JP2023143401A - METHOD OF MANUFACTURING Ni ALLOY MEMBER - Google Patents

METHOD OF MANUFACTURING Ni ALLOY MEMBER Download PDF

Info

Publication number
JP2023143401A
JP2023143401A JP2022050746A JP2022050746A JP2023143401A JP 2023143401 A JP2023143401 A JP 2023143401A JP 2022050746 A JP2022050746 A JP 2022050746A JP 2022050746 A JP2022050746 A JP 2022050746A JP 2023143401 A JP2023143401 A JP 2023143401A
Authority
JP
Japan
Prior art keywords
temperature
less
treatment
creep
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022050746A
Other languages
Japanese (ja)
Other versions
JP7255963B1 (en
Inventor
蘇亜拉図
Yalatu Su
仁史 酒井
Hitoshi Sakai
官男 樋口
Norio Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ntt Data Xam Technologies Corp
Original Assignee
Ntt Data Xam Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Xam Technologies Corp filed Critical Ntt Data Xam Technologies Corp
Priority to JP2022050746A priority Critical patent/JP7255963B1/en
Application granted granted Critical
Publication of JP7255963B1 publication Critical patent/JP7255963B1/en
Publication of JP2023143401A publication Critical patent/JP2023143401A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a Ni alloy member that exhibits small elongation at the initial stage of a creep test.SOLUTION: Provided is a method of manufacturing Ni alloy member that includes: an additive manufacturing step of forming, by an additive manufacturing technique, a member having a mass% composition of Ni: 50-55%, Cr: 17.0-21.0%, Nb+Ta: 4.75-5.5%, Mo: 2.8-3.3%, Ti: 0.65-1.15%, Al: 0.20-0.80%, Co: 1.0% or less, Cu: 0.3% or less, C: 0.08% or less, Si: 0.35% or less, Mn: 0.35% or less, P: 0.015% or less, S: 0.015% or less, B: 0.006% or less, and balance: Fe and unavoidable impurities; a recrystallization treatment step of recrystallizing the formed member at a temperature of 1120°C or higher and 1250°C or lower; and a solution treatment step of subjecting the recrystallized member to solution treatment at a temperature of 925°C or higher and 1010°C or lower.SELECTED DRAWING: Figure 1

Description

本発明は、付加製造および熱処理によって、Ni基超耐熱合金の一種であるインコネル718合金(インコネルは登録商標、以下「718合金」と略す。)からなる部材を製造する方法に関する。 The present invention relates to a method of manufacturing a member made of Inconel 718 alloy (Inconel is a registered trademark, hereinafter abbreviated as "718 alloy"), which is a type of Ni-based super heat-resistant alloy, by additive manufacturing and heat treatment.

Ni基超耐熱合金の一つとして718合金が知られている。この合金は析出硬化型の合金である。析出硬化型の合金は、溶解度曲線以上に加熱して溶質原子を均一に固溶させる溶体化処理、および、材料内に別の相を析出させる時効処理を施すことで、析出した相が転移の運動の障害となることによって、材料の塑性変形が抑えられる。718合金では、母相であるγ相中に、時効処理によってγ”相(NiNb)およびγ’相(Ni(Al,Ti))の微細な結晶粒が析出することで、超耐熱性が発現する。 718 alloy is known as one of the Ni-based super heat-resistant alloys. This alloy is a precipitation hardening type alloy. Precipitation hardening alloys are heated above the solubility curve to form a uniform solid solution of solute atoms, and then subjected to aging treatment to precipitate another phase within the material, so that the precipitated phase undergoes no transition. By impeding movement, plastic deformation of the material is suppressed. In 718 alloy, fine crystal grains of γ'' phase (Ni 3 Nb) and γ' phase (Ni 3 (Al, Ti)) precipitate in the γ phase, which is the parent phase, due to aging treatment, resulting in super heat resistance. Sexuality is expressed.

718合金製の部材は、鍛造、鋳造等によって造形される他、近年では付加製造技術によって造形されることも多い。しかし、付加製造技術によって造形した718合金部材は、クリープ特性が劣り、また、積層方向とそれに垂直な方向とでクリープ特性が大きく異なるため、熱処理方法の開発によってクリープ特性を改善しようとする試みがされてきた。 718 alloy members are formed by forging, casting, etc., and in recent years are often formed by additive manufacturing technology. However, 718 alloy parts formed using additive manufacturing technology have poor creep properties, and the creep properties differ greatly between the stacking direction and the direction perpendicular to it, so there have been no attempts to improve the creep properties by developing heat treatment methods. It has been.

特許文献1には、アディティブ・マニュファクチャリングにより成形された析出硬化型のNi-Cr系Ni基合金からなる部材を、その固溶線温度をTとして、(T-100)℃以上、(T-50)℃以下の温度範囲の温度で溶体化処理することが記載されている。実施例には、718合金(T=1260℃)について、1180℃で溶体化処理を行うことで、クリープ破断時間が造形方向との角度によらず一様で、かつ鋳造材と同程度にまで改善されることが記載されている。この結果は、高温での溶体化処理によって結晶粒の粗大化が発生したためであるとされている。 Patent Document 1 discloses that a member made of a precipitation hardening type Ni-Cr based Ni-based alloy formed by additive manufacturing is heated at a temperature of (T C -100)°C or higher, where the solid solution line temperature is T C , ( It is described that solution treatment is carried out at a temperature in the temperature range of T C -50)°C or lower. In the example, 718 alloy (T C = 1260°C) is solution-treated at 1180°C, so that the creep rupture time is uniform regardless of the angle with respect to the modeling direction, and is comparable to that of cast material. It is stated that this can be improved. This result is said to be due to the coarsening of crystal grains caused by the solution treatment at high temperatures.

