JP2023140782A - Cooling down method of liquefied gas storage tank - Google Patents

Cooling down method of liquefied gas storage tank Download PDF

Info

Publication number
JP2023140782A
JP2023140782A JP2022046798A JP2022046798A JP2023140782A JP 2023140782 A JP2023140782 A JP 2023140782A JP 2022046798 A JP2022046798 A JP 2022046798A JP 2022046798 A JP2022046798 A JP 2022046798A JP 2023140782 A JP2023140782 A JP 2023140782A
Authority
JP
Japan
Prior art keywords
tank
gas
temperature
space
temperature adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022046798A
Other languages
Japanese (ja)
Inventor
太一郎 下田
Taichiro Shimoda
晴彦 冨永
Haruhiko Tominaga
麻子 三橋
Asako Mitsuhashi
章司 池島
Shoji Ikejima
邦彦 持田
Kunihiko Mochida
翔 樋渡
Sho Hiwatari
隆博 中島
Takahiro Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2022046798A priority Critical patent/JP2023140782A/en
Priority to PCT/JP2023/011259 priority patent/WO2023182363A1/en
Publication of JP2023140782A publication Critical patent/JP2023140782A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To reduce the time needed to cool down a multiple heat-insulating structure tank for storage of a liquefied gas to reduce costs.SOLUTION: A method for cooling a tank for storing a liquefied gas, which includes an inner tank (3) and an outer tank (5), before the tank is filled with the liquefied gas, an object to be stored, includes: introducing a cooling liquefied gas (CH) into an inner tank internal space (7); and supplying a temperature adjustment gas (TG) adjusted to an adjusted temperature range which is a predetermined temperature or higher to a space (9) between the inner and outer tanks through a temperature adjustment device (31).SELECTED DRAWING: Figure 1

Description

本開示は、液化ガス貯蔵タンクのクールダウン方法に関する。 The present disclosure relates to a method for cooling down a liquefied gas storage tank.

従来、液化ガス、例えば極低温の液化水素を貯蔵するタンクとして、内槽および外槽を備える二重殻タンクを用いることが提案されている(例えば、特許文献1参照)。 BACKGROUND ART Conventionally, it has been proposed to use a double-shell tank including an inner tank and an outer tank as a tank for storing liquefied gas, such as cryogenic liquefied hydrogen (see, for example, Patent Document 1).

一般的に、低温の液化ガスをタンクに貯蔵する場合、常温のタンクに一度に多量の貯蔵対象の液化ガスを充填することによってタンクを急激に冷却することを回避するため、貯蔵対象の液化ガスを充填する前に、予めタンクを比較的低速で冷却すること(以下、「クールダウン」という。)が行われている。 Generally, when storing low-temperature liquefied gas in a tank, in order to avoid rapid cooling of the tank by filling a room-temperature tank with a large amount of liquefied gas to be stored at once, Before filling the tank, the tank is cooled at a relatively low speed (hereinafter referred to as "cool down").

特開2019-151291号公報Japanese Patent Application Publication No. 2019-151291

しかし、液化ガス用二重殻タンクのような多重防熱構造のタンクの場合、高い断熱性を有することから、内槽のみを冷却するのみではタンク全体の冷却に長時間を要し、かつ多量の冷却用の液化ガスを要することになる。したがって、クールダウンに要するコストが増大する。 However, in the case of tanks with multiple heat insulation structures such as double-shell tanks for liquefied gas, they have high insulation properties, so cooling only the inner tank takes a long time to cool the entire tank, and a large amount of water is required. This will require liquefied gas for cooling. Therefore, the cost required for cooldown increases.

本開示の目的は、上記の課題を解決するために、液化ガス貯蔵用の多重防熱構造タンクのクールダウンに要する時間を短縮し、コストを抑制することにある。 An object of the present disclosure is to shorten the time required to cool down a multi-layer heat-insulated structure tank for storing liquefied gas, and to suppress costs, in order to solve the above-mentioned problems.

上記目的を達成するために、本開示に係る液化ガス貯蔵タンクのクールダウン方法は、
液化ガスを貯蔵するための、内槽および外槽を備えるタンクを、貯蔵対象である前記液化ガスを充填する前に冷却する方法であって、
内槽内空間に、冷却用液化ガスを導入することと、
内外槽間空間に、温度調整装置を介して、所定温度以上である調整温度範囲に調整された温度調整ガスを供給することと、
を含む。
In order to achieve the above object, a method for cooling down a liquefied gas storage tank according to the present disclosure includes:
A method for cooling a tank including an inner tank and an outer tank for storing liquefied gas before filling it with the liquefied gas to be stored, the method comprising:
Introducing a cooling liquefied gas into the inner tank space;
Supplying a temperature adjustment gas adjusted to a adjustment temperature range that is a predetermined temperature or higher to a space between the inner and outer tanks via a temperature adjustment device;
including.

本開示に係る液化ガス貯蔵タンクのクールダウン方法によれば、液化ガス貯蔵用の多重防熱構造タンクのクールダウンに要する時間を短縮し、コストを抑制することができる。 According to the method for cooling down a liquefied gas storage tank according to the present disclosure, it is possible to shorten the time required to cool down a tank with multiple heat insulation structure for storing liquefied gas, and to suppress costs.

本開示の一実施形態に係るクールダウン方法が適用される液化ガス貯蔵タンクの概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a liquefied gas storage tank to which a cool-down method according to an embodiment of the present disclosure is applied. 本開示の一実施形態に係るクールダウン方法の開始前の初期状態を示す模式図である。FIG. 2 is a schematic diagram showing an initial state before the start of a cool-down method according to an embodiment of the present disclosure. 本開示の一実施形態に係るクールダウン方法における内槽冷却中の状態を示す模式図である。FIG. 3 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to an embodiment of the present disclosure. 本開示の一実施形態の一変形例に係るクールダウン方法における内槽冷却中の状態を示す模式図である。FIG. 7 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to a modified example of an embodiment of the present disclosure. 本開示の一実施形態の他の変形例に係るクールダウン方法における内槽冷却中の状態を示す模式図である。FIG. 7 is a schematic diagram showing a state during cooling of the inner tank in a cool-down method according to another modification of the embodiment of the present disclosure. 本開示の一実施形態に係るクールダウン方法の終了した状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in which a cool-down method according to an embodiment of the present disclosure has been completed. 図1の液化ガス貯蔵ガスタンクの一部を拡大して模式的に示す断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a part of the liquefied gas storage gas tank of FIG. 1. FIG.

