JP2023140242A - Earthquake reinforcement/seismic isolation structure construction method for traditional wooden building - Google Patents

Earthquake reinforcement/seismic isolation structure construction method for traditional wooden building Download PDF

Info

Publication number
JP2023140242A
JP2023140242A JP2022063657A JP2022063657A JP2023140242A JP 2023140242 A JP2023140242 A JP 2023140242A JP 2022063657 A JP2022063657 A JP 2022063657A JP 2022063657 A JP2022063657 A JP 2022063657A JP 2023140242 A JP2023140242 A JP 2023140242A
Authority
JP
Japan
Prior art keywords
foundation
stone
traditional wooden
building
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022063657A
Other languages
Japanese (ja)
Other versions
JP7313598B1 (en
Inventor
重美 齋藤
Shigemi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
1kyu Kenchikushi Jimusho Shigekikaku Sekkeishitsu Co Ltd
Original Assignee
1kyu Kenchikushi Jimusho Shigekikaku Sekkeishitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 1kyu Kenchikushi Jimusho Shigekikaku Sekkeishitsu Co Ltd filed Critical 1kyu Kenchikushi Jimusho Shigekikaku Sekkeishitsu Co Ltd
Priority to JP2022063657A priority Critical patent/JP7313598B1/en
Application granted granted Critical
Publication of JP7313598B1 publication Critical patent/JP7313598B1/en
Publication of JP2023140242A publication Critical patent/JP2023140242A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an "earthquake reinforcement/seismic isolation structure construction method" for a traditional wooden building located on soft ground and with a stone foundation structure for column bases.SOLUTION: When replacing a building's soft ground with a pressure-resistant foundation that has structural strength, a foundation stone of a stone foundation structure are directly supported. A back side of a replaced pressure platen foundation is smooth, and it is expected that it will slide on soft ground in the event of a large-scale earthquake. As a countermeasure, the back side of the pressure platen foundation has a foundation waffle beam shape structure. Furthermore, support steel pipe piles are press-fitted into the ground from the pressure platen foundation to a support stratum directly below. Uneven settlement of the pressure platen foundation is prevented. A foundation complex is formed by the foundation waffle beam shape and foundation piles, a pile head securing tube is attached to the steel pipe pile, it functions as a seismic isolation device, and can be used in the event of a large-scale earthquake. The structural strength of a traditional wooden building, which has a friction effect due to the viscous characteristics of the soft ground layer in the foundation complex, is also ensured.SELECTED DRAWING: Figure 1

Description

本発明は全国点在の寺院等伝統的構法木造建築物に係るもので、建物立地の大半は河川流域周辺に点在し、軸組柱脚構造は石場建てである。河川流域周辺=軟弱地盤:地質、N値=3~4に、石場建ての二要素で構成の寺院等伝統的構法木造建築物の軟弱地盤及び石場建て構造への地震対策に係わる耐震・免震構法。The present invention relates to traditional wooden buildings such as temples scattered throughout the country, most of which are located around river basins, and the frame-column-pedestal structures are made of stone. Around the river basin = soft ground: Geology, N value = 3 to 4, earthquake resistance and seismic isolation related to earthquake countermeasures for soft ground and stone-built structures of traditional wooden buildings such as temples composed of two elements of stone-built structures Construction method.

全国に現存する多くの伝統木造建築物の建立時期は、主に慶応年代~昭和25年、市街地建築物法頃と推定される。昭和25年建築基準法が施行、昭和56年、建築基準法が制定され、その後耐震設計法{耐震基準}、{新耐震基準}として現在に至っている。
伝統木造建築物等寺院の現地調査51箇寺を実施し、土間床・壁の亀裂・軸組の変位・変形・葺瓦面の歪み等の図1で示す不具合を窺わせる本堂の多くに、次の共通点が確認された。立地:河川流域、構造:石場建ての二点。立地:河川流域の地質ボーリング調査図、図17~図19が示す建物地盤面から深さ5~6M前後地点まではN値=3~4の軟弱地盤で、深さ6~10M間に支持層を確認、N値=6~44前後である。現行建築基準法でN値=3~4軟弱地盤の立地に木造二建て住宅を新築の場合、基礎及び土台下部に鋼管杭打設もしくは地盤改良、状況により耐圧盤基礎の設置等対応が審査機関より求められる場合もある。
Many of the traditional wooden buildings that still exist across the country are estimated to have been built between the Keio period and 1950, around the time of the Urban Buildings Act. The Building Standards Act was enacted in 1951, and the Building Standards Act was enacted in 1982, and has since been enacted as the Earthquake-Resistant Design Act {Earthquake-Resistance Standards} and {New Earthquake-Resistance Standards}.
We conducted on-site surveys of 51 temples such as traditional wooden buildings, and found that many of the main halls had the defects shown in Figure 1, such as cracks in the earth floor and walls, displacement and deformation of the framework, and distortion of the roof tiles. Commonalities were confirmed. Location: river basin, structure: stone-built. Location: As shown in the geological boring survey maps of the river basin, Figures 17 to 19, there is soft ground with an N value of 3 to 4 from the building ground surface to a depth of 5 to 6 meters, and there is a support layer between 6 and 10 meters deep. Confirm that the N value is around 6 to 44. According to the current Building Standards Act, when building a new two-story wooden house on soft ground with an N value of 3 to 4, the examining body requires measures such as driving steel pipe piles into the foundation and the lower part of the foundation, improving the ground, and depending on the situation, installing a pressure-resistant foundation. Sometimes more is required.

伝統木造建築物の一部は再建築されたものの大半は、外壁四隅及び室内壁に耐震筋交を設置等の一部改修工事に終始する現状で、軟弱地盤と地盤と石場建ては放置され、耐震補強等に未対策な現状である。多くの伝統木造建築物は、(石場建て+軟弱地盤)状態で正に{糠に釘}。伝統木造建築物は、今後調達困難な高品位稀少国産木材と現在激減の伝承技術・宮大工の連携作品で再建築困難な文化遺産。Although some of the traditional wooden buildings have been rebuilt, the majority of the buildings are currently undergoing some renovation work, such as installing seismic bracing on the four corners of the exterior walls and interior walls, and the soft ground, soil, and stone structures have been left alone. Currently, no measures have been taken for earthquake reinforcement, etc. Many traditional wooden buildings are built on stone floors and soft ground, which is exactly what they are called {nails in bran}. Traditional wooden buildings are cultural heritage sites that are difficult to rebuild because they are the work of a combination of high-grade, rare domestic wood that will be difficult to procure in the future, and traditional techniques and shrine carpenters that are currently in sharp decline.

本堂等伝統的木造建築物:図1の実態を説明する。多くの本堂等伝統木造建築物に外部応力が原因と想定される・外壁亀裂・不動沈下・建物傾斜・変位・変形・屋根歪み・雨漏り等、諸被害が発生している。
伝統木造建築物の主要構造である軸組柱及び床束等の脚部基礎構造は全て石場建てと呼ばれ、石場=礎石で上部建築構造体荷重は礎石に伝播される。礎石の材質・形状は天然石を使用し外径は概ね、軸組柱の太さの2~3倍前後で、礎石の下部地業に栗石ないし割栗石を使用。
本発明は、伝統木造建築物の現状が石場建て+軟弱地盤で耐震構造欠陥建築物を改善する、耐震・免震構法を提供することを目的とする。
Traditional wooden buildings such as the main hall: The actual situation in Figure 1 will be explained. Many traditional wooden buildings, such as the main hall, are suffering from various types of damage assumed to be caused by external stress, including cracks in the outer walls, immovable settlement, building tilting, displacement, deformation, roof distortion, and rain leaks.
The main structures of traditional wooden buildings, such as frame columns and floor bundles, are all called Ishiba-deri, and Ishiba = cornerstone, and the load of the upper building structure is transmitted to the cornerstone. The material and shape of the foundation stone is natural stone, and the outer diameter is approximately 2 to 3 times the thickness of the frame columns, and chestnut or split chestnut stone is used for the lower part of the foundation stone.
An object of the present invention is to provide an earthquake-resistant and seismic isolation construction method that improves traditional wooden buildings, which are currently built on stone floors and on soft ground, and which have earthquake-resistant structural defects.

上記目的を達成するために、第一の発明は(図15石場建て)を構成する礎石を直接支持する(建物地盤面2)を、構造耐力を有する鉄筋コンクリート構造耐圧盤(以下、耐圧盤基礎10という)に置換、現況耐力を構造改善し併せて、構造石場建て構造を含め本体上部一切現状維持状態で、置換工事実施を可能とする「耐震・免震構法」。In order to achieve the above object, the first invention provides a reinforced concrete structural pressure platen (hereinafter referred to as pressure plate foundation 10 ``Earthquake-resistant and seismic isolation construction method'' that makes it possible to carry out the replacement work while maintaining the current condition of the upper part of the main body, including the stone-built structure, while improving the structure of the existing structure.

