JP2023142053A - Epoxy resin composition, curable composition, cured product, prepreg, and composite material - Google Patents

Epoxy resin composition, curable composition, cured product, prepreg, and composite material Download PDF

Info

Publication number
JP2023142053A
JP2023142053A JP2022048723A JP2022048723A JP2023142053A JP 2023142053 A JP2023142053 A JP 2023142053A JP 2022048723 A JP2022048723 A JP 2022048723A JP 2022048723 A JP2022048723 A JP 2022048723A JP 2023142053 A JP2023142053 A JP 2023142053A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
general formula
epoxy resin
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022048723A
Other languages
Japanese (ja)
Inventor
裕文 井上
Hirofumi Inoue
卓也 細木
Takuya Hosoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2022048723A priority Critical patent/JP2023142053A/en
Publication of JP2023142053A publication Critical patent/JP2023142053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide an epoxy resin composition which imparts excellent impact strength to a cured product.SOLUTION: The epoxy resin composition contains: a bisphenol type epoxy resin (A) which has an epoxy equivalent in the range of 180-700 and is represented by general formula (1); and a biphenol type resin (B) which has an epoxy equivalent in the range of 900-10,000 and is represented by general formula (3). The ratio (Wa)/(Wb) of the weight Wa of the bisphenol type epoxy resin (A) to the weight Wb of the biphenol type resin (B) is 70/30-90/10.SELECTED DRAWING: None

Description

本発明は、エポキシ樹脂組成物、硬化性組成物、硬化物、プリプレグおよび複合材料に関する。 The present invention relates to epoxy resin compositions, curable compositions, cured products, prepregs, and composite materials.

エポキシ樹脂は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品及び構造用材料等の分野で幅広く用いられている(例えば特許文献1を参照)。 Epoxy resins are widely used in fields such as electrical/electronic parts and structural materials due to their workability and the excellent electrical properties, heat resistance, adhesiveness, and moisture resistance (water resistance) of their cured products (for example, patent documents 1).

特許第5348740号公報Patent No. 5348740

エポキシ樹脂及びその硬化物は上述のような優れた特性を有することから、近年、自動車、ドローン及び介護用ロボットの部品の材料として用いることが検討されている。これらの用途においては、衝撃を受ける環境での使用が想定されるため、より高い耐衝撃強度が求められる。
本発明は、その硬化物に優れた耐衝撃強度を付与するエポキシ樹脂組成物を提供することを目的とする。
Since epoxy resins and their cured products have the above-mentioned excellent properties, their use as materials for parts of automobiles, drones, and nursing care robots has been considered in recent years. In these applications, higher impact resistance strength is required because they are expected to be used in environments where they are subject to impact.
An object of the present invention is to provide an epoxy resin composition that imparts excellent impact strength to its cured product.

本発明者は、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、エポキシ当量が180~700の範囲である下記一般式(1)で表されるビスフェノール型エポキシ樹脂(A)と、エポキシ当量が900~10000の範囲である下記一般式(3)で表されるビフェノール型樹脂(B)と、を含有し、ビフェノール型樹脂(B)の重量Wbに対するビスフェノール型エポキシ樹脂(A)の重量Waの比(Wa)/(Wb)が70/30~90/10であるエポキシ樹脂組成物;前記エポキシ樹脂組成物と、硬化剤及び/又は硬化促進剤とを含有する硬化性組成物;前記硬化性組成物を硬化させてなる硬化物;前記硬化性組成物と、強化繊維とを含むプリプレグ;前記プリプレグを硬化させてなる複合材料である。
The present inventor has arrived at the present invention as a result of studies to achieve the above object.
That is, the present invention provides a bisphenol type epoxy resin (A) represented by the following general formula (1) having an epoxy equivalent in the range of 180 to 700, and a bisphenol type epoxy resin (A) represented by the following general formula (3) having an epoxy equivalent in the range of 900 to 10,000. ), and the ratio (Wa)/(Wb) of the weight Wa of the bisphenol-type epoxy resin (A) to the weight Wb of the biphenol-type resin (B) is 70/30. 90/10; a curable composition containing the epoxy resin composition and a curing agent and/or a curing accelerator; a cured product obtained by curing the curable composition; A prepreg containing a synthetic composition and reinforcing fibers; a composite material obtained by curing the prepreg.


[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは下記一般式(2-1)~(2-7)のいずれかで表される構造部位であり、nは、エポキシ樹脂組成物中のビスフェノール型樹脂(A)1分子あたりの下記一般式(2A)で表される基の数平均モル数であり、0.1~10の数である。]

[In the formula, R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 2 is represented by the following general formulas (2-1) to (2- 7), where n is the number average number of moles of groups represented by the following general formula (2A) per molecule of bisphenol resin (A) in the epoxy resin composition. Yes, the number is from 0.1 to 10. ]


[式中、Rはそれぞれ独立に炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基のいずれかである。]

[In the formula, R 3 is each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. ]


[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは上記一般式(2-1)~(2-7)のいずれかで表される構造部位である。]

[In the formula, R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 2 is represented by the above general formulas (2-1) to (2- 7). ]


[式中、Qは下記一般式(4)で表される基であり、Xは下記一般式(5)で表される構造部位であり、kは1~5の数であり、Yは水素原子またはグリシジル基である。]

[Wherein, Q is a group represented by the following general formula (4), X is a structural moiety represented by the following general formula (5), k is a number from 1 to 5, and Y is hydrogen an atom or a glycidyl group. ]


[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは炭素原子数2~6のアルキレン基であり、mはROまたはORの付加モル数を表し、それぞれ独立に1~7の数である。]

[In the formula, R 4 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 5 is an alkylene group having 2 to 6 carbon atoms, m represents the number of moles of R 5 O or OR 5 added, each independently being a number from 1 to 7; ]


[式中、Rは2価の炭素数2~18の脂肪族炭化水素基、2価の炭素数3~18の脂環式炭化水素基または2価の炭素数6~18の芳香族炭化水素基である。]

[In the formula, R 6 is a divalent aliphatic hydrocarbon group having 2 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms. It is a hydrogen group. ]

本発明によれば、その硬化物に優れた耐衝撃強度を付与するエポキシ樹脂組成物を提供することができる。 According to the present invention, it is possible to provide an epoxy resin composition that imparts excellent impact strength to its cured product.

<エポキシ樹脂組成物>
本発明のエポキシ樹脂組成物は、エポキシ当量が180~700の範囲である一般式(1)で表されるビスフェノール型エポキシ樹脂(A)と、エポキシ当量が900~10000の範囲である一般式(3)で表されるビフェノール型樹脂(B)と、を含有する。
ビスフェノール型エポキシ樹脂(A)は下記一般式(1)で表される。以下において「ビスフェノール型エポキシ樹脂(A)」を「(A)成分」ともいう。
<Epoxy resin composition>
The epoxy resin composition of the present invention comprises a bisphenol type epoxy resin (A) represented by the general formula (1) having an epoxy equivalent of 180 to 700, and a general formula (A) having an epoxy equivalent of 900 to 10,000. 3) contains a biphenol type resin (B) represented by.
The bisphenol type epoxy resin (A) is represented by the following general formula (1). In the following, "bisphenol type epoxy resin (A)" is also referred to as "component (A)."

一般式(1)中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基である。炭素原子数1~4のアルキル基としては、メチル基、エチル基、直鎖または分岐のプロピル基及び直鎖または分岐のブチル基が挙げられる。炭素原子数1~4のアルコキシ基としては、メトキシ基、エトキシ基、直鎖または分岐のプロポキシ基及び直鎖または分岐のブトキシ基が挙げられる。Rは水素原子であることが好ましい。 In the general formula (1), R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a straight-chain or branched propyl group, and a straight-chain or branched butyl group. Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a straight-chain or branched propoxy group, and a straight-chain or branched butoxy group. Preferably, R 1 is a hydrogen atom.

は下記一般式(2-1)~(2-7)のいずれかで表される構造部位である。一般式(2-2)中の、Rはそれぞれ独立に炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基のいずれかである。炭素原子数1~4のアルキル基及び炭素原子数1~4のアルコキシ基としてはRで例示したものと同じ基が挙げられる。
は好ましくは一般式(2-2)で表される構造部位であり、より好ましくは一般式(2-2)中のRがメチル基である構造部位である。
R 2 is a structural moiety represented by any of the following general formulas (2-1) to (2-7). In general formula (2-2), each R 3 is independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms include the same groups as exemplified for R 1 .
R 2 is preferably a structural moiety represented by general formula (2-2), more preferably a structural moiety in which R 3 in general formula (2-2) is a methyl group.

一般式(1)中のnは、エポキシ樹脂組成物中の、全てのビスフェノール型樹脂(A)1分子あたりの一般式(2A)で表される基の数平均モル数である。nは0.1~10の数であり、小数の場合がある。一般式(2A)で表される基は、一般式(1)中の括弧内の基である。nは好ましくは0.1~9.0であり、より好ましくは0.1~6.0である。nが小数の場合の一例について説明する。例えば、(A)成分が、一般式(1)中の一般式(2A)で表される基の数が1の化合物と、一般式(1)中の一般式(2A)で表される基の数が0の化合物とを、1:9(モル比)で含む態様の場合、一般式(1)で表されるビスフェノール型エポキシ樹脂(A)1分子あたりの、一般式(2A)で表される基の数は0.1である。
nの計算方法について説明する。例えば、(A)成分が、一般式(1)中の一般式(2A)で表される基のモル数がn1の化合物と、一般式(1)中の一般式(2A)で表される基のモル数がn2の化合物とを、1:p(モル比)で含む態様の場合、一般式(1)で表されるビスフェノール型エポキシ樹脂(A)1分子あたりの、一般式(2A)で表される基の数平均モル数nは下記式に基づき算出できる。
n=(1×n1+p×n2)/(1+p)
n in the general formula (1) is the number average number of moles of the group represented by the general formula (2A) per molecule of all bisphenol resins (A) in the epoxy resin composition. n is a number from 0.1 to 10, and may be a decimal number. The group represented by general formula (2A) is the group in parentheses in general formula (1). n is preferably 0.1 to 9.0, more preferably 0.1 to 6.0. An example where n is a decimal number will be explained. For example, component (A) is a compound in which the number of groups represented by general formula (2A) in general formula (1) is 1, and a group represented by general formula (2A) in general formula (1). In the case of an embodiment containing a compound in which the number of The number of groups is 0.1.
The method of calculating n will be explained. For example, component (A) is a compound in which the number of moles of the group represented by general formula (2A) in general formula (1) is n1, and a compound represented by general formula (2A) in general formula (1). In the case of an embodiment containing a compound in which the number of moles of the group is n2 at a 1:p (mole ratio), the amount of the compound of the general formula (2A) per molecule of the bisphenol type epoxy resin (A) represented by the general formula (1) The number average mole number n of the group represented by can be calculated based on the following formula.
n=(1×n1+p×n2)/(1+p)

一般式(2A)中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは上記一般式(2-1)~(2-7)のいずれかで表される構造部位である。式(2A)中の、R及びRはそれぞれ一般式(1)中のR及びRと同じである。 In the general formula (2A), R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 2 is the general formula (2-1) to It is a structural site represented by any of (2-7). In formula (2A), R 1 and R 2 are the same as R 1 and R 2 in general formula (1), respectively.