以下、本開示の好ましい実施形態について図面を参照しながら説明する。図1に本開示の一実施形態に係るクールダウン方法が適用される液化ガス貯蔵タンク(以下、単に「貯蔵タンク」という。)1を示す。この貯蔵タンク1は、液化ガスを貯蔵するためのタンクであり、内槽3および外槽5を備える二重殻タンクとして構成されている。なお、本明細書において、「クールダウン」とは、貯蔵対象である液化ガスを貯蔵タンク1に充填する前に、貯蔵タンク1を冷却することを意味する。 Hereinafter, preferred embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 shows a liquefied gas storage tank (hereinafter simply referred to as "storage tank") 1 to which a cool-down method according to an embodiment of the present disclosure is applied. This storage tank 1 is a tank for storing liquefied gas, and is configured as a double shell tank including an inner tank 3 and an outer tank 5. Note that in this specification, "cool down" means cooling the storage tank 1 before filling the storage tank 1 with the liquefied gas to be stored.

以下に説明する本実施形態においては、貯蔵対象である液化ガスとして極低温(約-250℃)の液化水素を例として説明する。もっとも、液化ガスは他の種類のガス、例えば、液化石油ガス(LPG、約-45℃)、液化エチレンガス(LEG、約-100℃)、液化天然ガス(LNG、約-160℃)、液化ヘリウム(LHe、約-270℃)などであってよい。 In the present embodiment described below, liquefied hydrogen at an extremely low temperature (approximately -250° C.) will be explained as an example of the liquefied gas to be stored. However, liquefied gas can also include other types of gas, such as liquefied petroleum gas (LPG, approximately -45°C), liquefied ethylene gas (LEG, approximately -100°C), liquefied natural gas (LNG, approximately -160°C), It may be helium (LHe, about −270° C.) or the like.

貯蔵タンク1は、例えば液化水素運搬船のような船舶に設置される。もっとも、貯蔵タンク1が設置される液化水素貯蔵設備は、液化水素を貯蔵することが可能な構造、機能を有する設備であればこの例に限定されない。貯蔵タンク1が設置される液化水素貯蔵設備は、例えば、液化水素を推進用燃料として使用する船舶であってもよく、船舶以外の地上の液化水素貯蔵設備や、液化水素を利用するプラントであってよい。 The storage tank 1 is installed, for example, on a ship such as a liquefied hydrogen carrier. However, the liquefied hydrogen storage facility in which the storage tank 1 is installed is not limited to this example as long as it has a structure and function capable of storing liquefied hydrogen. The liquefied hydrogen storage facility in which the storage tank 1 is installed may be, for example, a ship that uses liquefied hydrogen as a propulsion fuel, a land-based liquefied hydrogen storage facility other than a ship, or a plant that uses liquefied hydrogen. It's fine.

貯蔵タンク1は、内槽3および外槽5を有する二重殻タンクとして構成されている。具体的には、内槽3は、その内側に貯蔵対象である液化水素の貯蔵空間(以下、「内槽内空間7」と呼ぶ。)を形成する内槽殻と、内槽殻の外周面を覆う内槽防熱層とを有する。外槽5は、内槽3との間に断熱層である内外槽間空間9を形成する外槽殻と、外槽殻の外周面を覆う外槽防熱層とを有する。なお、内槽3および外槽5の防熱層を設置する箇所はこの例に限定されず任意であり、例えば防熱層を外槽殻の内周面を覆うように設置してもよい。また、内槽3および外槽5の防熱層の一方または両方を省略してもよい。この貯蔵タンク1は、断熱層である内外槽間空間9に低温の水素ガスを封入した状態で定常運用される。 The storage tank 1 is configured as a double shell tank with an inner tank 3 and an outer tank 5. Specifically, the inner tank 3 has an inner tank shell that forms a storage space (hereinafter referred to as "inner tank interior space 7") for liquefied hydrogen to be stored, and an outer circumferential surface of the inner tank shell. It has an inner tank heat insulation layer that covers the inner tank. The outer tank 5 has an outer tank shell that forms an inter-inner/outer tank space 9 that is a heat insulating layer between it and the inner tank 3, and an outer tank heat insulating layer that covers the outer peripheral surface of the outer tank shell. Note that the locations where the heat insulating layers of the inner tank 3 and the outer tank 5 are installed are not limited to this example, but are arbitrary. For example, the heat insulating layers may be installed so as to cover the inner circumferential surface of the outer tank shell. Moreover, one or both of the heat-insulating layers of the inner tank 3 and the outer tank 5 may be omitted. This storage tank 1 is normally operated with low-temperature hydrogen gas sealed in the space 9 between the inner and outer tanks, which is a heat insulating layer.

本実施形態では、内槽内空間7と内外槽間空間9とを連通させる連通路11が設けられている。連通路11は開閉可能に構成されている。図示の例では、具体的には、内槽内空間7で生じた液化水素の気化ガス(以下、単に「気化ガス」と呼ぶ。)G1を貯蔵タンク1の外部へ排出する気化ガス排出通路13と、貯蔵タンク1の外部に設けられた水素ガス源(図示せず)からの水素ガス(以下、「外部水素ガス」と呼ぶ。)G2を内外槽間空間9に導入する水素ガス導入通路15と、貯蔵タンク1の外部において気化ガス排出通路13と水素ガス導入通路15とを接続する接続通路17とが設けられている。これら気化ガス排出通路13、接続通路17および水素ガス導入通路15によって連通路11が形成されている。また、連通路11に開閉弁19が設けられており、この開閉弁19によって連通路11が開閉可能に構成されている。この例では、水素ガス導入通路15における接続通路17との接続点の下流側の部分に開閉弁19が設けられているが、開閉弁19の位置および個数はこの例に限定されない。また、開閉弁19は、手動で開閉可能な弁のほか、設定された差圧に応じて自動的に開閉する弁であってもよい。 In this embodiment, a communication passage 11 is provided that communicates the inner tank space 7 with the inner and outer tank space 9. The communication path 11 is configured to be openable and closable. In the illustrated example, specifically, a vaporized gas discharge passage 13 that discharges vaporized gas of liquefied hydrogen (hereinafter simply referred to as “vaporized gas”) G1 generated in the inner tank space 7 to the outside of the storage tank 1 and a hydrogen gas introduction passage 15 that introduces hydrogen gas (hereinafter referred to as "external hydrogen gas") G2 from a hydrogen gas source (not shown) provided outside the storage tank 1 into the space 9 between the inner and outer tanks. A connecting passage 17 connecting the vaporized gas discharge passage 13 and the hydrogen gas introduction passage 15 is provided outside the storage tank 1. A communication passage 11 is formed by the vaporized gas discharge passage 13, the connection passage 17, and the hydrogen gas introduction passage 15. Further, an on-off valve 19 is provided in the communication passage 11, and the communication passage 11 is configured to be openable and closable by this on-off valve 19. In this example, the on-off valve 19 is provided in a portion of the hydrogen gas introduction passage 15 downstream of the connection point with the connection passage 17, but the position and number of the on-off valves 19 are not limited to this example. Further, the on-off valve 19 may be a valve that can be opened and closed manually, or may be a valve that is automatically opened and closed according to a set differential pressure.