第二の発明は、第一の発明に際し置換施工された耐圧盤基礎に係わるもので従前、住宅等の耐圧盤基礎は平板状であるが、伝統木造建築物は建物地盤面2が軟弱地盤4で支持層でもあることと立地・地質・規模・構造・建物重量及び大規模地震の際、耐圧盤基礎の変位等に対応可能とする、図8耐圧盤基礎ワッフル梁構造、(以下「耐圧盤ワッフル梁構造」という)を可能とする「耐震・免震構法」。The second invention relates to a pressure platen foundation that was replaced with the first invention. Previously, pressure platen foundations for houses, etc. were flat plate-shaped, but in traditional wooden buildings, the building ground surface 2 was soft ground 4. Figure 8 Pressure plate foundation waffle beam structure (hereinafter referred to as “Pressure plate foundation "Earthquake-resistant and seismic isolation construction method" that enables "waffle beam structure".

第三の発明は第二の発明:耐圧盤ワッフル梁構造及び伝統木造建築物1への地震・台風等応力及び不動沈下の低減を図り耐圧盤基礎直下に、直接支持層への後打ち鋼管杭圧入工事を可能とする「耐震・免震構法」。The third invention is the second invention: Post-cast steel pipe piles directly under the pressure plate foundation and directly on the supporting layer in order to reduce the stress caused by earthquakes, typhoons, etc. and immobility settlement on the pressure plate waffle beam structure and traditional wooden building 1. "Earthquake-resistant and seismic isolation construction method" that enables press-in construction.

第四の発明は、第三の発明で施工される後打ち鋼管杭圧入工事の際に必需の耐圧盤基礎面に緊結する(治具専用架台31)及び関連構造・工法を提供することを目的とする「耐震・免震構法」。The purpose of the fourth invention is to provide a jig-specific mount 31 that is necessary for the press-in work of post-cast steel pipe piles to be connected to the foundation surface of the pressure plate, and related structures and construction methods. "Earthquake resistant and seismic isolation construction method".

第五の発明は、第四の発明、治具専用架台により耐圧盤基礎直下に地中圧入施工された鋼管杭の杭頭部に杭頭部確保筒30を装着し上部に、開孔部補強筋26bを施工後コンクリート打設密閉封鎖される。杭頭部確保筒の設置は大規模地震の際、鋼管杭が[伝統木造建築物1+耐圧盤基礎10]の変位発生に追従し、地震収束時の[杭頭:踏み外し]を阻止し、(杭機能を持続可能)とする耐震・免震構法。The fifth invention is based on the fourth invention, in which a pile head securing cylinder 30 is attached to the pile head of the steel pipe pile that is press-fitted into the ground directly under the pressure plate foundation using a dedicated jig frame, and the upper part is reinforced with an opening part. After constructing the reinforcement 26b, concrete is poured and sealed. The installation of pile head securing tubes allows steel pipe piles to follow the displacement of [traditional wooden building 1 + pressure board foundation 10] in the event of a large-scale earthquake, and prevents [pile head: overstepping] when the earthquake subsides. Earthquake-resistant and seismic isolation construction method that makes the pile function sustainable.

上記構成において杭頭部確保筒を介し、耐圧盤基礎と支持層間に56本の鋼管杭は(華道の剣山)裏返し状態で施工完了。伝統木造建築物の全荷重は平時56本の鋼管杭に支持され、小規模地震発生の際支持地層に伝播され軟弱地盤による影響は皆無であるが、大規模地震時に発生する地震の水平応力で(伝統木造建築物)+(耐圧盤基礎)の軟弱地盤面上での滑走変位が想定されるが、(耐圧盤基礎ワッフル梁構造)+(56本の鋼管杭群)で形成された[基礎複合体]に軟弱地盤地層の粘性特性が係る(フリクション効果)が機能し免震効果が有効に作動して(伝統木造建築物)+(耐圧盤基礎)の[滑走変位を減衰可能]とする、新規な伝統木造建築物の耐震・免震構法。In the above configuration, 56 steel pipe piles were installed between the pressure platen foundation and the support layer via pile head securing tubes (Kenzan of the flower arrangement) in an upside-down state. During normal times, the entire load of traditional wooden buildings is supported by 56 steel pipe piles, and in the event of a small earthquake, it is transmitted to the supporting strata and is not affected by the soft ground, but the horizontal stress of the earthquake that occurs during a large earthquake Sliding displacement of (traditional wooden building) + (pressure plate foundation) on the soft ground surface is expected, but the [foundation formed by (pressure plate foundation waffle beam structure) + (group of 56 steel pipe piles)] The viscous properties of the soft ground strata (friction effect) function in the complex, and the seismic isolation effect operates effectively, making it possible to attenuate the sliding displacement of (traditional wooden building) + (pressure-resistant foundation). , a new earthquake-resistant and seismic isolation construction method for traditional wooden buildings.

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。As is clear from the above description, the present invention provides the following effects.

従前、建築物の基礎構造である(耐圧盤基礎)は、建設地が更地状態でのみ施工・構築可能である。本発明の第一の発明は(伝統木造建築物)現存状態で、(伝統木造建築物)直下の(建物地盤表土:深さ30cm程度)を掘削し、(建物地盤表土)と(耐圧盤基礎)との(置換構築)を可能とし、本堂等の場合、工事中急な法事等も随時工程調整し、(伝統木造建築物)を使用可能とする新規な「耐震・免震構法」。
従前、(伝統木造建築物)に係わる耐震補強工事の概要が、文化庁『重要文化財(建造物)耐震診断・耐震補強の手引き」改訂版 事例集・平成29年3月』で、二箇寺の(工事詳細)が述べられ、
R寺:桁行5間×梁間5間. 半解体修理・(工期:56カ月)
S寺:桁行16.5間×梁間11.5間.半解体修理・(工期:72カ月)
上記、二箇寺は「半解体:小屋+屋根も含む」で修理施工されており、長期間に亘り本堂での宗教行為等は[一切不可能]と思慮される。
Previously, the foundation structure of a building (pressure platen foundation) could only be constructed on a vacant construction site. The first invention of the present invention is to excavate (building ground topsoil: approximately 30 cm deep) directly under (traditional wooden building) in the existing state of (traditional wooden building), and (building ground topsoil) and (pressure platen foundation). ), and in the case of main halls, etc., a new ``seismic resistance/seismic isolation construction method'' that allows for the use of (traditional wooden buildings) by adjusting the schedule at any time to accommodate urgent memorial services during construction.
Previously, an overview of seismic reinforcement work related to (traditional wooden buildings) was provided in the Agency for Cultural Affairs'"Guidelines for Seismic Diagnosis and Seismic Reinforcement of Important Cultural Properties (Buildings) Revised Edition Case Studies, March 2017". (Construction details) are stated,
R-temple: 5 columns x 5 beams. Semi-demolition repair/(construction period: 56 months)
S Temple: 16.5 spaces in rows x 11.5 spaces in beams. Semi-demolition repair/(construction period: 72 months)
The above-mentioned Nikaji Temple has been repaired by ``half-demolition: including the hut and roof,'' and it is thought that it will be impossible to conduct any religious activities in the main hall for a long time.

従前、木造建築物の基礎構造である(耐圧盤基礎)の「形状・仕様」は概ね、「厚さ:15~25cm・平面矩形・鉄筋コンクリート造」である。本発明の第二の発明は、(伝統木造建築物)の(建物地盤面)が(軟弱地盤)で(支持層)でもあり地学的に[氾濫原・後背湿地]に該当し、(表層地盤の地震動の増幅度)の評価は、図22(大:D≦0.5、2.85)最大値であること及び(軟弱地盤の粘性特性)、双方の要素から本発明の第二の発明は、第一の発明に際し(置換施工)された(耐圧盤基礎)に係わるもので、(建物地盤面)が(軟弱地層)で(支持層)でもあることと、大規模地震の際想定される(伝統木造建築物)の[20cm前後の変位・倒壊]及び(耐圧盤基礎)の変位・変形に対応する(耐圧盤基礎ワッフル梁構造)、(以下「耐圧盤ワッフル梁構造」という)を可能とする「耐震・免震構法」。Previously, the ``shape and specifications'' of the basic structure of wooden buildings (pressure platen foundations) were generally ``thickness: 15 to 25 cm, rectangular in plan, and reinforced concrete.'' The second invention of the present invention is that the (building ground surface) of the (traditional wooden building) is (soft ground) and (supporting layer), and corresponds geologically to [flood plain/backward wetland]. The second invention of the present invention was evaluated based on the fact that the amplification of seismic motion) is the maximum value in Figure 22 (large: D≦0.5, 2.85) and (viscosity characteristics of soft ground). This relates to the (pressure platen foundation) that was (replaced) in the first invention, and the (building ground surface) is both a (soft stratum) and a (supporting layer), and it is difficult to imagine that in the event of a large-scale earthquake. (Pressure plate foundation waffle beam structure) (hereinafter referred to as "pressure platen waffle beam structure"), which corresponds to [displacement/collapse of around 20 cm] of (traditional wooden building) and displacement/deformation of (pressure platen foundation). "Earthquake-resistant and seismic isolation construction methods" that make it possible.