一般式(1)で表されるビスフェノール型エポキシ樹脂(A)は、エポキシ当量が180~700の範囲である。ビスフェノール型エポキシ樹脂(A)のエポキシ当量が前記の範囲内であることにより、エポキシ樹脂組成物を含む硬化性組成物の硬化物及び複合材料において優れた耐衝撃性を発現できる。前記エポキシ当量が180未満の場合及び700超の場合は前記硬化物等の耐衝撃性が不充分となることがある。ビスフェノール型エポキシ樹脂(A)のエポキシ当量は好ましくは200~700であり、より好ましくは、250~600である。 The bisphenol type epoxy resin (A) represented by the general formula (1) has an epoxy equivalent in the range of 180 to 700. When the epoxy equivalent of the bisphenol-type epoxy resin (A) is within the above range, excellent impact resistance can be exhibited in the cured product and composite material of the curable composition containing the epoxy resin composition. If the epoxy equivalent is less than 180 or more than 700, the impact resistance of the cured product may be insufficient. The epoxy equivalent of the bisphenol type epoxy resin (A) is preferably 200 to 700, more preferably 250 to 600.

本発明において、エポキシ樹脂のエポキシ当量とは、1当量のエポキシ基を含む樹脂の質量のことをいい、JISK 7236に規定する方法により測定することができる。
二種以上のエポキシ樹脂を用いる場合、二種以上のエポキシ樹脂を含む混合物のエポキシ当量は、以下のようにして算出できる。
例えばエポキシ当量がEE1のエポキシ樹脂1をW1g、及びエポキシ当量がEE2のエポキシ樹脂2をW2g用いる場合、エポキシ樹脂1とエポキシ樹脂2の混合物のエポキシ当量EEmは、下記式(Z)により算出できる。
EEm=(W1+W2)/{(W1/EE1)+(W2/EE2)} (Z)
In the present invention, the epoxy equivalent of an epoxy resin refers to the mass of the resin containing 1 equivalent of epoxy groups, and can be measured by the method specified in JISK 7236.
When using two or more types of epoxy resins, the epoxy equivalent of a mixture containing two or more types of epoxy resins can be calculated as follows.
For example, when using W1g of epoxy resin 1 having an epoxy equivalent of EE1 and W2g of epoxy resin 2 having an epoxy equivalent of EE2, the epoxy equivalent EEm of the mixture of epoxy resin 1 and epoxy resin 2 can be calculated by the following formula (Z).
EEm=(W1+W2)/{(W1/EE1)+(W2/EE2)} (Z)

本発明においては、ビスフェノール型エポキシ樹脂(A)を一種単独で用いてもよいし二種以上を用いてもよい。ビスフェノール型エポキシ樹脂(A)を二種以上用いる場合、二種以上のビスフェノール型エポキシ樹脂の混合物のエポキシ当量が180~700の範囲であればよく、前記混合物はエポキシ当量が前記の範囲外であるビスフェノール型エポキシ樹脂を含んでいてもよい。 In the present invention, one type of bisphenol type epoxy resin (A) may be used alone, or two or more types may be used. When two or more types of bisphenol type epoxy resins (A) are used, the epoxy equivalent of the mixture of two or more types of bisphenol type epoxy resins may be in the range of 180 to 700, and the epoxy equivalent of the mixture is outside the above range. It may also contain a bisphenol type epoxy resin.

ビスフェノール型エポキシ樹脂(A)は、各種のビスフェノール化合物及び、エピハロヒドリン等を用いて製造することができる。具体的な製造方法としては、例えば、ビスフェノール化合物とエピハロヒドリンとを反応させて得られるジグリシジルエーテル化合物を、更にビスフェノール化合物と反応させる方法(方法1)、及びビスフェノール化合物とエピハロヒドリンとを反応させて直接目的物であるエポキシ樹脂を得る方法(方法2)等が挙げられる。反応が調整し易く、得られるエポキシ樹脂(A)のエポキシ当量の調整が容易であることから、方法1が好ましい。 The bisphenol-type epoxy resin (A) can be manufactured using various bisphenol compounds, epihalohydrin, and the like. Specific production methods include, for example, a method in which a diglycidyl ether compound obtained by reacting a bisphenol compound and epihalohydrin is further reacted with a bisphenol compound (Method 1), and a method in which a bisphenol compound and epihalohydrin are reacted directly. Examples include a method (method 2) for obtaining the target epoxy resin. Method 1 is preferred because the reaction is easy to adjust and the epoxy equivalent of the resulting epoxy resin (A) is easy to adjust.

方法1又は2で用いるビスフェノール化合物としては、例えば、下記一般式(1a)で表される化合物を用いることができる。エピハロヒドリンとしてはエピクロロヒドリン等を用いることができる。 As the bisphenol compound used in method 1 or 2, for example, a compound represented by the following general formula (1a) can be used. As the epihalohydrin, epichlorohydrin or the like can be used.

式(1a)中の、Rは及びRはそれぞれ一般式(1)中のR及びRと同じである。一般式(1a)で表される化合物は、目的物であるビスフェノール型エポキシ樹脂(A)[一般式(1)で表される化合物]の種類に応じ選択することができる。 In formula (1a), R 1 and R 2 are respectively the same as R 1 and R 2 in general formula (1). The compound represented by general formula (1a) can be selected depending on the type of the target bisphenol-type epoxy resin (A) [compound represented by general formula (1)].

ビスフェノール型エポキシ樹脂(A)は、好ましくはビスフェノールAエピクロルヒドリン縮合物である。ビスフェノール型エポキシ樹脂としては市販されているものを用いてもよい。市販されているビスフェノール型エポキシ樹脂(A)としては、三菱ケミカル(株)製の「jER1004」、「jER1002」、「jER1001」及び「jER828]等が挙げられる。 The bisphenol type epoxy resin (A) is preferably a bisphenol A epichlorohydrin condensate. Commercially available bisphenol epoxy resins may be used. Commercially available bisphenol-type epoxy resins (A) include "jER1004", "jER1002", "jER1001", and "jER828" manufactured by Mitsubishi Chemical Corporation.

ビフェノール型樹脂(B)は下記一般式(3)で表される化合物である。以下において「ビフェノール型樹脂(B)」を「(B)成分」ともいう。 The biphenol type resin (B) is a compound represented by the following general formula (3). In the following, "biphenol type resin (B)" is also referred to as "component (B)."

一般式(3)中、Qは下記一般式(4)で表される基である。 In the general formula (3), Q is a group represented by the following general formula (4).

一般式(4)中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基である。炭素原子数1~4のアルキル基としては、メチル基、エチル基、直鎖または分岐のプロピル基及び直鎖または分岐のブチル基が挙げられる。炭素原子数1~4のアルコキシ基としては、メトキシ基、エトキシ基、直鎖または分岐のプロポキシ基及び直鎖または分岐のブトキシ基が挙げられる。Rは水素原子であることが好ましい。 In the general formula (4), R 4 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a straight-chain or branched propyl group, and a straight-chain or branched butyl group. Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a straight-chain or branched propoxy group, and a straight-chain or branched butoxy group. Preferably, R 4 is a hydrogen atom.

一般式(4)中、Rは炭素原子数2~6のアルキレン基である。炭素原子数2~6のアルキレン基としては、具体的にはメチレン基、エチレン基、直鎖または分岐のプロピレン基、直鎖または分岐のブチレン基、直鎖または分岐のペンチレン基及び直鎖または分岐のヘキシレン基が挙げられる。Rとしては直鎖または分岐のプロピレン基が好ましい。Rが複数ある場合(mが2以上の場合)、Rは同一であっても相違していてもよい。 In the general formula (4), R 5 is an alkylene group having 2 to 6 carbon atoms. Examples of the alkylene group having 2 to 6 carbon atoms include a methylene group, an ethylene group, a straight-chain or branched propylene group, a straight-chain or branched butylene group, a straight-chain or branched pentylene group, and a straight-chain or branched pentylene group. Examples include hexylene groups. R 5 is preferably a linear or branched propylene group. When there is a plurality of R 5 (m is 2 or more), R 5 may be the same or different.

一般式(4)中のmはROまたはORの付加モル数を表し、それぞれ独立に1~7の数である。2つのmは、それぞれ、一般式(3)で表されるビフェノール型樹脂(B)1分子あたりのROの付加モル数及びORの付加モル数であり、小数の場合がある。2つのmは、それぞれ独立に1~7の整数であることが好ましく、2つのmの合計は2~14であることがより好ましい。 m in the general formula (4) represents the number of moles of R 5 O or OR 5 added, each independently being a number from 1 to 7. The two m's are the number of moles of R 5 O added and the number of moles of OR 5 added per molecule of the biphenol resin (B) represented by the general formula (3), respectively, and may be decimal numbers. The two m's are preferably each independently an integer of 1 to 7, and the total of the two m's is more preferably 2 to 14.

一般式(3)中のXは下記一般式(5)で表される構造部位である。 X in general formula (3) is a structural moiety represented by general formula (5) below.

一般式(5)中、Rは2価の炭素数2~18の脂肪族炭化水素基、2価の炭素数3~18の脂環式炭化水素基または2価の炭素数6~18の芳香族炭化水素基である。 In the general formula (5), R 6 is a divalent aliphatic hydrocarbon group having 2 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, or a divalent alicyclic hydrocarbon group having 6 to 18 carbon atoms. It is an aromatic hydrocarbon group.