なお、内槽内空間7と内外槽間空間9との間の連通路11の具体的な構成、および連通路11を開閉可能とする具体的な構成は、この例に限定されない。また、上記「水素ガス源」は、水素ガスの供給源となり得るものであればどのような構成であってもよく、典型的には水素ガスを貯蔵したタンクであるが、例えば液化水素を貯蔵したタンクと気化器を組み合わせたものであってもよい。 Note that the specific configuration of the communication path 11 between the inner tank interior space 7 and the outer and outer tank space 9, and the specific configuration that allows the communication path 11 to be opened and closed are not limited to this example. Further, the above-mentioned "hydrogen gas source" may have any configuration as long as it can serve as a supply source of hydrogen gas, and is typically a tank that stores hydrogen gas, but for example, it may be a tank that stores liquefied hydrogen. It may also be a combination of a tank and a vaporizer.

本実施形態では、連通路11に、内外槽間空間9に供給されるガスの温度を調整する温度調整装置31が設けられている。また、図示の例では、連通路11における温度調整装置31の下流に、圧縮機といった、ガスを強制的に内外槽間空間9に送給する装置(以下、単に「ガス送給装置」と呼ぶ。)33が設けられている。ガス送給装置33は、例えばターボ式または容積式の圧縮機、ブロワ、ファンといったガスに圧力をかけることによりガスを移動させる装置である。図示の例では、接続通路17に温度調整装置31およびガス送給装置33が設けられている。なお、この例では温度調整装置31はガス送給装置33の上流側に設置されているが、温度調整装置31の配置はこの例に限定されず、例えば温度調整装置31はガス送給装置33の下流側に設置されてもよく、上流側と下流側の両方に設置されてもよい。 In this embodiment, the communication path 11 is provided with a temperature adjustment device 31 that adjusts the temperature of the gas supplied to the space 9 between the inner and outer tanks. In the illustrated example, a device such as a compressor that forcibly feeds gas to the space 9 between the inner and outer tanks (hereinafter simply referred to as a "gas feeding device") is installed downstream of the temperature adjustment device 31 in the communication path 11. .) 33 are provided. The gas supply device 33 is a device that moves gas by applying pressure to the gas, such as a turbo or positive displacement compressor, blower, or fan. In the illustrated example, the connection passage 17 is provided with a temperature adjustment device 31 and a gas supply device 33. In this example, the temperature adjustment device 31 is installed upstream of the gas supply device 33, but the arrangement of the temperature adjustment device 31 is not limited to this example. For example, the temperature adjustment device 31 is installed upstream of the gas supply device 33. It may be installed on the downstream side, or it may be installed on both the upstream side and the downstream side.

また、本実施形態では、内槽3の温度を検知する内槽温度検知装置21、内槽内空間7の圧力を監視する内槽内空間圧力検知装置23、内外槽間空間9の温度を検知する内外槽間空間温度検知装置25、および内外槽間空間9の圧力を検知する内外槽間空間圧力検知装置27を備えている。これらの検知装置は、検知対象の物理量(温度、圧力)を検知するセンサ素子、取得した検出量に対して信号変換処理、演算処理等必要な処理を行う各種回路、これらの処理に必要な情報を格納するためのメモリ、電池等の電源素子または外部から電源供給を受けるための電源回路、出力信号を有線または無線で外部へ送信するための送信回路等を備えている。なお、このような温度検知装置,圧力検知装置として、上記以外の部分を計測する装置、例えば内槽温度検知装置や外槽温度検知装置が設けられていてもよい。また、これらの温度検知装置,圧力検知装置は、後述するクールダウン方法の実施の態様に応じて必要なもののみが設けられていてよい。 Further, in this embodiment, an inner tank temperature detection device 21 that detects the temperature of the inner tank 3, an inner tank space pressure detection device 23 that monitors the pressure of the inner tank space 7, and a temperature detection device 23 that detects the temperature of the space 9 between the inner and outer tanks. The inner and outer tank space temperature detection device 25 detects the pressure in the inner and outer tank space 9, and the inner and outer tank space pressure sensor 27 detects the pressure in the inner and outer tank space 9. These detection devices consist of a sensor element that detects the physical quantity to be detected (temperature, pressure), various circuits that perform necessary processing such as signal conversion processing and arithmetic processing on the obtained detected quantity, and information necessary for these processing. The device is equipped with a memory for storing the data, a power source circuit such as a power supply element such as a battery or a power supply circuit for receiving power supply from the outside, a transmission circuit for transmitting the output signal to the outside by wire or wirelessly, and the like. Note that as such a temperature sensing device and a pressure sensing device, a device that measures parts other than those described above, such as an inner tank temperature sensing device or an outer tank temperature sensing device, may be provided. Moreover, only the necessary temperature sensing devices and pressure sensing devices may be provided depending on the embodiment of the cool-down method described later.

このように構成された貯蔵タンク1のクールダウン方法について、以下に詳細に説明する。 A method for cooling down the storage tank 1 configured as described above will be described in detail below.

本実施形態では、図2Aに示すクールダウンを開始する時点での初期状態の貯蔵タンク1において、連通路11の開閉弁19を開いた状態とされており、内槽内空間7および内外槽間空間9には、いずれも、例えば常温,大気圧(0kPaG)の水素ガスが存在している。もっとも、初期状態の水素ガスの温度,圧力は常温,大気圧に限定されない。この状態から、図2Bに示すように、内槽内空間7に冷却用の液化水素(以下、単に「冷却用水素」と呼ぶ。)CHを導入する。この例では、噴霧器29を用いて、内槽内空間7に、冷却用水素CHを噴霧する。 In this embodiment, in the storage tank 1 in the initial state at the time of starting the cool-down shown in FIG. In each of the spaces 9, hydrogen gas exists at room temperature and atmospheric pressure (0 kPaG), for example. However, the temperature and pressure of the hydrogen gas in the initial state are not limited to room temperature and atmospheric pressure. From this state, as shown in FIG. 2B, liquefied hydrogen for cooling (hereinafter simply referred to as "hydrogen for cooling") CH is introduced into the inner tank space 7. In this example, cooling hydrogen CH is sprayed into the inner tank space 7 using the sprayer 29 .

