat surface of the top of the feeder is wide, the drop in the level of the molten metal at the top of the feeder during the initial stage of solidification is small, and therefore a solidified shell is easily formed and the molten state cannot be maintained for a long time. As a result, the atmospheric pressure from the top of the feeder becomes difficult to act on, and the feeder is often unable to exert an effective hot water supply action. This is a so-called state in which shrinkage from the top of the feeder is not induced or is difficult to occur. Even if the top of the feeder shrinks, the amount of shrinkage (amount of hot water supplied) upon completion of solidification is small, and since the top of the feeder is a cylindrical body with a large volume, there is a lot of waste, which causes a decrease in casting yield. There is. In other words, it is a feeder with low hot water supply efficiency.

従来、押湯の給湯作用を高めて製品の引け巣欠陥を防止するために、先述のように、押湯の体積を大きくする又は高さを増して溶湯圧を大きくする、あるいは、湯口高さを高くして溶湯圧を大きくする、などが行われてきた。このため鋳込量削減とは逆作用で何とか製品の健全性を確保してきた。しかし、製品に引け巣欠陥が生じるたびに押湯が大きくなるばかりである。本願発明者らは、このような対応とは全く異なる技術思想で高い給湯作用と溶湯削減を両方達成する方法を提供するものである。 Conventionally, in order to enhance the hot water supply effect of the feeder and prevent shrinkage cavity defects in products, as mentioned above, the volume or height of the feeder was increased to increase the molten metal pressure, or the height of the sprue was increased. Efforts have been made to increase the molten metal pressure by increasing the molten metal pressure. For this reason, we have managed to ensure the integrity of the product by having the opposite effect of reducing the amount of casting. However, each time a shrinkage cavity defect occurs in the product, the size of the feeder increases. The inventors of the present application provide a method that achieves both a high hot water supply effect and a reduction in molten metal using a completely different technical concept from such a solution.

本手段における押湯は、まず(1)押湯の形状は、下部は製品部につながる押湯ネック部を保温する熱量を有する体積の熱源部とし、上部は細く高くして給湯圧を高める静圧部とした組み合せ形状である。 The shape of the feeder according to this method is as follows: (1) The shape of the feeder is that the lower part is a heat source with a volume that has enough heat to keep the neck of the feeder connected to the product part warm, and the upper part is thin and high to serve as a static heat source to increase hot water supply pressure. It has a combined shape with a pressure part.

この押湯では、下部の熱源部によって押湯から製品部につながる押湯ネック部は保温され、適宜の時間、製品部への溶湯補給が可能になっている。また、上部の静圧部は細く高くなっているので、凝固初期の押湯頂部の湯面低下が早くかつその量が大きい。そのため鋳型と溶湯の間に早期に厚い空気層が発生して断熱され、凝固殻の生成が遅延され融液状態を長く保持できる。その結果、押湯頂部から大気圧が長時間作用して給湯作用が高められる。また、押湯上部の静圧部を細く高くしているので、この部分は従来の押湯に比べて体積も小さく溶湯削減となる。すなわち給湯作用と鋳込量削減の両方の作用が可能な給湯効率の高い押湯である。 In this feeder, the neck of the feeder that connects the feeder to the product section is kept warm by the lower heat source section, making it possible to replenish molten metal to the product section for an appropriate period of time. In addition, since the upper static pressure section is narrow and high, the level of the feeder at the top of the feeder drops quickly and by a large amount in the initial stage of solidification. Therefore, a thick air layer is generated early on between the mold and the molten metal, providing insulation, delaying the formation of a solidified shell, and allowing the molten metal to remain in a molten state for a long time. As a result, atmospheric pressure acts from the top of the feeder for a long time, increasing the hot water supply effect. In addition, since the static pressure section at the top of the feeder is made thin and high, this section has a smaller volume than conventional feeders, reducing the amount of molten metal. In other words, it is a feeder with high hot water supply efficiency that can both feed hot water and reduce the amount poured.

本手段の押湯形状をさらに詳細に説明すると、(2)押湯の全体形状は0.3≦D2/D1≦0.6、H1/D1≧1.5であり、熱源部は0.8≦Mf/Mc≦1.7であり、静圧部は0.4≦D3/D1≦0.8、H2/D3≧1である。 To explain the feeder shape of this means in more detail, (2) the overall shape of the feeder satisfies 0.3≦D2/D1≦0.6, H1/D1≧1.5, and the heat source portion is 0.8 ≦Mf/Mc≦1.7, and the static pressure portion satisfies 0.4≦D3/D1≦0.8, H2/D3≧1.

押湯の全体形状は、最大径D1と最小径D2及び高さH1で規定した。最小径D2は最大径D1より小さく、上部が細い形状としている。これは、上記で説明したように、凝固にともなう押湯頂部の湯面低下を早くかつその量を大きくして、鋳型と湯面の間に早期に厚い空気層を作って融液状態を長時間保持して給湯作用を高めるためである。また、高さH1は製品部高さに応じて適宜の高さとする。押湯頂部は製品部高さより高くする方が好ましいが、特にこれに限定されるものではない。本手段の場合、押湯頂部を製品部高さより高くしても静圧部を細くしているので小さな体積増加ですむ。 The overall shape of the riser was defined by a maximum diameter D1, a minimum diameter D2, and a height H1. The minimum diameter D2 is smaller than the maximum diameter D1, and the upper part has a narrow shape. As explained above, this is to speed up and increase the drop in the melt level at the top of the feeder due to solidification, and to create a thick air layer between the mold and the melt surface at an early stage to prolong the molten state. This is to maintain the time and enhance the hot water supply effect. Further, the height H1 is set to an appropriate height depending on the height of the product section. Although it is preferable that the top of the feeder be higher than the height of the product part, the height is not particularly limited to this. In the case of this means, even if the top of the feeder is made higher than the height of the product part, the static pressure part is made thinner, so only a small increase in volume is required.