2価の炭素数2~18の脂肪族炭化水素基としては、炭素数2~18で分岐を有していてもよい2価の脂肪族飽和炭化水素基(エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基及びn-オクタデシレン基等の直鎖または分岐のアルキレン基)ならびに炭素数2~18で分岐を有していてもよい2価の脂肪族不飽和炭化水素基(例えばエテニレン基、プロぺニレン基、ブテニレン基、ヘキセニレン基、デセニレン基、ウンデセニレン基、テトラデセニレン基及びオクタデセニレン基等の直鎖または分岐を有するアルケニレン基)等が挙げられる。
2価の炭素数3~18の脂環式炭化水素基としては、炭素数3~18のシクロアルキレン基(シクロプロピレン基、シクロブチレン基、シクロペンチレン基及びシクロへキシレン基等)、炭素数3~18のシクロアルケニレン基(シクロプロペニレン基、シクロブテニレン基、シクロペンテニレン基及びシクロへキセニレン基等)、炭素数3~18の二環式アルキレン基(デカヒドロナフチレン基等)等が挙げられる。2価の脂環式炭化水素基は、置換基(例えば脂肪族炭化水素基等)を有する基であってもよい。2価の脂環式炭化水素基が置換基を有する場合、置換基および環状部分の炭素数の合計が3~18であればよい。置換基としては、例えば炭素数1~10の飽和又は不飽和脂肪族炭化水素基が挙げられ、当該置換基は直鎖であっても分岐を有していてもよい。置換基としては炭素数1~10のアルキル基(メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等)、炭素数1~10のアルケニル基(エテニル基、プロぺニル基、ブテニル基、メチルブテニル基、ペンテニル基、へキセニル基、ヘプテニル基及びオクテニル基等)等が挙げられる。
2価の炭素数6~18の芳香族炭化水素基としては、フェニレン基、ナフチレン基及びビフェニレン基等が挙げられる。2価の芳香族炭化水素基は、置換基(例えば、脂肪族炭化水素基等)を有する基であってもよい。2価の芳香族炭化水素基が置換基を有する場合、置換基および芳香環部分の炭素数の合計が6~18であればよい。置換基としては、脂環式炭化水素基の置換基として例示したものと同様のものが挙げられる。
としては、2価の炭素数5~18の脂環式炭化水素基が好ましく、脂肪族炭化水素基を置換基として有する2価のシクロアルケニレン基及び脂肪族炭化水素基を置換基として有する2価のシクロアルキレン基であることが好ましく、炭素数1~4のアルキル基またはアルケニル基(例えば、メチル基及びメチルプロぺニル基から選ばれる一種以上の基)を置換基として有するシクロヘキシニレン基及びシクロヘキセニレン基であることがより好ましい。
Examples of divalent aliphatic hydrocarbon groups having 2 to 18 carbon atoms include divalent saturated aliphatic hydrocarbon groups having 2 to 18 carbon atoms that may have branches (ethylene group, n-propylene group, isopropylene group, Propylene group, n-butylene group, isobutylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group, n-undecylene group, n-dodecylene group , n-tridelene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, n-heptadecylene group, n-octadecylene group, etc.) and a branched alkylene group having 2 to 18 carbon atoms. divalent aliphatic unsaturated hydrocarbon groups (for example, straight-chain or branched aliphatic unsaturated hydrocarbon groups such as ethenylene group, propenylene group, butenylene group, hexenylene group, decenylene group, undecenylene group, tetradecenylene group, and octadecenylene group) alkenylene group), etc.
Examples of divalent alicyclic hydrocarbon groups having 3 to 18 carbon atoms include cycloalkylene groups having 3 to 18 carbon atoms (cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, etc.), carbon atoms Cycloalkenylene groups having 3 to 18 carbon atoms (cyclopropenylene group, cyclobutenylene group, cyclopentenylene group, cyclohexenylene group, etc.), bicyclic alkylene groups having 3 to 18 carbon atoms (decahydronaphthylene group, etc.), etc. Can be mentioned. The divalent alicyclic hydrocarbon group may be a group having a substituent (for example, an aliphatic hydrocarbon group). When the divalent alicyclic hydrocarbon group has a substituent, the total number of carbon atoms in the substituent and the cyclic portion may be 3 to 18. Examples of the substituent include saturated or unsaturated aliphatic hydrocarbon groups having 1 to 10 carbon atoms, and the substituent may be linear or branched. Substituents include alkyl groups having 1 to 10 carbon atoms (methyl group, ethyl group, propyl group, butyl group, isopropyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.), alkenyl groups having 1 to 10 carbon atoms. (ethenyl group, propenyl group, butenyl group, methylbutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, etc.).
Examples of the divalent aromatic hydrocarbon group having 6 to 18 carbon atoms include a phenylene group, a naphthylene group, and a biphenylene group. The divalent aromatic hydrocarbon group may be a group having a substituent (for example, an aliphatic hydrocarbon group, etc.). When the divalent aromatic hydrocarbon group has a substituent, the total number of carbon atoms in the substituent and the aromatic ring portion may be 6 to 18. Examples of the substituent include the same substituents as those exemplified as substituents for the alicyclic hydrocarbon group.
R 6 is preferably a divalent alicyclic hydrocarbon group having 5 to 18 carbon atoms, a divalent cycloalkenylene group having an aliphatic hydrocarbon group as a substituent, and a divalent cycloalkenylene group having an aliphatic hydrocarbon group as a substituent. A cyclohexynylene group which is preferably a divalent cycloalkylene group and has an alkyl group or alkenyl group having 1 to 4 carbon atoms (for example, one or more groups selected from methyl group and methylpropenyl group) as a substituent and cyclohexenylene group are more preferable.

一般式(3)中のkは1~5の数である。kは好ましくは1~4であり、より好ましくは1~3である。一般式(3)中のYは水素原子またはグリシジル基である。Yは好ましくはグリシジル基である。 k in general formula (3) is a number from 1 to 5. k is preferably 1-4, more preferably 1-3. Y in general formula (3) is a hydrogen atom or a glycidyl group. Y is preferably a glycidyl group.

一般式(3)で表されるビフェノール型樹脂(B)は、エポキシ当量が900~10000の範囲である。ビフェノール型樹脂(B)のエポキシ当量が前記の範囲内であることにより、エポキシ樹脂組成物を硬化させて得られる硬化物及び複合材料において優れた耐衝撃性を発現できる。前記エポキシ当量が900未満の場合及び10000超の場合は耐衝撃性が不充分となることがある。ビフェノール型樹脂(B)のエポキシ当量は好ましくは950~9800であり、より好ましくは、1000~9000である。 The biphenol resin (B) represented by the general formula (3) has an epoxy equivalent weight in the range of 900 to 10,000. When the epoxy equivalent of the biphenol resin (B) is within the above range, excellent impact resistance can be exhibited in the cured product and composite material obtained by curing the epoxy resin composition. If the epoxy equivalent is less than 900 or more than 10,000, the impact resistance may be insufficient. The epoxy equivalent of the biphenol type resin (B) is preferably 950 to 9,800, more preferably 1,000 to 9,000.

本発明においては、(B)成分としては、一般式(3)で表される化合物を一種単独で用いてもよいし二種以上を用いてもよい。一般式(3)で表される化合物を二種以上用いる場合、二種以上の化合物の混合物のエポキシ当量が900~10000の範囲であればよく、前記混合物はエポキシ当量が前記の範囲外であるビフェノール型樹脂を含んでいてもよい。 In the present invention, as component (B), one type of compound represented by general formula (3) may be used alone, or two or more types may be used. When two or more compounds represented by the general formula (3) are used, the epoxy equivalent of the mixture of the two or more compounds may be in the range of 900 to 10,000, and the epoxy equivalent of the mixture is outside the above range. It may also contain a biphenol type resin.

ビフェノール型樹脂(B)は、例えば、下記一般式(3a)で表されるビフェノール化合物に炭素原子数2~6のアルキレンオキサイド(AO)を付加してなるビフェノールのアルキレンオキサイド(AO)付加物を得る工程(工程1)と、ビフェノールのAO付加物をグリシジルエーテル化してビフェノールのAO付加物のグリシジル化物を得る工程(工程2)と、前記グリシジル化物に、一般式(5)で表される構造を導入する工程(工程3)を順に実行することにより得ることができる。 The biphenol type resin (B) is, for example, a biphenol alkylene oxide (AO) adduct obtained by adding an alkylene oxide (AO) having 2 to 6 carbon atoms to a biphenol compound represented by the following general formula (3a). a step (step 1) of obtaining a glycidylated product of the AO adduct of biphenol by glycidyl etherification of the AO adduct of biphenol, and a step (step 2) of obtaining a glycidylated product of the AO adduct of biphenol; can be obtained by sequentially performing the steps of introducing (step 3).

一般式(3a)中のRは一般式(4)中のRと同じである。 R 4 in general formula (3a) is the same as R 4 in general formula (4).

工程1において、ビフェノールのAO付加物を構成するアルキレンオキサイド[一般式(3a)で表される化合物に付加させる炭素原子数2~6のアルキレンオキサイド]としては、エチレンオキサイド(以下、EOと略記する。)、1,2-プロピレンオキサイド(以下、POと略記する。)、1,2-ブチレンオキサイド、1,2-ペンチレンオキサイド及び1,2-ヘキシレンオキサイド等が挙げられる。これらは一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。AOとしては、好ましくは炭素原子数2~4のアルキレンオキサイドであり、より好ましくはPOである。 In step 1, the alkylene oxide [alkylene oxide having 2 to 6 carbon atoms to be added to the compound represented by general formula (3a)] constituting the AO adduct of biphenol is ethylene oxide (hereinafter abbreviated as EO). ), 1,2-propylene oxide (hereinafter abbreviated as PO), 1,2-butylene oxide, 1,2-pentylene oxide, and 1,2-hexylene oxide. These may be used alone or in combination of two or more. The AO is preferably an alkylene oxide having 2 to 4 carbon atoms, and more preferably PO.

工程2において、ビフェノールのAO付加物をグリシジルエーテル化する際には、ビフェノールのAO付加物にエピクロルヒドリンを反応させることによりビフェノールのAO付加物のグリシジル化物を得ることができる。 In step 2, when the AO adduct of biphenol is glycidyl etherified, a glycidylated product of the AO adduct of biphenol can be obtained by reacting the AO adduct of biphenol with epichlorohydrin.