従前、建築物の基礎構造である(鋼管杭:地中圧入施工)は、建設地が更地状態でのみ施工・構築可能である。本発明の第三の発明は、(伝統木造建築物)現存状態で、(伝統木造建築物)の(建物地盤面)直下に置換構築された前述(耐圧盤基礎)直下に(鋼管杭)を室内の手作業等で(地中圧入施工)を可能とする新規な「耐震・免震構法」。Previously, the foundation structure of buildings (steel pipe piles: press-fitted underground) could only be constructed and constructed when the construction site was vacant. The third invention of the present invention is to install (steel pipe piles) directly under the above-mentioned (pressure-resistant foundation) constructed directly under (building ground surface) of (traditional wooden building) in the existing state of (traditional wooden building). A new "earthquake-resistant and seismic isolation construction method" that allows indoor manual labor (underground press-in construction).

本発明の第四の発明は、第三の発明の鋼管杭施工に際し、鋼管杭の(地中圧入作業)に係わる、(治具専用架台)を(耐圧盤基礎)の上面に設置・固定し、治具:圧入機を収納・固定し、[耐圧盤基礎の反力]取得に際し(治具専用架台)が有効に介して、[屋内での鋼管杭地中圧入]を(手作業等で円滑な施工支援を可能)とする新規な「耐震・免震構法」。The fourth invention of the present invention is to install and fix (a dedicated jig frame) on the top surface of (pressure platen foundation), which is related to (underground press-in work) of steel pipe piles, when constructing steel pipe piles according to the third invention. , Jig: Stores and secures the press-in machine, and when acquiring the reaction force of the pressure platen foundation, the jig-dedicated mount can be used effectively to perform indoor press-in of steel pipe piles into the ground (by hand, etc.). A new "seismic resistance/seismic isolation construction method" that enables smooth construction support.

本発明の第五の発明は、第四の発明(治具専用架台)により(耐圧盤基礎)直下の(支持地層)へ地中圧入施工済の(鋼管杭)上部に(杭頭部確保筒)を装着する。大規模地震発生の際、(伝統木造建築物)+(耐圧盤基礎)は(地震応力)に追従し[軟弱地盤面上を滑走変位]後、地震収束時[杭頭の踏み外し]等を阻止することを(杭頭部確保筒)が可能とする(基礎ワッフル梁構造)+(鋼管杭56本)=[基礎複合体]による、新規な「耐震・免震構法」。The fifth invention of the present invention provides a pipe for securing the pile head on the top of a steel pipe pile that has been press-fitted underground into the supporting stratum directly below the pressure platen foundation, using the fourth invention (a dedicated jig frame). ). In the event of a large-scale earthquake, the (traditional wooden building) + (pressure-resistant foundation) will follow the (earthquake stress) and, after [sliding displacement on the soft ground surface], will prevent [pile heads from slipping off] when the earthquake subsides. This is a new "seismic resistance/seismic isolation construction method" that allows (pile head securing tube) to (foundation waffle beam structure) + (56 steel pipe piles) = [foundation complex].

(伝統木造建築物)本堂の「耐震・免震構法」前後比較説明図(Traditional wooden building) Main hall's "seismic resistance/seismic isolation construction method" before and after comparison explanatory diagram 本堂の断面構造図(現況)Cross-sectional structure diagram of the main hall (current condition) 本堂の平面図(現況)Plan of the main hall (current status) 本堂の石場建て図(現況)A map of the main hall’s stone floor (current condition) 本堂の床組伏図(現況)Floor plan of the main hall (current condition) [基礎複合体]伏図:コンクリート打設前「型枠工事・鉄筋工事完了」[Foundation complex] Floor plan: “Formwork work and reinforcing steel work completed” before concrete pouring [基礎複合体]伏図:コンクリート打設後「鋼管杭圧入工事完了」[Foundation complex] Plan: After concrete pouring, “steel pipe pile press-in work completed” [基礎複合体]床組耐震補強詳細・拡大図:杭頭部確保筒[Foundation complex] Floor assembly seismic reinforcement details/enlarged view: Pile head securing tube [基礎複合体]床組耐震補強:平面詳細図[Foundation complex] Seismic reinforcement of floor structure: Detailed plan view [基礎複合体]設置平面・型枠工事断面A-A[Foundation complex] Installation plane/formwork construction cross section A-A [基礎複合体]掘削レベル平面詳細・掘削工事断面B-B[Foundation complex] Excavation level plane details/excavation work cross section B-B [基礎複合体]耐圧盤配筋断面・石場建て図:基礎断面図C-C[Foundation complex] Pressure plate reinforcement cross section/stone floor construction diagram: Foundation cross section C-C [基礎複合体]鋼管杭圧入着工時・平面詳細:基礎断面図D-D[Foundation complex] At the start of steel pipe pile press-in construction / Plan details: Foundation cross section D-D [基礎複合体]鋼管杭圧入手順説明・治具専用架台設置[Foundation complex] Steel pipe pile press-in procedure explanation/Jig dedicated frame installation [石場建て説明図]の軸組柱脚構造詳細・床束脚部構造詳細Details of the frame column base structure and floor bundle base structure in [Stone building explanatory diagram] [石場建て調査写真]:[A]~[F][Ishiba Dake survey photos]: [A] ~ [F] [地質調査資料-1]:ロータリー式機械ボーリング調査[Geological survey data-1]: Rotary mechanical boring survey [地質調査資料-2]:ロータリー式機械ボーリング調査[Geological survey data-2]: Rotary mechanical boring survey [地質調査資料-3]:ロータリー式機械ボーリング調査[Geological survey data-3]: Rotary mechanical boring survey [地質調査資料-4]:国土地理院:治水地形分類解説書31頁[Geological survey data-4]: Geospatial Information Authority of Japan: Flood control landform classification manual, page 31 [立地:河川流域]:埼玉県表層地質図(県資料)・調査点加筆[Location: River basin]: Saitama prefecture surface geological map (prefectural data), addition of survey points

以下に本発明の実施形態を添付図面・調査写真及び資料、1~21図に基づいて説明する。Embodiments of the present invention will be described below based on the accompanying drawings, research photographs, materials, and Figures 1 to 21.

図1ないし15図に示す符号は、同一構成部分には同一符号を付しているので重複する説明を省略している。The same reference numerals shown in FIGS. 1 to 15 refer to the same constituent parts, and therefore redundant explanation will be omitted.

図1は(伝統木造建築物)の耐震・免震補強前後比較図で、図右側は(石場建て)現況を示し、図左側は本発明の「耐震・免震構法」概要説明である。軟弱地質層厚は5~6M、支持層の層厚≒5~10M。[基礎複合体]と(鋼管杭頭)との[接合部処理法]により、「免震構造」を可能とする「耐震・免震構法」である。Figure 1 is a comparison diagram of a (traditional wooden building) before and after seismic reinforcement and seismic isolation reinforcement.The right side of the figure shows the current state (of a stone field building), and the left side of the figure is an overview of the ``earthquake resistance and seismic isolation construction method'' of the present invention. The thickness of the soft geological layer is 5-6M, and the thickness of the supporting layer is approximately 5-10M. This is an ``earthquake-resistant and seismic isolation construction method'' that enables a ``seismic isolation structure'' through the ``joint treatment method'' between the ``foundation complex'' and the (steel pipe pile cap).

図2は(伝統木造建築物)・本堂断面構造図で、(柱脚構造詳細)は全て(石場建て)である。現地調査時、多くの本堂全貌で、(屋根瓦葺き状態)に(歪み)・(変位)が確認された。(歪み)は(屋根瓦葺面の凹凸発生)、(変位)は図17[A](屋根瓦葺瓦の水平方向への葺列が、上下列それぞれ不規則発生)、小屋内部調査で、(小屋組構造部材欠損・変形)、(桔木11:はねぎの不全)等が確認され、原因は[小屋梁仕口+構造変位・変形]の発生と推認され、[小屋梁仕口+構造変位・変形]等の主原因は、これ等(小屋組み構造)の支持構造である脚部基礎構造)=(石場建て)の変位と思慮される。合わせて、(向拝床面)・(境内地盤面)に、(歪・亀裂)が確認された。Figure 2 is a cross-sectional structural diagram of the main hall (traditional wooden building), and (details of the column base structure) are all (stone-built). During the field survey, it was confirmed that (distortion) and (displacement) were observed in the (roof tiled condition) throughout many of the main halls. (Distortion) is (occurrence of unevenness on the roof tile surface), (displacement) is Fig. 17 [A] (the rows of roof tiles in the horizontal direction are irregular in the upper and lower rows), and (displacement) is shown in the inside investigation of the hut. (missing/deformation of structural members), (Kakegi 11: Failure of Hanegi), etc. were confirmed, and the cause was presumed to be the occurrence of [Kobe beam joint + structural displacement/deformation], and [Kobe beam joint + structural displacement・The main cause of this (deformation) is thought to be the displacement of the (leg foundation structure) which is the support structure of these (roof frame structure) = (stone field building). In addition, (distortions and cracks) were confirmed on the (facing worship floor) and (ground surface within the precincts).