熱源部は、製品部の凝固モジュラスに対応した凝固モジュラスの大きさとした。図2に示した従来押湯の凝固モジュラスMrは、製品部の凝固モジュラスをMcとすると、古くからの研究ではMr/Mc=(1.2~1.4)程度が適正値とされてきたが、実用的にはMr/Mc=(1.5~2.5)が使われている。この理由は、上記に説明したような従来押湯のもつ押湯頂部の引け性の不安定によるものである。また、製品が複雑になったこと、あるいは量産における溶湯性状のバラツキを補償するためなどであると考えられる。 The heat source part had a solidification modulus that corresponded to the solidification modulus of the product part. For the solidification modulus Mr of the conventional riser shown in Figure 2, where Mc is the solidification modulus of the product part, long-standing research has shown that the appropriate value is approximately Mr/Mc = (1.2 to 1.4). However, Mr/Mc=(1.5 to 2.5) is practically used. The reason for this is the unstable shrinkage of the top of the conventional feeder, as explained above. It is also thought to be due to the complexity of the product or to compensate for variations in molten metal properties during mass production.

本手段の熱源部の凝固モジュラスMfは、0.8≦Mf/Mc≦1.7であり従来押湯に比べて小さな値(小さい体積)であるが、適宜の時間、製品部につながる押湯ネック部を保温して給湯できるようにした。この値については、溶湯材質、鋳型種類、製品形状などに応じて適宜の値を用いるようにする。例えば、溶湯材質では、片状黒鉛鋳鉄、バーミキュラー黒鉛鋳鉄、球状黒鉛鋳鉄の順で前者ほど小さな値を用いるようにする。また、鋳型種類では、シェル鋳型、自硬性鋳型、生砂鋳型の順で前者ほど小さな値を用いるようにする。また、製品形状については、単純形状品、厚肉品ほど小さな値を、複雑形状、薄肉品ほど大きな値を用いるようにする。一般的な鋳造条件ではこれらの組合せとなり、凝固シミュレーション又は経験に基づいてこの範囲の適宜の値を用いるようにする。 The solidification modulus Mf of the heat source section of this means is 0.8≦Mf/Mc≦1.7, which is a smaller value (smaller volume) than that of conventional feeders, but the feeder connected to the product section for an appropriate time The neck part was kept warm and hot water could be supplied. For this value, an appropriate value is used depending on the molten metal material, mold type, product shape, etc. For example, for the molten metal material, use a smaller value for flaky graphite cast iron, vermicular graphite cast iron, and spheroidal graphite cast iron in the order of the former. Furthermore, regarding the mold type, the smaller the value is used in the order of shell mold, self-hardening mold, and green sand mold, the former is used. Regarding the product shape, a smaller value is used for products with simpler shapes and thicker walls, and a larger value is used for products with more complex shapes and thinner walls. General casting conditions are a combination of these, and appropriate values within this range are used based on solidification simulation or experience.

本手段の熱源部の凝固モジュラスMfは従来に比べ小さくなっているが、押湯頂部を細く高くしているので上記のように凝固にともなう押湯頂部の引け誘発効果が大きくなっており、熱源部の凝固モジュラスが小さくなってもこれを補償できる。また凝固モジュラスが小さくなっているので押湯体積の削減にも寄与できるようになっている。なお、凝固モジュラスMfについては、給湯作用と溶湯削減のバランスを考慮すると、1.0≦Mf/Mc≦1.5が好ましい。 Although the solidification modulus Mf of the heat source part of this means is smaller than that of the conventional one, since the top of the feeder is thin and high, the effect of inducing shrinkage of the top of the feeder due to solidification is increased as described above, and the heat source Even if the solidification modulus of the part becomes smaller, this can be compensated for. Furthermore, since the coagulation modulus is small, it can also contribute to reducing the feeder volume. Note that the solidification modulus Mf is preferably 1.0≦Mf/Mc≦1.5 when considering the balance between hot water supply action and molten metal reduction.

また、静圧部は給湯圧と溶湯削減を考慮した形状とした。D3/D1によって、熱源部と静圧部の境界の径を規定した。その境界部には造型時の成型性及び型抜き性を考慮して適宜のつなぎRを付すことが望ましい。また、H2/D3によって静圧部の高さを規定した。この高さは、製品部の高さに応じて適宜の高さにする。 In addition, the shape of the static pressure section was designed to take into consideration the hot water supply pressure and the reduction of molten metal. The diameter of the boundary between the heat source section and the static pressure section was defined by D3/D1. It is desirable to attach an appropriate connecting R to the boundary portion in consideration of moldability and demoldability during molding. Further, the height of the static pressure section was defined by H2/D3. This height is set to an appropriate height depending on the height of the product section.