この状態で冷却用水素CHの噴霧を続けることにより、内槽3の温度が低下する。内槽3の温度が低下することにより、内外槽間空間9の温度も低下する。また、内槽内空間7においては、冷却用水素CHが気化した気化ガスG1が発生して圧力が上昇する一方、内外槽間空間9においては温度低下によって圧力が低下する。上記のように連通路11が開かれているので、内槽内空間7で発生した気化ガスG1は、両空間7,9の圧力差によって、連通路11を介して内外槽間空間9に流入する。 By continuing to spray the cooling hydrogen CH in this state, the temperature of the inner tank 3 is lowered. As the temperature of the inner tank 3 decreases, the temperature of the space 9 between the inner and outer tanks also decreases. Further, in the inner tank space 7, vaporized gas G1 in which the cooling hydrogen CH is vaporized is generated, and the pressure increases, while in the inner tank space 9, the pressure decreases due to the temperature drop. Since the communication passage 11 is opened as described above, the vaporized gas G1 generated in the inner tank inner space 7 flows into the inner and outer tank space 9 via the communication passage 11 due to the pressure difference between both spaces 7 and 9. do.

このようにクールダウンが進行する途中で、水素の気化ガスG1は約20K程度の極低温となる場合があるので、極低温の気化ガスG1が内外槽間空間9を形成する内槽3,外槽5を局所的に急速に冷却することを避けることが好ましい。また、定常運用時における外槽5の設定温度は内槽3の設定温度よりも高いことに伴い、外槽5の設計温度は内槽3の設計温度よりも高いので、クールダウンの間も外槽5の温度が設計温度よりも低くならないようにすることが好ましい。そこで、本実施形態では、冷却用ガスCHの導入を開始した後、内外槽間空間9に、温度調整装置31を介して、所定温度以上である調整温度範囲に調整された温度調整ガスTGを供給する。具体的には、気化ガスG1を、温度調整装置31を介して温度調整ガスTGとして内外槽間空間9に供給する。 As the cool-down progresses in this way, the vaporized hydrogen gas G1 may reach an extremely low temperature of about 20K, so the extremely low-temperature vaporized gas G1 flows through the inner tank 3, which forms the space 9 between the inner and outer tanks, and the outer tank. Preferably, rapid local cooling of the bath 5 is avoided. In addition, since the set temperature of the outer tank 5 during steady operation is higher than the set temperature of the inner tank 3, the design temperature of the outer tank 5 is higher than the design temperature of the inner tank 3, so even during the cool-down period, the It is preferable to prevent the temperature of the tank 5 from becoming lower than the design temperature. Therefore, in the present embodiment, after starting the introduction of the cooling gas CH, the temperature adjusting gas TG adjusted to the adjusting temperature range that is a predetermined temperature or higher is introduced into the space 9 between the inner and outer tanks via the temperature adjusting device 31. supply Specifically, the vaporized gas G1 is supplied to the space 9 between the inner and outer tanks via the temperature adjustment device 31 as the temperature adjustment gas TG.

より具体的には、本実施形態では、気化ガスG1の温度が所定温度以下である場合に、気化ガスG1を温度調整ガスTGとして内外槽間空間9に供給する。具体的には、気化ガスG1を温度調整装置31によって所定温度以上の温度となるように加熱する。他方、気化ガスG1の温度が所定温度を超える場合には、気化ガスG1を直接内外槽間空間9に供給する。例えば、内槽3の冷却が進んでいない段階では、気化ガスG1が比較的高温であるので、気化ガスG1を直接内外槽間空間9に供給し、内槽3の冷却が進行した段階では、気化ガスG1の温度が低下してくるので、気化ガスG1を温度調整装置31によって加熱する。 More specifically, in this embodiment, when the temperature of the vaporized gas G1 is below a predetermined temperature, the vaporized gas G1 is supplied to the space 9 between the inner and outer tanks as the temperature adjustment gas TG. Specifically, the vaporized gas G1 is heated by the temperature adjustment device 31 to a temperature equal to or higher than a predetermined temperature. On the other hand, when the temperature of the vaporized gas G1 exceeds the predetermined temperature, the vaporized gas G1 is directly supplied to the space 9 between the inner and outer tanks. For example, when the cooling of the inner tank 3 has not progressed, the vaporized gas G1 is at a relatively high temperature, so the vaporized gas G1 is directly supplied to the space 9 between the inner and outer tanks, and when the cooling of the inner tank 3 has progressed, Since the temperature of the vaporized gas G1 is decreasing, the vaporized gas G1 is heated by the temperature adjustment device 31.

ここでの「気化ガスを直接内外槽間空間に供給する」とは、気化ガスG1に強制的な温度調整を施すことなく内外槽間空間9に供給することを意味する。すなわち、例えば温度調整装置31の温度調整機能をオフにした状態で気化ガスG1を温度調整装置31を通過させてもよいし、図2Cに示すように、連通路11に温度調整装置31を迂回するバイパス通路35および流路切替装置37を設けて、気化ガスG1がバイパス通路35を通るようにしてもよい。なお、同図の例では、バイパス通路35は温度調整装置31およびガス送給装置33を迂回するように設けられているが、バイパス通路35は温度調整装置31を迂回し、ガス送給装置33を通過するように設けられてもよい。 Here, "the vaporized gas is directly supplied to the space between the inner and outer tanks" means that the vaporized gas G1 is supplied to the space between the inner and outer tanks 9 without forcibly adjusting the temperature. That is, for example, the vaporized gas G1 may be passed through the temperature adjustment device 31 with the temperature adjustment function of the temperature adjustment device 31 turned off, or the temperature adjustment device 31 may be bypassed through the communication path 11 as shown in FIG. 2C. A bypass passage 35 and a flow path switching device 37 may be provided to allow the vaporized gas G1 to pass through the bypass passage 35. In the example shown in the figure, the bypass passage 35 is provided so as to bypass the temperature adjustment device 31 and the gas supply device 33; may be provided so as to pass through.