図3は(伝統木造建築物)本堂・平面図で、東・西・南の外壁の現状は、硝子障子引違建具35(幅:柱芯1.820、高さ1.800~2.000)で、開放状態である。現行法:建築基準法で、小規模木造住宅であって最低限(タスキ掛け筋交)が求められる重要箇所。当然壁量計算書の検討を要す。然しながら、本件にあって(タスキ掛け筋交)に拠る耐震補強工事、以前に(伝統木造建築物)の[存続を左右]する(柱脚部基礎構造=石場建て)への「耐震・免震構法の実施」が最優先・最重要である。Figure 3 is the floor plan of the main hall (traditional wooden building), and the current state of the east, west, and south exterior walls is glass shoji sliding fittings 35 (width: column center 1.820, height 1.800 to 2.000). It is in an open state. Current law: According to the Building Standards Law, important parts of small-scale wooden houses that require a minimum of bracing. Naturally, it is necessary to consider the wall amount calculation sheet. However, in this case, the seismic reinforcement work based on (taski bracing), and the earthquake-resistant and seismic isolation work for (base structure of column base = stone building) that affected the survival of (traditional wooden building). ``Implementation of construction methods'' is the highest priority and most important.

図4は建築物の床組伏図。上記構成に、▲5▼通り及び▲11▼通り床組構成の現状は、大引丸太:15aが施工され、(丸太材:構造・寸法)等に欠損は無いが、支持構造である(床束)は全て(石場建て構造)である。Figure 4 is a floor plan of the building. In the above configuration, the current state of the floor assembly configurations of ▲5▼ street and ▲11▼ street is that Ohiki logs: 15a have been constructed, and although there is no loss in (log material: structure/dimensions) etc., it is a support structure (floor ) are all (stone-built structures).

図5は(石場建て柱脚平面図)。図中▲5▼通り、向拝柱17~外陣柱18~外陣柱18~結界柱19~内陣柱20aが構成する柱列は、本堂の中心▲8▼通りの同位置である図中▲11▼通りに同様に配置されている。寺院にあって、図中▲5▼通り~図中▲11▼通り間の[コア空間]は(宗教行為の中核であり・本堂のコア構造部分)でもある。然しながら、コア構造36を取囲む外周軸組柱(四辺柱列)は、米国ニューヨーク・貿易センタービル(コア構造)に類似。図中▲ハ▼・▲ヲ▼・▲2▼・▲14▼通りが形成する外周部柱列の各軸組柱:柱脚部基礎構造は全て(石場建て)の現状は[最重要課題]と言えよう。Figure 5 is (plan view of the pillar base of the stone building). The row of pillars consisting of ▲5▼ street in the figure, the facing pillar 17 - the outside pillar 18 - the outside pillar 18 - the barrier pillar 19 - the inner hall pillar 20a, is located at the same position as the street ▲8▼ in the center of the main hall, ▲11 in the figure. ▼They are arranged in the same way on the street. In a temple, the [core space] between street ▲5▼ in the figure and street ▲11▼ in the figure is the core of religious activities and the core structural part of the main hall. However, the outer peripheral frame columns (four-sided column row) surrounding the core structure 36 are similar to the New York Trade Center Building (core structure) in the United States. In the figure: ▲ ▼ ▼ ▲ ▲ ▼ ▲ 2 ▼ ▲ 14 ▼ The current status of each frame column of the outer column column formed by the street: The foundation structure of the column base is all (built in stone) [Most important issue] I can say that.

図6はコンクリート打設前(均しモルタル終了時)の[基礎複合体]伏図である。
既述、(支持地盤面の地質)は、(軟弱地盤)である。前述[基礎複合体]の(不動沈下)を(鋼管杭圧入)で対応したが、[基礎複合体]の接地面は平滑で、(地震力・風圧等の水平応力)に対応すべく、(耐圧盤基礎:裏面)の(外周部)及び(格子状)に(ワッフル梁)29を設ける。(石場建て軸組柱脚構造部)及び(床束脚構造部)等の(同部型枠):9a,9b,9c,9d及び(鋼管杭圧入孔)の型枠27、等を示す。
Figure 6 is a floor plan of the [foundation complex] before concrete pouring (after leveling mortar is finished).
As mentioned above, (geology of supporting ground surface) is (soft ground). The above-mentioned (immobile settlement) of the [foundation complex] was addressed by (steel pipe pile press-in), but the ground surface of the [foundation complex] is smooth, and in order to cope with (horizontal stress such as seismic force and wind pressure), ( (Waffle beams) 29 are provided on the (outer periphery) and (lattice-like) of the pressure-resistant board foundation: back surface. (Formwork of the same part): 9a, 9b, 9c, 9d of (stone-built frame column base structure) and (floor bundle base structure), and formwork 27 of (steel pipe pile press-in hole), etc. are shown.

図7は[基礎複合体]の(コンクリート打設後)の(鋼管杭伏図)+[基礎複合体伏図]である。全ての(石場建て軸組柱脚構造部)及び(床束脚構造部)等の(同部型枠):9a,9b,9c,及び(鋼管杭圧入孔)の型枠27、等を示す。Figure 7 shows (steel pipe pile laying plan) + [foundation complex laying plan] of the [foundation complex] (after concrete placement). (formwork for the same part): 9a, 9b, 9c, and formwork 27 for (steel pipe pile press-in hole), etc. for all (stone-built frame column base structure) and (floor bundle base structure), etc. .

図8は[基礎複合体]の(床組耐震補強詳細の断面図)。
[基礎複合体]コンクリート打設時、(足固め:打込みアンカーボルト)26が、(足固め)22固定部材として同時打込み施工される。(杭頭部確保筒)30は、(鋼管杭12)圧入施工完了後、杭頭部に装着され上部に、(開孔部補強筋)28施工後コンクリート打設密閉封鎖される。(杭頭部確保筒)の設置は大規模地震発生に際し(伝統木造建築物)+(耐圧盤基礎)の変位発生に追従し概ね20cm変位後、地震収束時の[杭頭:踏み外し]を皆無とすることを可能とした、新規の「耐震・免震構法」に関わる発明である。
図中[拡大図]は(杭頭部確保筒)を杭頭部装着完了後仝上開口部、に(開孔部補強筋)を施工・コンクリート打設後の断面詳細図。(杭頭部確保筒)の平常時を示し内部に鋼管杭が概ね400mm挿入状態で大規模地震発生に際し20cm水平変位が発生した場合、長さ5~6Mの鋼管杭頭頂部の垂直方向の変位量は、20/500~600≒0.80~0.96cmで概ね400mm挿入状態を維持し(杭頭確保筒)に何等支障無く(杭機能持続確保)。
Figure 8 is a cross-sectional view of the foundation complex (details of seismic reinforcement of the floor structure).
[Foundation complex] When concrete is poured, (foot consolidation: driving anchor bolts) 26 are simultaneously cast as (foot consolidation) 22 fixing members. (Pile head securing tube) 30 is attached to the pile head after completion of press-fitting (steel pipe pile 12), and after construction of (open hole reinforcement) 28, concrete is poured and hermetically sealed. (Pile head securing tube) is installed to follow the displacement of (traditional wooden building) + (pressure platen foundation) when a large-scale earthquake occurs, and after approximately 20 cm displacement, there is no [pile head: overstepping] when the earthquake subsides. This is an invention related to a new "seismic resistance/seismic isolation construction method" that makes it possible to
The enlarged view in the figure is a detailed cross-sectional view of the pile head after the pile head securing cylinder has been installed, and after the pile head reinforcement has been installed and concrete is placed at the top of the opening. (pile head securing cylinder) during normal times. If a steel pipe pile is inserted approximately 400mm inside and a horizontal displacement of 20cm occurs in the event of a large-scale earthquake, the vertical displacement of the top of the steel pipe pile with a length of 5 to 6M will occur. The amount is 20/500~600≒0.80~0.96cm, which maintains the inserted state of approximately 400mm (pile head securing cylinder) without any problem (ensures continued pile function).

図0は[基礎複合体]の(床組耐震補強)の(平面詳細図)である。
既述本堂のコア構造部分に、(外陣柱18)及び(大引丸太:大15a)、(主要軸組構造5)で構成され、これ等の支持部材:(床束13a,13b,13c)を含め全ての柱脚構造は(石場建て)で、束基礎も全て(石場建て構造)である。
Figure 0 is a (detailed plan view) of the (seismic reinforcement of the floor structure) of the [foundation complex].
The core structure of the main hall mentioned above is composed of (outer pillars 18), (big logs: large 15a), and (main frame structure 5), and these supporting members: (floor bundles 13a, 13b, 13c). All of the column base structures, including the 1st column, are (stone field construction), and all of the bundle foundations are (stone field construction structure).