熱源部は球状体、楕円体又は円柱状が効率がよい。特に球状体とこれに近い楕円体は単位体積当たりの凝固モジュラスが最も大きく給湯効率が高く溶湯削減の効果が大きい。静圧部はテーパー状の円柱体が簡便で使い易い。本願押湯の作用効果はこれらに限定せれず上記の条件に合うものであればよい。 A spherical, ellipsoidal or cylindrical shape of the heat source is efficient. In particular, spherical bodies and ellipsoidal bodies similar to spherical bodies have the highest solidification modulus per unit volume, have high hot water supply efficiency, and are highly effective in reducing molten metal. The static pressure part has a tapered cylindrical body that is simple and easy to use. The effects of the riser of the present application are not limited to these, but may be any that meet the above conditions.

(手段2)
手段1記載の押湯を用いて、鋳込量を全キャビティーの体積よりも減量して注湯することにより、注湯完了時点において、鋳型見切面からの湯口の湯面高さをH3、押湯頂部の高さをH4、鋳型上面の高さをH5とするとき、H3-H4≦(H5-H4)/2として、押湯頂部に作用する溶湯圧を低くすることで、押湯頂部の凝固殻の形成を遅延させて融液状態を保持し、凝固収縮にともなう押湯の給湯作用を高めることを特徴とする鋳造方法である。
(Means 2)
By using the riser described in Means 1 and pouring the metal in a smaller amount than the volume of the entire cavity, the height of the sprue level at the sprue from the mold parting surface to H3, at the time of completion of pouring. When the height of the top of the feeder is H4 and the height of the top surface of the mold is H5, by setting H3-H4≦(H5-H4)/2 and lowering the molten metal pressure acting on the top of the feeder, the top of the feeder This casting method is characterized by delaying the formation of a solidified shell to maintain the molten state and enhancing the hot water supply action of the feeder due to solidification and contraction.

手段1の押湯によって給湯作用が高くかつ溶湯削減が可能になったので、さらに本手段では、鋳込量を全キャビティーの体積より減量して注湯することで注湯完了時点の湯口の湯面を下げ、押湯の給湯作用を高めるとともに鋳込量削減を可能にするようにした。すなわち、注湯完了時点の湯口の湯面を下げることによって、湯口の湯面高さと押湯頂部の高さの差を、全キャビティーの体積分の溶湯を注湯するときよりも小さくしている。これによって、湯口から押湯頂部に作用する溶湯圧は小さくなり熱伝達が下がる。そのため本願押湯の押湯頂部の凝固殻の形成がさらに遅延され融液状態がより長く保持されるので、大気圧がより長時間作用して押湯から製品部への給湯作用が高められる。また同時に湯口の溶湯も削減される。 Since the feeder of Means 1 has a high hot water supply effect and makes it possible to reduce the amount of molten metal, in this means, the pouring amount is reduced from the volume of the entire cavity, thereby reducing the amount of water at the sprue at the time of completion of pouring. The molten metal level is lowered, increasing the hot water supply effect of the riser and making it possible to reduce the amount of pouring. In other words, by lowering the molten metal level at the sprue when pouring is complete, the difference between the molten metal level at the sprue and the height of the top of the feeder is made smaller than when pouring molten metal for the volume of the entire cavity. There is. As a result, the molten metal pressure acting from the sprue to the top of the feeder decreases, reducing heat transfer. Therefore, the formation of a solidified shell at the top of the feeder of the present invention is further delayed and the molten state is maintained for a longer period of time, so atmospheric pressure acts for a longer period of time and the action of supplying hot water from the riser to the product section is enhanced. At the same time, the amount of molten metal in the sprue is also reduced.

その効果を発現させるために、鋳型見切面からの湯口の湯面高さをH3、押湯頂部の高さをH4、鋳型上面の高さをH5とするとき、H3-H4≦(H5-H4)/2としている。H3-H4は本手段で減量して注湯した場合の押湯頂部に作用する溶湯圧に相当する高さであり、H5-H4は従来技術で全キャビティーの体積分の溶湯を注湯した場合の溶湯圧に相当する高さである。本手段によって、押湯頂部に作用する溶湯圧は半分以下になり、押湯頂部の凝固がさらに遅延され融液状態を保持し易くなり、より長時間大気圧が作用して給湯作用を高められる。また、この条件に合う減量注湯では、大抵の場合、湯口のうち体積の大きな湯口カップ部は削減されるようになっているので、溶湯削減にも効果が大きい。 In order to achieve this effect, when the height of the sprue level from the mold parting surface is H3, the height of the top of the feeder is H4, and the height of the top surface of the mold is H5, H3-H4≦(H5-H4 )/2. H3-H4 is the height corresponding to the molten metal pressure acting on the top of the feeder when the molten metal is poured in a reduced amount using this method, and H5-H4 is the height when molten metal is poured for the volume of the entire cavity using the conventional technique. This height corresponds to the molten metal pressure in the case of By this means, the pressure of the molten metal acting on the top of the feeder is reduced to less than half, the solidification at the top of the feeder is further delayed and the molten state is easily maintained, and atmospheric pressure is applied for a longer period of time, increasing the hot water supply effect. . In addition, in the case of pouring a reduced amount of molten metal that meets this condition, in most cases, the sprue cup portion with a large volume of the sprue is reduced, which is highly effective in reducing the amount of molten metal.