工程3において、一般式(5)で表される構造の導入は、分子内に-R-で表される構造(Rは一般式(5)中のRであって、2価の炭素数2~18の脂肪族炭化水素基、2価の炭素数3~18の脂環式炭化水素基または2価の炭素数6~18の芳香族炭化水素基)を有する化合物等を用いることにより行いうる。分子内にRで表される構造を有する化合物としては、分子内にRで表される2価の基を有する酸無水物[例えば、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロメチル無水フタル酸及びメチルブテニルテトラヒドロ無水フタル酸等)等が挙げられる。一般式(5)で表される構造を導入する際に触媒を用いてもよい。触媒としては3価の脂肪族アミン(例えばトリエチルアミン等)等が挙げられる。 In step 3, the structure represented by general formula (5) is introduced into the molecule by a structure represented by -R 6 - (R 6 is R 6 in general formula (5), and a divalent (aliphatic hydrocarbon group having 2 to 18 carbon atoms, divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, or divalent aromatic hydrocarbon group having 6 to 18 carbon atoms), etc. This can be done by Compounds having a structure represented by R 6 in the molecule include acid anhydrides having a divalent group represented by R 6 in the molecule [for example, 3,4-dimethyl-6-(2-methyl- (1-propenyl)-4-cyclohexene-1,2-dicarboxylic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydromethyl phthalic anhydride, methylbutenyltetrahydrophthalic anhydride, etc.). A catalyst may be used when introducing the structure represented by general formula (5). Examples of the catalyst include trivalent aliphatic amines (eg, triethylamine, etc.).

本発明のエポキシ樹脂組成物のエポキシ当量は、耐衝撃性に優れるという観点から、好ましくは250~600の範囲であり、より好ましくは、255~580である。 The epoxy equivalent of the epoxy resin composition of the present invention is preferably in the range of 250 to 600, more preferably 255 to 580, from the viewpoint of excellent impact resistance.

本発明のエポキシ樹脂組成物において、ビフェノール型エポキシ樹脂(B)の重量Wbに対するビスフェノール型エポキシ樹脂(A)の重量Waの比(Wa)/(Wb)は、70/30~90/10である。ビフェノール型エポキシ樹脂(B)の重量Wbに対するビスフェノール型エポキシ樹脂(A)の重量Waの比(Wa)/(Wb)が上記範囲内であると、エポキシ樹脂組成物を含む硬化性組成物の硬化物において優れた耐衝撃性を発現できる。前記(Wa)/(Wb)が70/30未満の場合及び90/10超の場合、エポキシ樹脂組成物を含む硬化性組成物の硬化物の耐衝撃性が不充分となることがある。
本発明エポキシ樹脂組成物は、硬化剤及び/又は硬化促進剤と共に用いて硬化性組成物等として用いることができる。
In the epoxy resin composition of the present invention, the ratio (Wa)/(Wb) of the weight Wa of the bisphenol-type epoxy resin (A) to the weight Wb of the biphenol-type epoxy resin (B) is 70/30 to 90/10. . When the ratio (Wa)/(Wb) of the weight Wa of the bisphenol-type epoxy resin (A) to the weight Wb of the biphenol-type epoxy resin (B) is within the above range, the curable composition containing the epoxy resin composition is cured. Can exhibit excellent impact resistance in objects. When (Wa)/(Wb) is less than 70/30 or more than 90/10, the impact resistance of the cured product of the curable composition containing the epoxy resin composition may be insufficient.
The epoxy resin composition of the present invention can be used as a curable composition etc. in combination with a curing agent and/or a curing accelerator.

<硬化性組成物>
本発明の硬化性組成物は、本発明のエポキシ樹脂組成物と、硬化剤及び/又は硬化促進剤とを含有する。
<Curable composition>
The curable composition of the present invention contains the epoxy resin composition of the present invention, and a curing agent and/or a curing accelerator.

硬化剤(C)及び硬化促進剤(D)としては、例えば、ポリアミン化合物、アミド化合物、酸無水物、フェノール性水酸基含有樹脂、リン化合物、イミダゾール化合物、イミダゾリン化合物、尿素系化合物、有機酸金属塩、ルイス酸及びアミン錯塩等が挙げられる。以下において、「硬化剤(C)」を「(C)成分」と呼ぶことがあり、「硬化促進剤(D)」を「(D)成分」と呼ぶことがある。これらの具体例としては特許第6721855号に記載のもの等が挙げられる。以下にその一例を示す。 Examples of the curing agent (C) and curing accelerator (D) include polyamine compounds, amide compounds, acid anhydrides, phenolic hydroxyl group-containing resins, phosphorus compounds, imidazole compounds, imidazoline compounds, urea compounds, and organic acid metal salts. , Lewis acids and amine complex salts. Hereinafter, the "curing agent (C)" may be referred to as "component (C)", and the "curing accelerator (D)" may be referred to as "component (D)". Specific examples of these include those described in Japanese Patent No. 6721855. An example is shown below.

ポリアミン化合物としては脂肪族アミン化合物(例えば、トリメチレンジアミン、及びエチレンジアミン等)、脂環式及び複素環式アミン化合物(例えばピぺリジン、ピペラジン、メンタンジアミン、イソホロンジアミン、メチルモルホリン及びエチルモルホリン等)、芳香族アミン化合物(例えばフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルメチルアミン、ジメチルベンジルアミン、m-キシレンジアミン及びピリジン等)、ならびに変性アミン化合物(エポキシ化合物付加ポリアミン等)等があげられる。
アミド化合物としては、例えばジシアンジアミドならびにポリアミドアミン(コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸等の脂肪族ジカルボン酸、脂肪酸及びダイマー酸等のカルボン酸化合物と、脂肪族ポリアミンやポリオキシアルキレン鎖を有するポリアミン等とを反応させて得られるもの等)等が挙げられる。
酸無水物としては例えば無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸等が挙げられる。
フェノ-ル性水酸基含有樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂及びジシクロペンタジエンフェノール付加型樹脂等が挙げられる。
リン化合物としては、エチルホスフィン及びブチルホスフィン等のアルキルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン及び、ジプロピルホスフィン等のジアルキルホスフィン;ジフェニルホスフィン、メチルエチルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン等の第3ホスフィン等が挙げられる。
イミダゾール化合物としてはイミダゾール、メチルイミダゾール、エチルイミダゾール等が挙げられる。
イミダゾリン化合物としては2-メチルイミダゾリン、2-フェニルイミダゾリン等が挙げられる。
尿素化合物としては、芳香族ジメチルウレア化合物(p-クロロフェニル-N,N-ジメチル尿素、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-N,N-ジメチル尿素、及びN-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素等)等が挙げられる。
Examples of polyamine compounds include aliphatic amine compounds (for example, trimethylene diamine, ethylene diamine, etc.), alicyclic and heterocyclic amine compounds (for example, piperidine, piperazine, menthanediamine, isophorone diamine, methylmorpholine, ethylmorpholine, etc.) , aromatic amine compounds (eg, phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzylmethylamine, dimethylbenzylamine, m-xylenediamine, pyridine, etc.), and modified amine compounds (epoxy compound-added polyamines, etc.).
Examples of amide compounds include dicyandiamide and polyamide amines (carboxylic acid compounds such as aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, fatty acids and dimer acids); and those obtained by reacting with polyamines having polyoxyalkylene chains, etc.).
Examples of acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. Examples include acids.
Examples of the phenolic hydroxyl group-containing resin include phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, and dicyclopentadiene phenol addition type resin.
Examples of phosphorus compounds include alkyl phosphines such as ethylphosphine and butylphosphine, primary phosphines such as phenylphosphine; dialkylphosphines such as dimethylphosphine and dipropylphosphine; secondary phosphines such as diphenylphosphine and methylethylphosphine; trimethylphosphine, Examples include tertiary phosphines such as triethylphosphine and triphenylphosphine.
Examples of the imidazole compound include imidazole, methylimidazole, and ethylimidazole.
Examples of the imidazoline compound include 2-methylimidazoline and 2-phenylimidazoline.
Examples of urea compounds include aromatic dimethylurea compounds (p-chlorophenyl-N,N-dimethylurea, 3-phenyl-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-N,N-dimethylurea, and N-(3-chloro-4-methylphenyl)-N',N'-dimethylurea, etc.).

硬化剤(C)及び硬化促進剤(D)としては、市販されているものを用いてもよい。市販されている硬化剤等としては、ジシアンジアミド[三菱ケミカル(株)製、「DICY7」]及び芳香族系ジメチルウレア[サンアプロ(株)製、「U-CAT 3512T」]等が挙げられる。 As the curing agent (C) and curing accelerator (D), commercially available ones may be used. Commercially available curing agents include dicyandiamide [DICY7, manufactured by Mitsubishi Chemical Corporation] and aromatic dimethylurea [U-CAT 3512T, manufactured by San-Apro Co., Ltd.].

硬化剤(C)としては、好ましくは、芳香族アミン化合物、酸無水物、イミダゾール化合物、及びジシアンジアミドからなる群より選ばれる少なくとも一種の化合物であり、より好ましくはジシアンジアミドを含むものである。
硬化促進剤(D)としては、好ましくは尿素化合物を含むものであり、より好ましくは芳香族ジメチルウレアである。
The curing agent (C) is preferably at least one compound selected from the group consisting of aromatic amine compounds, acid anhydrides, imidazole compounds, and dicyandiamide, and more preferably contains dicyandiamide.
The curing accelerator (D) preferably contains a urea compound, more preferably aromatic dimethylurea.

本発明において硬化剤(C)を使用する場合、その使用量は、硬化性組成物の重量に基づき、0.5~10重量%が好ましく、1~7重量%がより好ましい。
硬化剤(C)としてエポキシ基と反応しうる官能基を有する硬化剤を用いる場合、エポキシ樹脂成分[(A)成分、(B)成分および必要に応じ添加される他のエポキシ樹脂(E)(詳細は後述)]中のエポキシ基1モルに対し硬化剤中の官能基が0.4~1.0モルの範囲となるように硬化剤を用いることが好ましい。
When the curing agent (C) is used in the present invention, the amount used is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the weight of the curable composition.
When using a curing agent having a functional group capable of reacting with an epoxy group as the curing agent (C), the epoxy resin component [(A) component, (B) component and other epoxy resin (E) ( The curing agent is preferably used so that the amount of functional groups in the curing agent is in the range of 0.4 to 1.0 mol per 1 mol of the epoxy group in the curing agent (details will be described later).