図10は[基礎複合体]の型枠工事断面図・型枠設置平面図。
例えば、(向拝柱17)の柱脚周囲(境内地盤面2)を掘削し(ボイド管φ600:9b)の上端を[耐圧盤基礎・計画上面]に合わせ(型枠)を先行設置・埋設し、枠内礎石接地地盤面を平滑に締付ける。同様に(外陣柱18)、(結界柱19)、(内陣柱20a)、(内陣柱20b)、(内陣柱20c)、(軸組柱21a)に(φ600ボイド管9b)、(軸組柱21b)、(軸組柱21c)、(軸組柱21d)に(9cφ300ボイド管9c)、及び(床束13a)、(床束13b)、(床束13c)に(φ300ボイド管9c)を設置・埋設し、同様に[耐圧盤基礎・計画外端]、及び(ワッフル梁29)[計画内端]に合わせ(止枠t12型枠耐水合板9d)を先行設置・埋設する。
Figure 10 is a sectional view of the formwork construction and a plan view of the formwork installation for the [foundation complex].
For example, excavate the area around the pillar base (precinct ground surface 2) of (facing worship pillar 17), align the upper end of (void pipe φ600: 9b) with [pressure board foundation/planned top surface], and install (formwork) in advance and bury it. Then, tighten the ground surface of the foundation stone inside the frame to make it smooth. Similarly, (outer pillar 18), (boundary pillar 19), (inner pillar 20a), (inner pillar 20b), (inner pillar 20c), (framed pillar 21a) (φ600 void pipe 9b), (framed pillar 21b), (framework column 21c), (framework column 21d) (9cφ300 void pipe 9c), and (floor bundle 13a), (floor bundle 13b), (floor bundle 13c) (φ300 void pipe 9c). Similarly, install and bury (stop frame T12 formwork waterproof plywood 9d) in accordance with [Pressure board foundation/planned outer end] and (waffle beam 29) [planned inner end].

図11は[基礎複合体]及び(ワッフル梁29)の掘削工事断面図・掘削レベル図。上記、既述のとおり[耐圧盤基礎]+(ワッフル梁29)に関連する型枠の先行設置・埋設完了後、[計画レベル]に合わせ(境内・床下地盤面2)の(掘削工事)が着手され、[計画レベル]に達した箇所の底面に順次(床付砕石8)が(転圧機)及び(手作業)で締付調整される。この際既述(ボイド管9a~9d)上面を土壌安定化の目的で、(手作業)締付調整される。Figure 11 is a sectional view and excavation level diagram of the excavation work for the [foundation complex] and (waffle beam 29). As mentioned above, after the preliminary installation and burying of the formwork related to the [pressure platen foundation] + (waffle beam 29) is completed, (excavation work) of (precinct/subfloor ground surface 2) will be carried out in accordance with the [planning level]. The crushed stone with the floor 8 is tightened and adjusted by rolling machine and manually on the bottom of the place where the work has started and reached the [planned level]. At this time, the upper surfaces of the void pipes 9a to 9d are tightened (manually) for the purpose of soil stabilization.

図12は[基礎複合体]の鉄筋工事断面図・配筋図・開口補強筋図
(掘削工事)完了後、(ワッフル梁29)部の(構造梁:配筋)が先行着手され、継続して[耐圧盤基礎]の平面部:[モチアミ二重配筋]が施工され、全ての(石場建て)部、(礎石)周囲に:[開口補強筋28]が(ダイア状)に施工される。施工段階で、(礎石)下部に[補強筋]の挿入可能な箇所は積極的に対応する。尚、今後の各種工事に対応可能とする、[耐圧盤基礎]の全面に適宜(多目的打込み・アンカー筋32)を施工する。[基礎複合体]の[モチアミ二重配筋][石場建て:開口補強筋図][耐圧盤配筋断面]で図示の(ワッフル梁・梁配筋29)へ(基礎配筋ダブル筋24b)が定着施工され、ワッフル梁配筋:形態が完成し、継続して[石場建て:開口補強筋]が(礎石6b~6e)周囲に(ダイア状)に施工され、その際(礎石)下部の(割栗石7)部と(礎石6b~6e)の「構造一体性」が健全と判断された場合、(割栗石7)部の下部に(石場建て開口補強筋24a)追加施工を積極的に行うことを可能とする。[基礎複合体]の「鋼管杭圧入手順説明」断面詳細図。
Figure 12 shows that after the cross-sectional diagram, bar arrangement diagram, and opening reinforcement diagram (excavation work) of the reinforcement work of the [foundation complex] was completed, the (structural beam: reinforcement arrangement) of the (waffle beam 29) section was started in advance and continued. The flat part of the [pressure platen foundation]: [Mochiami double reinforcement] will be constructed, and around all (stone building) parts and (foundation stones): [opening reinforcement 28] will be constructed in a (diamond shape). . During the construction stage, we will proactively take measures to ensure that reinforcing bars can be inserted at the bottom of the foundation stone. In addition, appropriate (multi-purpose driving/anchor bars 32) will be constructed on the entire surface of the [pressure platen foundation] to make it compatible with various future construction works. Go to (waffle beam/beam reinforcement 29) shown in [Mochiami double reinforcement] [Stone building: opening reinforcement diagram] [Pressure plate reinforcement cross section] in [Foundation complex] (Foundation reinforcement double reinforcement 24b) is fixedly installed, the waffle beam reinforcement arrangement: form is completed, and [stone field construction: opening reinforcement reinforcement] is constructed in a diamond shape around (cornerstones 6b to 6e), and at that time, the bottom of the (cornerstone) If the "structural integrity" of the (warikuri stone 7) section and (foundation stones 6b to 6e) is judged to be sound, we will proactively carry out additional construction (stone field building opening reinforcement bars 24a) at the bottom of the (warikuri stone 7) section. make it possible to do so. Detailed cross-sectional view of "Explanation of steel pipe pile press-in procedure" for [Foundation complex].

図13は[基礎複合体]のコンクリート打設完了後の平面詳細図(コンクリート打設完了)、法定強度確認後、各種型枠:ボイド管の脱却を行い、特に(型枠:φ300-ボイド管・杭圧入孔9c)の脱却後、(杭圧入孔)周囲の作業空間確保し、(開口部補強筋28)を(折り曲げ加工)し鋼管杭地中圧入作業に備え、(治具専用架台31)設置準備、(多目的打込アンカー筋32)の台直し(鉄筋等部材の曲がり部分を是正)等を行う。全ての(主要軸組)及び(床束)の(型枠:ボイド管)を脱却後、[耐圧盤基礎]との(円形空隙部分)の(旧地盤土壌)を(排出)し、[耐圧盤基礎]の仕上面に合わせて(礎石側面)まで(コンクリート打ち+金鏝補修)で摺付ける。Figure 13 is a detailed plan view of the [foundation complex] after completion of concrete pouring (concrete pouring completed). After confirming the legal strength, various formworks: void pipes were removed, especially (formwork: φ300-void pipes)・After removing the pile press-fit hole 9c), secure a working space around the pile press-fit hole, (bend the opening reinforcing bars 28), prepare for the steel pipe pile underground press-fit work, ) Preparation for installation, resetting of (multi-purpose driven anchor bars 32) (correcting bent portions of members such as reinforcing bars), etc. After removing all (formwork: void pipes) of (main framework) and (floor bundle), (discharge) (old soil) in (circular gap area) with [pressure-resistant foundation], Lay down (concrete pouring + metal trowel repair) to match the finished surface of the foundation stone (side of the foundation stone).

図14は[基礎複合体]のコンクリート打設完了・養生期間後の断面詳細図。
及び[基礎複合体]の[鋼管杭]・地中圧入:工程概要図。
[鋼管杭]地中圧入施工に必須:(治具専用架台31)の[耐圧盤基礎]への設置・固定用(打込アンカーボルトφ15.34)打込み、(治具専用架台)を鋼管杭圧入孔▲2▼上部に固定する。屋外より屋内に搬入された鋼管▲1▼を(治具専用架台)▲2▼の上方から人力挿入、(治具:圧入機)に緊結・圧入起動し、一本目の杭が頭部を残し地中圧入後、二本目の杭を溶接合し地中圧入を再開し(治具:圧入機)の抵抗値より、[杭の支持層到達]を確認後・残余杭部分を切除し、地中圧入は終了。(治具専用架台)は次の鋼管杭圧入孔▲3▼に移設され、二本目の杭頭部を電動サンダーで研磨・整備後、(杭頭部確保筒)を装着し、開口部補強筋を曲げ伸ばし(杭頭部確保筒)の頂部を格子状に覆い、完了後(鋼管杭圧入孔)を生コンクリートで充填する。以降同一繰返し手順で(56本の鋼管杭群)が形成・[基礎複合体]成立。この作業により(柱脚部基礎:石場建て構造)に係わる(伝統木造建築物)への、地震・台風等に拠る全応力は[基礎複合体]に伝達される。
Figure 14 is a detailed cross-sectional view of the [foundation complex] after completion of concrete pouring and curing period.
[Steel pipe piles] and underground press-in of [foundation complex]: Process outline diagram.
[Steel pipe pile] Required for underground press-in construction: Driving (driving anchor bolt φ15.34) for installation and fixation of (Jig-specific frame 31) to [Pressure platen foundation], (Jig-specific frame) using steel pipe piles. Fix it to the top of the press-fit hole ▲2▼. Steel pipe ▲1▼ brought indoors from outdoors is manually inserted from above ▲2▼ (Jig dedicated frame), tightened and press-fitted into (Jig: press-in machine), and the first pile leaves the head. After the underground press-in, the second pile is welded together and the underground press-in is restarted.After confirming that the pile has reached the support layer based on the resistance value of the jig (press-in machine), the remaining pile part is removed and the underground Medium press fit is completed. (Jig-specific mount) was moved to the next steel pipe pile press-fit hole ▲3▼, and after polishing and maintaining the second pile head with an electric sander, a (pile head securing cylinder) was installed, and the opening reinforcement The top of the pile head securing tube is covered in a grid pattern, and after completion, the steel pipe pile press-in hole is filled with ready-mixed concrete. After that, the same repeated procedure was used to form (group of 56 steel pipe piles) and complete the [foundation complex]. Through this work, all the stress caused by earthquakes, typhoons, etc. to the (traditional wooden building) related to (column base foundation: stone field structure) is transferred to the [foundation complex].