以上のように、手段1の押湯によって給湯作用が高く、かつ鋳込量削減が可能な押湯が提供でき、手段2の鋳造方法によっても同じく、給湯作用が高く、かつ鋳込量削減が可能な鋳造方法が提供できた。好ましくは、2つの手段を併用することで大幅な溶湯削減が可能となる。両手段とも従来技術では不可能とされていた、給湯作用を高めることと、鋳込量を削減するという2つの背反する目的を可能にするものである。これらは、従来技術の技術思想とは全く異なる新規な技術思想に基づくものである。この結果、給湯作用の向上による製品の品質改善と併せて大幅な溶湯削減が可能になり、省エネルギー、CO削減に大いに貢献するものである。As described above, the feeder of Means 1 can provide a feeder that has a high hot water supply effect and can reduce the amount of casting, and the casting method of Means 2 also has a high hot water supply effect and can reduce the pouring amount. We were able to provide a possible casting method. Preferably, by using the two means in combination, it is possible to significantly reduce the amount of molten metal. Both methods enable the two contradictory purposes of increasing the hot water supply effect and reducing the pouring amount, which were considered impossible with the prior art. These are based on novel technical ideas that are completely different from those of the prior art. As a result, it is possible to significantly reduce the amount of molten metal as well as improve the quality of the product by improving the hot water supply effect, which greatly contributes to energy conservation and CO2 reduction.

本発明の実施例1の押湯を示す図である。 It is a figure showing the feeder of Example 1 of the present invention. 従来技術の押湯を示す図である。 1 is a diagram showing a conventional feeder; FIG. 本発明の実施例2の押湯を示す図である。 It is a figure which shows the riser of Example 2 of this invention. 本発明の実施例3の押湯を示す図である。 It is a figure which shows the riser of Example 3 of this invention. 本発明の実施例4の凝固初期の押湯頂部の引け状態を示す図である。 It is a figure which shows the shrinkage state of the feeder top part in the initial stage of solidification of Example 4 of this invention. 本発明の実施例4の凝固完了時の押湯頂部の引け状態を示す図である。 It is a figure which shows the shrinking state of the feeder top part at the completion of solidification in Example 4 of the present invention. 本発明の実施例5の従来押湯に対する本願押湯の溶湯削減量を検討する図である。 It is a figure which examines the amount of molten metal reduction of the feeder of this invention with respect to the conventional feeder of Example 5 of this invention. 本発明の実施例6の注湯完了時点の状態を示す図である。 It is a figure which shows the state at the time of completion of pouring in Example 6 of this invention.

以下に本発明を実施例にもとづいて詳細に説明するが、これら実施例によって本発明が限定されるものではない。 The present invention will be explained in detail below based on Examples, but the present invention is not limited to these Examples.

図1は本願手段1を用いた押湯の形状の一例を示したものである。本願押湯1は下部の熱源部2として球状体を用い、上部の静圧部3として細く高いテーパー状の円柱体を組合せた形状である。押湯の図の横に各部の形状寸法の関係を示している。押湯の最大径をD1、最小径をD2、高さをH1、熱源部2と静圧部3の接する部分の径をD3、静圧部の高さをH2、熱源部2の凝固モジュラスをMf、製品部(図示せず)の凝固モジュラスをMcとするとき、押湯の全体形状1は0.3≦D2/D1≦0.6、H1/D1≧1.5であり、熱源部2は0.8≦Mf/Mc≦1.7であり、静圧部3は0.4≦D3/D1≦0.8、H2/D3≧1である。 FIG. 1 shows an example of the shape of a feeder using the means 1 of the present application. The feeder 1 of the present invention has a shape in which a spherical body is used as the lower heat source part 2, and a thin and high tapered cylindrical body is used as the upper static pressure part 3. The relationship between the shapes and dimensions of each part is shown next to the diagram of the riser. The maximum diameter of the riser is D1, the minimum diameter is D2, the height is H1, the diameter of the part where heat source part 2 and static pressure part 3 are in contact is D3, the height of the static pressure part is H2, and the solidification modulus of heat source part 2 is When Mf is the solidification modulus of the product part (not shown), the overall shape 1 of the riser is 0.3≦D2/D1≦0.6, H1/D1≧1.5, and the heat source part 2 is is 0.8≦Mf/Mc≦1.7, and the static pressure section 3 is 0.4≦D3/D1≦0.8, H2/D3≧1.

熱源部2は製品部の凝固モジュラスMcに対応した凝固モジュラスをMfとしており、押湯1から製品部へつながる押湯ネック部4を適宜の時間保温して給湯を可能にしている。本例では、熱源部2に球状体を用いたが、これに近い楕円体を用いてもほぼ同じ効果を得ることができる。静圧部3は細く高くして溶湯圧を高めて給湯力を確保するとともに、凝固初期に押湯頂部5の湯面低下を早く大きくして早期に厚い空気層を発生させ、その断熱効果によって押湯頂部5を長く融液状態として大気圧を長時間作用させるようにしている。 The heat source section 2 has a coagulation modulus Mf corresponding to the coagulation modulus Mc of the product section, and keeps the feeder neck section 4 connected from the riser 1 to the product section warm for an appropriate period of time to enable hot water supply. In this example, a spherical body is used for the heat source section 2, but substantially the same effect can be obtained even if an ellipsoid close to this is used. The static pressure section 3 is made thin and high to increase the pressure of the molten metal and ensure hot water supply power, and at the same time, it quickly increases the drop in the melt level at the top 5 of the feeder at the early stage of solidification to generate a thick air layer at an early stage, and due to its insulation effect. The top part 5 of the feeder is kept in a molten state for a long time so that atmospheric pressure can be applied for a long time.