特開2017-203195号公報Japanese Patent Application Publication No. 2017-203195

特許文献1に記載された方法によれば、付加製造によって造形した718合金部材を高温で溶体化処理することでクリープ特性が改善する。しかし、本発明者らの実験結果によれば、高温での溶体化処理を行った試験片でも、クリープ試験初期の遷移クリープから定常クリープにかけての伸びが大きいことが分かった。試験におけるクリープ曲線は、図13を参照して、負荷の瞬間に塑性ひずみからなる瞬間ひずみが現れ、加工硬化が進むにつれてひずみ速度が減少する遷移クリープ、加工硬化と組織回復が釣り合ってひずみ速度が一定になる定常クリープ、ひずみ速度が加速して破断に至る加速クリープの3段階に分類される。このうち、遷移クリープから定常クリープにかけてのひずみ速度が大きいと、弾性領域限界に達する0.2%伸び時間が短くなるため、精密な寸法と微小空隙を維持しなければならないタービンブレードなどの用途では、製品を安全領域で使用できる時間が短くなるという問題がある。また、718合金部材の用途によっては、所定時間の使用をした後に溶体化処理および時効処理を行い、部材を再生、補修して再使用されることがあり、このような用途では、クリープ試験初期の伸びを抑えることが求められる。この点に関して、特許文献1に記載された方法にはさらなる改善の余地があった。 According to the method described in Patent Document 1, creep characteristics are improved by subjecting a 718 alloy member formed by additive manufacturing to solution treatment at a high temperature. However, according to the experimental results of the present inventors, it was found that even in test specimens subjected to high-temperature solution treatment, the elongation from transition creep at the initial stage of the creep test to steady creep was large. Referring to Figure 13, the creep curves in the test are as follows: instantaneous strain consisting of plastic strain appears at the moment of loading, transition creep where the strain rate decreases as work hardening progresses, and strain rate where work hardening and tissue recovery are balanced and the strain rate increases. It is classified into three stages: steady creep, which becomes constant, and accelerated creep, where the strain rate accelerates and leads to rupture. Among these, when the strain rate from transition creep to steady creep is high, the 0.2% elongation time to reach the elastic region limit becomes shorter, so this is not suitable for applications such as turbine blades that must maintain precise dimensions and minute voids. , there is a problem that the time during which the product can be used in a safe area is shortened. In addition, depending on the application of the 718 alloy member, the member may be subjected to solution treatment and aging treatment after it has been used for a certain period of time, and the member may be recycled, repaired, and reused. It is necessary to suppress the growth of In this regard, the method described in Patent Document 1 has room for further improvement.

本発明は上記を考慮してなされたものであり、付加製造によって造形した718合金部材のクリープ試験初期の伸びを抑えることができる技術を提供することを目的とする。 The present invention has been made in consideration of the above, and an object of the present invention is to provide a technique that can suppress elongation at the initial stage of a creep test of a 718 alloy member formed by additive manufacturing.

本発明のNi合金部材の製造方法は、質量%で、Ni:50~55%、Cr:17.0~21.0%、Nb+Ta:4.75~5.5%、Mo:2.8~3.3%、Ti:0.65~1.15%、Al:0.20~0.80%、Co:1.0%以下、Cu:0.3%以下、C:0.08%以下、Si:0.35%以下、Mn:0.35%以下、P:0.015%以下、S:0.015%以下、B:0.006%以下、残部:Feおよび不可避的不純物、の組成を有する部材を付加製造技術により造形する積層造形工程と、造形された前記部材を1120℃以上、1250℃以下の温度で再結晶化させる再結晶化処理工程と、再結晶化した前記部材を925℃以上、1010℃以下の温度で溶体化する溶体化処理工程とを有する。 The method for manufacturing the Ni alloy member of the present invention is based on mass percentage: Ni: 50-55%, Cr: 17.0-21.0%, Nb+Ta: 4.75-5.5%, Mo: 2.8-55%. 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, Co: 1.0% or less, Cu: 0.3% or less, C: 0.08% or less , Si: 0.35% or less, Mn: 0.35% or less, P: 0.015% or less, S: 0.015% or less, B: 0.006% or less, balance: Fe and inevitable impurities. A layered manufacturing step in which a member having a composition is formed by additive manufacturing technology, a recrystallization treatment step in which the formed member is recrystallized at a temperature of 1120° C. or higher and 1250° C. or lower, and the recrystallized member is It has a solution treatment step of performing solution treatment at a temperature of 925°C or higher and 1010°C or lower.

本発明のNi合金部材の製造方法によれば、得られたNi合金部材に標準的な条件で時効処理を施すことで、クリープ試験初期のひずみ速度を抑えることができる。 According to the method for manufacturing a Ni alloy member of the present invention, the strain rate at the initial stage of the creep test can be suppressed by subjecting the obtained Ni alloy member to aging treatment under standard conditions.

一実施形態のNi合金部材製造方法の工程フロー図である。It is a process flow diagram of the Ni alloy member manufacturing method of one embodiment. 引張試験およびクリープ試験に用いた試験片の形状を示す図である。It is a figure showing the shape of the test piece used for a tensile test and a creep test. クリープ試験における0.2%伸び時間の結果を示す図である。It is a figure which shows the result of 0.2% elongation time in a creep test. クリープ試験における破断時間の結果を示す図である。It is a figure showing the result of the rupture time in a creep test. 比較例3のクリープ曲線である。It is a creep curve of Comparative Example 3. 比較例13および実施例1のクリープ曲線である。3 shows creep curves of Comparative Example 13 and Example 1. 後方散乱電子回折(EBSD)によって得られた結晶粒の画像である。1 is an image of crystal grains obtained by electron backscatter diffraction (EBSD). 比較例3、比較例13および実施例1のクリープ破断面のSEM像である。3 is a SEM image of creep fracture surfaces of Comparative Example 3, Comparative Example 13, and Example 1. 比較例3、比較例13および実施例1のクリープ破断面のSEM像である。3 is a SEM image of creep fracture surfaces of Comparative Example 3, Comparative Example 13, and Example 1. 比較例3、比較例13および実施例1のクリープ破断面のSEM像である。3 is a SEM image of creep fracture surfaces of Comparative Example 3, Comparative Example 13, and Example 1. 比較例3、比較例13および実施例1の切断面のSEM像である。3 is a SEM image of the cut surfaces of Comparative Example 3, Comparative Example 13, and Example 1. 比較例3、比較例13および実施例1の切断面のSEM像である。3 is a SEM image of the cut surfaces of Comparative Example 3, Comparative Example 13, and Example 1. クリープ曲線を説明するための図である。FIG. 3 is a diagram for explaining a creep curve.

本発明のNi合金部材の製造方法の一実施形態を、図1の工程フローに沿って説明する。 An embodiment of the method for manufacturing a Ni alloy member of the present invention will be described along the process flow shown in FIG.

本実施形態で用いる718合金粉末は、質量%で、Ni:50~55%、Cr:17.0~21.0%、Nb+Ta:4.75~5.5%、Mo:2.8~3.3%、Ti:0.65~1.15%、Al:0.20~0.80%、Co:1.0%以下、Cu:0.3%以下、C:0.08%以下、Si:0.35%以下、Mn:0.35%以下、P:0.015%以下、S:0.015%以下、B:0.006%以下、残部:Feおよび不可避的不純物、の組成を有する。この合金は、インコネル718(インコネルは登録商標)と呼ばれ、米国試験材料協会(ASTM)と自動車技術者協会(SAE)による合金の統一番号システム(UNS)にN07718として、また、JISG4901および4902にNCF718として規定されている。 The 718 alloy powder used in this embodiment has Ni: 50 to 55%, Cr: 17.0 to 21.0%, Nb+Ta: 4.75 to 5.5%, and Mo: 2.8 to 3% by mass. .3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, Co: 1.0% or less, Cu: 0.3% or less, C: 0.08% or less, Composition of Si: 0.35% or less, Mn: 0.35% or less, P: 0.015% or less, S: 0.015% or less, B: 0.006% or less, balance: Fe and inevitable impurities. has. This alloy is called Inconel 718 (Inconel is a registered trademark) and is listed in the Uniform Numbering System for Alloys (UNS) by the American Society for Testing and Materials (ASTM) and Society of Automotive Engineers (SAE) as N07718 and in JIS G4901 and 4902. It is specified as NCF718.