図15は、[石場建て説明図][軸組柱脚構造詳細][床束脚部構造詳細]、▲イ▼:向拝柱17と(沓石)の接合:仕口は、一般的に二つの施工法がある。代表的に(沓石)上面に(臍孔:ほぞ孔)を穿孔、向拝柱17下端を(臍加工)し挿入施工する施工法。二つ目の施工法は、(沓石)上面に(臍孔)を穿孔、向拝柱下端17に(臍孔)を穿孔加工し、別途(37雇臍:堅木若しくは金属製臍)を(沓石)上面に挿入後、向拝柱下端に(雇臍)を挿入する施工法。▲ハ▼軸組柱21aと礎石6dの接合仕口の調査では一般的に(沓石)上面に軸組柱21aの(柱脚部底面)を直接据付施工され、図23[F]大震災修復、調査写真[F]が示す通り、軸組柱は既に(沓石)の右方向へ(水平変位)が確認される。▲二▼:外陣柱18と礎石6bの接合仕口の調査では一般的に(沓石)上面に(臍孔:ほぞ孔)を穿孔、外陣柱18下端を(臍加工)し挿入施工する。然しながら、調査写真[C]が示す通り、軸組柱は既に(沓石)の右方向へ水平変位が確認される。(臍孔)及び柱下端を(臍加工)が未施工、大半の寺院で確認、[石場建ての踏み外し]も本発明は対応。Figure 15 shows [Explanatory diagram of stone building] [Details of framework column base structure] [Details of floor bundle base structure], ▲A▼: Connection of facing pillar 17 and (kutsu stone): Shiguchi is generally There are two construction methods. A typical construction method is to drill a hole (umbilical hole: mortise) on the top surface of the stone and then insert the lower end of the prayer pillar 17 (navel processing). The second construction method is to drill a (umbilical hole) on the top surface of the stone, drill a (umbilical hole) on the bottom end of the prayer pillar (17), and install a separate (37-hole navel: hardwood or metal navel). A construction method that involves inserting a umbilical cord at the bottom end of the pillar after inserting it into the top surface. ▲C▼ In the investigation of the connection joint between the frame column 21a and the foundation stone 6d, the (bottom of the column base) of the frame column 21a was generally installed directly on the top surface of the (kute stone). As shown in the survey photo [F], it is confirmed that the frame column has already been moved (horizontal displacement) to the right of (Kutsuishi). ▲2▼: In the investigation of the joining joint between the outer pillar 18 and the foundation stone 6b, a (umbilical hole: mortise) is generally drilled on the upper surface of the outer pillar 18, and the lower end of the outer pillar 18 is (navel processed) and inserted. However, as shown in the survey photo [C], the horizontal displacement of the frame column to the right of the stone pillar has already been confirmed. (umbilicus hole) and the bottom end of the pillar (umbilicus processing) are not yet completed, which is confirmed in most temples, and the present invention also deals with [missing steps in stone building].

図16は、[石場建て調査写真]
[A]葺瓦乱れ・小屋変形
山門前、参道よりの本堂全景を示す。入母屋造・桟葺き瓦、軒~棟への(葺上げ線)が[左右に曲折]し、屋根中央部に(歪)が確認され、状況から(小屋組横架材)の変位・変形が想定され、主要軸組構造に(沈下変位)発生、主原因は軸組柱の(柱脚:石場建て構造)にある。
[B]床束構造部分
外陣、(大引・大16a)の(床束13b)及び(礎石6c)に拠る(石場建て構造)で(礎石)は天然石を平板状に加工し施工、(伝統木造建築物)の(水平変位)に因り「踏み外し寸前」を示している。 {足固め無}
[C]柱脚部構造部分
内陣床構造(大引・中16b)、(軸組柱6c)及び(礎石6c)に拠る(石場建て構造)で(柱軸組:270角)、(礎石)は天然石を平板状に(小たたき仕上)加工し施工、粗面であるが、(伝統木造建築)の(水平変位)に因り「踏み外し寸前の状態」を示している。 {足固め無}
[D]礎石踏外し
回廊隅部:床下構造(軸組柱150・21a)、(礎石6c)及び(礎石6c)の状況は、長年(石場建て構造)以外の(伝統木造建築)の多数の調査記録では初確認の構造である。軸組柱:(礎石)の下に(礎石)、二段状態で、写真奥:一間(1.818m)先の(礎石)も同様に(二段礎石)、(伝統木造建築)の(水平変位)に因り、二段目の軸組柱:(礎石)が写真左側に(水平変位)したものと推認される。
[E]礎石沈下
内陣床構造(内陣柱・300角20a)及び(礎石6b)に拠る(石場建て構造)で、(礎石)は天然石を平板状に(小たたき仕上)加工し施工、(礎石)と(内陣柱)との間に、木板が二枚敷かれている、他の軸組柱に一枚敷も確認、目視段階では断定は出来ないが、建立・落慶後今日までに「不同沈下箇所等修正」が実施され、(木板が二枚)が挿入されたものと推認される。(軟弱地盤+石場建て)が主原因で、外因として{足固め無}の構造も一因と言えよう。
[F]大震災修復
現地調査(51箇寺)に際し、多くの(関東大震災修復現場)に遭遇し、その修復状況に、二点の[工法的共通点]が確認された。第一点は外壁面の(仮大筋交)、第二点は(床下:床組筋交)に係わるものである。(床組筋交)施工の際(内陣柱:大引き材部)~(軸組柱:柱脚部礎石)間の(丸太材のタスキ架け下端)が(柱脚下端部)に(集中応力)として働き、大規模地震に際し(伝統木造建築物1)の構造上一体水平変位)形態に反し(礎石踏み外し)を敢えて誘発する工法・施工である。
Figure 16 is [Ishiba Dake survey photo]
[A] A panoramic view of the main hall from the approach, in front of the Sanmon gate, with the roof tiles in disarray and the hut deformed. The (roofing line) from the eave to the ridge of the gambrel roof tiles and roof tiles was bent left and right, and distortion was confirmed in the center of the roof. It was assumed that (settlement displacement) occurred in the main frame structure, and the main cause was the (column base: stone-built structure) of the frame column.
[B] The outer part of the floor bundle structure is based on (floor bundle 13b) and (cornerstone 6c) of (Obiki / Dai 16a). Due to the (horizontal displacement) of the wooden building, the building is on the verge of overstepping. {No foothold}
[C] Column base structure part Inner floor structure (Obiki / Middle 16b), (Stone building structure) based on (framework column 6c) and (cornerstone 6c) (column frame: 270 square), (cornerstone) The building was constructed by processing natural stone into a flat plate (with a lightly hammered finish) and has a rough surface, but due to the (horizontal displacement) of the (traditional wooden building), it is ``on the verge of overstepping''. {No foothold}
[D] Corner of the corridor where the foundation stone has been stepped off: The condition of the underfloor structure (framework columns 150 and 21a), (cornerstone 6c) and (cornerstone 6c) is similar to that of many (traditional wooden buildings) other than (stone-built structure) for many years. This is the first structure confirmed in the investigation records. Frame columns: Under the (foundation stone), (foundation stone), in two tiers, in the back of the photo: The (foundation stone) one room (1.818m) ahead is similarly (two-tiered foundation stone), (of the traditional wooden building). It is presumed that the second-stage frame column (foundation stone) was (horizontally displaced) to the left of the photo.
[E] (Stone building structure) based on the foundation stone sinking inner floor structure (inner pillar, 300 square 20a) and (cornerstone 6b), (cornerstone) is a natural stone processed into a flat plate (with a small pounded finish), and (cornerstone) ) and (chance pillar), two wooden boards were found, and one board was also found on other frame pillars.Although it cannot be determined by visual inspection, it has been found that the It is presumed that "correction of subsidence areas, etc." was carried out and (two wooden boards) were inserted. (Soft ground + stone field construction) is the main cause, and the external cause of the structure {no foot consolidation} can also be said to be a contributing factor.
[F] During the field survey (51 temples) for Great Earthquake restoration, we encountered many (Great Kanto Earthquake restoration sites), and two common points in construction methods were confirmed in the restoration status. The first point concerns the outer wall surface (temporary major bracing), and the second point concerns (underfloor: floor assembly bracing). (Floor bracing) During construction, the (lower end of the log sash) between (chance column: large lumber part) and (framed column: column base cornerstone) is exposed to (concentrated stress) at the (lower end of the column base). ), and is a method of construction that deliberately induces horizontal displacement of the structure (integral horizontal displacement of the traditional wooden building 1) in the event of a large-scale earthquake (traditional wooden building 1), contrary to its form (foundation stone stepping off).