温度調整ガスTGの内外槽間空間9への供給は、ガス送給装置33によって強制的に行ってもよい。その場合、内外槽間空間9に強制的に供給された温度調整ガスTGは、例えば、排出通路39を介して貯蔵タンク1の外部へ排出される。排出通路39は、例えば、内外槽間空間9における底部付近に入口を有し、内外槽間空間9内を通って、内外槽間空間9の上部、例えば頂部付近に位置する出口から貯蔵タンク1の外部へ冷却用ガスCGを排出する。排出通路39には、排出用のガス圧縮機や排気ポンプが適宜設置されていてもよい。 The temperature adjustment gas TG may be forcibly supplied to the space 9 between the inner and outer tanks by the gas supply device 33. In that case, the temperature adjustment gas TG forcibly supplied to the space 9 between the inner and outer tanks is discharged to the outside of the storage tank 1 via the discharge passage 39, for example. For example, the discharge passage 39 has an entrance near the bottom of the space 9 between the inner and outer tanks, passes through the space 9 between the inner and outer tanks, and discharges the storage tank 1 from an outlet located at the upper part of the space 9 between the inner and outer tanks, for example, near the top. The cooling gas CG is discharged to the outside. The discharge passage 39 may be appropriately installed with a gas compressor or an exhaust pump for discharge.

内外槽間空間9には、貯蔵タンク1の圧力が許容範囲を超えないようにするための、上限側、下限側の安全弁が設けられていてもよい。また、制御装置によってガス送給装置33,排出通路39,開閉弁19等を制御することにより、圧力に応じて内外槽間空間9へのガス供給および内外槽間空間9からの排気を制御してもよい。 The space 9 between the inner and outer tanks may be provided with upper and lower safety valves to prevent the pressure in the storage tank 1 from exceeding an allowable range. Further, by controlling the gas supply device 33, the discharge passage 39, the on-off valve 19, etc. by the control device, the gas supply to the space 9 between the inner and outer tanks and the exhaust from the space 9 between the inner and outer tanks are controlled according to the pressure. It's okay.

気化ガスG1の供給に代えて、または追加して、水素ガス導入通路15から外部水素ガスG2を内外槽間空間9に温度調整ガスTGとして供給してもよい。この場合には、図2Dに変形例として示すように、温度調整装置31を水素ガス導入通路15上に設けると共に、温度調整装置31を使用しない場合のためのバイパス通路15aを設けてもよい。また、外部水素ガスG2を内外槽間空間9に温度調整ガスTGとして供給する場合、温度調整ガスTGの供給は、内槽内空間7への冷却用水素CHの導入を開始する前から行ってもよい。 Instead of or in addition to supplying the vaporized gas G1, external hydrogen gas G2 may be supplied from the hydrogen gas introduction passage 15 to the space 9 between the inner and outer tanks as the temperature adjustment gas TG. In this case, as shown as a modification in FIG. 2D, the temperature adjustment device 31 may be provided on the hydrogen gas introduction passage 15, and a bypass passage 15a may be provided for when the temperature adjustment device 31 is not used. Furthermore, when supplying the external hydrogen gas G2 to the space 9 between the inner and outer tanks as the temperature adjustment gas TG, the supply of the temperature adjustment gas TG is performed before the introduction of the cooling hydrogen CH into the inner tank space 7. Good too.

本実施形態では、上記「所定温度」は、貯蔵タンク1の定常運用時における内外槽間空間9の設定温度(例えば110K)である。また、上記「調整温度範囲」は、内外槽間空間9の冷却を妨げない範囲に設定され、例えば110K以上120K以下である。温度調整を行う基準となる気化ガスG1の温度としては、連通路11を流れる気化ガスG1の温度を直接測定した値を用いてしてもよく、内槽3の温度を測定した値を用いてもよい。 In this embodiment, the above-mentioned "predetermined temperature" is the set temperature (for example, 110 K) of the space 9 between the inner and outer tanks during steady operation of the storage tank 1. Further, the above-mentioned "adjusted temperature range" is set within a range that does not impede cooling of the space 9 between the inner and outer tanks, and is, for example, 110K or more and 120K or less. As the temperature of the vaporized gas G1, which serves as a reference for temperature adjustment, a value obtained by directly measuring the temperature of the vaporized gas G1 flowing through the communication path 11 may be used, or a value obtained by measuring the temperature of the inner tank 3 may be used. Good too.

なお、内外槽間空間9に導入される気化ガスG1および/または外部水素ガスG2の温度が十分低くない場合、クールダウンの過程で内槽と外槽の温度差が大きくなりすぎ、構成部材の熱収縮量の差が過大になる場合がある。これを回避するため、温度調整装置31を用いた温度調整ガスTGの温度調整と温度調整ガスTGの流量調整により、外槽5の冷却速度を調整して、内槽3と外槽5の温度差が所定値以下となるように制御しながらクールダウンを行ってもよい。内槽3と外槽5の温度差の所定値は、例えば、貯蔵タンクの通常運用開始時の温度差として設定されている値である。 Note that if the temperature of the vaporized gas G1 and/or the external hydrogen gas G2 introduced into the space 9 between the inner and outer tanks is not low enough, the temperature difference between the inner tank and the outer tank will become too large during the cool-down process, causing damage to the components. The difference in the amount of heat shrinkage may become excessive. In order to avoid this, the cooling rate of the outer tank 5 is adjusted by adjusting the temperature of the temperature adjustment gas TG and the flow rate of the temperature adjustment gas TG using the temperature adjustment device 31, and the temperature of the inner tank 3 and the outer tank 5 is adjusted. Cooldown may be performed while controlling the difference to be less than or equal to a predetermined value. The predetermined value of the temperature difference between the inner tank 3 and the outer tank 5 is, for example, a value set as the temperature difference at the start of normal operation of the storage tank.

本実施形態で使用する温度調整装置31は、液化ガスの温度を調整する機能を有していればいかなる装置であってもよい。例えば、温度調整装置31は、ガス温度を検知する温度センサ、電気駆動式のヒータ、このヒータをオン・オフするスイッチ、これらを制御する制御回路を備える。もっとも、温度調整装置31は、上記以外の構成の装置、例えば熱交換器や温度の異なるガスを混合させることにより温度を調整する装置であってよい。 The temperature adjustment device 31 used in this embodiment may be any device as long as it has a function of adjusting the temperature of the liquefied gas. For example, the temperature adjustment device 31 includes a temperature sensor that detects gas temperature, an electrically driven heater, a switch that turns on and off the heater, and a control circuit that controls these. However, the temperature adjustment device 31 may be a device having a configuration other than the above, such as a heat exchanger or a device that adjusts the temperature by mixing gases having different temperatures.