上記合金粉末を用いて、付加製造技術により部材を造形する。付加製造の方式としては、好ましくはレーザー積層造形法(SLM法)を用いる。SLM法は粉末床溶融結合方式の一種で、原料となる合金粉末を造形ステージに敷き詰めて均一な薄層を形成し、薄層の所定位置にレーザー光を走査しながら照射して合金粉末を溶融・凝固させることを繰り返すことで、合金層を積層して、部材を造形する。 Using the above alloy powder, a member is shaped by additive manufacturing technology. As the additive manufacturing method, preferably a laser layered manufacturing method (SLM method) is used. The SLM method is a type of powder bed fusion bonding method, in which the raw material alloy powder is spread on a modeling stage to form a uniform thin layer, and the thin layer is irradiated with scanning laser light to melt the alloy powder.・By repeating solidification, alloy layers are stacked to form a component.

SLM法で造形された部材は、その造形方法に起因して、合金の積層方向に延びる柱状の結晶粒を多く含む。そのため、積層方向とそれに垂直な方向とで、クリープなどの機械的特性が異なることとなる。以下において、造形時の積層方向をZ方向、積層方向に垂直な方向をXY方向という。なお、SLM法ではレーザー光の走査方向の偏りの影響を抑えるために、1層毎に走査方向を所定角度ずつ回転させて積層が行われるので、造形物の組織はZ方向に垂直な面内では等方的である。本明細書においても、XY方向とはZ方向に垂直であることのみを意味し、Z方向に垂直な面内での特定の方向を意味するものではない。 A member formed by the SLM method contains many columnar crystal grains extending in the stacking direction of the alloy due to the forming method. Therefore, mechanical properties such as creep differ between the stacking direction and the direction perpendicular to the stacking direction. In the following, the stacking direction during modeling will be referred to as the Z direction, and the direction perpendicular to the stacking direction will be referred to as the XY direction. In addition, in the SLM method, in order to suppress the influence of deviation in the scanning direction of the laser beam, the scanning direction is rotated by a predetermined angle for each layer and lamination is performed, so the structure of the model is created in a plane perpendicular to the Z direction. So it is isotropic. Also in this specification, the XY direction only means perpendicular to the Z direction, and does not mean a specific direction within a plane perpendicular to the Z direction.

次に積層造形された部材(造形まま材)を再結晶化させる。再結晶化処理の目的は、Z方向とXY方向の異方性をできる限り減少させることである。具体的には、再結晶化によって結晶粒のZ方向とXY方向の大きさの差を小さくすることである。このことは以下において、等方化または等軸化ということがある。 Next, the additively manufactured member (as-shaped material) is recrystallized. The purpose of the recrystallization process is to reduce the anisotropy in the Z and XY directions as much as possible. Specifically, the purpose is to reduce the difference in size of crystal grains in the Z direction and the XY direction by recrystallization. In the following, this may be referred to as isotropic or equiaxed.

再結晶化処理の温度は1120℃以上であり、好ましくは1140℃以上である。これにより、部材を再結晶化することができる。一方、再結晶化処理の温度は、1250℃以下であり、好ましくは1200℃以下、より好ましくは1180℃以下である。再結晶化処理温度が1250℃を超えると、処理中に部材が軟化して変形する恐れがある。また、再結晶化処理温度が1200℃を超えると、結晶粒が肥大化しすぎて、クリープ試験における破断時間が短くなる。再結晶化処理温度が1140℃~1180℃の範囲にある場合に、結晶粒の等軸化が最も進む。 The temperature of the recrystallization treatment is 1120°C or higher, preferably 1140°C or higher. This allows the member to be recrystallized. On the other hand, the temperature of the recrystallization treatment is 1250°C or lower, preferably 1200°C or lower, more preferably 1180°C or lower. If the recrystallization treatment temperature exceeds 1250° C., there is a risk that the member will soften and deform during the treatment. Moreover, if the recrystallization treatment temperature exceeds 1200° C., the crystal grains become too large and the rupture time in the creep test becomes short. When the recrystallization treatment temperature is in the range of 1140° C. to 1180° C., equiaxed crystal grains progress most.

再結晶化処理において、部材を上記温度に保持する時間は、好ましくは30分以上、より好ましくは1時間以上である。再結晶化するのに十分な時間を取るためである。一方、再結晶化処理において、部材を上記温度に保持する時間は、好ましくは2時間以下である。再結晶化処理時間は温度ほど大きな影響を及ぼさないが、時間が長すぎると、結晶が大きくなりすぎるからである。部材は常圧の不活性ガス雰囲気または真空雰囲気中で保持される。 In the recrystallization treatment, the time for maintaining the member at the above temperature is preferably 30 minutes or more, more preferably 1 hour or more. This is to allow sufficient time for recrystallization. On the other hand, in the recrystallization treatment, the time for maintaining the member at the above temperature is preferably 2 hours or less. Although the recrystallization treatment time does not have as great an effect as the temperature, if the recrystallization treatment time is too long, the crystals will become too large. The member is held in an inert gas atmosphere or a vacuum atmosphere at normal pressure.

部材を所定温度で所定時間保持して再結晶化させた後、部材にエアまたは不活性ガスを吹き付けることによって、少なくとも約600℃以下にまで冷却する。また、冷却速度は10℃/分以上であることが好ましい。これにより、冷却過程でδ相などが析出することを防止できる。後述するように、適量のδ相の存在はクリープ特性の改善に有用であると考えられるが、冷却速度によってδ相の析出量を制御することは技術的に難しいので、再結晶化処理ではδ相を析出させないことが好ましい。 After recrystallizing the member by holding it at a predetermined temperature for a predetermined time, the member is cooled to at least about 600° C. or lower by blowing air or inert gas onto the member. Moreover, it is preferable that the cooling rate is 10° C./min or more. This makes it possible to prevent the δ phase and the like from precipitating during the cooling process. As described later, the presence of an appropriate amount of δ phase is considered to be useful for improving creep properties, but since it is technically difficult to control the amount of δ phase precipitated by the cooling rate, recrystallization treatment Preferably, no phase is precipitated.