図17は、[地質調査図-1]で、(ロータリー式機械ボーリング調査)に拠る(水色水平細線部分:氾濫原・谷底平地)の成果品:「柱状図」である。深度1.5M:N値=3、深度4M:N値=3、深度5M:N値=5、深度6M:N値=14、深度10M:N値=43。Figure 17 is [Geological survey map-1], which is a product of (light blue horizontal thin line area: flood plain/valley flat area) based on (rotary mechanical boring survey): ``column map''. Depth 1.5M: N value = 3, Depth 4M: N value = 3, Depth 5M: N value = 5, Depth 6M: N value = 14, Depth 10M: N value = 43.

図18は、[地質調査図-2]で、(ロータリー式機械ボーリング調査)に拠る(氾濫原・谷底平地)の成果品:「柱状図」である。深度1.5M:N値=2、深度2.5M:N値=0、深度6M:N値=10。Figure 18 is [Geological survey map-2], which is a product of (flood plain/valley flat land) based on (rotary mechanical boring survey): "column map". Depth 1.5M: N value = 2, Depth 2.5M: N value = 0, Depth 6M: N value = 10.

図19は、[地質調査図-3]で、(ロータリー式機械ボーリング調査)に拠る(水色水平細線部分:氾濫原・谷底平地)の成果品:「柱状図」である。深度5M:N値=0、深度7M:N値=5、深度8M:N値=5、深度9M:N値=21。Figure 19 is [Geological survey map-3], which is a product of (light blue horizontal thin line area: flood plain/valley flat area) based on (rotary mechanical boring survey): ``column map''. Depth 5M: N value = 0, Depth 7M: N value = 5, Depth 8M: N value = 5, Depth 9M: N value = 21.

図20は、[地質調査資料-4]:国土交通省国土地理院「防災地理情報活用マニュアル(案)、4.3地震対策への利用(1)地震動(揺れやすさ)の推定」である。既述(図27:氾濫原・谷底平地)は[後背湿地・デルタ]で、「国土地理院:治水地形分類図解説書平成27年P-31、(D≦0.5km)・増幅度2.85、(揺れやすさ):大]と評価される。Figure 20 is [Geological Survey Material-4]: Ministry of Land, Infrastructure, Transport and Tourism, Geospatial Information Authority of Japan, "Disaster Prevention Geographic Information Utilization Manual (Draft), 4.3 Use for Earthquake Countermeasures (1) Estimation of seismic motion (susceptibility to shaking)" . The already mentioned (Fig. 27: Flood plain/valley flatland) is [back marsh/delta], and is based on "Geographical Information Authority of Japan: Flood Control Topographic Classification Map Explanation Manual 2015 P-31, (D≦0.5km)/Amplification degree 2. .85, (easiness of shaking): large].

図21は、[立地:河川流域]:埼玉県表層地質図(県資料)・調査点加筆埼玉県表層地質図(部分表記:概ね1/6)に、図16[石場建て調査写真]:[A]~[F]6箇寺の所在地を[符号]加筆、全ての所在地は「地図凡例:氾濫原・谷底平地」に該当。Figure 21 is [Location: River basin]: Saitama prefecture surface geological map (prefectural data), Saitama prefecture surface geological map with survey points added (partial notation: approximately 1/6), and Figure 16 [stone field survey photo]: [ A] - [F] Added [code] for the locations of six temples. All locations fall under "Map Legend: Floodplain/Valley Flatland."

本発明は、日本全国の各種文化財・文化遺産等(伝統的構法木造建築物)管理及び維持・修復業務関係機関への(耐震補強・免震計画支援)及び工事関係者・各寺院関係宗務庁への情報提供・技術支援。全国の河川流域の、(一般木造建築工事関係者)への情報提供・技術支援。The present invention is intended to provide support to organizations involved in the management, maintenance, and restoration of various cultural properties and cultural heritage sites (traditional wooden buildings) throughout Japan (seismic reinforcement and seismic isolation planning support), as well as construction personnel and religious affairs offices related to each temple. Providing information and technical support to Providing information and technical support to (general wooden construction workers) in river basins across the country.

符号の説明
1 (伝統木造建築物) 2 建物地盤面
3 N値(地耐力) 4 軟弱地盤
5 主要軸組構造 6a 礎石
6b 礎石 6c 礎石
6d 礎石 6e 礎石
7 割栗石 8 床付砕石
9a 型枠:φ900-ボイド管 9b 型枠:φ600-ボイド管
9c 型枠:φ300-ボイド管
9d 止枠:t12型枠耐水合板 10 耐圧盤基礎
11 桔木(はねぎ) 12 鋼管杭
13a 床束 13b 床束
13c 床束 14 根搦貫
15a 大引丸太:大 15b 大引丸太:中
16a 大引:大 16b 大引:中
17 向拝柱 18 外陣柱
19 結界柱 20a 内陣柱
20b 内陣柱 20c 内陣柱
21a 軸組柱 21b 軸組柱
21c 軸組柱 22 足固め
23 枕石 24a 石場建て:開口補強鉄筋
24b 基礎配筋:ダブル配筋 25 耐圧盤基礎:コンクリート躯体
26 足固め:打込みアンカーボルト 27 鋼管杭圧入孔
28 (開孔部補強筋) 29 ワッフル梁
30 (杭頭部確保筒) 31 (治具専用架台)
32 多目的打込アンカー筋 33 基礎:雨水止立上
34 打込コンクリートアンカーφ15 35 硝子障子引違建具
36 コア構造 37 雇臍(やといほぞ)
Explanation of symbols 1 (Traditional wooden building) 2 Building ground surface 3 N value (soil bearing capacity) 4 Soft ground 5 Main framework structure 6a Foundation stone 6b Foundation stone 6c Foundation stone 6d Foundation stone 6e Foundation stone 7 Split chestnut stone 8 Crushed stone with floor 9a Formwork: φ900-void pipe 9b Formwork: φ600-void pipe 9c Formwork: φ300-void pipe 9d Stopping frame: T12 formwork Water-resistant plywood 10 Pressure plate foundation 11 Hanegi 12 Steel pipe pile 13a Floor bundle 13b Floor bundle 13c Floor bundle 14 Negarinuki 15a Ohiki log: Large 15b Ohiki log: Medium 16a Ohiki: Large 16b Ohiki: Medium 17 Mukai pillar 18 Outer pillar 19 Barrier pillar 20a Inner pillar 20b Inner pillar 20c Inner pillar 21a Frame Column 21b Frame column 21c Frame column 22 Foot consolidation 23 Pillow stone 24a Stone field construction: Open reinforcing bars 24b Foundation reinforcement: Double reinforcement 25 Pressure platen foundation: Concrete frame 26 Foot consolidation: Driving anchor bolt 27 Steel pipe pile press-in hole 28 (open Hole reinforcement) 29 Waffle beam 30 (Pile head securing cylinder) 31 (Jig dedicated frame)
32 Multi-purpose driven anchor bar 33 Foundation: Rainwater catch stand 34 Cast concrete anchor φ15 35 Glass shoji sliding fittings 36 Core structure 37 Yato tenon

Claims (6)