従来技術の一般的な押湯形状を図2に示す。通常、従来押湯6の下部7は本図のような半球状体又は円柱体で、上部8は同じ直径のテーパー状の円柱体で構成されている。このような従来押湯6の問題点は、本願押湯1に比べて、(1)押湯頂部9の平面が広いため、凝固初期の溶湯低下が小さく、薄い空気層しか発生できず、その断熱効果は小さいので、押湯頂部9を長く融液状態に保ち得ない。そのため、大気圧の作用する時間が短い。(2)上部の円柱体の部分に給湯に寄与しない無駄な体積が大きく給湯効率が低い、などがある。このような本願押湯1と従来押湯6の給湯の作用・効果の違いについては、実施例4で詳細に説明する。 FIG. 2 shows a typical feeder shape in the prior art. Usually, the lower part 7 of the conventional feeder 6 is a hemispherical body or a cylindrical body as shown in this figure, and the upper part 8 is a tapered cylindrical body having the same diameter. The problems with the conventional feeder 6, compared to the feeder 1 of the present application, are: (1) Because the top 9 of the feeder has a wider plane, the drop in the molten metal at the initial stage of solidification is small, and only a thin air layer is generated; Since the heat insulation effect is small, the feeder top 9 cannot be kept in a molten state for a long time. Therefore, the time during which atmospheric pressure acts is short. (2) The upper cylindrical body has a large wasted volume that does not contribute to hot water supply, resulting in low hot water supply efficiency. The difference in the action and effect of hot water supply between the feeder 1 of the present invention and the conventional feeder 6 will be explained in detail in Example 4.

図3は本願手段1を用いた押湯の形状の別の例を示したものである。本願押湯1は下部の熱源部2として円柱体を用い、上部の静圧部3として細く高いテーパー状の円柱体を組合せた形状である。押湯の図の横に図1と同様な各部の形状寸法の関係を示している。このように、熱源部2を円柱体としても同様な効果を得ることができる。図1の球状体の熱源部と本図の円柱体の熱源部では、球状体の方が単位体積当たりの凝固モジュラスが大きく給湯効率は高い。円柱体を用いるときは高さ/直径比が1に近い形状を使うことが望ましい。 FIG. 3 shows another example of the shape of the feeder using the means 1 of the present application. The feeder 1 of the present invention has a shape in which a cylindrical body is used as the lower heat source part 2, and a thin and high tapered cylindrical body is used as the upper static pressure part 3. Next to the diagram of the riser, the relationship between the shapes and dimensions of each part similar to that in FIG. 1 is shown. In this way, the same effect can be obtained even if the heat source section 2 is a cylindrical body. Between the spherical heat source section in FIG. 1 and the cylindrical heat source section in this figure, the spherical section has a larger solidification modulus per unit volume and higher hot water supply efficiency. When using a cylindrical body, it is desirable to use a shape with a height/diameter ratio close to 1.

図4は同じく本願手段1を用いた押湯の形状のもうひとつ別の例を示したものである。本図の本願押湯1は、図2の従来技術の押湯6の下部の直径Dに相当する高さまでを熱源部2として残し、上部(0.7Dの部分)の約半分10を削除して半円柱体の静圧部3としたものである。これによっても押湯頂部5は細くなり面積は半分になるので、実施例1、2と同じように押湯頂部5の凝固初期の湯面低下が早くかつ大きくなり、早期に厚い空気層が生じて断熱効果で同様な給湯作用を発現できる。この本願押湯1の形状で押湯体積は従来押湯6に比べて約20%削減できる。 FIG. 4 shows another example of the shape of a feeder using the means 1 of the present invention. The present invention feeder 1 shown in this figure leaves the lower portion of the conventional feeder 6 shown in FIG. The static pressure section 3 has a semi-cylindrical shape. This also causes the feeder top 5 to become thinner and its area to be halved, so as in Examples 1 and 2, the melt level at the feeder top 5 at the initial stage of solidification decreases quickly and greatly, and a thick air layer is formed at an early stage. The same hot water supply effect can be achieved due to the heat insulation effect. With this shape of the feeder 1 of the present invention, the volume of the feeder can be reduced by about 20% compared to the conventional feeder 6.

図5は本願手段1を用いた押湯1と従来技術の押湯6の凝固初期の押湯頂部5と9の引け(湯面低下)を比較したものである。従来押湯6の場合には、押湯頂部9が広いため凝固にともなう湯面低下は小さく空気層12は薄い。これに対し本願押湯1では、押湯頂部5が狭くかつ静圧部が細いため凝固にともなう湯面低下が早くかつ大きく、空気層11は早期に厚くなる。この結果、押湯頂部5と9の空気層(引け量)11と12の厚さに差が生じ、その部分の断熱性の差となり、融液状態の保持時間は本願押湯1の方が長くなる。その結果、本願押湯1の方が長時間大気圧が作用し製品部への高い給湯作用が得られることになる。 FIG. 5 compares the shrinkage (lowering of the hot water level) of the feeder tops 5 and 9 in the initial stage of solidification between the feeder 1 using the present means 1 and the feeder 6 of the prior art. In the case of the conventional feeder 6, since the feeder top 9 is wide, the drop in the level of the hot water due to solidification is small and the air layer 12 is thin. On the other hand, in the feeder 1 of the present invention, since the top 5 of the feeder is narrow and the static pressure portion is narrow, the level of the hot water drops quickly and greatly due to solidification, and the air layer 11 thickens quickly. As a result, there is a difference in the thickness of the air layers (shrinkage amount) 11 and 12 at the tops of the feeder 5 and 9, resulting in a difference in the insulation properties of those parts, and the retention time of the molten liquid is longer in the feeder 1 of the present application. become longer. As a result, in the feeder 1 of the present invention, atmospheric pressure acts for a longer period of time and a higher hot water supply effect to the product area can be obtained.