次に再結晶化した部材を溶体化する。溶体化処理の目的は、溶質原子を均一に固溶させることである。また、718合金の溶体化処理では、δ相(NiNb)の微細な結晶粒を析出させることが一般的である。δ相は約1010~1020℃以下で安定であるとされる。δ相はγ”相と構成元素が同じであるため、δ相が成長しすぎると、後の時効処理でγ”相の析出量が減少して、析出硬化の効果が減殺されると言われている。一方で、δ相は母相の結晶粒界に析出して結晶粒の成長を抑制すると言われており、これによってクリープ特性を高める機能を奏すると考えられる。 Next, the recrystallized member is subjected to solution treatment. The purpose of solution treatment is to uniformly dissolve solute atoms into a solid solution. Furthermore, in the solution treatment of 718 alloy, it is common to precipitate fine crystal grains of the δ phase (Ni 3 Nb). The δ phase is said to be stable at temperatures below about 1010-1020°C. Since the δ phase has the same constituent elements as the γ'' phase, it is said that if the δ phase grows too much, the amount of γ'' phase precipitated during subsequent aging treatment will be reduced and the effect of precipitation hardening will be negated. ing. On the other hand, the δ phase is said to precipitate at the grain boundaries of the parent phase and suppress the growth of crystal grains, and is thought to have the function of improving creep characteristics.

溶体化処理の温度は、好ましくは925℃以上、1010℃以下である。この温度は、鍛造等によって造形された718合金部材に対する標準的な溶体化処理温度である。例えば、SAEのASM5662規格では、部材を1725~1850F(Fは華氏、940~1010℃に相当)で保持した後、空冷する。また、JISG4901および4902の参考附属書には、固溶化熱処理として、925~1010℃で処理して急冷する条件が記載されている。これにより、部材の組織を均一に溶体化し、かつ適量のδ相を析出させることができる。 The temperature of the solution treatment is preferably 925°C or higher and 1010°C or lower. This temperature is a standard solution treatment temperature for 718 alloy parts formed by forging or the like. For example, according to SAE's ASM5662 standard, parts are held at 1725-1850F (F is Fahrenheit, equivalent to 940-1010°C) and then air cooled. Furthermore, the reference appendices of JIS G4901 and 4902 describe conditions for treatment at 925 to 1010° C. and rapid cooling as solution heat treatment. This makes it possible to uniformly solutionize the structure of the member and precipitate an appropriate amount of δ phase.

溶体化処理において、部材を上記温度に保持する時間は、好ましくは30分以上、より好ましくは1時間以上である。溶体化するのに十分な時間を取るためである。一方、溶体化処理において、部材を上記温度に保持する時間は、好ましくは2時間以下である。溶体化処理時間は温度ほど大きな影響を及ぼさないが、時間が長すぎると、δ相が成長しすぎるからである。 In the solution treatment, the time for maintaining the member at the above temperature is preferably 30 minutes or more, more preferably 1 hour or more. This is to allow sufficient time for solution treatment. On the other hand, in the solution treatment, the time for maintaining the member at the above temperature is preferably 2 hours or less. Although the solution treatment time does not have as great an effect as the temperature, if the time is too long, the δ phase will grow too much.

部材を所定温度で所定時間保持して溶体化した後、部材にエアまたは不活性ガスを吹き付けることによって冷却する。多少急冷気味に冷却することにより、溶体化した状態を維持するためである。 After the member is held at a predetermined temperature for a predetermined time to form a solution, the member is cooled by blowing air or inert gas onto the member. This is to maintain the solution state by cooling it somewhat rapidly.

次に再結晶化した部材を時効処理する。時効処理の目的は、母相であるγ相中に、γ”相およびγ’相を析出させることである。 Next, the recrystallized member is subjected to an aging treatment. The purpose of the aging treatment is to precipitate the γ'' phase and the γ' phase in the γ phase, which is the parent phase.

時効処理の温度は、好ましくは610℃以上、730℃以下である。この温度は、鍛造等によって造形された718合金部材に対する標準的な時効処理温度である。例えば、SAEのASM5663規格では、部材を1325F(718℃)で8時間保持し、100F/hで1150F(621℃)まで降温して、さらにその温度で8時間保持して、空冷する。また、上述のJISG4901および4902の参考附属書では、上記固溶化熱処理後に、705~730℃に8時間保持、610~630℃まで炉冷し、さらにその温度で時効後空冷して、総時効時間を18時間とすることが記載されている。 The temperature of the aging treatment is preferably 610°C or higher and 730°C or lower. This temperature is a standard aging treatment temperature for 718 alloy members formed by forging or the like. For example, according to SAE's ASM5663 standard, a member is held at 1325F (718°C) for 8 hours, lowered to 1150F (621°C) at 100F/h, held at that temperature for another 8 hours, and air cooled. In addition, in the reference appendix of JIS G4901 and 4902 mentioned above, after the solution heat treatment, it is maintained at 705 to 730°C for 8 hours, furnace cooled to 610 to 630°C, and then aged at that temperature and then air cooled for a total aging time. It is stated that the period is 18 hours.

なお、SAEのASM5664規格では、溶体化処理として、部材を1900~1950F(1038~1066℃)で保持した後空冷し、時効処理として、部材を1400F(760℃)と1200F(649℃)で計20時間処理する方法が規定されているが、この規格は、高温でのクリープ特性を犠牲にして、低温で使用することを想定したもので、やや特殊な規格である。 In addition, according to the SAE ASM5664 standard, as a solution treatment, the component is held at 1900 to 1950F (1038 to 1066℃) and then air cooled, and as an aging treatment, the component is measured at 1400F (760℃) and 1200F (649℃). Although a 20-hour treatment method is specified, this standard is a rather special standard, as it is intended to be used at low temperatures at the expense of creep characteristics at high temperatures.

以上の積層造形、再結晶化処理、溶体化処理、時効処理を経て、本実施形態のNi合金部材が得られる。 The Ni alloy member of this embodiment is obtained through the above layered manufacturing, recrystallization treatment, solution treatment, and aging treatment.

原料として表1に示す組成の合金粉末を用い、Ybファイバーレーザー(焦点径:80μm)を用いた粉末積層造形システム(EOS GmbH、M290)を用いて部材を造形した。Z方向の引張試験およびクリープ試験用には、図2に示す試験片を、長さ方向を積層方向として直接造形した。XY方向の引張試験およびクリープ試験用には、造形した直方体から図2に示す試験片を切り出した。 Using an alloy powder having the composition shown in Table 1 as a raw material, a member was modeled using a powder additive manufacturing system (EOS GmbH, M290) using a Yb fiber laser (focal diameter: 80 μm). For the Z-direction tensile test and creep test, the test piece shown in FIG. 2 was directly shaped with the length direction as the lamination direction. For tensile tests in the XY directions and creep tests, test pieces shown in FIG. 2 were cut out from the shaped rectangular parallelepiped.