河川流域の氾濫平野に存する多くの伝統的構法木造建築物の支持地盤は、N値=3~4の軟弱地盤であって前記木造建築物の主要軸組みである柱脚部基礎構造は、石場建てと呼ばれ、礎石が直接建物地盤面に配置されコンクリート基礎及び土台等一切無く、建築物の重量・地震力・風力等の応力は主要軸組み柱及び床束下端の一点ともいえる礎石に集中して働き、既述軟弱地盤は著しく地耐力不足といえる。前記木造建築物の構造的改善策として、石場建て構造の礎石を支持する建物地盤面を、構造耐力を有する鉄筋コンクリート構造耐圧盤に置換・構造改善し併せて、置換工事中、前記木造建築物及び石場建て構造を含め全て現状維持状態で上記工事を実施可能とすることを特徴とする伝統木造建築物の耐震補強・免震構造工法。The supporting ground for many traditionally constructed wooden buildings in the flood plains of river basins is soft ground with an N value of 3 to 4. The foundation stone is placed directly on the ground surface of the building, and there is no concrete foundation or foundation, and the stress of the building's weight, seismic force, wind force, etc. is concentrated on the main frame columns and the foundation stone, which can be said to be a single point at the bottom of the floor bundle. The soft ground described above can be said to have a marked lack of bearing capacity. As a structural improvement measure for the wooden building, the ground surface of the building that supports the foundation stones of the stone-built structure will be replaced and structurally improved with a reinforced concrete structural pressure board that has structural strength. During the replacement work, the wooden building and This is a seismic reinforcement and seismic isolation construction method for traditional wooden buildings, which is characterized by making it possible to carry out the above-mentioned construction work while maintaining the current state, including the stone-built structure. 上記前記木造建築物の置換られた前記耐圧盤基礎の裏側は平滑で大規模地震の際に軟弱地盤上の水平変位が想定され、対応策として軟弱地盤の特性である粘性抵抗が即応する様に耐圧盤基礎の裏面をワッフル梁形状とし、凹部に取り込まれた軟弱地盤の粘性抵抗に拠り水平変位を抑制する免震効果を特徴とする、請求項1記載の前記木造建築物の耐震・免震構法。The back side of the pressure platen foundation, which was replaced in the wooden building, is smooth, and horizontal displacement on soft ground is expected in the event of a large-scale earthquake.As a countermeasure, viscous resistance, which is a characteristic of soft ground, is expected to respond quickly. The seismic resistance and seismic isolation of the wooden building according to claim 1, characterized in that the back surface of the pressure platen foundation is shaped like a waffle beam, and has a seismic isolation effect that suppresses horizontal displacement based on the viscous resistance of the soft ground incorporated in the recess. Construction method. 上記伝統木造建築物の支持地盤面の地質は軟弱地盤であり、置換えられた耐圧盤ワッフル梁構造は将来的に沈下等の可能性が懸念され然るべき対応策として耐圧盤ワッフル梁構造の直下に支持地層まで後打ち鋼管杭圧入工事の施工が最適であるが、従前「鋼管杭圧入工事」は屋外更地上で自走重機車両施工、(伝統木造建築物)内では不可能の為に屋内で人力施工を可能とすることを特徴とする請求項1又は2記載の伝統木造建築物の耐震・免震構法。The supporting ground surface of the traditional wooden building mentioned above is a soft ground, and there is a concern that the replaced pressure platen waffle beam structure may sink in the future, so as an appropriate countermeasure, it is supported directly below the pressure platen waffle beam structure. The best option is to press-in steel pipe piles after they reach the ground level, but conventional steel pipe pile press-in work was carried out by self-propelled heavy machinery on open ground outdoors, and since it was impossible to do so inside traditional wooden buildings, it was carried out manually indoors. The seismic resistance/seismic isolation construction method for traditional wooden buildings according to claim 1 or 2, which enables construction. 上記伝統木造建築物の後打ち鋼管杭圧入工事は、屋内で施工される。地質は図17~19が示す深さ5~6Mに支持層が確認され鋼管杭は長さ5~6M前後、屋内の天井高さは平均10尺=3.0M、使用される鋼管杭の長さ@9尺=2.7Mで、圧入施工途上で溶接接続し、支持層に到達し、屋内での人力・圧入作業に際し治具専用架台の発明で反力を取得し円滑な施工を可能とすることを特徴とする、請求項1~3記載の伝統木造建築物の耐震・免震構法。The post-cast steel pipe pile press-in work for the traditional wooden buildings mentioned above is carried out indoors. Regarding the geology, a supporting layer was confirmed at a depth of 5 to 6M as shown in Figures 17 to 19, and the length of the steel pipe piles was around 5 to 6M.The indoor ceiling height was an average of 10 shaku = 3.0M, and the length of the steel pipe piles used was With a length of 9 feet = 2.7M, the welding connection is made during the press-fitting process to reach the support layer, and the invention of a dedicated jig frame allows for smooth construction by capturing reaction force during manual press-fitting indoors. The seismic resistance and seismic isolation construction method for traditional wooden buildings according to claims 1 to 3, characterized in that: 上記伝統木造建築物の後打ち鋼管杭は、屋内工事として置換えられた耐圧盤ワッフル梁構造上の杭圧入孔から直下に地中圧入施せれるが、然しながら、伝統木造建築物+耐圧盤ワッフル梁構造の支持地盤はN値=3~4で層厚5~6Mの軟弱地盤である。
内閣府規制改革推進会議農林ワーキン・グループ「2018.2.16 資料1-1.P-13」に、『(伝統木造建築物)は大規模地震発生時の(水平応力)に因り概ね20cm[水平変位]』とあり変位後の地震収束時に鋼管杭頭の踏み外しを阻止する杭頭部確保筒を杭頭部に装着し、杭機能を持続可能とする請求項1~4記載の伝統木造建築物の耐震・免震構法。
Post-cast steel pipe piles for the traditional wooden buildings mentioned above are press-fitted into the ground directly below the pile press-in holes on the pressure-resistant platen waffle beam structure that was replaced as part of indoor construction, but, however, the traditional wooden building + pressure-resistant platen waffle beam structure The supporting ground is soft with an N value of 3 to 4 and a layer thickness of 5 to 6 meters.
Cabinet Office Regulatory Reform Promotion Council Agriculture and Forestry Working Group ``2018.2.16 Document 1-1. 5. The traditional wooden building according to claims 1 to 4, wherein the pile head is equipped with a pile head securing tube that prevents the steel pipe pile head from being stepped off when the earthquake subsides after the displacement, so that the pile function can be sustained. Earthquake resistance and seismic isolation construction methods for objects.
上記伝統木造建築物の耐圧盤基礎ワッフル梁構造+56本の鋼管杭を図7の、▲8▼通り対称に施工・形成された基礎複合体に軟弱地盤地層の粘性特性が係るフリクション効果の作用で免震効果が有効に機能し大規模地震時に発生する地震の水平応力で伝統木造建築物+耐圧盤基礎=基礎複合体の滑走変位を軽減し阻止を特徴とする、請求項1~5記載の伝統木造建築物の耐震・免震構法。The pressure plate foundation waffle beam structure of the above-mentioned traditional wooden building + 56 steel pipe piles are constructed and formed symmetrically as shown in Figure 7, ▲8▼. Claims 1 to 5, characterized in that the seismic isolation effect effectively functions to reduce and prevent sliding displacement of the traditional wooden building + pressure plate foundation = foundation complex due to the horizontal stress of earthquakes that occur during large-scale earthquakes. Earthquake resistance and seismic isolation construction methods for traditional wooden buildings.
JP2022063657A 2022-03-22 2022-03-22 Seismic reinforcement and seismic isolation structure of traditional construction method wooden building: construction method Active JP7313598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022063657A JP7313598B1 (en) 2022-03-22 2022-03-22 Seismic reinforcement and seismic isolation structure of traditional construction method wooden building: construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022063657A JP7313598B1 (en) 2022-03-22 2022-03-22 Seismic reinforcement and seismic isolation structure of traditional construction method wooden building: construction method

Publications (2)

Publication Number Publication Date
JP7313598B1 JP7313598B1 (en) 2023-07-25
JP2023140242A true JP2023140242A (en) 2023-10-04

Family

ID=87428105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022063657A Active JP7313598B1 (en) 2022-03-22 2022-03-22 Seismic reinforcement and seismic isolation structure of traditional construction method wooden building: construction method

Country Status (1)

Country Link
JP (1) JP7313598B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197833B2 (en) 2000-07-28 2008-12-17 株式会社竹中工務店 Steel welding and press-fitting equipment and welding and press-fitting methods
JP3806069B2 (en) 2002-06-28 2006-08-09 北海道 Seismic isolation method from the ground of existing buildings
JP3733533B2 (en) 2003-09-22 2006-01-11 株式会社竹中工務店 Foundation reinforcement method under pressure of existing structures
JP5594863B2 (en) 2009-09-19 2014-09-24 住友林業株式会社 Reinforcement method of building in traditional construction method

Also Published As

Publication number Publication date
JP7313598B1 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
Dizhur et al. Building typologies and failure modes observed in the 2015 Gorkha (Nepal) earthquake
AU2018319415B2 (en) A modular building system
CN111441606A (en) Traditional building repairing method
JP2023140242A (en) Earthquake reinforcement/seismic isolation structure construction method for traditional wooden building
JP7189001B2 (en) How to construct the foundation of a building
JP2003233640A (en) Structural calculation device for building, computer program, record medium and building
Cardoso et al. Structural and material characterization of a Haussmann building complex at La Madeleine, Paris. The first step before sustainable rehabilitation and strengthening
JP6639006B1 (en) Architectural solid foundation and its construction method.
KR102409591B1 (en) Apartment remodeling construction method for construction duration reduction
AU2005201498B2 (en) A Construction
Cardoso Haussmann structural floors repairs and strengthening techniques
JP4039987B2 (en) Building using precast concrete frame and its construction method
JP2022510616A (en) Basic system
CN219753476U (en) Light steel building assembled base
Cardoso et al. Hausmannian Buildings Rehabilitation and Strengthening
Hausler Housing reconstruction and retrofitting after the 2001 Kachchh, Gujarat Earthquake
US20170037591A1 (en) Aboveground foundation for building superstructures
Pramono et al. Diagnosis and Repair of the Cracking House Next to the River
JP4204702B2 (en) Building method and building structure
Bustamante et al. Emergency Interventions in the Castle Church of Monreal De Ariza (Spain)
Dowling Improved adobe mudbrick in application–child-care centre construction in El Salvador
Melkumyan New solutions in seismic isolation for civil structures: application, R&D and design rules in Armenia
Hebeler et al. Assessment and remediation of geotechnical and structural deficiencies at a 5-story hotel experiencing large differential settlements
JP3806414B2 (en) Tombstone slope repair method
Ramirez Construction Training Facility (ESSU Philippines)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7313598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150