なお、本実施形態では、クールダウンの開始時、つまり冷却用水素CHの噴霧の開始時から連通路11を開状態にする例について説明したが、連通路を開くタイミングはこれに限定されない。すなわち、連通路11を閉じた状態で冷却用水素CHの噴霧を開始し、内外槽間空間9の圧力が所定値以下となった場合など、必要に応じて連通路11を開いて気化ガスG1を供給し、その際に気化ガスG1を温度調整ガスTGとして内外槽間空間9に供給してもよい。 In this embodiment, an example has been described in which the communication passage 11 is opened from the start of cool-down, that is, from the start of spraying of the cooling hydrogen CH, but the timing of opening the communication passage is not limited to this. That is, spraying of the cooling hydrogen CH is started with the communication passage 11 closed, and if necessary, such as when the pressure in the space 9 between the inner and outer tanks falls below a predetermined value, the communication passage 11 is opened to spray the vaporized gas G1. may be supplied, and at that time, the vaporized gas G1 may be supplied to the space 9 between the inner and outer tanks as the temperature adjustment gas TG.

このように、内槽3を冷却用水素CHで冷却しながら、温度調整された温度調整ガスTGを内外槽間空間9に供給することにより、内槽3および外槽5を局所的に急速に冷却すること、および外槽5の温度が設計温度より低くなることを回避しながら、内外槽間空間9および外槽5の冷却が促進される。したがって、単に内槽3のみを冷却する場合に比べて貯蔵タンク1全体のクールダウンに要する時間を短縮し、コストを抑制することができる。 In this way, by supplying the temperature-adjusted temperature-adjusted gas TG to the space 9 between the inner and outer tanks while cooling the inner tank 3 with the cooling hydrogen CH, the inner tank 3 and the outer tank 5 can be locally and rapidly cooled. Cooling of the space 9 between the inner and outer tanks and the outer tank 5 is promoted while avoiding cooling and the temperature of the outer tank 5 from becoming lower than the design temperature. Therefore, compared to the case where only the inner tank 3 is cooled, the time required for cooling down the entire storage tank 1 can be shortened and costs can be suppressed.

その後、図2Eに示すように、内槽3の温度および内外槽間空間9の温度がそれぞれ目標温度まで低下した時点で、連通路11が開状態であればこれを閉状態にするとともに、冷却用水素CHの噴霧を停止してクールダウンを終了する。 Thereafter, as shown in FIG. 2E, when the temperature of the inner tank 3 and the temperature of the space 9 between the inner and outer tanks have respectively decreased to the target temperatures, if the communication passage 11 is open, it is closed, and the cooling The spraying of hydrogen CH is stopped to complete the cool-down.

なお、本実施形態では、図1に示すように、内外槽間空間9に導入された温度調整ガスTGを偏向させる偏向板41が設けられている。具体的には、図3に示すように、偏向板41は、内外槽間空間9における温度調整ガスTGの供給口43に対向する位置に、温度調整ガスTGの流出方向にほぼ直交するように配置されている。偏向板41は、内槽3の外周面または外槽5の内周面に突設された支持部材(図示せず)を介して、内槽3の外周面または外槽5の内周面から離間した状態で支持されている。供給口43から流出した温度調整ガスTGは、偏向板41に衝突して、偏向板41の表面に沿った各方向に分散された後に内外槽間空間9内に拡散する。このように、偏向板41を設けることにより、供給口43から流出した温度調整ガスTGが、貯蔵タンク1を構成する内槽3または外槽5の一部分に集中して衝突し、当該部分が局所的に冷却されることが防止される。内外槽間空間9への供給口43の数は図示した1個に限定されず、複数であってもよい。供給口43の数が複数の場合、偏向板41は、複数の供給口43のすべての供給口43またはその一部の供給口43に対してそれぞれ設けられていてもよい。また、偏向板41の形状は、供給口43から流出した温度調整ガスTGを分散させることができる形状であればよく、例示した平板状に限定されない。もっとも、偏向板41は省略してもよい。また、偏向板41に吹き付けられるガスは、冷却用ガスCGに限定されず、内外槽間空間9に導入されるいかなる温度のガスであってもよい。 In addition, in this embodiment, as shown in FIG. 1, a deflection plate 41 that deflects the temperature adjustment gas TG introduced into the space 9 between the inner and outer tanks is provided. Specifically, as shown in FIG. 3, the deflection plate 41 is arranged at a position facing the supply port 43 of the temperature adjustment gas TG in the space 9 between the inner and outer tanks so as to be substantially perpendicular to the outflow direction of the temperature adjustment gas TG. It is located. The deflection plate 41 is provided from the outer circumferential surface of the inner tub 3 or the inner circumferential surface of the outer tub 5 via a supporting member (not shown) protruding from the outer circumferential surface of the inner tub 3 or the inner circumferential surface of the outer tub 5. supported at a distance. The temperature adjusting gas TG flowing out from the supply port 43 collides with the deflection plate 41, is dispersed in each direction along the surface of the deflection plate 41, and then diffuses into the space 9 between the inner and outer tanks. In this way, by providing the deflection plate 41, the temperature adjusting gas TG flowing out from the supply port 43 collides with a concentrated portion of the inner tank 3 or the outer tank 5 constituting the storage tank 1, and the said part is locally This prevents the product from being cooled down. The number of supply ports 43 to the space 9 between the inner and outer tanks is not limited to the one illustrated, but may be plural. When the number of supply ports 43 is plural, the deflection plate 41 may be provided for all the supply ports 43 or some of the supply ports 43 of the plurality of supply ports 43, respectively. Further, the shape of the deflection plate 41 may be any shape that can disperse the temperature adjustment gas TG flowing out from the supply port 43, and is not limited to the illustrated flat shape. However, the deflection plate 41 may be omitted. Furthermore, the gas blown onto the deflection plate 41 is not limited to the cooling gas CG, and may be any temperature gas introduced into the space 9 between the inner and outer tanks.

本実施形態では、クールダウンを冷却用の液化水素を用いて行う例について説明したが、クールダウンは液化水素以外の液化ガスを用いて行ってもよい。例えば、内槽3内に空気が存在する状態から、液化窒素を導入した後、さらに窒素を水素で置換するというように、段階的にクールダウンを進めてもよい。 In this embodiment, an example has been described in which cool down is performed using liquefied hydrogen for cooling, but cool down may be performed using liquefied gas other than liquefied hydrogen. For example, the cooldown may be performed in stages, such as introducing liquefied nitrogen from a state in which air is present in the inner tank 3, and then replacing the nitrogen with hydrogen.