本発明において、硬化促進剤(D)を用いる場合には、その使用量は、硬化性組成物の重量に基づき、0.5~10重量%が好ましく、1~7重量%がより好ましい。 In the present invention, when the curing accelerator (D) is used, the amount used is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the weight of the curable composition.

本発明の硬化性組成物は、(A)成分及び(B)成分以外の他のエポキシ樹脂を用いても良い。その他のエポキシ樹脂(E)[(E)成分ともいう]は、例えば、フェノールノボラック型、ナフトールノボラック型、クレゾールノボラック型、フェノール-クレゾール共縮ノボラック型等のノボラック型エポキシ樹脂、ウレタン変性エポキシ樹脂およびトリフェニルメタン型エポキシ樹脂等が挙げられる。 The curable composition of the present invention may use epoxy resins other than the components (A) and (B). Other epoxy resins (E) [also referred to as component (E)] include, for example, novolac type epoxy resins such as phenol novolak type, naphthol novolak type, cresol novolak type, phenol-cresol cocondensed novolak type, urethane-modified epoxy resins, and Examples include triphenylmethane type epoxy resin.

本発明の硬化性組成物は、(A)~(E)の成分以外の他の成分を含んでいてもよい。他の成分としては、有機溶剤、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、難燃剤、可塑剤、シランカップリング剤、有機ビーズ、無機微粒子、無機フィラー、レオロジーコントロール剤、脱泡剤、防曇剤及び着色剤等が挙げられる。これらの成分は所望の性能に応じて任意の量を添加することができる。 The curable composition of the present invention may contain components other than components (A) to (E). Other ingredients include organic solvents, ultraviolet absorbers, antioxidants, silicone additives, fluorine additives, flame retardants, plasticizers, silane coupling agents, organic beads, inorganic fine particles, inorganic fillers, and rheology control agents. , defoamers, antifogging agents, coloring agents, and the like. These components can be added in arbitrary amounts depending on desired performance.

本発明の硬化性組成物は、(A)成分、(B)成分、(C)成分及び/又は(D)成分、ならびに、必要に応じ(E)成分および上記他の成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ホモディスパー、万能ミキサー、バンバリーミキサーおよびニーダー等から選ばれる装置を用いて均一に混合することにより調製することができる。 The curable composition of the present invention can be prepared by mixing the (A) component, (B) component, (C) component and/or (D) component, and if necessary, the (E) component and the other components mentioned above, using a pot mill or a ball mill. , a bead mill, a roll mill, a homogenizer, a super mill, a homodisper, an all-purpose mixer, a Banbury mixer, a kneader, and the like.

<硬化物>
本発明の硬化物は本発明の硬化性組成物を硬化してなる。本発明の硬化物は、例えば、上述の方法により調製した硬化性組成物を所望の形状の成形型等に入れて120~140℃で1~3時間加熱することにより製造することができる。硬化物を製造する際の温度条件及び加熱時間等は組成物に含まれる樹脂の種類及び量等を考慮し適宜選択することが可能である。
<Cured product>
The cured product of the present invention is obtained by curing the curable composition of the present invention. The cured product of the present invention can be produced, for example, by placing the curable composition prepared by the method described above into a mold of a desired shape and heating it at 120 to 140° C. for 1 to 3 hours. Temperature conditions, heating time, etc. when producing a cured product can be appropriately selected in consideration of the type and amount of resin contained in the composition.

本発明の硬化性組成物の硬化物は耐衝撃性に優れるので、例えば、衝撃を受ける環境での使用が想定されるものの部品材料として好適である。衝撃を受ける環境での使用が想定されるものとしては、自動車、ドローン及び介護用ロボット等が挙げられる。また本発明の硬化物は前記用途以外に、塗料、コーティング剤、成形材料、絶縁材料、封止剤、シール剤及び繊維の結束剤などに用いてもよい。 Since the cured product of the curable composition of the present invention has excellent impact resistance, it is suitable, for example, as a material for parts of products that are expected to be used in environments subject to impact. Examples of devices that are expected to be used in environments that are subject to impact include cars, drones, and nursing care robots. In addition to the above-mentioned uses, the cured product of the present invention may also be used in paints, coating agents, molding materials, insulating materials, sealants, sealants, fiber binding agents, and the like.

<プリプレグ>
本発明のプリプレグは、本発明の硬化性組成物と強化繊維とを含む。
本発明のプリプレグは、本発明の硬化性組成物をマトリックス樹脂としてなるプリプレグである。本発明のプリプレグは、強化繊維及び本発明の硬化性組成物以外に、必要により、触媒を含有してもよい。
触媒としては、例えば特開2005-213337号公報に記載のもの等のような公知のエポキシ樹脂用硬化剤及び硬化促進剤等が挙げられる。
<Prepreg>
The prepreg of the present invention contains the curable composition of the present invention and reinforcing fibers.
The prepreg of the present invention is a prepreg made of the curable composition of the present invention as a matrix resin. The prepreg of the present invention may contain a catalyst, if necessary, in addition to the reinforcing fibers and the curable composition of the present invention.
Examples of the catalyst include known curing agents and curing accelerators for epoxy resins, such as those described in JP-A No. 2005-213337.

強化繊維としては、繊維を繊維用集束剤で処理して得られる繊維束及び前記繊維束を加工して得られる繊維製品等が挙げられる。繊維用集束剤としては、公知のものおよび市販のものなどを用いることができる。市販の繊維用集束剤としては、例えば三洋化成工業(株)製、「ケミチレン」シリーズ等が挙げられる。 Examples of reinforcing fibers include fiber bundles obtained by treating fibers with a fiber sizing agent and textile products obtained by processing the fiber bundles. As the fiber sizing agent, known ones and commercially available ones can be used. Commercially available fiber sizing agents include, for example, the "Chemitylene" series manufactured by Sanyo Chemical Industries, Ltd.

繊維用集束剤による処理対象となる繊維としては、ガラス繊維、炭素繊維、アラミド繊維、セラミック繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維等の公知の繊維(国際公開第2003/47830号に記載のもの等)等が挙げられる。複合材料の強度の観点から、好ましくは炭素繊維である 繊維は1種を単独で用いても2種以上を併用してもよい。 Fibers to be treated with fiber sizing agents include known fibers such as glass fibers, carbon fibers, aramid fibers, ceramic fibers, metal fibers, mineral fibers, rock fibers, and slag fibers (see International Publication No. 2003/47830). etc.). From the viewpoint of the strength of the composite material, carbon fibers are preferred. One type of fiber may be used alone or two or more types may be used in combination.

繊維の処理方法としては、スプレー法及び浸漬法等が挙げられる。繊維用集束剤の繊維への付着量(重量%)は、繊維の重量に基づいて、0.05~5重量%が好ましく、更に好ましくは0.1~3.0重量%である。この範囲であると、複合体強度が更に優れる。 Examples of methods for treating fibers include spraying methods and dipping methods. The amount (% by weight) of the fiber sizing agent attached to the fibers is preferably 0.05 to 5% by weight, more preferably 0.1 to 3.0% by weight, based on the weight of the fibers. Within this range, the composite strength is even better.

繊維製品は、前記繊維束を加工して繊維製品としたものであり、織物、編み物、不織布(フェルト、マット及びペーパー等)、チョップドファイバー及びミルドファイバー等が含まれる。 Textile products are produced by processing the aforementioned fiber bundles, and include woven fabrics, knitted fabrics, nonwoven fabrics (felt, mats, paper, etc.), chopped fibers, milled fibers, and the like.

本発明のプリプレグは、本発明の硬化性組成物を熱溶融(溶融温度:60~150℃)して繊維に含浸させる方法、又は溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン及び酢酸エチル等)で希釈した本発明の硬化性組成物を繊維に含浸させる方法等により製造できる。溶剤を使用する方法を採る場合、プリプレグを乾燥させて溶剤を除去するのが好ましい。 The prepreg of the present invention can be produced by a method in which the curable composition of the present invention is impregnated into fibers by hot melting (melting temperature: 60 to 150°C), or by a method in which the curable composition of the present invention is impregnated into fibers, or by a method in which the curable composition of the present invention is impregnated into fibers (acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, and ethyl acetate). It can be produced by a method such as impregnating fibers with the curable composition of the present invention diluted with (etc.). When a method using a solvent is adopted, it is preferable to dry the prepreg to remove the solvent.

硬化性組成物と繊維との重量比(硬化性組成物/繊維)は、成形体強度等の観点から、10/90~90/10が好ましく、更に好ましくは20/80~70/30、特に好ましくは30/70~60/40である。触媒を含有する場合、触媒の含有量(重量%)は、成形体強度等の観点から、硬化性組成物に対して0.01~10が好ましく、更に好ましくは0.1~5、特に好ましくは1~3である。 The weight ratio of the curable composition and fibers (curable composition/fiber) is preferably 10/90 to 90/10, more preferably 20/80 to 70/30, particularly Preferably it is 30/70 to 60/40. When containing a catalyst, the content (wt%) of the catalyst is preferably 0.01 to 10, more preferably 0.1 to 5, particularly preferably 0.01 to 10, based on the curable composition, from the viewpoint of molded body strength etc. is 1 to 3.