Figure 2023143401000002
Figure 2023143401000002

実施例1および2の試料を、再結晶化温度を変えて、再結晶化処理、溶体化処理および時効処理を施して作製した。再結晶化処理は、試料を真空雰囲気で、所定の温度で1時間保持した後、空冷によって室温まで冷却した。溶体化処理は、試料を真空雰囲気で、980℃で1時間保持した後、空冷によって室温まで冷却した。時効処理は、真空雰囲気で、720℃で8時間保持し、620℃まで2時間で炉冷却し、620℃でさらに8時間保持した後、空冷によって室温まで冷却した。 The samples of Examples 1 and 2 were prepared by changing the recrystallization temperature and subjecting them to recrystallization treatment, solution treatment, and aging treatment. In the recrystallization treatment, the sample was held at a predetermined temperature in a vacuum atmosphere for 1 hour, and then cooled to room temperature by air cooling. In the solution treatment, the sample was held at 980° C. for 1 hour in a vacuum atmosphere, and then cooled to room temperature by air cooling. The aging treatment was performed by holding at 720°C for 8 hours in a vacuum atmosphere, furnace cooling to 620°C for 2 hours, holding at 620°C for a further 8 hours, and cooling to room temperature by air cooling.

比較例1の試料は、熱処理を施していない造形まま材である。比較例2~16の試料は、溶体化温度を変えて、溶体化処理および時効処理を施して作製した。溶体化処理は、試料を真空雰囲気で、所定の温度で1時間保持した後、空冷によって室温まで冷却した。時効処理は、実施例と同じ方法で行った。 The sample of Comparative Example 1 is an as-shaped material that has not been subjected to heat treatment. Samples of Comparative Examples 2 to 16 were prepared by solution treatment and aging treatment at different solution temperatures. In the solution treatment, the sample was held at a predetermined temperature in a vacuum atmosphere for 1 hour, and then cooled to room temperature by air cooling. The aging treatment was performed in the same manner as in the examples.

引張試験は、ASTM E21に準拠して、オートグラフを用いて、650℃、ひずみ速度0.005/sの条件で行った。クリープ試験は、JISZ2271に準拠して、621℃、荷重724MPaの条件で行った。 The tensile test was conducted using an autograph in accordance with ASTM E21 at a temperature of 650° C. and a strain rate of 0.005/s. The creep test was conducted under the conditions of 621° C. and a load of 724 MPa in accordance with JIS Z2271.

表2に、650℃での引張試験の結果を示す。 Table 2 shows the results of the tensile test at 650°C.

Figure 2023143401000003
Figure 2023143401000003

比較例1(造形まま材)の引張強度は、当然ながら、0.2%耐力および引張強さとも他の試料より低かった。比較例2~16の結果を比較すると、Z方向およびXY方向、0.2%耐力および引張強さのいずれについても、溶体化処理温度を950℃から上げていくに従って強度が上がり、1020~1030℃で最も高くなり、それを超えると徐々に低下した。また、溶体化温度が1100℃以下では、Z方向よりXY方向の方が高い強度を示し、1120℃以上でZ方向とXY方向の差が縮まった。比較例2~16における溶体化処理温度の違いによる強度の変化の原因は明らかではないが、造形まま材にδ相や脆くて亀裂発生点となりやすいLaves相(Fe(Nb,Ti))が含まれており、これらの相が1020℃以上での熱処理によって溶解した可能性がある。また、溶体化処理温度が1030℃を超えると、結晶粒が大きくなるにしたがって引張強さが徐々に低下した可能性がある。実施例1および2の0.2%耐力および引張強さは、再結晶化処理と同じ温度で溶体化処理した比較例とほぼ同じ値を示した。 Naturally, the tensile strength of Comparative Example 1 (as-shaped material) was lower than the other samples in both the 0.2% proof stress and the tensile strength. Comparing the results of Comparative Examples 2 to 16, it is found that as the solution treatment temperature is raised from 950°C, the strength increases in both the Z direction and the It reached its highest at ℃ and gradually decreased above that temperature. Further, when the solution temperature was 1100°C or lower, strength was higher in the XY direction than in the Z direction, and at 1120°C or higher, the difference between the Z direction and the XY direction was reduced. The cause of the change in strength due to the difference in solution treatment temperature in Comparative Examples 2 to 16 is not clear, but the as-built material contains the δ phase and the Laves phase (Fe 2 (Nb, Ti)), which is brittle and easily becomes a crack initiation point. It is possible that these phases were dissolved by heat treatment at 1020°C or higher. Moreover, when the solution treatment temperature exceeded 1030° C., there is a possibility that the tensile strength gradually decreased as the crystal grains became larger. The 0.2% proof stress and tensile strength of Examples 1 and 2 showed almost the same values as those of the comparative example, which was solution treated at the same temperature as the recrystallization treatment.

表3に、621℃でのクリープ試験の結果を示す。また、表3に示した結果のうち、図3に0.2%伸び時間、図4に破断時間の結果を示す。図3および図4の横軸は、実施例についてはその再結晶化処理温度、比較例についてはその溶体化処理温度である。また、図5に比較例3、図6に比較例13および実施例1のクリープ曲線を示す。 Table 3 shows the results of the creep test at 621°C. Further, among the results shown in Table 3, FIG. 3 shows the results of 0.2% elongation time, and FIG. 4 shows the results of rupture time. The horizontal axes in FIGS. 3 and 4 are the recrystallization treatment temperature for Examples and the solution treatment temperature for Comparative Examples. Further, FIG. 5 shows the creep curves of Comparative Example 3, and FIG. 6 shows the creep curves of Comparative Example 13 and Example 1.

Figure 2023143401000004
Figure 2023143401000004

表3、図3および図4から、比較例では、溶体化温度が1100℃以下でXY方向のクリープ特性が極めて悪く、溶体化温度が1120℃以上でZ方向との差が縮まっている。実施例と比較例を、実施例の再結晶化処理温度と比較例の溶体化処理温度が同程度の場合で比較すると、データのばらつきが大きいが、破断時間(図4)についてはほぼ同じで、0.2%伸び時間(図3)については実施例の方が長い傾向がみられた。718合金の鍛造材を標準的な条件で溶体化および時効処理した試料の0.2%伸び時間は200~400時間程度と言われており、実施例1および2の0.2%伸び時間はそれと同程度にまで改善されている。 From Table 3, FIG. 3, and FIG. 4, in the comparative example, the creep characteristics in the XY direction are extremely poor when the solution temperature is 1100° C. or lower, and the difference with the Z direction is narrowed when the solution temperature is 1120° C. or higher. When comparing Examples and Comparative Examples when the recrystallization temperature of the Examples and the solution treatment temperature of the Comparative Examples are similar, there is a large variation in the data, but the rupture times (Figure 4) are almost the same. , 0.2% elongation time (FIG. 3) tended to be longer in Examples. The 0.2% elongation time of a sample of 718 alloy forged material solution-treated and aged under standard conditions is said to be about 200 to 400 hours, and the 0.2% elongation time of Examples 1 and 2 was It has been improved to the same extent.