なお、図1には、貯蔵タンク1の一例として、船体とは独立に形成される独立型の二重殻タンクを示したが、本実施形態に係るクールダウン方法は、この例に限定されず、いかなるタイプの貯蔵タンクにも適用することができる。例えば、本実施形態に係るクールダウン方法は、船体と一体に形成されるタイプの貯蔵タンクにも適用することができる。また、貯蔵タンクの多重構造は、三重構造以上であってよく、そのような多重構造の内槽内空間と他の任意の槽間空間とに本実施形態に係るクールダウン方法を適用することができる。 Although FIG. 1 shows an independent double-shell tank formed independently of the ship's hull as an example of the storage tank 1, the cool-down method according to the present embodiment is not limited to this example. , can be applied to any type of storage tank. For example, the cool-down method according to the present embodiment can also be applied to a type of storage tank that is formed integrally with the hull. Further, the multiple structure of the storage tank may be a triple structure or more, and the cool-down method according to the present embodiment can be applied to the internal tank space and any other inter-tank space of such a multiple structure. can.

本実施形態に係るクールダウンは、典型的には、例えば、貯蔵タンク1の建造後、貯蔵タンク1が設置される船舶のような液化ガス貯蔵設備の建造後、または、当該設備や貯蔵タンク1のメンテナンスのために貯蔵タンク1をウォームアップした後に再度積荷を実施する前に行われる。もっとも、本実施形態に係るクールダウン方法は、貯蔵タンク1が船舶に設置される場合において、貯蔵タンク1内の液化ガスを揚荷した後の空荷航海(バラスト航海)する際にも適用することができる。すなわち、バラスト航海においては内槽3の温度が徐々に上昇する場合があり、その場合に上記クールダウン方法を適用することができる。なお、バラスト航海中の貯蔵タンク1のクールダウンにおいては、例えば、揚荷せずにクールダウン用として内槽3内に残した液化ガスを用いて、内槽3内に設置されたポンプ等の送給装置によって液化ガスをタンク上部まで移送してクールダウンを行う。貯蔵タンク1が複数設置される場合には、他の貯蔵タンク1からクールダウン用の液化ガスや気化ガスの供給を受けてもよい。 The cool down according to the present embodiment is typically performed, for example, after construction of the storage tank 1, after construction of liquefied gas storage equipment such as a ship in which the storage tank 1 is installed, or after the construction of the equipment or the storage tank 1. Maintenance is carried out after warming up the storage tank 1 and before loading it again. However, the cool-down method according to the present embodiment is also applied when carrying out an empty voyage (ballast voyage) after unloading the liquefied gas in the storage tank 1 when the storage tank 1 is installed on a ship. be able to. That is, during a ballast voyage, the temperature of the inner tank 3 may gradually rise, and in that case, the above-mentioned cool-down method can be applied. In addition, when cooling down the storage tank 1 during a ballast voyage, for example, the liquefied gas left in the inner tank 3 for cooling down without unloading is used to cool down the pumps etc. installed in the inner tank 3. A feeding device transports the liquefied gas to the top of the tank for cooling down. When a plurality of storage tanks 1 are installed, liquefied gas or vaporized gas for cooling down may be supplied from other storage tanks 1.

以上説明した本実施形態に係るクールダウン方法によれば、内槽3を冷却用水素CHで冷却しながら、温度調整された温度調整ガスTGを内外槽間空間9に供給することにより、内槽3および外槽5を局所的に急速に冷却すること、および外槽5の温度が設計温度より低くなることを回避しながら、内外槽間空間9および外槽5の冷却が促進される。したがって、単に内槽3のみを冷却する場合に比べて貯蔵タンク1全体のクールダウンに要する時間を短縮し、コストを抑制することができる。 According to the cool-down method according to the present embodiment described above, while cooling the inner tank 3 with cooling hydrogen CH, the temperature-adjusted temperature gas TG is supplied to the space 9 between the inner and outer tanks. Cooling of the space 9 between the inner and outer tanks and the outer tank 5 is promoted while avoiding rapid local cooling of the inner and outer tank 3 and the outer tank 5 and preventing the temperature of the outer tank 5 from becoming lower than the design temperature. Therefore, compared to the case where only the inner tank 3 is cooled, the time required for cooling down the entire storage tank 1 can be shortened and costs can be suppressed.

本実施形態に係るクールダウン方法において、前記内槽内空間で発生した気化ガスを前記温度調整装置31に導入し、前記温度調整ガスTGとして前記内外槽間空間9に供給してもよい。これにより、簡易な構造で、かつ冷却用液化ガスを活用して低コストで内外槽間空間9に温度調整ガスTGを供給することができる。 In the cool-down method according to the present embodiment, vaporized gas generated in the inner tank space may be introduced into the temperature adjustment device 31 and supplied to the inner and outer tank space 9 as the temperature adjustment gas TG. Thereby, the temperature adjustment gas TG can be supplied to the space 9 between the inner and outer tanks with a simple structure and at low cost by utilizing the cooling liquefied gas.

本実施形態に係るクールダウン方法において、気化ガスG1の温度が前記所定温度以下である場合に、気化ガスG1を温度調整ガスTGとして内外槽間空間9に供給してもよい。これにより、内槽3および外槽5が、例えば設計上の設定温度に対して過度に冷却されることが防止される。 In the cool-down method according to the present embodiment, when the temperature of the vaporized gas G1 is below the predetermined temperature, the vaporized gas G1 may be supplied to the space 9 between the inner and outer tanks as the temperature adjustment gas TG. This prevents the inner tank 3 and the outer tank 5 from being excessively cooled, for example, with respect to the designed set temperature.

本実施形態に係るクールダウン方法において、前記内外槽間空間9に偏向板を設け、前記偏向板に向けて前記温度調整ガスTGを噴射してもよい。この構成によれば、温度調整ガスTGが貯蔵タンク1を構成する内槽3または外槽5の一部分に集中して衝突し、当該部分が局所的に冷却されることが防止される。 In the cool-down method according to the present embodiment, a deflection plate may be provided in the space 9 between the inner and outer tanks, and the temperature adjustment gas TG may be injected toward the deflection plate. According to this configuration, the temperature adjustment gas TG is prevented from colliding in a concentrated manner with a part of the inner tank 3 or the outer tank 5 constituting the storage tank 1, thereby preventing the part from being locally cooled.