<複合材料>
本発明の複合材料は、本発明のプリプレグを硬化させてなる。複合材料は、例えば、本発明のプリプレグを加熱成形し、硬化することで得ることができる。硬化は完結している必要はないが、複合材料が形状を維持できる程度に硬化していることが好ましい。加熱成形の方法は特に限定されず、例えばフィラメントワイディング成形法(回転するマンドレルに張力をかけながら巻き付け、加熱成形する方法)、プレス成型法(プリプレグシートを積層して加熱成形する方法)、オートクレーブ法(プリプレグシートを型に圧力をかけ押しつけて加熱成形する方法)及びチョップドファイバー又はミルドファイバーをマトリックス樹脂と混合して射出成形する方法等が挙げられる。
<Composite materials>
The composite material of the present invention is obtained by curing the prepreg of the present invention. The composite material can be obtained, for example, by thermoforming the prepreg of the present invention and curing it. Although curing does not have to be complete, it is preferable that the composite material be cured to an extent that it can maintain its shape. The method of thermoforming is not particularly limited, and examples include filament winding method (a method in which the material is wrapped around a rotating mandrel under tension and heat formed), press molding method (a method in which prepreg sheets are laminated and heat formed), and autoclave. (a method in which a prepreg sheet is heated and pressed against a mold by applying pressure) and a method in which chopped fibers or milled fibers are mixed with a matrix resin and injection molded.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。
<製造例1:4,4’-ジヒドロキシビフェニルのPO付加物(b11)の製造>
撹拌機、加熱冷却装置及び滴下ボンベを備えた耐圧反応容器に、ビフェノール化合物(「4、4’-ジヒドロキシビフェニル」[東京化成工業(株)製])186.2重量部(1モル部)、メチルエチルケトン130.3重量部及び水酸化カリウム1重量部を投入し、窒素置換を行った。110℃に温度を上げてプロピレンオキサイド406重量部(7モル部)を圧力が0.5MPa以下になるように調整しながら19時間かけて滴下した後、110℃で6時間熟成した。その後、メチルエチルケトンを85℃、-0.1MPaで減圧留去し、4、4’-ジヒドロキシビフェニルのPO付加物(b11)を得た。
The present invention will be further explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<Production Example 1: Production of PO adduct (b11) of 4,4'-dihydroxybiphenyl>
In a pressure-resistant reaction vessel equipped with a stirrer, a heating/cooling device, and a dropping cylinder, 186.2 parts by weight (1 mole part) of a biphenol compound ("4,4'-dihydroxybiphenyl" [manufactured by Tokyo Chemical Industry Co., Ltd.]), 130.3 parts by weight of methyl ethyl ketone and 1 part by weight of potassium hydroxide were added, and the mixture was purged with nitrogen. The temperature was raised to 110°C, and 406 parts by weight (7 mol) of propylene oxide was added dropwise over 19 hours while adjusting the pressure to 0.5 MPa or less, and then aged at 110°C for 6 hours. Thereafter, methyl ethyl ketone was distilled off under reduced pressure at 85°C and -0.1 MPa to obtain a PO adduct of 4,4'-dihydroxybiphenyl (b11).

<製造例2:4,4’-ジヒドロキシビフェニルのPO付加物のグリシジル化物(b12)の製造>
撹拌装置、温度制御措置、湿式粉砕機(反応槽の外側に付属)を設置した反応槽に、製造例1で製造した4、4’-ジヒドロキシビフェニルのPO付加物(b11)151重量部、エピクロルヒドリン278重量部及びシクロヘキサン30重量部を仕込み、反応槽内を窒素雰囲気下(酸素濃度:730ppm)とし、19℃の窒素雰囲気下にある粒状水酸化カリウム112重量部を19~29℃で5時間かけて断続投入した。その後25℃~29℃で5時間反応熟成し、前記(b11)をグリシジルエーテル化した。
次に槽内を16℃に冷却後、23℃の水370.4重量部を20~28℃の範囲で投入して0.5時間攪拌、17℃で0.5時間分液静置後下層(水層)を取り出し、残った上層(有機層)に「キョーワード600」(協和化学工業社製;アルカリ吸着剤)12重量部を投入し、80℃で0.5時間攪拌した。「ラヂオライト#700」(協和化学工業社製、ケイソウ土ろ過助剤)を用いて濾過した後、減圧下(-0.1MPa)、110℃まで昇温してエピクロルヒドリンとシクロヘキサン混合物の留去を行い、4,4’-ジヒドロキシビフェニルのPO付加物のグリシジル化物(b12)を得た。
<Production Example 2: Production of glycidylated product (b12) of PO adduct of 4,4'-dihydroxybiphenyl>
151 parts by weight of the PO adduct of 4,4'-dihydroxybiphenyl (b11) produced in Production Example 1 and epichlorohydrin were placed in a reaction tank equipped with a stirring device, temperature control measures, and a wet grinder (attached to the outside of the reaction tank). 278 parts by weight and 30 parts by weight of cyclohexane were charged, the inside of the reaction tank was placed under a nitrogen atmosphere (oxygen concentration: 730 ppm), and 112 parts by weight of granular potassium hydroxide in a nitrogen atmosphere at 19°C was heated at 19 to 29°C for 5 hours. It was intermittently applied. Thereafter, the reaction mixture was aged at 25° C. to 29° C. for 5 hours to convert the above (b11) into glycidyl ether.
Next, after cooling the inside of the tank to 16°C, 370.4 parts by weight of water at 23°C was added in the range of 20 to 28°C, stirred for 0.5 hours, separated and left at 17°C for 0.5 hours, and then the lower layer (aqueous layer) was taken out, and 12 parts by weight of "Kyoward 600" (manufactured by Kyowa Chemical Industry Co., Ltd.; alkaline adsorbent) was added to the remaining upper layer (organic layer), and the mixture was stirred at 80° C. for 0.5 hour. After filtering using "Radiolite #700" (manufactured by Kyowa Chemical Industry Co., Ltd., diatomaceous earth filter aid), the temperature was raised to 110°C under reduced pressure (-0.1 MPa) to distill off the epichlorohydrin and cyclohexane mixture. A glycidylated product (b12) of the PO adduct of 4,4'-dihydroxybiphenyl was obtained.

<製造例3:ビフェノール型樹脂(B-1)の製造>
攪拌装置、温度制御装置、を設置した反応槽に、4,4’-ジヒドロキシビフェニルのPO付加物のグリシジル化物(b12)706部、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物441部、トリエチルアミン7部を仕込み、反応槽内を窒素雰囲気下(酸素濃度:730ppm)とし、100℃で1時間反応し、ビフェノール型樹脂(B-1)を得た。ビフェノール型樹脂(B-1)のエポキシ当量を、JIS K7236で規定する方法により測定した。樹脂(B-1)は一般式(3)で表される樹脂である{一般式(3)中のkが1、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yが水素原子の化合物と、一般式(3)中のkが1、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yがグリシジル基の化合物とを含む}。
<Production Example 3: Production of biphenol type resin (B-1)>
In a reaction tank equipped with a stirring device and a temperature control device, 706 parts of glycidylated product (b12) of PO adduct of 4,4'-dihydroxybiphenyl and 3,4-dimethyl-6-(2-methyl-1-propenyl) were added. )-4-Cyclohexene-1,2-dicarboxylic anhydride and 7 parts of triethylamine were charged, the inside of the reaction tank was set to a nitrogen atmosphere (oxygen concentration: 730 ppm), and the reaction was carried out at 100°C for 1 hour to form a biphenol type resin ( B-1) was obtained. The epoxy equivalent of the biphenol type resin (B-1) was measured by the method specified in JIS K7236. Resin (B-1) is a resin represented by general formula (3) {in general formula (3), k is 1, Q is a divalent group in which PO is added to the terminal of a biphenylene group [PO addition mole The number is 7 per Q (total of two m is 7)], Y is a hydrogen atom, k in general formula (3) is 1, and Q is 2 with PO added to the end of the biphenylene group. valent group [the number of moles of PO added is 7 per Q (total of two m is 7)], and a compound where Y is a glycidyl group}.

<製造例4:ビフェノール型樹脂(B-2)の製造>
攪拌装置、温度制御装置、を設置した反応槽に、4,4’-ジヒドロキシビフェニルのPO付加物のグリシジル化物(b12)1412部、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物1322部、トリエチルアミン14部を仕込み、反応槽内を窒素雰囲気下(酸素濃度:730ppm)とし、100℃で1時間反応し、ビフェノール型エポキシ樹脂(B-2)を得た。ビフェノール型樹脂(B-2)のエポキシ当量を、JIS K7236で規定する方法により測定した。樹脂(B-2)は一般式(3)で表される樹脂である{一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yが水素原子の化合物と、一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yがグリシジル基の化合物とを含む}。
<Production Example 4: Production of biphenol type resin (B-2)>
In a reaction tank equipped with a stirring device and a temperature control device, 1412 parts of glycidylated product (b12) of PO adduct of 4,4'-dihydroxybiphenyl and 3,4-dimethyl-6-(2-methyl-1-propenyl) were added. )-4-Cyclohexene-1,2-dicarboxylic anhydride (1322 parts) and triethylamine (14 parts) were charged, the inside of the reaction tank was set to a nitrogen atmosphere (oxygen concentration: 730 ppm), and the reaction was carried out at 100°C for 1 hour to form a biphenol-type epoxy resin. (B-2) was obtained. The epoxy equivalent of the biphenol type resin (B-2) was measured by the method specified in JIS K7236. Resin (B-2) is a resin represented by general formula (3) {in general formula (3), k is 2 and Q is a bivalent group in which PO is added to the terminal of a biphenylene group [PO addition mole The number is 7 per Q (the total of two m is 7)], Y is a hydrogen atom, k in general formula (3) is 2, and Q is 2 with PO added to the end of the biphenylene group. valent group [the number of moles of PO added is 7 per Q (total of two m is 7)], and a compound where Y is a glycidyl group}.

<製造例5:ビフェノール型樹脂(B-3)の製造>
攪拌装置、温度制御装置、を設置した反応槽に、4,4’-ジヒドロキシビフェニルのPO付加物のグリシジル化物(b12)4237部、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物5286部、トリエチルアミン21部を仕込み、反応槽内を窒素雰囲気下(酸素濃度:730ppm)とし、100℃で1時間反応し、ビフェノール型エポキシ樹脂(B-3)を得た。ビフェノール型樹脂(B-3)のエポキシ当量を、JIS K7236で規定する方法により測定した。樹脂(B-3)は一般式(3)で表される樹脂である{一般式(3)中のkが3、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yが水素原子の化合物と、一般式(3)中のkが7、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yがグリシジル基の化合物とを含む}。
<Production Example 5: Production of biphenol type resin (B-3)>
In a reaction tank equipped with a stirring device and a temperature control device, 4237 parts of glycidylated product (b12) of PO adduct of 4,4'-dihydroxybiphenyl and 3,4-dimethyl-6-(2-methyl-1-propenyl) were added. ) -4-Cyclohexene-1,2-dicarboxylic acid anhydride (5286 parts) and triethylamine (21 parts) were charged, the inside of the reaction tank was set to a nitrogen atmosphere (oxygen concentration: 730 ppm), and the reaction was carried out at 100°C for 1 hour to form a biphenol type epoxy resin. (B-3) was obtained. The epoxy equivalent of the biphenol type resin (B-3) was measured by the method specified in JIS K7236. Resin (B-3) is a resin represented by general formula (3) {in general formula (3), k is 3 and Q is a divalent group in which PO is added to the terminal of a biphenylene group [PO addition mole The number is 7 per Q (total of 2 m is 7)], Y is a hydrogen atom, k in general formula (3) is 7, and Q is 2 with PO added to the end of the biphenylene group. valent group [the number of moles of PO added is 7 per Q (total of two m is 7)], and a compound where Y is a glycidyl group}.