図5の比較例3(溶体化温度980℃+時効処理)は、前述のASM規格およびJIS規格に記載された方法で熱処理したものであるが、クリープ性能は悪かった。付加製造による718合金の造形物を標準的な条件で溶体化および時効処理しても、よいクリープ特性が得られないことを示している。付加製造による造形では、合金粉末が融解したメルトプールが急冷凝固する際に形成されるデンドライト組織のセル界面にNbの偏析が生じ、標準的な溶体化および時効条件ではδ相が成長しすぎたためと考えられる。 Comparative Example 3 in FIG. 5 (solution temperature 980° C. + aging treatment) was heat treated by the method described in the ASM standard and JIS standard, but the creep performance was poor. It is shown that solution annealing and aging of additively manufactured 718 alloy shapes under standard conditions does not result in good creep properties. In modeling using additive manufacturing, Nb segregation occurs at the cell interface of the dendrite structure that is formed when a melt pool containing molten alloy powder is rapidly solidified, and the δ phase grows too much under standard solution treatment and aging conditions. it is conceivable that.

図6の比較例13(溶体化温度1160℃+時効処理)と実施例1(再結晶化温度1160℃+溶体化温度980℃+時効処理)を比較すると、Z方向、XY方向ともに、破断時間は比較例13の方が長いが、試験初期の遷移クリープから定常クリープにかけてのひずみ速度は実施例1の方が低かった。このことは、表3においても、比較例13より実施例1の方が0.2%伸び時間が長いことに表れている。 Comparing Comparative Example 13 (solution temperature 1160°C + aging treatment) and Example 1 (recrystallization temperature 1160°C + solution temperature 980°C + aging treatment) in Fig. 6, the rupture time in both the Z direction and the XY direction is was longer in Comparative Example 13, but the strain rate from transition creep at the initial stage of the test to steady creep was lower in Example 1. This is also reflected in Table 3, where Example 1 has a longer 0.2% elongation time than Comparative Example 13.

以上の結果から、高温で1回の溶体化処理を行うより、高温での再結晶化処理と718合金で標準的な溶体化処理を行うことによって、クリープ試験初期の伸びが抑えられることが確認できた。 The above results confirm that recrystallization treatment at high temperature and standard solution treatment for 718 alloy suppress elongation at the initial stage of the creep test, rather than one-time solution treatment at high temperature. did it.

上記結果をもたらしたメカニズムを調査するために、試料の結晶組織を調査した。 In order to investigate the mechanism that brought about the above results, the crystal structure of the sample was investigated.

まず、熱処理温度が結晶の形状および大きさに及ぼす影響を調べるため、造形まま材を980~1200℃で1時間保持して空冷した試料、および造形まま材を1160℃で1時間保持して空冷した後980℃で1時間保持して空冷した試料について、Z方向に平行な断面の後方散乱電子回折(EBSD)測定を行った。EBSDによれば、結晶粒毎の結晶方位を知ることができ、測定面における結晶粒の輪郭を示す画像を作成することができる。図7は結晶粒界を示す画像である。図7では、両側の結晶方位が10度以上異なる粒界を示した。図7の縦方向が試料のZ方向、横方向が試料のXY方向で、各画像左下のバーの長さは600μmである。表4に、測定面に現れた結晶粒の領域のZ方向およびXY方向の幅の平均値を示す。測定面は各結晶粒をランダムな位置で二分するため、この幅の平均値は各結晶粒のZ方向またはXY方向の大きさの平均値を示すものではないが、その指標となるものである。なお、図7および表4の各試料はいずれも時効処理をしていないものであり、時効処理することによって備考欄に示した各比較例または実施例の試料になる。 First, in order to investigate the effect of heat treatment temperature on the shape and size of crystals, samples were prepared in which the as-shaped material was held at 980 to 1200°C for 1 hour and air-cooled, and the as-built material was held at 1160°C for 1 hour and air-cooled. After that, the sample was held at 980° C. for 1 hour and cooled in air, and then backscattered electron diffraction (EBSD) measurement was performed on a cross section parallel to the Z direction. According to EBSD, it is possible to know the crystal orientation of each crystal grain, and it is possible to create an image showing the outline of the crystal grain on the measurement surface. FIG. 7 is an image showing grain boundaries. FIG. 7 shows a grain boundary where the crystal orientations on both sides differ by 10 degrees or more. The vertical direction in FIG. 7 is the Z direction of the sample, the horizontal direction is the XY direction of the sample, and the length of the bar at the bottom left of each image is 600 μm. Table 4 shows the average values of the widths in the Z direction and the XY direction of the crystal grain regions appearing on the measurement surface. Since the measurement plane divides each crystal grain into two at random positions, the average value of this width does not indicate the average value of the size of each crystal grain in the Z direction or the XY direction, but it does serve as an index. . Note that each sample in FIG. 7 and Table 4 has not been subjected to aging treatment, and by aging treatment, it becomes a sample of each comparative example or example shown in the remarks column.

Figure 2023143401000005
Figure 2023143401000005

図7および表4から、結晶粒は熱処理温度が高いほど大きくなり、1100~1200℃、特に1120~1180℃で、Z方向とXY方向の大きさの差が小さくなっている。また、1160℃で熱処理したものと、1160℃+980℃で熱処理したものの結晶サイズを比較すると、後者が少し大きいものの余り違いはなかった。この結果を実施例および比較例の引張試験およびクリープ試験の結果と合わせて考えると、表4の数値が約40μm、すなわち熱処理温度が1140~1180℃のときに、引張特性およびクリープ特性が等方的で、かつ最も良好な結果を示すと考えられる。 From FIG. 7 and Table 4, the crystal grains become larger as the heat treatment temperature increases, and the difference in size between the Z direction and the XY direction becomes smaller at 1100 to 1200° C., especially at 1120 to 1180° C. Further, when comparing the crystal sizes of those heat-treated at 1160°C and those heat-treated at 1160°C + 980°C, there was not much difference, although the latter was slightly larger. Considering this result together with the results of the tensile test and creep test of Examples and Comparative Examples, when the values in Table 4 are approximately 40 μm, that is, the heat treatment temperature is 1140 to 1180°C, the tensile properties and creep properties are isotropic. It is considered to be the most effective and to show the best results.