以上のとおり、図面を参照しながら本開示の好適な実施形態を説明したが、本開示の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本開示の範囲内に含まれる。 As described above, the preferred embodiments of the present disclosure have been described with reference to the drawings, but various additions, changes, or deletions can be made without departing from the spirit of the present disclosure. Accordingly, such are also included within the scope of this disclosure.

1 液化ガス貯蔵タンク
3 内槽
5 外槽
7 内槽内空間
9 内外槽間空間
11 連通路
29 噴霧器
31 温度調整装置
41 偏向板
CH 冷却用液化ガス
G1 気化ガス
G2 外部水素ガス
TG 温度調整ガス
1 Liquefied gas storage tank 3 Inner tank 5 Outer tank 7 Inner tank space 9 Space between the inner and outer tanks 11 Communication path 29 Sprayer 31 Temperature adjustment device 41 Deflection plate CH Cooling liquefied gas G1 Vaporized gas G2 External hydrogen gas TG Temperature adjustment gas

Claims (4)

液化ガスを貯蔵するための、内槽および外槽を備えるタンクを、貯蔵対象である前記液化ガスを充填する前に冷却する方法であって、
内槽内空間に、冷却用液化ガスを導入することと、
内外槽間空間に、温度調整装置を介して、所定温度以上である調整温度範囲に調整された温度調整ガスを供給することと、
を含む、
液化ガス貯蔵タンクのクールダウン方法。
A method for cooling a tank including an inner tank and an outer tank for storing liquefied gas before filling it with the liquefied gas to be stored, the method comprising:
Introducing a cooling liquefied gas into the inner tank space;
Supplying a temperature adjustment gas adjusted to a adjustment temperature range that is a predetermined temperature or higher to a space between the inner and outer tanks via a temperature adjustment device;
including,
How to cool down a liquefied gas storage tank.
請求項1に記載のクールダウン方法において、
前記温度調整ガスを供給することが、前記内槽内空間で発生した気化ガスを前記温度調整装置に導入し、前記温度調整ガスとして前記内外槽間空間に供給することを含む、
クールダウン方法。
The cool-down method according to claim 1,
Supplying the temperature adjustment gas includes introducing vaporized gas generated in the inner tank space into the temperature adjustment device and supplying it as the temperature adjustment gas to the space between the inner and outer tanks.
How to cool down.
請求項2に記載のクールダウン方法において、
前記気化ガスの温度が前記所定温度以下である場合に、前記気化ガスを前記温度調整ガスとして前記内外槽間空間に供給する、
クールダウン方法。
The cool-down method according to claim 2,
supplying the vaporized gas as the temperature adjustment gas to the space between the inner and outer tanks when the temperature of the vaporized gas is below the predetermined temperature;
How to cool down.
請求項1から3のいずれか一項に記載のクールダウン方法において、
前記内外槽間空間に偏向板を設け、前記偏向板に向けて前記温度調整ガスを噴射することを含む、
クールダウン方法。
The cool-down method according to any one of claims 1 to 3,
A deflection plate is provided in the space between the inner and outer tanks, and the temperature adjustment gas is injected toward the deflection plate.
How to cool down.
JP2022046798A 2022-03-23 2022-03-23 Cooling down method of liquefied gas storage tank Pending JP2023140782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022046798A JP2023140782A (en) 2022-03-23 2022-03-23 Cooling down method of liquefied gas storage tank
PCT/JP2023/011259 WO2023182363A1 (en) 2022-03-23 2023-03-22 Method for cooling down liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046798A JP2023140782A (en) 2022-03-23 2022-03-23 Cooling down method of liquefied gas storage tank

Publications (1)

Publication Number Publication Date
JP2023140782A true JP2023140782A (en) 2023-10-05

Family

ID=88101570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046798A Pending JP2023140782A (en) 2022-03-23 2022-03-23 Cooling down method of liquefied gas storage tank

Country Status (2)

Country Link
JP (1) JP2023140782A (en)
WO (1) WO2023182363A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964707B2 (en) * 1991-05-30 1999-10-18 石川島播磨重工業株式会社 Gas pressurized liquid supply tank used in microgravity environment
JP3401727B2 (en) * 1993-05-14 2003-04-28 株式会社アイ・エイチ・アイ マリンユナイテッド Liquid gas storage device and its carrier
EP3951243A4 (en) * 2019-04-05 2022-11-16 Kawasaki Jukogyo Kabushiki Kaisha Double-shell tank and liquefied gas carrier
JPWO2020202577A1 (en) * 2019-04-05 2020-10-08
JP7449161B2 (en) * 2020-05-08 2024-03-13 川崎重工業株式会社 Liquefied hydrogen storage method and liquefied hydrogen storage system

Also Published As

Publication number Publication date
WO2023182363A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
CN104937325B (en) Method of starting gas delivery from liquefied gas fuel system to gas operated engine and liquefied gas fuel system for gas operated engine
WO2019008923A1 (en) Ship
JP2008196685A (en) Lng storage tank and lng carrier
WO2019050003A1 (en) Ship
KR101588663B1 (en) Device for supplying fuel gas in ships
WO2023182363A1 (en) Method for cooling down liquefied gas storage tank
KR20180000172A (en) Cargo Tank Management System and Method of Liquefied Gas Carrier
KR20220142356A (en) Fluid supply and storage device, vehicle and method including such a device
WO2023182367A1 (en) Cooling-down method for liquefied gas storage tank
CN108700258A (en) Method for cooling down the first low-temperature pressure container
WO2023182368A1 (en) Cooling-down method for liquified gas storage tank
WO2023182365A1 (en) Cool-down method for liquefied gas storage tank
JP6928486B2 (en) Outgassing system
WO2023182362A1 (en) Method for cooling down liquefied gas storage tank
JP2023140783A (en) Cooling down method and warming up method of liquefied gas storage tank
WO2023182366A1 (en) Cool-down method for liquefied gas storage tank
EP4129815A1 (en) Ship
US6519952B2 (en) Cryostat
KR102542464B1 (en) Boil-Off Gas Treatment System and Method for Electric Propulsion Ship
WO2019049789A1 (en) Ship
KR101973112B1 (en) Marine structure
WO2022250061A1 (en) Liquefied gas storage facility and seacraft
KR20230132702A (en) Apparatus and method for cryogenic pump cooldown
JP7220706B2 (en) Apparatus and method for transferring pressurized liquid cargo
JPH06331097A (en) Low temperature tank facility