<製造例6:ビフェノール型樹脂(B-4)の製造>
製造例4において、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物1322部の代わりにテトラヒドロメチル無水フタル酸938部を用いたこと以外は製造例4と同様の操作を行い、ビフェノール型樹脂(B-4)を得た。ビフェノール型樹脂(B-4)のエポキシ当量を、JIS K7236で規定する方法により測定した。樹脂(B-4)は一般式(3)で表される樹脂である{一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yが水素原子の化合物と、一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yがグリシジル基の化合物とを含む}。
<Production Example 6: Production of biphenol type resin (B-4)>
In Production Example 4, 938 parts of tetrahydromethylphthalic anhydride was used instead of 1322 parts of 3,4-dimethyl-6-(2-methyl-1-propenyl)-4-cyclohexene-1,2-dicarboxylic anhydride. Except for the above, the same operation as in Production Example 4 was performed to obtain a biphenol type resin (B-4). The epoxy equivalent of the biphenol type resin (B-4) was measured by the method specified in JIS K7236. Resin (B-4) is a resin represented by the general formula (3) {in the general formula (3), k is 2 and Q is a divalent group in which PO is added to the terminal of a biphenylene group [PO addition mole The number is 7 per Q (the total of two m is 7)], Y is a hydrogen atom, k in general formula (3) is 2, and Q is 2 with PO added to the end of the biphenylene group. valent group [the number of moles of PO added is 7 per Q (total of two m is 7)], and a compound where Y is a glycidyl group}.

<製造例7:ビフェノール型樹脂(B-5)の製造>
製造例4において、3,4-ジメチル-6-(2-メチル-1-プロペニル)-4-シクロヘキセン-1,2-ジカルボン酸無水物1322部の代わりに4-メチルヘキサヒドロ無水フタル酸949部を用いたこと以外は製造例4と同様の操作を行い、ビフェノール型エポキシ樹脂(B-5)を得た。ビフェノール型樹脂(B-5)のエポキシ当量を、JIS K7236で規定する方法により測定した。樹脂(B-5)は一般式(3)で表される樹脂である{一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yが水素原子の化合物と、一般式(3)中のkが2、Qがビフェニレン基の末端にPOが付加した2価の基[PO付加モル数は1つのQあたり7個(2つのmの合計が7)]、Yがグリシジル基の化合物とを含む}。
<Production Example 7: Production of biphenol type resin (B-5)>
In Production Example 4, 949 parts of 4-methylhexahydrophthalic anhydride was used instead of 1322 parts of 3,4-dimethyl-6-(2-methyl-1-propenyl)-4-cyclohexene-1,2-dicarboxylic anhydride. A biphenol type epoxy resin (B-5) was obtained by carrying out the same operation as in Production Example 4 except that . The epoxy equivalent of the biphenol type resin (B-5) was measured by the method specified in JIS K7236. Resin (B-5) is a resin represented by general formula (3) {in general formula (3), k is 2 and Q is a divalent group in which PO is added to the terminal of a biphenylene group [PO addition mole The number is 7 per Q (the total of two m is 7)], Y is a hydrogen atom, k in general formula (3) is 2, and Q is 2 with PO added to the end of the biphenylene group. valent group [the number of moles of PO added is 7 per Q (total of two m is 7)], and a compound where Y is a glycidyl group}.

<実施例1~7および比較例1~2>
(硬化性組成物の作製)
表1に記載の種類及び量(重量部)のビスフェノール型エポキシ樹脂(A)、ビフェノール型樹脂(B)、硬化剤(C)および硬化促進剤(D)を撹拌脱泡機(THINKY社製、ARV―930TWIN)を用いて、1400rpm、100℃で3分間混合し、硬化性組成物を得た。
<Examples 1 to 7 and Comparative Examples 1 to 2>
(Preparation of curable composition)
The types and amounts (parts by weight) of bisphenol-type epoxy resin (A), biphenol-type resin (B), curing agent (C), and curing accelerator (D) listed in Table 1 were mixed in a stirring defoaming machine (manufactured by THINKY Co., Ltd.). ARV-930TWIN) was used to mix at 1400 rpm and 100° C. for 3 minutes to obtain a curable composition.

実施例および比較例で用いた、各成分は下記の通りである。
(A-1)~(A-3)のエポキシ樹脂のエポキシ当量は樹脂(B-1)と同じ方法で測定した。
表1の「(A)成分のエポキシ当量」の欄および「(B)成分のエポキシ当量」の欄には、1種の化合物を用いる場合は当該化合物のエポキシ当量を記載し、2種以上の化合物を用いる場合は2種以上の化合物の混合物のエポキシ当量を記載した。表1の「エポキシ樹脂組成物のエポキシ当量」の欄には、(A)成分、(B)成分、(C)成分および(D)成分の混合物のエポキシ当量を記載した。混合物のエポキシ当量は上述式(Z)を用いて算出した。
(A-1):ビスフェノールAエピクロルヒドリン縮合物[三菱ケミカル(株)製「jER1002」、エポキシ当量:650、一般式(1)中のnは3.0]
(A-2):ビスフェノールAエピクロルヒドリン縮合物[三菱ケミカル(株)製「jER1001」、エポキシ当量:479、一般式(1)中のnは2.0]
(A-3):ビスフェノールAエピクロルヒドリン縮合物[三菱ケミカル(株)製「jER828」、エポキシ当量:186、一般式(1)中のnは0.1]
(B-1):製造例3で得たビフェノール型樹脂(エポキシ当量:1029)
(B-2):製造例4で得たビフェノール型樹脂(エポキシ当量:2156)
(B-3):製造例5で得たビフェノール型樹脂(エポキシ当量:8817)
(B-4):製造例6で得たビフェノール型樹脂(エポキシ当量:2042)
(B-5):製造例7で得たビフェノール型樹脂(エポキシ当量:2046)
(C-1):ジシアンジアミド[三菱ケミカル(株)製「DICY7」]
(D-1):芳香族系ジメチルウレア[サンアプロ(株)製「U-CAT 3512T」]
Each component used in Examples and Comparative Examples is as follows.
The epoxy equivalents of the epoxy resins (A-1) to (A-3) were measured in the same manner as resin (B-1).
In the column "Epoxy equivalent of component (A)" and "Epoxy equivalent of component (B)" in Table 1, if one type of compound is used, enter the epoxy equivalent of the compound, and if two or more types When a compound is used, the epoxy equivalent of a mixture of two or more compounds is described. In the column "Epoxy equivalent of epoxy resin composition" in Table 1, the epoxy equivalent of the mixture of component (A), component (B), component (C), and component (D) is listed. The epoxy equivalent of the mixture was calculated using the above formula (Z).
(A-1): Bisphenol A epichlorohydrin condensate [“jER1002” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 650, n in general formula (1) is 3.0]
(A-2): Bisphenol A epichlorohydrin condensate [“jER1001” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 479, n in general formula (1) is 2.0]
(A-3): Bisphenol A epichlorohydrin condensate [“jER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186, n in general formula (1) is 0.1]
(B-1): Biphenol type resin obtained in Production Example 3 (epoxy equivalent: 1029)
(B-2): Biphenol type resin obtained in Production Example 4 (epoxy equivalent: 2156)
(B-3): Biphenol type resin obtained in Production Example 5 (epoxy equivalent: 8817)
(B-4): Biphenol type resin obtained in Production Example 6 (epoxy equivalent: 2042)
(B-5): Biphenol type resin obtained in Production Example 7 (epoxy equivalent: 2046)
(C-1): Dicyandiamide [“DICY7” manufactured by Mitsubishi Chemical Corporation]
(D-1): Aromatic dimethylurea [“U-CAT 3512T” manufactured by San-Apro Co., Ltd.]

<硬化物のガラス転移温度および貯蔵弾性率の測定>
実施例1~7、および比較例1~2の硬化性組成物を、それぞれ、2枚のSUS板の間に厚さ4mmのシリコンスペーサーを配置した型に入れ、100℃、10mmHgの減圧下で脱気した後、130℃、1時間加熱、硬化させた後、ダイヤモンドカッターで、縦30mm、横4mm、厚さ1mmの試験片に加工した。
この試験片を、JIS-K7244-4に規定の方法に従い、動的粘弾性測定装置[商品名「Rheogel-E4000」、ユービーエム(株)製]を用い、10Hzの振動をかけて、引張貯蔵弾性率および引張損失弾性率を測定した。上記、引張貯蔵弾性率と引張損失弾性率から算出される引張損失係数が最大となる温度をガラス転移温度とし、その温度を読み取った。
<Measurement of glass transition temperature and storage modulus of cured product>
The curable compositions of Examples 1 to 7 and Comparative Examples 1 to 2 were placed in molds in which a silicone spacer with a thickness of 4 mm was placed between two SUS plates, and degassed at 100° C. under a reduced pressure of 10 mmHg. After that, it was heated and cured at 130° C. for 1 hour, and then processed with a diamond cutter into a test piece with a length of 30 mm, a width of 4 mm, and a thickness of 1 mm.
This test piece was subjected to tensile storage using a dynamic viscoelasticity measuring device [trade name "Rheogel-E4000", manufactured by UBM Co., Ltd.] according to the method specified in JIS-K7244-4, with 10 Hz vibration applied. The elastic modulus and tensile loss modulus were measured. The temperature at which the tensile loss coefficient calculated from the above-mentioned tensile storage modulus and tensile loss modulus is maximum was defined as the glass transition temperature, and that temperature was read.