図6はさらに凝固が進んで凝固完了になったときの押湯頂部5、9からの引けの状態を示したものである。従来押湯6では引け14は上部に留まり引け量も小さく、押湯全体に占める引け量の割合も小さく無駄な体積が多い。これに比べ、本願押湯1の引け13は深く押湯下部まで入っており引け量も大きい。すなわち、無駄な体積部分が少なく給湯効率が高いことがわかる。従来押湯6でも鋳造条件によっては本図よりも大きな引け量となる場合もあるが、逆に引け量が小さくなる場合もありばらつきが大きい。 FIG. 6 shows the state of shrinkage from the feeder tops 5 and 9 when solidification has further progressed and solidification has been completed. In the conventional riser 6, the shrinkage 14 remains in the upper part, and the shrinkage amount is small, and the ratio of the shrinkage amount to the entire riser is small, and there is a lot of wasted volume. In comparison, the shrinkage 13 of the riser 1 of the present application is deep and extends to the lower part of the riser, and the shrinkage amount is large. In other words, it can be seen that the wasted volume is small and the hot water supply efficiency is high. Even with the conventional riser 6, the shrinkage amount may be larger than that shown in this figure depending on the casting conditions, but the shrinkage amount may be smaller than that shown in this figure, and the variation is large.

図7は従来押湯6に対する本願押湯1の溶湯削減量を検討した一例を示したものである。この例では、従来押湯6、本願押湯1とも、下部の直径Dと高さH(1.7D)は同一とし、押湯上部及び押湯頂部形状を変えたものでその体積、表面積、凝固モジュラスを比較した。 FIG. 7 shows an example of the amount of molten metal reduced by the feeder 1 of the present invention compared to the conventional feeder 6. In this example, the diameter D and height H (1.7D) of the lower part of the conventional feeder 6 and the feeder 1 of the present invention are the same, and the shape of the upper part of the feeder and the top of the feeder are changed, so that the volume, surface area, The coagulation modulus was compared.

従来押湯6及び本願押湯1の体積、表面積、凝固モジュラスをそれおれV1、S1、M1及びV2、S2、M2とすると、V1=1.24D、S1=6.28D、M1=0.198Dであり、V2=0.738D、S2=4.36D、M2=0.169Dである。したがって、V2/V1=0.59、S2/S1=0.69、M2/M1=0.85となり、本願押湯1は従来押湯に比べて41%の溶湯削減が可能となる。通常、押湯は全キャビティーの約30%を占めているので、全キャビティーに対しては約12%の鋳込量の削減である。 If the volume, surface area, and solidification modulus of the conventional feeder 6 and the present feeder 1 are respectively V1, S1, M1 and V2, S2, M2, then V1 = 1.24D, S1 = 6.28D, M1 = 0.198D. , V2=0.738D, S2=4.36D, and M2=0.169D. Therefore, V2/V1 = 0.59, S2/S1 = 0.69, and M2/M1 = 0.85, and the feeder 1 of the present application can reduce molten metal by 41% compared to the conventional feeder. Normally, the riser occupies about 30% of the total cavity, so this is a reduction in casting amount of about 12% for the total cavity.

ただし、凝固モジュラスは15%小さくなる。この低下分は上記に説明したように本願押湯1の押湯頂部5の凝固初期の引け量の増加による給湯作用の向上で補償されるので引け巣等の内部欠陥に影響はない。もし必要な場合には、押湯ネック部4の大きさを少し調整する程度でよい。本例は一例であるが、本願に規定する形状の押湯を用いることでこれと同様な溶湯削減効果を得ることができる。 However, the coagulation modulus is 15% smaller. As explained above, this decrease is compensated for by the improvement in the hot water supply effect due to the increase in the shrinkage amount of the feeder top 5 of the feeder 1 in the initial stage of solidification, so it does not affect internal defects such as shrinkage cavities. If necessary, the size of the feeder neck portion 4 may be slightly adjusted. Although this example is just an example, a similar molten metal reduction effect can be obtained by using a feeder having the shape specified in the present application.

図8は本願押湯と本願手段2を用いて鋳型キャビティーに溶湯を注湯した状態を示す。鋳型キャビティーは、製品部15、押湯16、湯道17、湯口18(湯口カップ19と湯口棒20からなる)から構成されている。従来技術では、全キャビティー体積分を鋳型上面22の湯口カップ19の一杯まで注湯するが、本手段では、注湯する体積を削減して減量注湯している。そのため、湯口18の湯面21は従来注湯よりも低くなっている。これによって、押湯頂部5にかかる溶湯圧は減少し溶湯を押湯頂部5に押付ける力が小さくなり、熱伝達が下がるため凝固が遅延され、融液状態が長く保たれる。その結果、大気圧が長時間作用して給湯作用がさらに高められる。 FIG. 8 shows a state in which molten metal is poured into a mold cavity using the present riser and the present means 2. The mold cavity is composed of a product part 15, a riser 16, a runner 17, and a sprue 18 (consisting of a sprue cup 19 and a sprue rod 20). In the conventional technique, the entire cavity volume is poured to fill the sprue cup 19 on the upper surface 22 of the mold, but in this method, the volume to be poured is reduced to pour the molten metal in a reduced amount. Therefore, the molten metal level 21 of the sprue 18 is lower than in conventional pouring. As a result, the pressure of the molten metal applied to the feeder top 5 is reduced, and the force pressing the molten metal against the feeder top 5 is reduced, heat transfer is reduced, solidification is delayed, and the molten metal state is maintained for a long time. As a result, atmospheric pressure acts for a long time, further enhancing the hot water supply effect.