次に、図5および図6に示した比較例3、比較例13および実施例1のクリープ試験片の破断面を観察した。図8~10に破断面の走査型電子顕微鏡(SEM)写真を示す。図8~10中で、ZはZ方向に引張負荷を与えたクリープ試験、XYはXY方向に引張負荷を与えたクリープ試験を意味する。各SEM像の下にあるバーの長さは、図8が1mm、図9が300μm、図10が100μmである。 Next, the fracture surfaces of the creep test pieces of Comparative Example 3, Comparative Example 13, and Example 1 shown in FIGS. 5 and 6 were observed. Figures 8 to 10 show scanning electron microscope (SEM) photographs of the fractured surface. In FIGS. 8 to 10, Z means a creep test in which a tensile load was applied in the Z direction, and XY means a creep test in which a tensile load was applied in the XY directions. The length of the bar under each SEM image is 1 mm in FIG. 8, 300 μm in FIG. 9, and 100 μm in FIG. 10.

図8~10から、いずれの破断面でも明確な欠陥を起点とした破壊はなく、破面の形状の違いは結晶組織と塑性変形の違いによるものと推測される。比較例3のZを除いて、いずれの試験片でも結晶粒界での破壊が支配的であった。なお、SEM写真において、粒界破壊による破面には結晶粒の形状に起因するぼこぼことした凹凸がみられ、粒内破壊による破面は微小なディンプルが形成されたざらざらとした平坦面に見える。比較例3のXYではほぼ全体が粒界破壊で、比較例3のZでは、粒内破壊した箇所が多くみられた(例えば図10比較例3Zの中央部)。比較例13では、Z、XYともに全体が粒界破壊であった。実施例1では、Z、XYともに大部分が粒界破壊であるが、わずかに粒内破壊した箇所がみられた(例えば図10実施例1Zの左下部や同図実施例1XYの中央部)。 From FIGS. 8 to 10, there was no fracture originating from a clear defect on any of the fracture surfaces, and it is presumed that the difference in the shape of the fracture surfaces is due to the difference in crystal structure and plastic deformation. Except for Comparative Example 3 Z, fracture at grain boundaries was dominant in all test specimens. In addition, in the SEM photograph, the fracture surface caused by intergranular fracture shows irregularities due to the shape of the crystal grains, while the fracture surface caused by intragranular fracture appears to be a rough, flat surface with minute dimples formed. . Grain boundary fracture occurred almost entirely in XY of Comparative Example 3, and in Z of Comparative Example 3, there were many locations where intragranular fracture occurred (for example, the central part of Comparative Example 3Z in FIG. 10). In Comparative Example 13, grain boundary fracture occurred throughout both Z and XY. In Example 1, grain boundary fracture occurred mostly in both Z and XY, but there were a few areas where intragranular fracture occurred (for example, the lower left of Example 1Z in FIG. 10 and the center of Example 1XY in the same figure). .

図11および図12に比較例3、比較例13および実施例1の切断面のSEM写真を示す。切断面はZ方向に平行な面での切断面で、図の上下方向がZ方向である。 11 and 12 show SEM photographs of the cut surfaces of Comparative Example 3, Comparative Example 13, and Example 1. The cut plane is a plane parallel to the Z direction, and the vertical direction in the figure is the Z direction.

図11において、画像中で明るい点がδ相またはLaves相である。比較例3(溶体化温度980℃+時効処理)では、粒界に沿ってδ相が多数並んで存在する。比較例13(溶体化温度1160℃+時効処理)および実施例1(再結晶化温度1160℃+溶体化温度980℃+時効処理)でも粒界に沿ってδ相が存在するが、比較例3より少ない。また、比較例13および実施例1のX線回折(XRD)測定では、金属炭化物のごく小さなピークが観測されており、Cr、Ti、Nb等の炭化物も粒界に析出していると思われる。 In FIG. 11, bright points in the image are the δ phase or Laves phase. In Comparative Example 3 (solution temperature: 980° C. + aging treatment), a large number of δ phases are present along the grain boundaries. Comparative Example 13 (solution temperature 1160°C + aging treatment) and Example 1 (recrystallization temperature 1160°C + solution temperature 980°C + aging treatment) also have a δ phase along the grain boundaries, but in Comparative Example 3 Fewer. Furthermore, in the X-ray diffraction (XRD) measurements of Comparative Example 13 and Example 1, very small peaks of metal carbides were observed, suggesting that carbides such as Cr, Ti, and Nb were also precipitated at grain boundaries. .

図12はさらに高解像度のSEM写真である。図12から、比較例3、比較例13、実施例1の順にγ’相とγ”相の析出相から構成される組織が微細になっている。この理由は次のように推測される。造形まま材ではセル状またはデンドライト状の組織によって溶質元素の偏析がある。比較例3では、造形まま材の組織の影響を強く受けて、溶質元素を含む析出相が偏在する。比較例13と実施例1では、1160℃での熱処理によって組成の均一化が進むため、析出相が微細化する。さらに、実施例1では、980℃での溶体化処理後の冷却中の偏析が少なく、さらに微細な析出相が得られる。 FIG. 12 is an even higher resolution SEM photograph. From FIG. 12, the structure composed of the precipitated phases of γ' phase and γ'' phase becomes finer in the order of Comparative Example 3, Comparative Example 13, and Example 1. The reason for this is presumed as follows. In the as-built material, there is segregation of solute elements due to the cellular or dendrite-like structure.In Comparative Example 3, the precipitated phase containing the solute elements is unevenly distributed due to the strong influence of the structure of the as-built material.Comparative Example 13 In Example 1, the composition becomes more uniform due to the heat treatment at 1160°C, so the precipitated phase becomes finer.Furthermore, in Example 1, there is less segregation during cooling after the solution treatment at 980°C, and A fine precipitated phase is obtained.