<複合材料の耐衝撃性の評価>
(1)プリプレグの作製
実施例1~7および比較例1~2の硬化性組成物を、ナイフコーターを用いて離型紙上に塗布し、樹脂フィルムを作製した。集束剤で処理した炭素繊維[繊度800tex、フィラメント数12,000本、集束剤として「ケミチレンFS-6」、三洋化成工業(株)製を使用]をシート状に一方向に配列させたものを作製した。次に、上記樹脂フィルムを、集束剤で処理した炭素繊維の両面にそれぞれ1枚ずつ重ね、温度85℃、圧力2MPaの条件で加圧加熱して熱硬化性樹脂組成物を含浸させ、一方向プリプレグを得た。
<Evaluation of impact resistance of composite materials>
(1) Production of prepreg The curable compositions of Examples 1 to 7 and Comparative Examples 1 to 2 were coated on release paper using a knife coater to produce a resin film. Carbon fibers treated with a sizing agent [800 tex fineness, 12,000 filaments, ``Chemitylene FS-6'' manufactured by Sanyo Chemical Industries, Ltd. is used as a sizing agent] are arranged in one direction in a sheet form. Created. Next, one sheet of the resin film was placed on each side of the carbon fiber treated with a sizing agent, and heated under pressure at a temperature of 85° C. and a pressure of 2 MPa to impregnate the thermosetting resin composition. Got prepreg.

(2)耐衝撃性の評価
以下の方法により、複合材料のシャルピー衝撃値を測定した。
前記一方向プリプレグの繊維方向が同じ方向になるように、厚みが約3mmとなるように積層して積層体を作製した。当該積層体をオートクレーブ中で135℃、内圧588kPaで2時間加熱加圧して硬化し、一方向繊維強化複合材料を作製した。
得られた各例の繊維強化複合材料から、厚み3±0.2mm、幅10±0.2mm、長さ80mmの試験片を切り出した。当該試験片を用いてJIS K7077(1991)に規定の方法に従い、秤量300kg・cmでフラットワイズ衝撃を与えてシャルピー衝撃試験(ノッチなし)を行い衝撃値(単位:kJ/m)を測定した。測定数はn=5で行い平均値を算出した。結果を表1に示す。当該数値は大きいほうが耐衝撃性に優れる。
(2) Evaluation of impact resistance The Charpy impact value of the composite material was measured by the following method.
A laminate was produced by laminating the unidirectional prepregs so that the fiber directions were in the same direction and the thickness was about 3 mm. The laminate was cured by heating and pressurizing in an autoclave at 135° C. and an internal pressure of 588 kPa for 2 hours to produce a unidirectional fiber-reinforced composite material.
A test piece with a thickness of 3±0.2 mm, a width of 10±0.2 mm, and a length of 80 mm was cut out from the fiber-reinforced composite material of each example obtained. Using the test piece, according to the method specified in JIS K7077 (1991), a Charpy impact test (no notch) was performed by applying a flatwise impact with a weight of 300 kg cm to measure the impact value (unit: kJ/m 2 ). . The number of measurements was n=5 and the average value was calculated. The results are shown in Table 1. The larger the value, the better the impact resistance.

表1に示すように、エポキシ当量が180~700の範囲である一般式(1)で表されるビスフェノール型エポキシ樹脂(A)と、エポキシ当量が900~10000の範囲である一般式(3)で表されるビフェノール型樹脂(B)と、を含有し、ビフェノール型樹脂(B)の重量Wbに対するビスフェノール型エポキシ樹脂(A)の重量Waの比(Wa)/(Wb)が70/30~90/10であるエポキシ樹脂組成物を用いた実施例の硬化物では、比較例よりも耐衝撃性が優れるという結果が得られた。この結果から、本発明によれば硬化物に優れた耐衝撃性を付与するエポキシ樹脂組成物を提供できるということが分かった。
As shown in Table 1, the bisphenol type epoxy resin (A) represented by the general formula (1) has an epoxy equivalent of 180 to 700, and the general formula (3) has an epoxy equivalent of 900 to 10,000. containing a biphenol type resin (B) represented by, and the ratio (Wa)/(Wb) of the weight Wa of the bisphenol type epoxy resin (A) to the weight Wb of the biphenol type resin (B) is 70/30 ~ The cured product of the example using the 90/10 epoxy resin composition had better impact resistance than the comparative example. From these results, it was found that the present invention can provide an epoxy resin composition that imparts excellent impact resistance to a cured product.

Claims (8)

エポキシ当量が180~700の範囲である下記一般式(1)で表されるビスフェノール型エポキシ樹脂(A)と、エポキシ当量が900~10000の範囲である下記一般式(3)で表されるビフェノール型樹脂(B)と、を含有し、
ビフェノール型樹脂(B)の重量Wbに対するビスフェノール型エポキシ樹脂(A)の重量Waの比(Wa)/(Wb)が70/30~90/10であるエポキシ樹脂組成物。

[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは下記一般式(2-1)~(2-7)のいずれかで表される構造部位であり、nは、エポキシ樹脂組成物中のビスフェノール型樹脂(A)1分子あたりの下記一般式(2A)で表される基の数平均モル数であり、0.1~10の数である。]

[式中、Rはそれぞれ独立に炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基である。]

[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは上記一般式(2-1)~(2-7)のいずれかで表される構造部位である。]

[式中、Qは下記一般式(4)で表される基であり、Xは下記一般式(5)で表される構造部位であり、kは1~5の数であり、Yは水素原子またはグリシジル基である。]

[式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基または炭素原子数1~4のアルコキシ基であり、Rは炭素原子数2~6のアルキレン基であり、mはROまたはORの付加モル数を表し、それぞれ独立に1~7の数である。]

[式中、Rは2価の炭素数2~18の脂肪族炭化水素基、2価の炭素数3~18の脂環式炭化水素基または2価の炭素数6~18の芳香族炭化水素基である。]
A bisphenol type epoxy resin (A) represented by the following general formula (1) having an epoxy equivalent in the range of 180 to 700, and a biphenol represented by the following general formula (3) having an epoxy equivalent in the range of 900 to 10,000. Contains a mold resin (B),
An epoxy resin composition in which the ratio (Wa)/(Wb) of the weight Wa of the bisphenol type epoxy resin (A) to the weight Wb of the biphenol type resin (B) is 70/30 to 90/10.

[In the formula, R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 2 is represented by the following general formulas (2-1) to (2- 7), where n is the number average number of moles of groups represented by the following general formula (2A) per molecule of bisphenol resin (A) in the epoxy resin composition. Yes, the number is from 0.1 to 10. ]

[In the formula, R 3 is each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. ]

[In the formula, R 1 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 2 is represented by the above general formulas (2-1) to (2- 7). ]

[Wherein, Q is a group represented by the following general formula (4), X is a structural moiety represented by the following general formula (5), k is a number from 1 to 5, and Y is hydrogen an atom or a glycidyl group. ]

[In the formula, R 4 is each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and R 5 is an alkylene group having 2 to 6 carbon atoms, m represents the number of moles of R 5 O or OR 5 added, each independently being a number from 1 to 7; ]

[In the formula, R 6 is a divalent aliphatic hydrocarbon group having 2 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms. It is a hydrogen group. ]
前記一般式(3)中の2つのmは、それぞれ独立に1~7の整数であり、かつ2つのmの合計が2~14である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the two m's in the general formula (3) are each independently an integer of 1 to 7, and the total of the two m's is 2 to 14. エポキシ樹脂組成物のエポキシ当量が250~600の範囲である請求項1又は2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the epoxy equivalent of the epoxy resin composition is in the range of 250 to 600. 請求項1~3のいずれか一項に記載のエポキシ樹脂組成物と、硬化剤及び/又は硬化促進剤とを含有する硬化性組成物。 A curable composition comprising the epoxy resin composition according to any one of claims 1 to 3, and a curing agent and/or a curing accelerator. 前記硬化剤がジシアンジアミドを含む請求項4に記載の硬化性組成物。 The curable composition according to claim 4, wherein the curing agent contains dicyandiamide. 請求項4又は5に記載の硬化性組成物を硬化させてなる硬化物。 A cured product obtained by curing the curable composition according to claim 4 or 5. 請求項4または5のいずれかに記載の硬化性組成物と、強化繊維とを含むプリプレグ。 A prepreg comprising the curable composition according to claim 4 or 5 and reinforcing fibers. 請求項7に記載のプリプレグを硬化させてなる複合材料。 A composite material obtained by curing the prepreg according to claim 7.
JP2022048723A 2022-03-24 2022-03-24 Epoxy resin composition, curable composition, cured product, prepreg, and composite material Pending JP2023142053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022048723A JP2023142053A (en) 2022-03-24 2022-03-24 Epoxy resin composition, curable composition, cured product, prepreg, and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022048723A JP2023142053A (en) 2022-03-24 2022-03-24 Epoxy resin composition, curable composition, cured product, prepreg, and composite material

Publications (1)

Publication Number Publication Date
JP2023142053A true JP2023142053A (en) 2023-10-05

Family

ID=88205938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022048723A Pending JP2023142053A (en) 2022-03-24 2022-03-24 Epoxy resin composition, curable composition, cured product, prepreg, and composite material

Country Status (1)

Country Link
JP (1) JP2023142053A (en)

Similar Documents

Publication Publication Date Title
JP6812671B2 (en) Fiber reinforced composites, moldings and pressure vessels
CN110536914B (en) Sheet molding compound and fiber-reinforced composite material
JP6401165B2 (en) Resin composition and composite structure containing resin
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
JP5922582B2 (en) Composite composition
JP2017101227A (en) Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith
JP7135270B2 (en) Epoxy resin composition, fiber reinforced composite material and molding
JP7135271B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP7268355B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP5842395B2 (en) Epoxy resin composition for fiber reinforced composite materials
CN108264728A (en) A kind of composition epoxy resin and composite material and preparation method thereof
TW201942179A (en) Epoxy resin having oxazolidinone structure, producing method, epoxy resin composition, fiber reinforced composite material and molded body having an oxazolidinone structure excellent in adhesiveness
JP2006291094A (en) Epoxy resin composition for reinforced composite material
RU2749320C1 (en) Epoxy resin systems
KR20130103307A (en) Phosphazene blocked azole compounds as latent catalysts for epoxy resins
JP2023142053A (en) Epoxy resin composition, curable composition, cured product, prepreg, and composite material
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP2022179390A (en) Epoxy resin composition, curable composition, cured product, prepreg and composite material
WO2016136527A1 (en) Sizing agent for synthetic fiber, reinforcing fiber bundle, and fiber-reinforced composite material
TWI720404B (en) Prepreg and fiber reinforced composite materials
JP2017226773A (en) Curable composition and fiber-reinforced composite material
JP2024110117A (en) CURABLE COMPOSITION, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, MOLDED PRODUCT, AND METHOD FOR PRODUCING SAME
US20240309200A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR20230154376A (en) Epoxy Resin Composition for Tow Prepreg and Tow Prepreg Prepared Therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240909