このような高い給湯作用を発現させるために、注湯完了時点において、鋳型見切面23からの湯口18の湯面高さをH3、押湯頂部5の高さをH4、鋳型上面の高さをH5とするとき、H3-H4≦(H5-H4)/2であるようにした。これによって、押湯頂部5にかかる溶湯圧は通常注湯の場合の半分以下になり、確実に押湯頂部5の引けを誘発することができる。また、このように給湯作用が高められることと併せて、湯口18の溶湯削減も得られる。上記条件では、体積の大きな湯口カップ19は削除されて、湯口18の体積は半分以下に削減される。この場合、湯口18の溶湯体積は50%以上削減され、全キャビティーの体積に対して5%以上の鋳込量削減となる。 In order to achieve such a high hot water supply effect, at the time of completion of pouring, the height of the hot water level at the sprue 18 from the mold parting surface 23 is set to H3, the height of the riser top 5 is set to H4, and the height of the top surface of the mold is set to H3. When setting H5, it was set such that H3-H4≦(H5-H4)/2. As a result, the molten metal pressure applied to the top 5 of the feeder becomes less than half of that in the case of normal pouring, and the shrinkage of the top 5 of the feeder can be reliably induced. Furthermore, in addition to the enhanced hot water supply effect, the amount of molten metal in the sprue 18 can also be reduced. Under the above conditions, the large-volume sprue cup 19 is removed, and the volume of the sprue 18 is reduced to less than half. In this case, the volume of the molten metal in the sprue 18 is reduced by 50% or more, resulting in a reduction in the pouring amount by 5% or more with respect to the volume of the entire cavity.

1 本願押湯 2 熱源部 3 静圧部 4 湯口ネック部 5 押湯頂部 6 従来押湯 7 押湯下部 8 押湯上部 9 従来押湯の押湯頂部 10 削除した上部の約半分の部分 11 本願押湯の空気層 12 従来押湯の空気層 13 本願押湯の押湯頂部からの引け 14 従来押湯の押湯頂部からの引け 15 製品部 16 押湯 17 湯道 18 湯口 19 湯口カップ 20 湯口棒 21 湯面 22 鋳型上面 23 見切面 24 鋳型1 Main feeder 2 Heat source section 3 Static pressure section 4 Sprue neck 5 Top of the feeder 6 Conventional feeder 7 Lower part of the feeder 8 Upper part of the feeder 9 Top of the conventional feeder 10 Approximately half of the removed upper part 11 Main application Air layer in the feeder 12 Air layer in the conventional feeder 13 Sink from the top of the feeder of the original feeder 14 Sink from the top of the conventional feeder 15 Product section 16 Riser 17 Runway 18 Sprue 19 Sprue cup 20 Sprue Rod 21 Molten metal surface 22 Upper surface of mold 23 Parting surface 24 Mold

Claims (2)

鋳鉄系溶湯を通気性鋳型に重力注湯する鋳造に用いる押湯であって、該押湯の形状は、下部は製品部につながる押湯ネック部を適宜の時間保温する大きさの熱源部とし、上部は細く高くして給湯圧を高める静圧部とした組み合せ形状であって、該押湯の最大径をD1、最小径をD2、高さをH1、熱源部と静圧部の接する部分の径をD3、静圧部の高さをH2、熱源部の凝固モジュラスをMf、製品部の凝固モジュラスをMcとするとき、押湯の全体形状は0.3≦D2/D1≦0.6、H1/D1≧1.5であり、熱源部は0.8≦Mf/Mc≦1.7であり、静圧部は0.4≦D3/D1≦0.8、H2/D3≧1であることを特徴とする押湯。 This feeder is used for casting in which molten cast iron is poured into a breathable mold by gravity, and the shape of the feeder is such that the lower part is a heat source large enough to keep the neck of the feeder connected to the product section warm for an appropriate period of time. , the upper part is thin and high and has a combination shape as a static pressure part that increases hot water supply pressure, the maximum diameter of the feeder is D1, the minimum diameter is D2, the height is H1, and the part where the heat source part and the static pressure part are in contact. The diameter of the feeder is D3, the height of the static pressure part is H2, the solidification modulus of the heat source part is Mf, and the solidification modulus of the product part is Mc, then the overall shape of the feeder is 0.3≦D2/D1≦0.6 , H1/D1≧1.5, the heat source part is 0.8≦Mf/Mc≦1.7, and the static pressure part is 0.4≦D3/D1≦0.8, H2/D3≧1. Oshiyu is characterized by certain things. 請求項1記載の押湯を用いて、鋳込量を全キャビティーの体積よりも減量して注湯することにより、注湯完了時点において、鋳型見切面からの湯口の湯面高さをH3、押湯頂部の高さをH4、鋳型上面の高さをH5とするとき、H3-H4≦(H5-H4)/2として、押湯頂部に作用する溶湯圧を低くすることで、押湯頂部の凝固殻の形成を遅延させて融液状態を長く保持し、製品部への押湯の給湯作用を高めることを特徴とする鋳造方法。 By using the riser according to claim 1 and pouring the metal in a smaller amount than the volume of the entire cavity, the height of the metal surface at the sprue from the mold parting surface to H3 at the time of completion of pouring. , when the height of the top of the feeder is H4 and the height of the top surface of the mold is H5, by lowering the molten metal pressure acting on the top of the feeder by setting H3-H4≦(H5-H4)/2, A casting method characterized by delaying the formation of a solidified shell at the top to maintain a molten state for a long time and enhancing the hot water supply action of a feeder to the product part.
JP2022073779A 2022-03-24 2022-03-24 Riser with high hot water supply efficiency and casting method Active JP7240578B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022073779A JP7240578B1 (en) 2022-03-24 2022-03-24 Riser with high hot water supply efficiency and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022073779A JP7240578B1 (en) 2022-03-24 2022-03-24 Riser with high hot water supply efficiency and casting method