以上より、実施形態のNi合金部材の製造過程では、次のような組織の変化が起こると考えられる。造形まま材の再結晶化を1120℃以上の温度で行うことで、Z方向とXY方向の等軸化がある程度進行して、引張特性およびクリープ特性の異方性が減少する。再結晶化処理温度が1140~1180℃であれば、より等軸化が進む。また、この高温での再結晶化処理中に、δ相およびLaves相が溶解し、溶質元素の偏析の均一化が進行する。再結晶化処理された部材は、溶体化処理によって微細なδ相が析出する。これにより、時効処理によって微細なγ”相とγ’相が析出することで、クリープ試験初期のひずみ速度が抑えられる。 From the above, it is thought that the following changes in the structure occur during the manufacturing process of the Ni alloy member of the embodiment. By recrystallizing the as-shaped material at a temperature of 1120° C. or higher, equiaxing in the Z direction and the XY direction progresses to some extent, and the anisotropy of the tensile properties and creep properties is reduced. If the recrystallization treatment temperature is 1140 to 1180°C, equiaxed formation will proceed more. Moreover, during this recrystallization treatment at high temperature, the δ phase and the Laves phase are dissolved, and the segregation of solute elements progresses to become uniform. In the recrystallized member, fine δ phase is precipitated by solution treatment. As a result, the strain rate at the initial stage of the creep test is suppressed by precipitating fine γ'' and γ' phases during the aging treatment.

本発明は、上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で種々の変形が可能である。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made within the scope of the technical idea.

Claims (2)

質量%で、Ni:50~55%、Cr:17.0~21.0%、Nb+Ta:4.75~5.5%、Mo:2.8~3.3%、Ti:0.65~1.15%、Al:0.20~0.80%、Co:1.0%以下、Cu:0.3%以下、C:0.08%以下、Si:0.35%以下、Mn:0.35%以下、P:0.015%以下、S:0.015%以下、B:0.006%以下、残部:Feおよび不可避的不純物、の組成を有する部材を付加製造技術により造形する積層造形工程と、
造形された前記部材を1120℃以上、1250℃以下の温度で再結晶化させる再結晶化処理工程と、
再結晶化した前記部材を925℃以上、1010℃以下の温度で溶体化する溶体化処理工程と、
を有するNi合金部材の製造方法。
In mass%, Ni: 50 to 55%, Cr: 17.0 to 21.0%, Nb + Ta: 4.75 to 5.5%, Mo: 2.8 to 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, Co: 1.0% or less, Cu: 0.3% or less, C: 0.08% or less, Si: 0.35% or less, Mn: A member having a composition of 0.35% or less, P: 0.015% or less, S: 0.015% or less, B: 0.006% or less, and the remainder: Fe and unavoidable impurities is formed using additive manufacturing technology. Additive manufacturing process;
a recrystallization treatment step of recrystallizing the shaped member at a temperature of 1120° C. or higher and 1250° C. or lower;
a solution treatment step of solutionizing the recrystallized member at a temperature of 925° C. or higher and 1010° C. or lower;
A method for manufacturing a Ni alloy member having the following.
溶体化した前記部材を610℃以上、730℃以下の温度で熱処理する時効処理工程をさらに有する、
請求項1に記載のNi合金部材の製造方法。
further comprising an aging treatment step of heat treating the solution-treated member at a temperature of 610° C. or higher and 730° C. or lower;
The method for manufacturing a Ni alloy member according to claim 1.
JP2022050746A 2022-03-25 2022-03-25 Method for manufacturing Ni alloy member Active JP7255963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022050746A JP7255963B1 (en) 2022-03-25 2022-03-25 Method for manufacturing Ni alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022050746A JP7255963B1 (en) 2022-03-25 2022-03-25 Method for manufacturing Ni alloy member

Publications (2)

Publication Number Publication Date
JP7255963B1 JP7255963B1 (en) 2023-04-11
JP2023143401A true JP2023143401A (en) 2023-10-06

Family

ID=85872879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022050746A Active JP7255963B1 (en) 2022-03-25 2022-03-25 Method for manufacturing Ni alloy member

Country Status (1)

Country Link
JP (1) JP7255963B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025392A (en) * 2015-07-24 2017-02-02 Jx金属株式会社 Surface treatment metal powder for electron beam type 3d printer and manufacturing method therefor
WO2017026519A1 (en) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-based super alloy powder for laminate molding
JPWO2016013433A1 (en) * 2014-07-23 2017-04-27 株式会社Ihi Manufacturing method of Ni alloy parts
JP2019502028A (en) * 2015-11-06 2019-01-24 イノマック 21 ソシエダ リミターダ Economical manufacturing method for metal parts
JP2022538819A (en) * 2019-07-05 2022-09-06 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-cobalt alloy powder and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9629631B2 (en) 2014-07-01 2017-04-25 Covidien Lp Composite drive beam for surgical stapling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016013433A1 (en) * 2014-07-23 2017-04-27 株式会社Ihi Manufacturing method of Ni alloy parts
JP2017025392A (en) * 2015-07-24 2017-02-02 Jx金属株式会社 Surface treatment metal powder for electron beam type 3d printer and manufacturing method therefor
WO2017026519A1 (en) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-based super alloy powder for laminate molding
JP2019502028A (en) * 2015-11-06 2019-01-24 イノマック 21 ソシエダ リミターダ Economical manufacturing method for metal parts
JP2022538819A (en) * 2019-07-05 2022-09-06 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-cobalt alloy powder and method for producing the same

Also Published As

Publication number Publication date
JP7255963B1 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US11566313B2 (en) Method for manufacturing Ni-based alloy member
Brenne et al. Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5787643B2 (en) Method for producing single crystal parts made of nickel-base superalloy
JP2018003157A (en) Methods for preparing superalloy articles and related articles
JP4468082B2 (en) Material degradation / damage recovery processing method for gas turbine parts and gas turbine parts
JPS63125649A (en) Production of preform for forging nickel-base superalloy
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
US20210340644A1 (en) Ni-Based Alloy Softened Powder and Method for Manufacturing Same
CN113518677B (en) Method for producing molded article, intermediate, and molded article
JP2013220472A (en) Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT
JP6120200B2 (en) Ni-base superalloy and turbine disk using the same
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
Bridges et al. Metallurgical Evaluation of an Additively Manufactured Nickel-Base Superalloy for Gas Turbine Guide Vanes
US7959748B2 (en) Method of manufacturing Ni-based superalloy component for gas turbine using one-step process of hot isostatic pressing and heat treatment and component manufactured thereby
KR102388622B1 (en) Method of 3D Printing - Manufacturing Superalloy IN718 for Improving Microstructure and Tensil Strength and Superalloy IN718 manufactured thereby
US8906174B2 (en) Ni-base alloy and method of producing the same
JP2015529743A (en) Nickel-base superalloy, method of nickel-base superalloy, and components formed from nickel-base superalloy
Almotari et al. Influence of Modified Heat Treatments and Build Orientations on the Microstructure of Additively Manufactured IN718
JP7255963B1 (en) Method for manufacturing Ni alloy member
TWI668310B (en) Superalloy material for laminate manufacturing
WO2018061317A1 (en) Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
JP7226536B2 (en) TiAl alloy and its manufacturing method
Pang et al. Strain softening induced by high pressure torsion in copper alloys
WO2023243146A1 (en) Ni-based alloy member manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7255963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150