Publications (2)

Publication Number Publication Date
JP7240578B1 JP7240578B1 (en) 2023-03-16
JP2023143573A true JP2023143573A (en) 2023-10-06

Family

ID=85570565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022073779A Active JP7240578B1 (en) 2022-03-24 2022-03-24 Riser with high hot water supply efficiency and casting method

Country Status (1)

Country Link
JP (1) JP7240578B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192535A (en) * 1997-10-28 1999-07-21 Hodogaya Ashland Kk Manufacture of sleeve for hot-top
CN201073679Y (en) * 2007-08-13 2008-06-18 李士良 Bulb-shaped riser
JP2015223630A (en) * 2014-05-28 2015-12-14 有限会社ファンドリーテック・コンサルティング Shape of dead head with high dead head efficiency, and casting method
JP2016019999A (en) * 2014-07-11 2016-02-04 有限会社ファンドリーテック・コンサルティング Columnar feeding head shape with high feeding head efficiency and casting method
CN206732060U (en) * 2017-05-13 2017-12-12 哈尔滨福庭创富机械制造有限公司 The fire-retardant anti-oxidation insulated feeder of aviation casing Mg alloy castings
CN206732057U (en) * 2017-05-13 2017-12-12 哈尔滨福庭创富机械制造有限公司 The superpower feeding insulated feeder of aviation casing aluminium alloy castings
JP2020124735A (en) * 2019-02-06 2020-08-20 丹羽鋳造株式会社 Cast, mold, and casting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192535A (en) * 1997-10-28 1999-07-21 Hodogaya Ashland Kk Manufacture of sleeve for hot-top
CN201073679Y (en) * 2007-08-13 2008-06-18 李士良 Bulb-shaped riser
JP2015223630A (en) * 2014-05-28 2015-12-14 有限会社ファンドリーテック・コンサルティング Shape of dead head with high dead head efficiency, and casting method
JP2016019999A (en) * 2014-07-11 2016-02-04 有限会社ファンドリーテック・コンサルティング Columnar feeding head shape with high feeding head efficiency and casting method
CN206732060U (en) * 2017-05-13 2017-12-12 哈尔滨福庭创富机械制造有限公司 The fire-retardant anti-oxidation insulated feeder of aviation casing Mg alloy castings
CN206732057U (en) * 2017-05-13 2017-12-12 哈尔滨福庭创富机械制造有限公司 The superpower feeding insulated feeder of aviation casing aluminium alloy castings
JP2020124735A (en) * 2019-02-06 2020-08-20 丹羽鋳造株式会社 Cast, mold, and casting method

Also Published As

Publication number Publication date
JP7240578B1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN100563870C (en) The preparation method of hollow wax matrix
CN103742536A (en) Casting method for copper bush with high lead bronze content
CN104785720A (en) Casting die and casting process of die-casting machine adjusting nut
CN102672112A (en) Casting method of motor casing
CN110153371A (en) Prevent the casting method of spherulitic iron crankshaft shrinkage defect
CN100542716C (en) The regression formula running gate system of casting train wheel
CN206169171U (en) A mould for metal founding
CN107470592A (en) One kind covers sand cooling iron construction and its manufacture craft
JP2023143573A (en) Riser and casting method having high molten metal feed efficiency
CN105537517A (en) Manufacturing process for mould shell for investment casting of belt turning deep hole
CN106807888A (en) A kind of resin-coated sand shell mould covers the casting technique of steel sand solidification
CN100548536C (en) The regression formula pouring procedure of casting train wheel
CN105642868A (en) Method for producing ceramic particle reinforced duplex metal base hammer through sand mold
CN102350485A (en) Device and process for repairing shrinkage holes during steel billet casting through intermediate-frequency electric heating
CN107052266A (en) Complex thin-wall ironcasting casting method
JP5696322B1 (en) Column-shaped feeder shape and casting method with high feeder efficiency
CN107971459A (en) A kind of ingate and running gate system for being used to prepare central pulley structural member
CN206997701U (en) Sand core structure for the casting of sand wedge angle position
CN105312497A (en) Metal member casting technology
CN204770478U (en) Die casting machine adjusting nut's casting mould
CN206241191U (en) Produce the running and feeding system on the DISA lines of annular thin wall gray iron casting
CN201380270Y (en) Large-scale roller casting device
CN206305381U (en) Single rising head sand gear ring casting mould
CN205032643U (en) As cast pouring device of engine main bearing lid
CN205324640U (en) Novel cover sand cast structure spare

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7240578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150